

ΕN

DE

2023

Product Guide

European Union North America 60Hz South America 60Hz **International 50Hz**

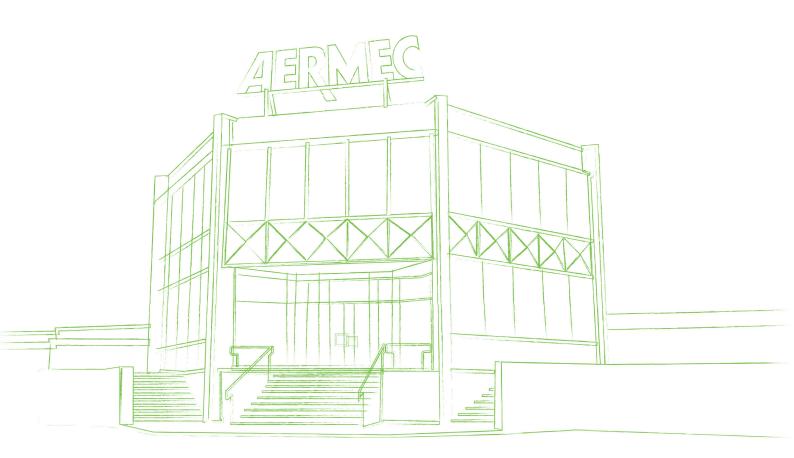
The company

Giordano Riello, founder of Aermec, assisted by his son Alessandro and daughter Raffaella, has solidly associated the Company name with precise values:

Respect for the environment

By using new eco-friendly refrigerants as well as innovative installations using water as the carrier fluid.

Noise pollution control


With low-noise emission products, which undergo scrupulous testing before being put on the market.

Energy saving

The great challenge of the Third Millennium, with the development of combined heating and air conditioning systems where appliances are used only as and when necessary.

Health care

With special filters that hold back the smallest suspension particles, the Cold Plasma Generator system that guarantees effective air purification (making for a healthier environment), and the new photocatalytic device, this air purification system is ideal for places where the highest degree of hygiene is required.

History

1961

Giordano Riello sets up Riello Condizionatori, initially producing for contractors only. The story begins.

1963

The Aermec brand is born and marks all future company products designed and manufactured on site. The brand name gains a stronghold as a major product name in Italy and throughout Europe.

1970

Aermec can already supply fresh and warm air. Aermec presents the first dual section conditioner: the first "split-system". Fancoil production starts.

1973

Aermec receives European Award Gold Mercury.

1980

The Eighties sees the development of water chillers and air handling units.

1990

The Nineties mark the definitive consolidation of the company on the market. The Aermec brand is associated with advanced technology and high quality design.

1998

The name makes the company. From 1 January Aermec becomes the company name as well as product brand.

2002

Design and technology: Aermec launched Omnia a new generation of fancoils, designed for domestic applications. OMNIA is the result of co operation with a worldwide prestigious designer.

2004

The international market ask for number and Aermec answer. Giordano Riello make the producing system more technogical. High producing, quality and assistance: the success of Aermec is going to continue.

2008

Aermec responds with more and more efficient units to the world challenge of energy saving with a special attention for our environment.

2011

Aermec turns 50. The company has developed and enlarged, always willing to understand and anticipate the needs of the market. Quality in innovation, in products, in pre-sales and after-sales services. Promoter of "integrated design" between designer and architect. Past success represents the commitment to the future.

2015

The news Europe's largest test facility for air conditioning applications was inaugurated.

2017

Aermec receives Innovation Award from the US Organizations ASHRAE, AHRI and AHR. Aermec receives "Prime Company" certificate for the economic strength and commercial reliability from the international rating company Dun & Bradstreet.

2018

Aermec awards first prize in "RAC Cooling Industry Award 2018" in London by an Internationally qualified Jury. 2019 Sales force Business plan, takes place for the first time at the new Centre of Research "Raffaello Riello".

2019

Aermec receives the prizes: "NATIONAL ACR & HEAT PUMPS AWARDS 2019" in the category of Data Centre Rooftop Chiller installation, "H&V News Awards 2019" attributed by a HVAC technical jury the United Kingdom.

2020

For the second year in a row, Aermec receives the prize ACR NEWS AWARDS for Data Centers category in the UK.

2021

Aermec is celebrating its 60th birthday.

This year, sadly distinguished by Covid-19 pandemic, corresponds to the 60th birth anniversaries of Aermec. The Company has decided to remember this event by opening a vaccination hub not only for his employees but also for all the local population.

2022

Aermec breaks through the barrier of 300 million turnover

LOGO INDEX:

 ϵ CE marking

REFRIGERANT:

R1234

R1234ze refrigerant

R134

R134a refrigerant

R32

R32 refrigerant

^{баз} **R407**с

R407C refrigerant

R410

R410A refrigerant

XP10

XP10 refrigerant

OPERATIONAL TYPES:

Evaporating unit

Cooling and heating

Cooling only

DHW

Condensing unit

Free-Cooling

Heating only

Multipurpose

For four pipes plants

For three pipes plants

For two pipes plants

INSTALLATION TYPES:

န္ဂ

Cassette installation

Ceiling installation

Ducted installation

Floor installation

Wall installation

Air indoor unit

Air outdoor unit

Water indoor unit

KINDS OF EXCHANGERS:

Heat recovery

Plate exchanger

Pump kit

Shell and tube exchanger

Water tank

KINDS OF COMPRESSORS:

Centrifugal compressor

Inverter centrifugal compressor

Rotary compressor

Inverter rotary compressor

Scroll compressor

Inverter scroll compressor

Twin screw compressor

Inverter twin screw compressor

KINDS OF FANS:

Axial fan

Inverter axial fan

Centrifugal fan

Inverter centrifugal fan

EC fan

Inverter EC fan

Plug fan

Inverter plug fan

EXTRA:

Inverter device

Compatible with ModBus protocol

Cold Plasma device

Touch control

Compatible with VMF system (Variable Multi Flow)

Aermec is one of the companies belonging to Giordano Riello International Group and takes part to Eurovent programme for NCD series.

Aermec takes part to EUROVENT Programmes: FCH - FCHP for fan coil series. Aermec is involved in EUROVENT Programme: LCP for chiller range. The products involved appear on the website www.eurovent-certification.com

INDEX

	TAN COULC		Air flow rate		Heat. Cap.	Page
	FAN COILS	and the state of t	(m³/h)	(kW)	(kW)	9-
	With cabinet; universal i		440 400	0.65 = 65	4 45 45	4.5
	FCZ	On/Off	110-1300	0,65-7,62	1,45-17,02	12
	FCZI	Inverter	140-1140	0,89-6,91	2,02-17,10	25
	FCZ-D	On/Off	140-720	0,89-4,25	2,02-8,50	34
	FCZI-D	Inverter	140-720	0,89-4,25	2,02-8,50	39
	FCZ-H	On/Off	140-1140	0,89-8,60	2,02-17,10	43
	FCZI-H	Inverter	140-1140	0,89-8,60	2,02-17,10	49
	Omnia HL	On/Off	80-460	0,53-2,79	0,53-5,94	55
	Omnia ULS	On/Off	47-390	0,30-3,00	0,30-6,15	59
new	Omnia ULSI	Inverter	47-390	0,30-3,00	0,30-6,15	63
	Omnia UL	On/Off	80-460	0,53-2,79	0,52-5,94	67
	Omnia ULI	Inverter	110-460	0,69-2,79	0,76-5,94	71
	Omnia Radiant	On/Off o inverter with radiant panel	190-460	1,42-2,83	2,89-5,94	74
		led installation with low static pressure				
	FCY	On/Off	148-1050	0,93-5,80	1,05-12,09	78
	FCYI	Inverter	123-799	0,80-4,70	0,90-10,15	87
	FCZ P - PO	On/Off	110-1300	0,65-7,62	1,45-17,02	96
	FCZI P	Inverter	140-1140	0,89-8,60	2,02-17,02	112
	Omnia UL P	On/Off	80-460	0,53-2,79	0,52-5,94	124
	Omnia ULI P	Inverter	110-460	0,69-2,79	0,76-5,94	127
	Without cabinet; duct in	stallation with high static pressure				
	VED 030-340	On/Off with static pressure 21-66Pa	161-775	0,97-5,26	0,90-10,95	130
	VED 030I-340I	Inverter with static pressure 21-66Pa	161-775	0,98-5,27	0,90-10,95	136
	VED 430-741	On/Off with static pressure 24-75Pa	750-2350	4,54-16,10	5,20-31,71	141
	VED 530I-741I	Inverter with static pressure 32-69Pa	1060-2358	6,05-16,08	6,70-31,71	147
	VES 030-340	On/Off with static pressure21-66Pa	161-775	1,25-5,71	1,82-10,95	153
	VES 030-340 I	Inverter with static pressure 21-66Pa	285-775	1,26-5,71	1,82-10,95	159
	VES 5300I-7400I	Inverter with static pressure 29-60Pa	640-1650	4,44-11,81	9,91-25,37	165
	MZC	Plenum with motor-driven dampers for channelling fan coils	-	-	-	168
	Cassette; ceiling installa					
	VEC	On/Off with coanda effect	130-613	0,80-4,28	0,95-9,18	172
	VEC-I	Inverter with coanda effect	130-613	0,80-4,28	0,95-9,18	176
	FCL	On/Off	300-1750	1,14-10,83	1,74-21,75	179
	FCLI	Inverter	300-1750	1,15-10,87	1,10-21,75	186
	With cabinet; wall instal	lation				
	FCW	On/Off	280-1082	1,37-7,00	1,42-14,00	193
	FCW I	Inverter	280-1082	1,37-7,00	1,42-14,00	197
	Floating floor installatio	on				
	UFB	Booster unit for floating floor installation	140-290	0,84-1,50	1,13-2,96	200
	Chilled beams					
	EHT	Active chilled beams	17-947	0,4-5,0	-	202
	Control panels	Range of control panels for fan coils	-	-	-	209
	VMF	Variable Multi Flow system	-	-	-	213
			Air Assurate	Cool Con	Heat Can	1
	HEAT RECOVER	RY UNITS	Air flow rate (m³/h)	(kW)	Heat. Cap. (kW)	Page
	REPURO	With cross-flow exchanger	100-650	-	-	224
	TRS	Heat recovery unit with enthalpy exchanger	250-1300	-	-	230
	RPLI	Counter-current flow heat recovery unit with inverter motor	200-3900	_	-	232
	RTD	Thermodynamic recovery unit with integrated heat pump	1100-3200	-	-	237
	RPF	High performance heat recovery unit with cross-current recuperator	790-4250	_	-	241
	URX-CF	With cross-flow exchanger and refrigerant circuit	750-3300	_	-	245
	URHE-CF	High efficiency version with cross-flow exchanger and refrigerant circuit		-	-	249
	ERSR	High-efficiency heat recovery with rotary recovery unit	1100-16100	_	_	253
	-11911	ringin emissioney near recovery with rotary recovery unit	1100 10100			233

	AIR HANDLIN	G UNITS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	Compact air handling u					
ew	TVS	Air flow rate 800÷5200 m³/h	800-5200	4,40-27,80	5,20-32,70	260
	TUN	Air flow rate 900÷4000 m³/h	900-4000	4,16-29,40	5,07-56,10	269
	TS	Air flow rate 810÷4225 m³/h	810-4225	4,39-24,93	8,89-52,44	275
	TDA	Air flow rate 800÷3500 m³/h	800-3500	4,90-22,30	2,50-45,40	279
	TA	Air flow rate 800÷5000 m ³ /h	800-5000	4,2-39,6	3,9-72,8	281
	TN	Air flow rate 3000÷23000 m ³ /h	3000-23000	12,6-127,8	14,7-277,3	286
	Modular air handling u	nits				
	NCD	Air handling units	1134-79475	-	-	293
	SPL 025-130	For wellness areas	4000-13000	-	-	296
	SPL 160-250	For wellness areas	16000-25000	-	-	300
	Packaged ROOF-TOP up	nits				
	RTX N1-N8	For medium crowding applications	-	12,70-49,95	13,50-50,79	304
	RTX 09-16	For medium crowding applications	-	50-135	49-141	309
	RTX 17-23	For medium crowding applications	-	151-307	152-310	315
	RTY 01-10	For high crowding applications	-	30,2-133,6	29,3-137,9	320
			Air flow rate	Cool. Cap.	Heat. Cap.	Daws
		HILLERS AND HEAT PUMPS	(m³/h)	(kW)	(kW)	Page
	Units with scroll compre ANKI 020-080			E 0 2/10	61 20 0	226
	ANKI 020-080 HMI	Reversible heat pumps inverter	-	5,8-24,8	6,1-20,8	326
	BHP	Reversible air/water heat pump	-	3,0-14,5	4,0-15,5	330
	HMG	Air/Water split type reversible heat pump Reversible air/water heat pump	-	3,2-8,5 32-60	4,0-9,5 35-65	336 348
	ANLI		-	28,9		353
	ANK 020-150	Reversible heat pumps inverter	-	6,8-39,8	31,5	
	SWP	Reversible air/water heat pump High temperature air cooled heat pumps for production of DHW	-	0,0-39,0	8,0-35,3 1,9	359 366
	ANL 021-202	Air-water chiller	-	5,7-43,3	1,9	369
			-			
	ANL 021H-203H	Reversible air/water heat pump	-	5,7-49,1	6,2-43,3	375 382
	NRK 0090-0150	Reversible air/water heat pump	-	18,4-31,0	20,8-34,4	
	NRK 0200-0700	Reversible air/water heat pump	-	35,5-148,0	42,3-175,0	386
	NRV 0550	Air-water chiller Air-water chiller	-	108,3	-	391
	NRL 0280-0350		-	56,0-82,0	-	395
	NRL 0280H-0350H	Reversible air/water heat pump	-	51,0-76,0	58,0-86,0	400
	NRB 0282-0754	Air-water chiller	-	56-202	-	405
	NRB 0282H-0754H NRG 0282-0804	Reversible air/water heat pump		52-261	57-193	414
		Air-water chiller	-	33/0 22 1/0	-	422
	NRG 0282H-0804H	Reversible air/water heat pump	-	52,5-212,0	56,6-214,4	431
	NRGI 151-602	Air-water chiller	-	31,0-132,2	-	439
	NRGI 151H-602H	Reversible air/water heat pump	-	28,9-123,7	31,6-133,9	444
	NRG 0800-2400 NRG 0800H-3600H	Air-water chiller	-	225,7-725,0	-	450
W		Reversible air/water heat pump Air-water chiller (plate heat exchanger)	-	195,2-962,3 217-1049	209,3-991,9	458 466
	NRB 0800-3600 NRB 0800-3600 T	Air-water chiller (shell and tube heat exchanger)	-	217-1049	-	475
	NRB 0800H-3600H	Reversible air/water heat pump (plate heat exchanger)	-	196-971	209-1006	483
	NRB 0800H-3600H-T	Reversible air/water heat pump (shell and tube heat exchanger)	_	196-971	209-1006	492
	CL 025-200	Air-water chiller with Plug Fan	_		-	500
	CL 025-200 CL 025H-200H	Reversible air/water heat pump with Plug Fan	-	5,8-41,0 6,5-50,9	- 7,7-44,8	505
	NLC 0280-1250	Air-water chiller with Plug Fan		53-322	,,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	511
	NLC 0280H-1250H	Reversible air/water heat pump with Plug Fan	-	53-322	55-342	518
	Units with screw compr			JJ JLL	JJ J7L	210
	NSM 1402-9603	Air-water chiller	_	302-2100	_	523
	NSMI 1251-6102	Chiller with Inverter screw compressors	_	285,6-1342,6	_	538
	NSH	Reversible air/water heat pump	_	251-731	- 281-786	542
	NSG	Air-water chiller (with R1234ze)	-	228-1580	-	548
	Units with centrifugal c			220-1300		J 1 0
	TBA 1300-4325	Air-water chiller		328-1404	_	559
	TBG 1230-4310	Air-water chiller	-	200-1165	-	564
	100 1230-4310	All-water Chiller	-	200-1100	-	304

AIR / WATER CH	ILLERS WITH FREECOOLING	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Pag
Units with scroll compres					
NRG 0282-0754 F	Air-water chiller with free-cooling	-	58-190	-	572
NRB 0800-3600 F	Air-water chiller with free-cooling	-	211-1010	-	577
NRB 0800-3600 B	Air-water chiller with free-cooling glycol free		211-1010	-	585
NRV 0550 F	Air-water chiller with free-cooling	-	99,9-105,4	-	592
Units with screw compre	ssors				
NSM 1402-9603 F	Air-water chiller with free-cooling	-	306-2028	-	596
NSM 1402-9603 B	Air-water chiller with free-cooling glycol free	-	305,8-2028,1	-	607
NSM-HWT-1402-9603-F	Air-water chiller with free-cooling	-	306-2001	-	617
NSM-HWT-1402-9603-B	Air-water chiller with free-cooling glycol free	-	306-1991	-	626
NSMI 1251-6102 F	Air-water chiller with free-cooling and Inverter screw compressors	-	286-1280	-	634
TBA 1300-3350 F	Air-water chiller with free-cooling	-	317,2-1223,6	-	639
TBG 1230-4310 F	Air-water chiller with free-cooling	-	238-1110	-	644
WATER / WATER	CHILLERS AND HEAT PUMPS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Pag
Units with scroll compres		(111 /11)	(KVV)	(KVV)	
VENICE H	Reversible water-cooled heat pump, gas side	_	6,9-9,8	8,3-11,6	652
WRL 026H-161H	Reversible water-cooled heat pump, gas side	_	6,0-40,0	8,0-48,0	655
WRL 026-161	Water cooled heat pump reversible water side	_	6,6-44,2	7,5-48,0	662
WRL 180H-650H	Reversible water-cooled heat pump, gas side	-	44,9-157,4	53,0-183,3	668
WRL 1801-6501	Water cooled heat pump reversible water side	-	49,0-174,0	55,0-192,0	672
WRK	Reversible water-cooled heat pump, gas side	-	38,9-165,9	48,5-207,7	677
WKK WWB 0300-0900	Water-water heat pumps only	-	ک _ا رک11-درن		684
WWB 0300-0900		-	06	56,7-265,9	
	Water cooled heat pump reversible water side	-	96	110	688
NXW 0503-1654	Water cooled heat pump reversible water side	-	111-511	127-582	694
NXW 0503H - 1654H	Reversible water-cooled heat pump, gas side	-	106-477	125-565	699
Jnits with screw compre			1.47 700	164 770	70.4
WS 0601-2802	Water cooled heat pump reversible water side	-	147-700	164-778	704
HWS 0601 - 2802	Water cooled heat pump reversible water side	-	147-369	165-778	708
HWSG	Water cooled heat pump reversible water side	-	110-396	122-595	712
WSH	Reversible water-cooled heat pump, gas side	-	165,8-269,7	183,3-300,3	716
WFGI	Water cooled heat pump reversible water side	-	217-1765	243-1960	720
WFGN	Water cooled heat pump reversible water side	-	136-1727	153-1921	729
WFI	Water cooled heat pump reversible water side	-	291-2406	326-2664	736
WFN	Water cooled heat pump reversible water side	-	182-2349	205-2610	745
Jnits with centrifugal co	•				
WMX	Water/water chiller (with R134a)	-	/-	-	753
WMG	Water/water chiller (with R1234ze)	-	282,3-312,4	-	756
WTX	Water/water chiller	-	222,9-1958,4		759
NTG	Water/water chiller (with R1234ze)		246,6-1959,4	-	764
MULTI-PURPOS	JE	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Pa
NRP 0200-0750	Air-water multipurpose (plate heat exchanger)	-	43-185	46-205	770
NRP 0804-3606	Air-water multipurpose (plate heat exchanger)	_	207-963	208-988	777
CPS	Multifunction unit with multiple temperature level capability	_	164-491	176-505	788
NXP 0500-1650	Water-water multipurpose (plate heat exchanger)	-	108-502	122-549	793
DRECISION AID	CONDITIONING	Air flow rate		Heat. Cap.	Pag
		(m³/h)	(kW)	(kW)	
2 10-932 5 070 1343	Direct expansion (air or water cooled); chilled water	-	7-160	-	800
G 070-1342	Direct expansion (air or water cooled); chilled water	-	50-222	-	805
R 20-361	Direct expansion (air or water cooled); chilled water	-	10-37	-	809

	ROOM AIR CO	NDITIONERS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Pag
	Monobloc					
	FK	Monobloc window	-	2,7-3,6	-	816
	CMP (COMPACT)	Monobloc without outdoor unit	-	2,35	2,36	819
	PSL	Portable air conditioner	-	2,6-3,4	2,3-2,7	822
	Monosplit			, ,		
	SPG	Monosplit	_	2,5-6,2	2,8-6,5	825
	SGE	Monosplit	_	2,77-5,86	2,93-6,00	830
	SCG	Monosplit	_	7,2-12,5	7,9-13,5	834
	CKG	Monosplit	_	2,7-6,6	2,9-6,8	838
w	LPG	Monosplit	_	3,5-16,0	4,0-17,0	843
	LCG	Monosplit	_	3,5-16,0	4,0-17,0	852
	MVAS	Monosplit high head duct	_	22,4-28,0	24,0-30,0	862
	Multisplit	Monospit high head daet		22,7 20,0	24,0 30,0	002
	MLG	Multisplit	_	4,1-12,0	4,4-13,0	865
w	MPG	Multisplit	_	4,1-12,0	4,4-13,0 4,4-9,5	882
w	MGE	Multisplit	_	4,1-8,0 4,1-7,9	4,4-9,5 4,4-8,2	899
w	MGE	Multispiit	-	4,1-7,9	4,4-8,2	895
	VRF SYSTEM		Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Pag
	MVBM - MVAS	Direct expansion variable refrigerant flow system VRF	-	12,1-246,0	14,0-276,0	906
	COMPLEMENT	TARY PRODUCTS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Pa
	Sistemi e kit solari A.C.S.					
W	GSA - KSA - CXS	DHW Systems and solar kits				930
	Thermal Buffers tank					
	SAF	Thermal Buffer tank kit with instantaneous Domestic Hot Water production	-	-	-	934
	SAP	Buffer tank with capacity from 75 to 3500 litres	-	-	-	936
	Plug&Play hydronic kit					
	WST evo	Hydronic kit plug & play	-	80-1500	-	939
	Cooling towers					
	TRA	Cooling towers	-	-	-	942
	Remote condensers - Dry	y coolers				
	CSE	Remote condensers	-	3-650	-	944
	CVR	Remote condensers	-	44-500	-	946
	CDR	Remote condensers	-	150-590	-	948
	CGA	Remote condensers	-	240-1500	-	950
	CMV	Remote condensers	-	140-1200	-	952
		Dry cooler	_	3-500	-	954
	WIE					
	WTE WTR	•	_	56-350	_	956
	WTR	Dry cooler	-	56-350 90-430	-	
	WTR WDR	Dry cooler Dry cooler	-	90-430	-	958
	WTR WDR WGA	Dry cooler Dry cooler Dry cooler	- - -	90-430 180-1100	-	958 960
	WTR WDR WGA WMV	Dry cooler Dry cooler Dry cooler Dry cooler	- - -	90-430	- - -	958 960
	WTR WDR WGA WMV Water cooled condensing	Dry cooler Dry cooler Dry cooler Dry cooler Dry cooler	- - -	90-430 180-1100 100-950	-	958 960 962
	WTR WDR WGA WMV Water cooled condensin MEC-W	Dry cooler Dry cooler Dry cooler Dry cooler Bry cooler Water-cooled packaged air conditioners	-	90-430 180-1100 100-950		958 960 962 964
	WTR WDR WGA WMV Water cooled condensin MEC-W FW-R	Dry cooler Dry cooler Dry cooler Dry cooler Bry cooler Ury cooler Ury cooler Unit Water-cooled packaged air conditioners Water-cooled air conditioner	-	90-430 180-1100 100-950 11-55 2,9-4,0	- - - - - 4,3-5,2	958 960 962 964 966
	WTR WDR WGA WMV Water cooled condensin MEC-W	Dry cooler Dry cooler Dry cooler Dry cooler Bry cooler Water-cooled packaged air conditioners	-	90-430 180-1100 100-950	- - - - 4,3-5,2	956 958 960 962 964 966 968

972 975

DML

DMH-DMV

Dehumidifier portable

Dehumidifier

FAN COILS

In this area of climate control, Aermec is real leader:

a major company in Italy and one of the top in Europe.

A leading position gained through long-standing experience that has gained ground year after year. Special attention to detail, quality materials state-of-the-art technology ensure optimal performance with virtually imperceptible noise levels, especially at low speed;

attention paid to dimensions and overall size, comparable to those of standard radiators, to enable installation in all residential and commercial environments;

exclusive design, anticipating trends and in harmony with interior design requirements;

new electronic control panel to enable automatic operation and achieve the most user-friendly climatisers to date. Aermec fancoils boast all these features and more.

	FAN COILS		Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	With cabinet; universal in	stallation				
	FCZ	On/Off	110-1300	0,65-7,62	1,45-17,02	12
	FCZI	Inverter	140-1140	0,89-6,91	2,02-17,10	25
	FCZ-D	On/Off	140-720	0,89-4,25	2,02-8,50	34
	FCZI-D	Inverter	140-720	0,89-4,25	2,02-8,50	39
	FCZ-H	On/Off	140-1140	0,89-8,60	2,02-17,10	43
	FCZI-H	Inverter	140-1140	0,89-8,60	2,02-17,10	49
	Omnia HL	On/Off	80-460	0,53-2,79	0,53-5,94	55
	Omnia ULS	On/Off	47-390	0,30-3,00	0,30-6,15	59
new	Omnia ULSI	Inverter	47-390	0,30-3,00	0,30-6,15	63
	Omnia UL	On/Off	80-460	0,53-2,79	0,52-5,94	67
	Omnia ULI	Inverter	110-460	0,69-2,79	0,76-5,94	71
	Omnia Radiant	On/Off o inverter with radiant panel	190-460	1,42-2,83	2,89-5,94	74
	Without cabinet; conceal	ed installation with low static pressure				
	FCY	On/Off	148-1050	0,93-5,80	1,05-12,09	78
	FCYI	Inverter	123-799	0,80-4,70	0,90-10,15	87
	FCZ P - PO	On/Off	110-1300	0,65-7,62	1,45-17,02	96
	FCZI P	Inverter	140-1140	0,89-8,60	2,02-17,02	112
	Omnia UL P	On/Off	80-460	0,53-2,79	0,52-5,94	124
	Omnia ULI P	Inverter	110-460	0,69-2,79	0,76-5,94	127
	Without cabinet; duct ins	tallation with high static pressure				
	VED 030-340	On/Off with static pressure 21-66Pa	161-775	0,97-5,26	0,90-10,95	130
	VED 030I-340I	Inverter with static pressure 21-66Pa	161-775	0,98-5,27	0,90-10,95	136
	VED 430-741	On/Off with static pressure 24-75Pa	750-2350	4,54-16,10	5,20-31,71	141
	VED 530I-741I	Inverter with static pressure 32-69Pa	1060-2358	6,05-16,08	6,70-31,71	147
	VES 030-340	On/Off with static pressure21-66Pa	161-775	1,25-5,71	1,82-10,95	153
	VES 030-340 I	Inverter with static pressure 21-66Pa	285-775	1,26-5,71	1,82-10,95	159
	VES 5300I-7400I	Inverter with static pressure 29-60Pa	640-1650	4,44-11,81	9,91-25,37	165
	MZC	Plenum with motor-driven dampers for channelling fan coils				168
	Cassette; ceiling installat	ion				
	VEC	On/Off with coanda effect	130-613	0,80-4,28	0,95-9,18	172
	VEC-I	Inverter with coanda effect	130-613	0,80-4,28	0,95-9,18	176
	FCL	On/Off	300-1750	1,14-10,83	1,74-21,75	179
	FCLI	Inverter	300-1750	1,15-10,87	1,10-21,75	186
	With cabinet; wall installa	ation				
	FCW	On/Off	280-1082	1,37-7,00	1,42-14,00	193
	FCW I	Inverter	280-1082	1,37-7,00	1,42-14,00	197
	Floating floor installation					
	UFB	Booster unit for floating floor installation	140-290	0,84-1,50	1,13-2,96	200
	Chilled beams					
	EHT	Active chilled beams	17-947	0,4-5,0		202
	Control panels	Range of control panels for fan coils				209
	VMF	Variable Multi Flow system				213

FCZ

- Very quiet
- Touch controller mounted on-board. allows remote control with smart devices

Fan coil for universal and floor installation

Cooling capacity 0,65 ÷ 7,62 kW Heating capacity 1,45 ÷ 17,02 kW

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic. **Depending on the version, the distribution grille may be adjustable.**

Ventilation group

Consisting of double suction centrifugal fans that are particularly silent, statically and dynamically balanced, and directly coupled with the motor shaft

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

Extractable shrouds for easy, effective cleaning

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized main coil and the possible secondary coil have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main coil, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

In the APC version, air purification is guaranteed by the Cold Plasma purifier.

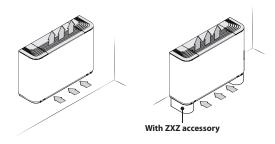
The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

VERSIONS

A High, with fixed air distribution grille and built-in command ACT High, with air distribution grille and electronic thermostat

AF High, without built-in command but with front intake

APC High, with air distribution grille, electronic thermostat and Cold Plasma purifier


AS High, with air distribution grille without built-in command

 $\boldsymbol{\mathsf{U}}$ Universal, with adjustable air distribution grille but without built-in thermostat

UA Universal, with fixed air distribution grille but without built-in thermostat

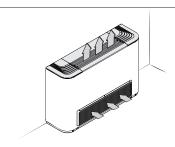
UF Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

Versions with fixed grille (high cabinet)

FCZ A

With built-in selector.

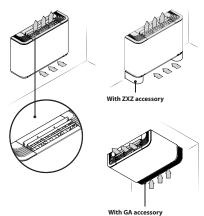
FCZ_AS


- Compatibility with VMF system.
- Without installed switch

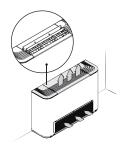
FCZ ACT

With electronic thermostat for 2-pipe systems only.

FCZ_APC


- With electronic thermostat for 2-pipe systems only.
- Cold Plasma purifier

FCZ AF


- Without installed switch
- Compatibility with VMF system.
- Front intake grille.

Versions with adjustable and fixed grille (universal)

FCZ U

- Compatibility with VMF system.
- Without installed switch
- Distribution grille with adjustable louvers. Sizes 1, 2 and 3 have a single grille, whereas sizes 4, 5, 6, 7, 8, 9 and 10 have three grilles fully independent of each other. When all the fins have closed, the unit switches off.
- Vertical and horizontal installation for 2-pipe and 4-pipe systems.

FCZ_UF

- Compatibility with VMF system.
- Without installed switch
- Air delivery grille with adjustable louvers.
- Front intake grille.

FCZ_UA

- Compatibility with VMF system.
- Without installed switch
- Air distribution grille with fixed louvers.
- Vertical and horizontal installation for 2-pipe and 4-pipe systems.

ThermApp

In units with a $\mbox{{\bf T-Touch-I}}$ electronic thermostat and the $\mbox{{\bf ThermApp}}$ application, the operating mode can be set and the weekly timer programmed by simply resting the smart device on the fan coil. The graphic interface of the app also gives access to a lot more information such as the alarm list, the closest SAT, etc.

Available for Android operating systems.

Fiel	ld	Description
1,2,	,3	FCZ
4		Size 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
5		Main coil
	0	Standard
	5	Oversized
6		Secondary coil
	0	Without coil
	1	Standard
	2	Oversized
7		Version
		Only vertical installation.
	Α	High, with fixed air distribution grille and built-in command
	ACT	High, with air distribution grille and electronic thermostat
	AF	High, without built-in command but with front intake
	APC	High, with air distribution grille, electronic thermostat and Cold Plasma purifier
	AS	Free standing without installed switch
		Vertical and horizontal installation.
	U	Universal, with adjustable air distribution grille but without built-in thermostat
	UA	Universal, with fixed air distribution grille but without built-in thermostat
	UF	Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

SIZE AVAILABLE FOR VERSION

Size		100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
Versions produced	(by size)																				
Vancione available	A,AS,U,UA		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
Versions available	ACT,APC	•	-	-	•	•	-	-	•	•	-	-	•	•	-	-	•		-	-	•
(by size)	AF,UF	•	-	-	•	•	-	-	•	•	-	-	•	٠	-	-	•	•	-	-	•
Size		600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001			
Versions produced	(by size)																				
V!! - - -	A,AS,U,UA	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
Versions available	ACT,APC	•	-	-		•	-	-	•		-	-	•	•	-	•		-			
(by size)	AF,UF	-	-	-	-	-	-	-	-	-	-	-	-		-		•	-			

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PX2Z: On-board electromechanical switch.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L=15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH: Touch control on board the machine, for controlling fan coils with asynchronous motors. In 2-pipe systems, it can control standard fan coils or those equipped with an electric heater, with air purifying devices or with FCZ-D twin delivery (Dualjet). In 4-pipe systems, only standard fan coils. The ThermApp application is also available for remote control with smart devices with the Android operating system.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

TXB: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF system

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E2Z: User interface on the machine, to be combined with the VMF-E0X, VMF-E19 or VMF-E19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E0X/E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - **45** - **for the secondary coil:** The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

(Heating only) additional coil

BV: Single row hot water heat exchanger.

RX: Armoured electric coil with safety thermostat.

Installation accessories

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Metal supports for vertical installation of the GA grille.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

AMP: Wall mounting kit

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	100	101	102	150	200	201	202	250
ER503IR (1)	AF,UF	•			•	•			•
(ו) עוכטכעד	AS,U,UA	•	•	•	•	•	•	•	•
V 2 7	AF,UF	•			•	•			•
X2Z	AS,U	•	•	•	•	•	•	•	•
4.5 (2)	AF,UF	•			•	•			
A5 (2)	AS,U,UA	•	•	•	•	•	•	•	
SIT3 (3)	AS,U,UA	•			•	•	•	•	
SIT5 (4)	AS,U,UA	•	•	•	•	•	•	•	
	AF,AS,UF	•	<u> </u>	•	•	•	· · · · · · · · · · · · · · · · · · ·	<u> </u>	•
SW3 (2)	U,UA	· ·	•	•	•	•	•	•	•
	AF,UF		•	•			•	•	
SW5 (2)		•			•	•			•
	AS,U,UA	•	•	•	•	•	•	•	•
T-TOUCH (5)	AF,UF	•			•	•			•
	AS,U	•	•	•	•	•	•	•	•
TX (1)	AF,UF	•			•	•			•
A(1)	AS,U,UA	•	•	•	•	•	•	•	•
XB (5)	AF,UF	•			•	•			•
	AS,U,UA	•	•	•	•	•	•	•	•
VMT05 (1)	AF,AS,U,UA,UF	•			•	•			•
	AF,UF					•			
VMT06 (1)	AS,U	•	•	•	•	•	•	•	
	AF,UF	•			•	•			
WMT10 (1)	AS,U,UA	•	•	•	•	•	•	•	•
ladal .									
Model	Ver	300	301	302	350	400	401	402	450
ER503IR (1)	AF,UF	•			•	•			•
	AS,U,UA	•	•	•	•	•	•	•	•
X2Z	AF,UF	•			•	•			•
NZL	AS,U	•	•	•	•	•	•	•	•
·ΛΓ (2)	AF,UF	•			•	•			•
SA5 (2)	AS,U,UA	•	•				•		
SIT3 (3)	AS,U,UA	•	•	•	•	•	•	•	•
SIT5 (4)	AS,U,UA	•						•	
	AF,AS,UF	•			•	•			
SW3 (2)	U,UA	•	•	•	•	•	•	•	
	AF,UF	•			•	•			•
SW5 (2)	AS,U,UA	•			•	•			
		•	•	•	•		•	•	•
T-TOUCH (5)	AF,UF					•			•
. ,	AS,U	•	•	•	•	•	•	•	•
TX (1)	AF,UF	•			•	•			•
	AS,U,UA	•	•	•	•	•	•	•	•
TXB (5)	AF,UF	•			•	•			•
(כ) טא	AS,U,UA	•	•	•	•	•	•	•	•
VMT05 (1)	AF,AS,U,UA,UF	•			•	•			
	AF,UF								
VMT06 (1)	AS,U	•	•	•		•	•	•	
	AF,UF	•			•	•			
VMT10 (1)	AS,U,UA	•	•	•	•	•	•		•
Model	Ver	500	501	502	550	600	601	602	650
ER503IR (1)	AF,UF	•			•				
	AS,U,UA	•	•	•	•	•	•	•	•
X2Z	AF,UF	•			•				
N44	AS,U	•	•	•	•	•	•	•	•
ΛΓ (2)	AF,UF	•			•				
A5 (2)	AS,U,UA		•	•		•			
IT3 (3)	AS,U,UA	•		•	•	•	•	•	
(3)	AS,U,UA	•	•	•	•	•	•	•	•
IT5 (4)	U2,U,UN	•	•	•		•	•	•	•
IT5 (4)									
	AF,UF	•			•				
	AF,UF AS	•			•	•	•	•	•
N3 (2)	AF,UF AS U,UA		•	•	•	•	•	•	•
	AF,UF AS	•	•	•	•				

T TOUCH (r)	AF,UF	•			•				
T-TOUCH (5)	AS,U	•		•	•	•	•		•
T1/ (4)	AF,UF	•			•				
TX (1)	AS,U,UA	•		•			•		•
	AF,UF				•				
TXB (5)	AS,U,UA	•	•	•	•	•	•		•
	AF,UF	•			•				
WMT05 (1)	AS,U,UA	•			•	•			
	AF,UF					•			•
WMT06 (1)		•			•				
	AS,U	•	•	•	•	•	•	•	•
WMT10 (1)	AF,UF	•			•				
	AS,U,UA	•	•	•	•	•	•	•	•
Model	Ver	700	701	702	750	800	801	802	850
AER503IR (1)	AS,U,UA	•	•	•	•	•	•	•	•
PX2Z	AS,U	•		•	•	•	•		•
SA5 (2)	AS,U,UA	•	•	•	•	•	•	•	•
SIT3 (3)	AS,U,UA	•	•	•	•	•	•	•	•
SIT5 (4)	AS,U,UA	•	•	•	•	•	•	•	•
SW3 (2)	AS,U,UA	•	•	•	•	•	•	•	•
SW5 (2)	AS,U,UA	•	•	•	•	•	•	•	•
T-TOUCH (5)	AS,U	•	•	•	•	•	•	•	•
TX (1)	AS,U,UA	•	•	•	•	•	•	•	•
TXB (5)	AS,U,UA	•	•	•	•	•	•	•	•
WMT05 (1)	AS,U,UA	•			•	•			•
WMT06 (1)	AS,U	•		•	•	•		•	
WMT10 (1)	AS,U,UA	•	•			•	•	•	•
WINIT TO (I)	nJ,U,Un		•	•	•	•			
			<u> </u>						
Model	Ver	900	•	901	9.	50	1000	-	1001
	Ver AF,UF	900	•	901	9.	50	1000	•	1001
Model	Ver AF,UF AS,U,UA				9.	50	1000		
Model AER503IR (1)	Ver AF,UF AS,U,UA AF,UF	900		901	9.	50	1000 • •		1001
Model	Ver AF,UF AS,U,UA AF,UF AS,U	900		901	9.		1000 • • •		1001
Model AER503IR (1) PX2Z	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF	900		901	9.		1000		
Model AER503IR (1) PX2Z	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA	900		901	9.		1000 		1001
Model AER503IR (1) PX2Z SA5 (2)	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA AF,UF	900		901	9.		1000		
Model AER503IR (1) PX2Z SA5 (2)	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA	900		901	9.		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3)	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF	900		901	9.		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3)	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA	900		901	9.		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3)	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF	900		901	9.		1000 		
Model AER503IR (1) PX2Z SAS (2) SIT3 (3) SIT5 (4)	Ver AF,UF AS,U,UA AF,UF AS,U AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA	900		901	9.		1000 		
Model AER503IR (1) PX2Z SAS (2) SIT3 (3) SIT5 (4)	Ver AF,UF AS,U,UA	900		901	9.		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2)	Ver AF,UF AS,U,UA	900		901	9.		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2)	Ver AF,UF AS,U,UA AF,UF AS	900		901	9.		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) SW5 (2)	Ver AF,UF AS,U,UA AF,UF AS	900 		901	9		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) SW5 (2)	Ver AF,UF AS,U,UA AF,UF AS	900		901	9		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) SW5 (2) T-TOUCH (5)	Ver AF,UF AS,U,UA AF,UF AS	900 		901	9		1000 		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) SW5 (2) T-TOUCH (5)	Ver AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS U,UA AF,UF AS U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA	900		901	9		1000 		1001 · · · · · · · ·
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) SW5 (2) T-TOUCH (5)	Ver AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS U,UA AF,UF AS U,UA AF,UF AS U,UA AF,UF AS,U,UA AF,UF AS,U,UA	900		901	9		1000		
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) T-TOUCH (5) TX (1)	Ver AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS,U,UA AF,UF AS U,UA AF,UF AS U,UA AF,UF AS,U,UA	900		901	9	50	1000		1001
Model AERS03IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) T-TOUCH (5) TX (1) TXB (5)	Ver AF,UF AS,U,UA	900		901	9	50	1000		1001 · · · · · · · ·
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) SW5 (2) T-TOUCH (5) TX (1) TXB (5)	Ver AF,UF AS,U,UA	900		901	9	50	1000		1001
Model AER503IR (1) PX2Z SAS (2) SIT3 (3) SIT5 (4) SW3 (2) T-TOUCH (5) TX (1) TXB (5) WMT05 (1)	Ver AF,UF AS,U,UA AF,UF AS,U,UA	900		901	9	50	1000		1001
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) T-TOUCH (5) TX (1) TXB (5) WMT05 (1)	Ver AF,UF AS,U,UA AF,UF AS,U,UA	900		901	9	50	1000		1001
Model AER503IR (1) PX2Z SA5 (2) SIT3 (3) SIT5 (4) SW3 (2) SW5 (2) T-TOUCH (5) TX (1)	Ver AF,UF AS,U,UA	900		901	9	50	1000		1001

Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Installation on the fan coil.

VMF system

Model

Ver

500

501

502

550

600

601

602

650

For more information about VMF system, refer to the dedicated documentation.

VMF system

Model	Ver	100	101	102	150	200	201	202	250	300	301
VMF-E0X (1)	AF,UF	•			•	•			•	•	
VIVIT-EUX (I)	AS,U,UA	•	•	•	•	•	•	•	•		•
VMF-E19 (1)	AF,UF	•			•	•			•	•	
VIVIT-E19 (1)	AS,U,UA	•	•	•	•	•	•	•	•	•	•
VMF-E2Z	AF,UF	•			•	•			•	•	
VIVIT-EZZ	AS,U,UA	•	•			•	•	•	•		

Min	Model	Ver	100	101	102	150	200	201	202	250	300	301
	VMF-E3			•	•			•				•
Marie	VME EADV	AF,UF					•					
Margraph	VIVIT-E4UA			•	•			•	•			•
ME SHE	VMF-E4X							•	•			•
MATS	VME ID											
Marie Mari	VIVIT-IN			•	•			•	•			•
Mag	VMF-SW											
Marie	VME_CW1	AF,UF										
Marie Mari	INIC-JINI			•	•			•	•			•
Model No. 322 358 408 407 402 458 508 507 502 558 108 507 108 10	VMHI											
War 1910 ASUM	Model											550
Marie Mari			302			701	102			301	302	
Marter M	VMF-EUX (1)		•	•	•	•	•	•	•	•	•	•
MIF	VMF-E19 (1)											
Martin M	VALE 527		<u> </u>			•				<u> </u>	•	
WARF-FLOX MAJE	VMF-E2Z	AS,U,UA	•	•	•	•	•	•	•	•	•	•
MAP FERTING MAP	VMF-E3											
MASUMA			•			•	•			•	•	
Martin	VMF-E4DX	AS,U,UA	•	•	•	•	•	•	•	•		•
MATERIAN	VMF-E4X											
WAF-SW MASUF			•			•	•			•	•	
MAS-SVI	VMF-IR	U,UA	•	•	•	•	•	•	•	•	•	•
MAF-SYNT ABUF	VMF-SW											
MANIFERN ASJUR			•			•	•			•	•	
Model Ver 600 601 602 650 700 701 702 750 800 801 80	VMF-SW1	AS,U	•			•	•			•	•	
Mode Ver	VMHI											
WHF-EDX (1)		A3,U,UA	•	•	•	•		<u> </u>	<u> </u>			
\text{VMF-E19 (1)} \begin{tabular}{cccccccccccccccccccccccccccccccccccc	Model	Ver	600	601	602	650	700	701	702	750	800	801
VINF-E2Z												
VMF-E2Z		AS,UA U	•	•	•	•	•	•	•	•	•	•
VMF-EQV VMF-	VMF-E0X (1)	AS,UA U AS,UA	•	•	•	•	•	•	•	•	•	•
WHF-E4DX	VMF-E0X (1) VMF-E19 (1)	AS,UA U AS,UA U AS,UA		•	•	•	•	•	•		•	•
VMF-E4DX AS,UA	Model VMF-E0X (1) VMF-E19 (1) VMF-E2Z	AS,UA U AS,UA U AS,UA U			•						•	
VMF-EAX AS,UA	VMF-E0X (1) VMF-E19 (1) VMF-E2Z	AS,UA U AS,UA U AS,UA U AF,UF										
VMF-EV	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3	AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U U AF,UF U,UA					•					
VMF-IR AF, UF . <th< td=""><td>VMF-E0X (1) VMF-E19 (1) VMF-E2Z</td><td>AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	VMF-E0X (1) VMF-E19 (1) VMF-E2Z	AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U										
MAS	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX	AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA										
VMF-SW1 U . </td <td>VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X</td> <td>AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AF,UF</td> <td></td>	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AF,UF										
VMF-SW1 AS	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA										
Model Ver 802 850 900 901 950 1000 1001	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA AF,UF U,UA										
Ver 802 850 900 901 950 1000 1001	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA										
Model Ver 802 850 900 901 950 1000 1001	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AF,UF U,UA AS U AS										
MF-EOX (1) AS, UA AS, UA C AF, UF VMF-E19 (1) AS, UA AS, UA C AF, UF VMF-E22 AS, UA C AF, UF VMF-E22 AF, UF VMF-E22 AF, UF VMF-E22 AF, UF VMF-E23 U AF, UF C AF, U	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AF,UF U,UA AS U AS,UA U AF,UF U,UA AS U AS										
U	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW VMF-SW1 VMHI	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA										
MF-E19(1) AS,UA AS AS,UA AS A	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW VMF-SW VMF-SW1 VMHI Model	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS U AS,UA U AS,UA U AF,UF U,UA AS U AS,UA U AS,UA										
VMF-E19(1) AS,UA U VMF-EZZ AS,UA U VMF-E3 U,UA 	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW VMF-SW1	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA AS U AS,UA										
MF-EZZ AS,UA · · · · · · · · · · · · · · · · · · ·	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW VMF-SW VMF-SW1 VMHI Model	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS U AS,UA U AF,UF U,UA AS U AS,UA U AF,UF U,UA AS U AS,UA U Ver										
VMF-EZZ AS,UA U AF VMF-E3 U,UA 	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW VMF-SW VMF-SW1 VMHI Model	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS U AS,UA U AF,UF U,UA AS U AS,UA			· · · · · · · · · · · · · · · · · · ·							
U •	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW VMF-SW1 VMHI Model VMF-E0X (1)	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS U AS,UA U AF,UF U,UA AS U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U Ver AF,UF AS,UA U AF,UF AS,UA U			· · · · · · · · · · · · · · · · · · ·							
VMF-E3 U,UA · · · · · · ·	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-E4X VMF-SW VMF-SW VMF-SW1 VMHI Model VMF-E0X (1)	AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS U AS,UA U AF,UF U,UA AS U AS,UA U AF,UF AS,UA U AF,UF AS,UA U AF,UF AS,UA U AF,UF			· · · · · · · · · · · · · · · · · · ·							
	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-IR VMF-SW VMF-SW1 VMHI Model VMF-E0X (1)	AS,UA U AS,UA U AS,UA U AS,UA U AF,UF U,UA AS,UA U AF,UF U,UA AS,UA U AF,UF U,UA AS U AF,UF U,UA U U,UA U U AF,UF U,UA U U AS U AS U AS U AS U AS U AS,UA U AS U AS U AS U AS U AS U AS,UA U AS U AS U AS U AS U AS U AS,UA U AS U AS,UA U AS,UA U AS,UA U AS,UA U AS,UA U AF,UF AS,UA U AS,UA U AF,UF AS,UA U AS,UA			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
un · · · · · · · · · · · · · · · · · · ·	VMF-E0X (1) VMF-E19 (1) VMF-E2Z VMF-E3 VMF-E4DX VMF-E4X VMF-E4X VMF-SW VMF-SW VMF-SW1 VMHI Model VMF-E0X (1) VMF-E19 (1)	AS,UA U AF,UF U,UA AS U AS,UA U AF,UF U,UA U AS U AS U AS U AS U AS,UA U AS U AS U AS U AS U AS,UA U AS U AS U AS U AS U AS U AF,UF AS,UA U AF,UF AS,UA	· · · · · · · · · · · · · · · · · · ·			900						

Model	Ver	802	850	900	901	950	1000	1001
	AF,UF					•		
VMF-E4DX	AS,UA	•	•	•	•	•	•	
	U	•		•	•	•	•	•
	AF,UF					•		
/MF-E4X	AS,UA	•	•	•	•	•	•	•
	U	•		•	•	•	•	•
	AF		•	•		•		
/MF-IR	U,UA	•	•	•	•	•	•	•
	UF		•	•		•	•	
	AF,UF					•		
/MF-SW	AS	•	•	•	•	•	•	•
	U	•		•	•	•	•	
	AF,UF					•		
/MF-SW1	AS	•	•	•	•	•	•	•
	U	•		•	•	•	•	•
	AF,UF					•		
/MHI	AS,UA	•	•	•	•	•	•	•
	U	•		•	•	•	•	•

	U	•				•			•		•		•		•	
(1) Also the accessory VMF-SIT.	3V is mandatory if the un	it exceeds (0.7 Amperes	5.												
Water valves																
3 way valve kit																
	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
Main coil	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ42							
	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4224							
Secondary coil	-	VCF44 VCF4424	VCF44 VCF4424	-	-	VCF44 VCF4424	VCF44 VCF4424	-	-	VCF44 VCF4424	VCF44 VCF4424	-	-	VCF44 VCF4424	VCF44 VCF4424	-
	VCF44	VCI 4424	VCI 4424		VCF44	VCI 4424	VCI 4424		VCF44	VCI 4424	VCI 4424		VCF44	VCI 4424	VCI 4424	
Additional coil "BV"	VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-
									-							
	500	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850
Main coil	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224	VCZ42 VCZ4224
	VCZ4ZZ4	VCF44	VCF44	VCZ4ZZ4	VCZ4ZZ4	VCF44	VCF44	VCZ4ZZ4	VCZ4ZZ4	VCF44	VCF44	VCZ4ZZ4	VCZ4ZZ4	VCF44	VCF44	VCZ4ZZ4
Secondary coil	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
Additional coil "BV"	VCF44				VCF44				VCF44				VCF44			
Additional coll. BV	VCF4424				VCF4424				VCF4424				VCF4424			
	900	901	950	1000	1001											
Main coil	VCZ43 VCZ4324	VCZ43 VCZ4324	VCZ43 VCZ4324	VCZ43 VCZ4324	VCZ43 VCZ4324											
	VCZ43Z4	VCF4524	VCZ43Z4	VCZ43Z4	VCF45											
Secondary coil	-	VCF4524	-	-	VCF4524											
Additional coil "BV"	VCF45			VCF45												
Additional Con DV	VCF4524			VCF4524												
2 way valve kit																
2 may varre kit	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD2							
Main coil	VCZD124	VCZD124		VCZD124	VCZD124		VCZD124	VCZD124	VCZD224							
Secondary coil	_	VCFD4	VCFD4	_		VCFD4	VCFD4	_	_	VCFD4	VCFD4	_		VCFD4	VCFD4	
		VCFD424	VCFD424			VCFD424	VCFD424			VCFD424	VCFD424			VCFD424	VCFD424	
Additional coil "BV"	VCFD4 VCFD424	-	-	-	VCFD4 VCFD424	-	-	-	VCFD4 VCFD424	-	-	-	VCFD4 VCFD424	-	-	-
	VCFD424				VCFD4Z4				VCFD424				VCFD424			
	500	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850
Main wil	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2
Main coil	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224
Secondary coil	_	VCFD4	VCFD4	_	_	VCFD4	VCFD4	_	_	VCFD4	VCFD4	_	_	VCFD4	VCFD4	_
	VCEDA	VCFD424	VCFD424		VCEDA	VCFD424	VCFD424		VCEDA	VCFD424	VCFD424		VCEDA	VCFD424	VCFD424	
Additional coil "BV"	VCFD4 VCFD424	-	-	-	VCFD4 VCFD424	-	-	-	VCFD4 VCFD424	-	-	-	VCFD4 VCFD424	-	-	-
	VCI D424				VCI D424				VCI D424				VCID424			
	900	901	950	1000	1001	-										
- Afain cail	900 VCZD3	901 VCZD3	950 VCZD3	1000 VCZD3	1001 VCZD3	.										
Main coil						-										
Main coil Secondary coil	VCZD3	VCZD3	VCZD3	VCZD3	VCZD3	-										

VCFD4 VCFD424

VCFD4

VCFD424

Additional coil "BV"

Valve Kit for 4 pipe systems-Requires a thermost at with valve management

Model	Ver	100	101	102	150	200	201	202	250
VCZ1X4L (1)	AF,AS,U,UA,UF	•			•	•			•
VCZ1X4R (1)	AF,AS,U,UA,UF	•			•	•			•
Model	Ver	300	301	302	350	400	401	402	450
VCZ2X4L (1)	AF,AS,U,UA,UF	•			•	•			•
VCZ2X4R (1)	AF,AS,U,UA,UF	•			•	•			•
Model	Ver	500	501	502	550	600	601	602	650
VCZ2X4L (1)	AF,UF	•			•				
VCZZX4L (1)	AS,U,UA	•			•				•
VC72V4D (1)	AF,UF	•			•				
VCZ2X4R (1)	AS,U,UA	•			•	•			•
Model	Ver	700	701	702	750	800	801	802	850
VCZ2X4L (1)	AS,U,UA	•			•	•			•
VCZ2X4R (1)	AS,U,UA	•			•	•			•
Model	Ver	900		901	95	50	1000		1001
VCZ3X4L (1)	AF,AS,U,UA,UF	•			•		•		
VCZ3X4R (1)	AF,AS,U,UA,UF	•					•		

⁽¹⁾ The valves can be combined with the units if there is a control panel for managing them.

Combined Adjustment and Balancina Valve Kit

Model	Ver	100	101	102	150	200	201	202	250
/ID060 (1)	ACT,APC	•			•	•			•
/JP060 (1)	AS,U,UA	•	•	•	•	•	•	•	•
/JP060M (2)	ACT,APC	•			•	•			•
VJPUOUM (2)	AS,U,UA	•	•	•	•	•	•	•	•
Model	Ver	300	301	302	350	400	401	402	450
/JP060 (1)	ACT,APC	•			•				
7,7,000 (1)	AS,U,UA	•	•	•	•				
/JP060M (2)	ACT,APC	•			•				
:JP000W (2)	AS,U,UA	•	•	•	•				
/ID000 (1)	ACT,APC					•			•
/JP090 (1)	AS,U,UA					•	•	•	•
VIDOOOM (2)	ACT,APC					•			
VJP090M (2)	AS,U,UA					•	•	•	•
Model	Ver	500	501	502	550	600	601	602	650
/ID000 /1\	ACT,APC	•			•	•			•
/JP090 (1)	AS,U,UA	•	•	•	•	•	•	•	•
/JP090M (2)	ACT,APC	•			•	•			•
7JP090W (2)	AS,U,UA	•	•	•	•	•	•		•
/ID150 /1)	ACT,APC					•			•
/JP150 (1)	AS,U,UA					•	•		•
/ID450M (2)	ACT,APC					•			•
/JP150M (2)	AS,U,UA					•	•	•	•
Model	Ver	700	701	702	750	800	801	802	850
UD1E0 (1)	ACT,APC	•			•	•			
'JP150 (1)	AS,U,UA	•	•	•	•	•	•	•	•
/ID1EOM (2)	ACT,APC	•			•	•			•
/JP150M (2)	AS,U,UA	•	•	•	•	•	•	•	•
Model	Ver	900		901	9:	50	1000		1001
/JP150 (1)	ACT,APC	•				•	•		
ו) טכו זור (ו)	AS,U,UA	•		•			•		•
/JP150M (2)	ACT,APC	•				•	•		
JP IDUNI (Z)	AS,U,UA	•							

^{(1) 230}V~50Hz (2) 24V

(Heating only) additional coil

Heating only additional coil

Model	Ver	100	101	102	150	200	201	202	250
BV117 (1)	A,AF,AS,U,UA,UF	•							
BV122 (1)	A,AF,AS,U,UA,UF					•			
Model	Ver	300	301	302	350	400	401	402	450
BV132 (1)	A,AF,AS,U,UA,UF	•							
BV142 (1)	A,AF,AS,U,UA,UF					•			
Model	Ver	500	501	502	550	600	601	602	650
BV142 (1)	A,AF,AS,U,UA,UF	•							
BVZ800 (1)	A,AS,U,UA					•			

Model	Ver	700	701	702	750	800	801	802	850
BVZ800 (1)	A,AS,U,UA	•				•			
Model	Ver	900		901	9:	50	1000		1001
BV162 (1)	4 45 46 11 114 115								

⁽¹⁾ Not available for sizes with oversized main coil.

Electric coil - Requires a thermostat with heater management. Not available for sizes with an oversized main coil.

Model	Ver	100	101	102	150	200	201	202	250
RX17 (1)	AF,AS,U,UA,UF	•							
RX22 (1)	AF,AS,U,UA,UF					•			
Model	Ver	300	301	302	350	400	401	402	450
RX32 (1)	AF,AS,U,UA,UF	•							
RX42 (1)	AF,AS,U,UA,UF					•			
Model	Ver	500	501	502	550	600	601	602	650
RX52 (1)	AF,AS,U,UA,UF	•							
RXZ800 (1)	AS,U,UA					•			
Model	Ver	700	701	702	750	800	801	802	850
RXZ800 (1)	AS,U,UA	•				•			
Model	Ver	900		901	9:	50	1000		1001
RX62 (1)	AF,AS,U,UA,UF								

⁽¹⁾ It requires a thermostat with heater management and the units without a housing also require the PCR1 or PCR2 accessory, depending on the unit. The heater is not available for sizes with a larger main battery.

Installation accessories

Wall mounting kit

Ver	100	101	102	150	200	201	202	250
U,UA	AMP20							
UF	AMP20	-	-	AMP20	AMP20	-	-	AMP20
Ver	300	301	302	350	400	401	402	450
U,UA	AMP20							
UF	AMP20	-	-	AMP20	AMP20	-	-	AMP20
Ver	500	501	502	550	600	601	602	650
U,UA	AMP20	AMP20	AMP20	AMP20	AMPZ	AMPZ	AMPZ	AMPZ
UF	AMP20	-	-	AMP20	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

Ver	700	701	702	750	800	801	802	850
U,UA	AMPZ							
Ver	900		901	9:	50	1000		1001
U,UA	AMPZ		AMPZ	AN	APZ	AMPZ		AMPZ

Condensate recirculation device

Model	Ver	100	101	102	150	200	201	202	250
	A,AS,U,UA	•	•	•	•	•	•	•	•
DSCZ4 (1)	ACT,APC	•				•			•
Model	Ver	300	301	302	350	400	401	402	450
DSCZ4 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
D3CZ4 (1)	ACT,APC	•			•	•			•
Model	Ver	500	501	502	550	600	601	602	650
DCC74 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
DSCZ4 (1)	ACT,APC	•			•	•			•
Model	Ver	700	701	702	750	800	801	802	850
DCC74 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
DSCZ4 (1)	ACT,APC	•			•	•			•
Model	Ver	900		901	9	50	1000		1001
DCC74 (1)	A,AS,U,UA	•		•		•	•		•
DSCZ4 (1)	ACT,APC	•				•	•		

⁽¹⁾ DSC4 cannot be mounted if even just one of these accessories is also installed: AMP - AMPZ valve VCZ1-2-3-4 X4L/R and all the condensate collection trays.

Condensate drip

comaciii	sate arip								
Model	Ver	100	101	102	150	200	201	202	250
BCZ4 (1) -	A,AS,U,UA	•	•	•	•	•	•	•	•
DCZ4 (1)	ACT,APC	•			•	•			•
DC7F (2)	A,AS,U,UA	•	•	•	•	•	•	•	•
BCZ5 (2) -	ACT,APC	•			•	•			•
Model	Ver	300	301	302	350	400	401	402	450
DC74 (1)	A,AS,U,UA	•	•	•	•	•	•	•	•
BCZ4 (1) -	ACT,APC	•			•	•			•

Model	Ver	300	301	302	350	400	401	402	450
DC7F (2)	A,AS,U,UA	•	•	•	•	•	•	•	
BCZ5 (2) -	ACT,APC	•			•	•			•
Model	Ver	500	501	502	550	600	601	602	650
DC74 (1) _	A,AS,U,UA	•	•	•	•	•	•	•	
BCZ4 (1) -	ACT,APC	•			•	•			•
DC7F (2)	A,AS,U,UA	•	•	•	•	•	•	•	•
BCZ5 (2) -	ACT,APC	•			•	•			•
Model	Ver	700	701	702	750	800	801	802	850
DC74 (1)	A,AS,U,UA	•	•	•	•	•	•	•	
BCZ4 (1) -	ACT,APC	•			•	•			•
DC7F (2)	A,AS,U,UA	•	•	•	•	•	•	•	•
BCZ5 (2) -	ACT,APC	•			•	•			•
Model	Ver	900		901	9:	50	1000		1001
DC74 (1)	A,AS,U,UA	•		•		•	•		•
BCZ4 (1) -	ACT,APC	•				•	•		
BCZ6 (2) -	A,AS,U,UA	•		•		•	•		
h(/h(/) -	ACT,APC	•							

Panel closing the rear of the unit

Model	Ver	100	101	102	150	200	201	202	250
0.67100	A,AS,U,UA	•	•	•	•				
PCZ100	ACT,APC	•			•				
0.7700	A,AS,U,UA					•	•	•	
PCZ200	ACT,APC					•			•
Nodel	Ver	300	301	302	350	400	401	402	450
0.67200	A,AS,U,UA	•	•	•	•				
PCZ300	ACT,APC	•			•				
0.67500	A,AS,U,UA					•	•	•	
PCZ500	ACT,APC					•			•
Model	Ver	500	501	502	550	600	601	602	650
PCZ500	A,AS,U,UA	•	•	•	•				
r(Z)00	ACT, APC	•			•				
PCZ800	A,AS,U,UA					•	•	•	•
12000	ACT,APC					•			•
Nodel	Ver	700	701	702	750	800	801	802	850
0.67000	A,AS,U,UA	•	•	•	•	•	•	•	•
PCZ800	ACT,APC	•			•	•			•
Model	Ver	900		901	9	50	1000		1001
0.671000	A,AS,U,UA	•		•		•	•		•
PCZ1000	ACT,APC								

Lower intake arille

Lower Intak	e grille								
Model	Ver	100	101	102	150	200	201	202	250
GA100	U,UA	•	•	•	•				
GA200	U,UA					•	•	•	•
Model	Ver	300	301	302	350	400	401	402	450
GA300	U,UA	•	•	•	•				
GA500	U,UA					•	•	•	•
Model	Ver	500	501	502	550	600	601	602	650
GA500	U,UA	•	•	•	•				
GA800	U,UA					•	•	•	•
Model	Ver	700	701	702	750	800	801	802	850
GA800	U,UA	•	•	•	•	•	•	•	•
Model	Ver	900		901	9	50	1000		1001
GA800	U,UA				'				

${\it Supports to be combined with the ornamental grille (GA) for floor installation of the fan coil}$

Model	Ver	100	101	102	150	200	201	202	250
FIKIT100	A,AS,U,UA	•	•	•	•				
FINIT TOU	ACT,AF,APC,UF	•			•				
FIKIT200	A,AS,U,UA					•	•		•
FINITZUU	ACT,AF,APC,UF					•			•
Model	Ver	300	301	302	350	400	401	402	450
	Ver A,AS,U,UA	300	301	302	350	400	401	402	450
Model FIKIT300		300	301 •	302	350 •	400	401	402	450

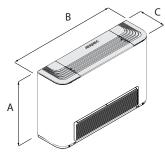
⁽²⁾ For horizontal installation.

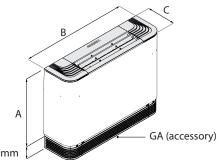
Model	Ver	300	301	302	350	400	401	402	450
FII/ITEGO	A,AS,U,U	A					•	•	
FIKIT500	ACT,AF,APC	,UF				•			
Model	Ver	500	501	502	550	600	601	602	650
FIKIT500	A,AS,U,U		•	•	•				
11111300	ACT,AF,APC				•				
FIKIT800	A,AS,U,U					•	•	•	•
	ACT,APC	-				•			
Model	Ver	700	701	702	750	800	801	802	850
FIKIT800	ACT,APC	•			•	•			•
	U,UA	•	•	•	•	•	•	•	•
Model	Ver		900	901		950	1000		1001
FIKIT800	A,AS,U,U		•	•		•	•		•
11111000	ACT,AF,APC	,UF	•			•	•		
	ish structural feet	100	101	102	150	200	201	202	250
	Ver	100	101	102	150	200	201	202	250
Model		100	101	102	150	200	201	202	250
Model ZXZ	Ver A,AS,U,UA	•			•	•			•
Model ZXZ Model	Ver A,AS,U,UA ACT,APC	•	•	•	•	•	•	•	•
Model ZXZ Model	Ver A,AS,U,UA ACT,APC Ver	300	301	302	350	400	401	402	450
Model ZXZ Model ZXZ	Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA	300	301	302	350	400	401	402	450
Model ZXZ Model ZXZ Model	Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC	300	301	302	350	400	401	402	450
Model ZXZ Model ZXZ Model	Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver	300	301 ·	302 •	350	400	401 •	402	450 ·
Model ZXZ Model ZXZ Model ZXZ	Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver Ver	300	301 ·	302 •	350	400 600	401 •	402	450
Model ZXZ Model ZXZ Model ZXZ Model	Ver	300 500	301 •	302 • 502		400 600	401 • 601	402 • 602	450
Model ZXZ Model ZXZ Model ZXZ Model	Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver Ver		301 • 501 •	302 502			401 601	402 · 602 ·	450
Model ZXZ Model ZXZ Model ZXZ Model ZXZ	Ver		301 • 501 •	302 502			401 601	402 · 602 ·	450
Model ZXZ Model ZXZ Model ZXZ Model ZXZ Model ZXZ	Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA ACT,APC Ver A,AS,U,UA		301 • 501 •	302 502			401 601	402 · 602 ·	450

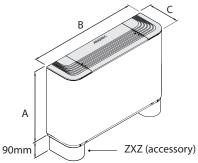
PERFORMANCE SPECIFICATIONS

_			
7-	ni	n	0
_	h:	۲	٠

		-	CZ10	0		FCZ15	0		CZ20	<u> </u>		CZ25	0		CZ30	0		FCZ35	0		CZ40	0		FCZ45	0		CZ50	0		CZ550	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		Ĺ	M	 H	Ė	M	 H	Ė	M	 H	t	M	 H	Ĺ	M	 H	Η	M	 H	Ĺ	M	 H	Ĺ	M	 H	Ė	M	 H	Ĺ	M	H
Heating performance 70 °C / 60	°C (1)																														
Heating capacity	kW	1,45	2,00	2,40	1,55	2,19	2,65	2,02	2,95	3,70	2,20	3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82	5,27	7,31	8,50	5,82	8,34	9,75
Water flow rate system side	l/h	125	172	206	136	192	232	177	258	324	193	278	355	304	391	482	330	431	539	379	503	627	400	551	685	462	641	745	510	731	855
Pressure drop system side	kPa	4	7	9	5	9	12	6	12	18	7	15	23	7	12	18	8	14	20	9	16	24	6	11	16	12	21	28	10	20	26
Heating performance 45 °C / 40	°C (2)																														
Heating capacity	kW	0,72	0,99	1,19	0,77	1,09	1,31	1,00	1,46	1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88	2,62	3,63	4,22	2,89	4,14	4,85
Water flow rate system side	l/h	126	173	207	134	189	229	174	254	319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675	455	631	734	502	720	842
Pressure drop system side	kPa	4	7	10	5	9	12	6	12	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16	12	21	28	10	20	26
Cooling performance 7 °C / 12 °C	C (3)																														
Cooling capacity	kW	0,65	0,84	1,00	0,80	1,06	1,27	0,89	1,28	1,60	1,06	1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03	2,68	3,69	4,25	2,91	4,13	4,79
Sensible cooling capacity	kW	0,51	0,69	0,83	0,57	0,80	0,97	0,71	1,05	1,33	0,79	1,20	1,52	1,26	1,65	2,04	1,33	1,76	2,18	1,59	2,14	2,67	1,69	2,30	2,90	1,94	2,73	3,18	2,07	2,98	3,49
Water flow rate system side	l/h	112	144	172	138	182	219	153	221	275	182	267	334	288	374	456	350	460	560	379	503	619	414	552	694	460	634	731	501	711	824
Pressure drop system side	kPa	4	6	8	6	12	13	6	12	18	8	17	25	8	13	18	11	18	25	10	16	24	9	15	22	13	22	29	12	22	28
Fan																															
Туре	type															Centr	ifugal														
Fan motor	type														ı	Asynch	ronou	S													
Number	no.		1			1			1			1			2			2			2			2			2			2	
Air flow rate	m³/h	110	160	200	110	160	200	140	220	290	140	220	290	260	350	450	260	350	450	330	460	600	330	460	600	400	600	720	400	600	720
Input power	W	19	29	35	19	29	35	25	29	33	25	29	33	25	33	44	25	33	44	30	43	57	30	43	57	38	52	76	38	52	76
Electrical wiring		V1	V2	V3	V1	V2	V3	٧1	V2	V3	٧1	V2	V3	V1	V2	V3	٧1	V2	V3	٧1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (4)																															
Sound power level	dB(A)	31,0	38,0	45,0	31,0	38,0	45,0	35,0	46,0	51,0	35,0	46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0	42,0	51,0	56,0	42,0	51,0	56,0
Sound pressure	dB(A)	23,0	30,0	37,0	23,0	30,0	37,0	27,0	38,0	43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	48,0
Diametre hydraulic fittings																															
Main coil	Ø		1/2"			1/2"			1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply																															
Power supply																230V~	~50Hz														


			FCZ600)		FCZ650)		FCZ70)		F CZ 75()		FCZ80)		FCZ850)		FCZ90()		FCZ95()	F	CZ100	0
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1))																											
Heating capacity k	kW	6,50	8,10	10,00	7,19	9,15	11,50	8,10	9,80	11,00	9,10	11,30	12,50	9,80	10,80	12,00	11,30	12,35	14,00	10,77	13,35	15,14	11,20	14,42	17,10	12,53	15,24	17,02
Water flow rate system side	l/h	570	710	877	631	802	1008	710	860	964	798	991	1096	859	947	1052	991	1083	1227	945	1171	1328	982	1264	1500	1101	1337	1493
Pressure drop system side k	(Pa	12	18	26	14	21	31	17	24	29	10	15	18	22	27	32	17	20	25	12	17	22	16	24	33	22	32	38
Heating performance 45 °C / 40 °C (2))																											
Heating capacity	kW	3,32	4,03	4,97	3,57	4,55	5,72	4,03	4,87	5,47	4,52	5,62	6,21	4,87	5,37	5,97	5,62	6,14	6,96	5,35	6,64	7,53	5,57	7,17	8,50	6,24	7,58	8,46
Water flow rate system side	l/h	561	699	863	621	790	993	699	846	950	786	975	1079	846	932	1036	975	1066	1209	930	1152	1307	967	1245	1476	1084	1316	1469
Pressure drop system side k	(Pa	12	18	26	14	20	31	16	24	29	10	14	18	22	26	32	6	20	25	12	17	22	15	24	33	22	31	38
Cooling performance 7 °C / 12 °C (3)																												
Cooling capacity k	κW	3,22	3,90	4,65	3,95	4,80	5,67	3,92	4,89	5,50	4,27	5,34	6,14	4,84	5,66	6,10	5,26	6,29	6,91	4,29	5,00	6,91	5,77	7,32	8,60	5,69	6,88	7,62
Sensible cooling capacity	kW	2,56	3,17	3,92	2,78	3,43	4,12	2,99	3,76	4,30	3,20	4,05	4,72	3,72	4,42	4,83	4,00	4,83	5,36	2,97	3,78	5,68	3,80	4,87	5,78	4,42	5,34	5,53
Water flow rate system side	l/h	554	671	800	595	825	975	675	841	946	734	918	1056	833	974	1049	904	1082	1189	738	860	1189	992	1259	1479	979	1183	1311
Pressure drop system side k	(Pa	14	19	26	15	21	28	16	24	30	10	14	18	20	26	30	14	20	23	10	12	22	15	22	30	22	31	36
Fan																												
Type ty	ype													C	entrifug	al												
Fan motor ty	ype													Asy	nchron	ous												
Number r	10.		3			3			3			3			3			3			3			3			3	
Air flow rate m	1³/h	520	720	920	520	720	920	700	930	1140	700	930	1140	900	1120	1300	900	1120	1300	700	930	1140	700	930	1140	900	1120	1300
Input power	W	38	60	91	38	60	91	59	80	106	59	80	106	80	100	131	80	100	131	59	80	106	59	80	106	80	100	131
Electrical wiring		٧1	V2	V3	V1	V2	V3	٧1	V2	V3	٧1	V2	V3	٧1	V2	V3	V1	V2	V3	٧1	V2	V3	V1	V2	V3	٧1	V2	V3
Fan coil sound data (4)																												
Sound power level di	B(A)	42,0	51,0	57,0	42,0	51,0	57,0	50,0	57,0	62,0	50,0	57,0	62,0	56,0	61,0	66,0	56,0	61,0	66,0	51,0	57,0	62,0	51,0	57,0	62,0	56,0	61,0	66,0
Sound pressure di	B(A)	34,0	43,0	49,0	34,0	43,0	49,0	42,0	49,0	54,0	42,0	49,0	54,0	48,0	53,0	58,0	48,0	53,0	58,0	43,0	49,0	54,0	43,0	49,0	54,0	48,0	53,0	58,0
Diametre hydraulic fittings																												
Main coil	Ø														3/4"													
Power supply																												
Power supply														23	80V~50	Hz												


- pipe		ı	CZ10	1		FCZ20	1		CZ30	1		CZ40	1		FCZ50	1		FCZ60	1		FCZ70	1		FCZ80	1		FCZ90	1	F	CZ100	1
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C	(1)																														
Heating capacity	kW	0,75	1,01	1,17	1,02	1,35	1,60	1,80	2,18	2,56	2,21	2,65	3,12	2,59	3,34	3,73	2,96	3,67	4,36	3,66	4,29	4,94	4,20	4,79	5,35	4,73	5,63	5,72	4,85	5,56	6,08
Water flow rate system side	l/h	65	89	102	89	118	140	158	191	224	186	232	273	227	293	327	259	321	381	320	375	437	368	419	467	414	492	501	424	487	532
Pressure drop system side	kPa	2	4	4	4	8	10	16	23	30	4	6	8	6	8	10	8	12	16	11	14	18	16	20	24	8	12	12	10	14	16
Cooling performance 7 °C / 12 °C (2	!)																														
Cooling capacity	kW	0,65	0,84	1,00	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25	3,22	3,90	4,65	3,92	4,89	5,50	4,84	5,66	6,10	4,29	5,00	6,91	5,69	6,88	7,62
Sensible cooling capacity	kW	0,51	0,69	0,83	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18	2,56	3,17	3,92	2,99	3,76	4,30	3,72	4,42	4,83	2,97	3,78	5,68	4,42	5,34	5,53
Water flow rate system side	l/h	112	144	172	153	221	275	288	374	456	379	503	619	460	634	731	554	671	800	675	841	946	833	974	1049	738	860	1189	979	1183	1311
Pressure drop system side	kPa	4	6	8	6	12	18	8	13	18	10	16	24	13	22	29	14	19	26	16	24	30	20	26	30	10	12	22	22	31	36
Fan																															
Туре	type															Centr	ifugal														
Fan motor	type														I	Asynch	ronou	S													
Number	no.		1			1			2			2			2			3			3			3			3			3	
Air flow rate	m³/h	110	160	200	140	220	290	260	350	450	330	460	600	400	600	720	520	720	920	700	930	1140	900	1120	1300	700	930	1140	900	1120	1300
Input power	W	19	29	35	25	29	33	25	33	44	30	43	57	38	52	76	38	60	91	59	80	106	80	100	131	59	80	106	80		131
Electrical wiring		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	٧1	V2	V3	٧1	V2	V3
Fan coil sound data (3)																															
Sound power level	dB(A)	31,0	38,0	45,0	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0	42,0	51,0	57,0	50,0	57,0	62,0	56,0	61,0	66,0	51,0	57,0	62,0	56,0	61,0	66,0
	dB(A)	23,0	30,0	37,0	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	49,0	42,0	49,0	54,0	48,0	53,0	58,0	43,0	49,0	54,0	48,0	53,0	58,0
Diametre hydraulic fittings																															
Main coil	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø															1/	2"														
Power supply																															
Power supply																230V-	~50Hz														


⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

			801	mm 🏳							7011) •	2,12	(uccc)	30177
		FCZ100	FCZ101	FCZ102	FCZ150	FCZ200	FCZ201	FCZ202	FCZ250	FCZ300	FCZ301	FCZ302	FCZ350	FCZ400	FCZ401	FCZ402	FCZ450
Dimensions and weights																	
A	mm	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486
В	mm	640	640	640	640	750	750	750	750	980	980	980	980	1200	1200	1200	1200
C	mm	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
Empty weight	kg	13	14	14	14	15	15	16	16	17	18	19	19	33	23	23	24
		FCZ500	FCZ501	FCZ502	FCZ550	FCZ600	FCZ601	FCZ602	FCZ650	FCZ700	FCZ701	FCZ702	FCZ750	FCZ800	FCZ801	FCZ802	FCZ850
Dimensions and weights																	
A	mm	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486	486
В	mm	1200	1200	1200	1200	1320	1320	1320	1320	1320	1320	1320	1320	1320	1320	1320	1320
C	mm	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220	220
Empty weight	kg	24	22	23	24	24	29	31	33	29	31	33	33	29	29	31	33
			FCZ900			FCZ9	01		FCZ	950		F	CZ1000			FCZ1001	
Dimensions and weights																	
A	mm		591			591			5!	91			591			591	
В	mm		1320			1320	0		13	320			1320			1320	
(mm		220			220)		2.	20			220			220	
Empty weight	kg		34			34			3	34			34			34	

FCZI

Fan coil with brushless inverter motor, for universal and floor installation

Cooling capacity 0,89 ÷ 6,91 kW Heating capacity 2,02 ÷ 17,10 kW

- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Touch controller mounted on-board. allows remote control with smart devices
- Very quiet

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Depending on the version, the distribution grille may be adjustable.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional

They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

The plastic augers are extractable for easy and efficient cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized main coil and the possible secondary coil have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main coil, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

Condensate drip

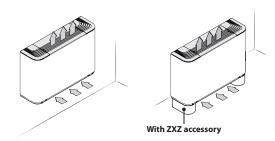
Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

Versions

ACT High, with air distribution grille and electronic thermostat


AF High, without built-in command but with front intake

AS Free standing without installed switch

 $\boldsymbol{\mathsf{U}}$ Universal, with adjustable air distribution grille but without built-in thermostat

UF Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

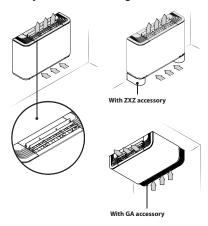
Versions with fixed grille (high cabinet)


FCZI_AS

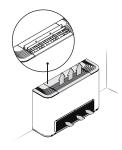
Compatibility with VMF system.

Without installed switch

FCZI ACT


With electronic thermostat for 2-pipe systems only.

FCZI_AF


- Without installed switch
- Compatibility with VMF system.
- Front intake grille.

Versions with adjustable and fixed grille (universal)

FCZI_U

- Compatibility with VMF system.
- Without installed switch
- Distribution grille with adjustable fins. Sizes 2 and 3 have a single grille, whereas sizes 4, 5, 7 and 9 have three grilles fully independent of each other. When all the louvers have closed, the unit switches off.
- Vertical and horizontal installation for 2-pipe and 4-pipe systems.

FCZI_UF

- Compatibility with VMF system.
- Without installed switch
- Air delivery grille with adjustable louvers.
- Vertical and horizontal installation.

ThermApp

In units with a T-TOUCH-I electronic thermostat and the **ThermApp** application, the operating mode can be set and the weekly timer programmed by simply resting the smart device on the fan coil. The graphic interface of the app also gives access to a lot more information such as the alarm list, the closest SAT, etc.

Available for Android operating systems.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCZI
5	Size 2, 3, 4, 5, 7, 9
6	Main coil
0	Standard
5	Oversized
7	Secondary coil
0	Without coil
1	Standard
2	Oversized
8,9,10	Version
	Only vertical installation.
ACT	High, with air distribution grille and electronic thermostat
AF	High, without built-in command but with front intake
AS	Free standing without installed switch
	Vertical and horizontal installation.
U	Universal, with adjustable air distribution grille but without built-in thermostat
	Universal, with adjustable air distribution grille but without built-in thermostat and
	with front intake grille
UF	Universal, with adjustable air distribution grille but without built-in thermostat and with front intake grille

SIZE AVAILABLE FOR VERSION

SIZE MOMIEMBEE	OIL VEILS	1011											
Size		200	201	202	250	300	301	302	350	400	401	402	450
Versions produced (by size)													
Varriana available (bu sine)	AS,ACT,U	•				•							•
Versions available (by size)	AF,UF	•	-	-	•	•	-	-	•	•	-	-	•
		500	501	502	550	700	701	702	750	900	901	950	
Versions produced (by size)													
Varcione available (by size)	A,AS,U,UA			•	•	•	•	•	•	•	•	•	
Versions available (by size)	AF,UF	•	-	-	•	-	-	-	-		-		

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH-I: Touch control on board the machine, for controlling fan coils with brushless motors. In 2-pipe systems, it can control standard fan coils or those equipped with an electric heater, with air purifying devices or with FCZI-D twin delivery (Dualjet). In 4-pipe systems, only standard fan coils. The ThermApp application is also available for remote control with smart devices with the Android operating system.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

TXBI: On board thermostat for fan coils 2/4 pipes of the FCZI series with brushless motor, complete with water probe and air probe to be positioned in the dedicated housings. The thermostat in 2-pipe systems it can control standard fan coils or those equipped with electrical resistors, with purification devices (Cold Plasma and germicidal lamp) with the radiating plate or with double flow FCZI-D (Dualjet).

VMF system

VMF-E19I: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, this thermostat allows for the creation of a single fan coil area (1 master + maximum 5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features:In systems with two pipes and a heating element - the latter can be activated as a complete replacement - allowing you to warm the environment exclusively with this accessory - Dualjet features are available in standard software and can be set via dip switch - Economy contact/ presence sensor - Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory) - Serial RS485, ModBus RTU protocol, for centralised control - Possibility of inserting expansion boards for future developments. The VMF-E19 accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump - Compatibility with the VMF-IO accessory - Compatibility with VMF-LON expansion board. The thermostat is protected

VMF-E22: User interface on the fan coil, with two selectors, one for temperature and the other for speed control; to be combined with accessories VMF-E0,VMF-E19, VMF-E19I.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4X: A wall-mounted user interface to be combined with VMF-E19, VMF-E19I, VMF-E24 ed VMF-E24I accessories. Featuring an innovative, extremely slim and cost-effective design, it allows running functions via a capacitive touchscreen keyboard with LCD display. You can choose to adjust the environment temperature with a panel-mounted sensor probe (standard), or with the VMF-E19/E19I probe, or through mediated reading. It also enables the activation of an air

purifier (Cold Plasma/ UV lamp) and a heating element. Light grey front panel PANTONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMHI: The VMHI panel can be used as a user interface for VMF-E0X/E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - **45** - **for the secondary coil:** The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Additional coil

BV: Single row hot water heat exchanger.

Installation accessories

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Metal supports for vertical installation of the GA grille.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

AMP: Wall mounting kit

ZXZ: Pair of stylish and structural feet.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
AFDFORID (1)	AF,UF				•								•
AER503IR (1)	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
DDOLOS	AF,UF	•			•	•				•			•
PR0503	AS,U	•		•	•		•	•			•		•
CAE (2)	AF,UF	•			•	•			•	•			•
SA5 (2)	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)	AF,UF	•			•	•			•	•			•
3W3 (2)	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	AF,UF	•			•	•			•	•			•
JVVJ (2)	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
T-TOUCH-I	AF,UF	•			•	•			•	•			•
1-10001-1	AS,U	•	•	•	•	•		•	•	•	•	•	•
TV (1)	AF,UF	•			•	•			•	•			•
TX (1)	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
TXBI (3)	AF,UF	•			•	•			•	•			•
(כ) ומאז	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	500	501	502	550	700	701		702	750	900	901	950
AEDE031D (1)	AF,UF	•									•		
AER503IR (1)													
	AS,U	•	•	•	•	•	•		•	•	•	•	•
DDOCOS	AS,U AF,UF	•	•	•	•	•	•		•	•	•	•	•
PR0503			•	•			•		•			•	
	AF,UF	•			•	•				•	•		•
PR0503 SA5 (2)	AF,UF AS,U	•			•	•				•	•		•
SA5 (2)	AF,UF AS,U AF,UF	•	•	•	•	•	•		•	•	•	•	•
	AF,UF AS,U AF,UF AS,U	•	•	•	•	•	•		•	•	•	•	•
SA5 (2) SW3 (2)	AF,UF AS,U AF,UF AS,U AF,UF				•	•							•
SA5 (2)	AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U					•							•
SA5 (2) SW3 (2) SW5 (2)	AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF						•						
SA5 (2) SW3 (2)	AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF						•						
SA5 (2) SW3 (2) SW5 (2) T-TOUCH-I	AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF AS,U AF,UF			•									
SA5 (2) SW3 (2) SW5 (2)	AF,UF AS,U			•									
SA5 (2) SW3 (2) SW5 (2) T-TOUCH-I	AF,UF AS,U AF,UF												

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted. (3) Installation on the fan coil.

VMF system For more information about VMF system, refer to the dedicated documentation.

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
	AF,UF	•			•	•			•	•			•
VMF-E19I	AS,U	•									•		
VIAE E27	AF,UF	•											
VMF-E2Z	AS,U	•		•		•	•	•			•	•	•
VME E2	AF,UF	•			•	•			•	•			•
VMF-E3	AS,U	•	•	•	•	•	•	•		•	•	•	•
VMF FAV	AF,UF	•				•							•
VMF-E4X	AS,U	•	•	•	•	•	•	•		•	•	•	•
VME IO	AF,UF	•				•				•			•
VMF-IO	AS,U	•		•		•	•	•	•	•	•	•	•
VMF-IR	AF,UF	•			•	•							•
VMF-IK	AS,U	•		•		•	•	•			•	•	•
VME ION	AF,UF	•			•	•			•	•			•
VMF-LON	AS,U	•		•		•	•	•			•	•	
VMF CW	AF,UF	•			•	•			•	•			•
VMF-SW	AS,U	•	•	•	•	•	•	•			•	•	
VMF CW1	AF,UF	•				•							
VMF-SW1	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
VMHI	AF,UF					•							
VIMILI	AS,U	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	500	501	502	550	700	70	1	702	750	900	901	950
	AF,UF												
VMF-E19I	AS,U	•							•			•	
VMF F27	AF,UF												
VMF-E2Z	AS,U												
VME E2	AF,UF	•								•	•		
VMF-E3	AS,U	•											

Model	Ver	500	501	502	550	700	701	702	750	900	901	950
VMF FAV	AF,UF	•			•					•		•
VMF-E4X	AS,U	•		•	•					•	•	
VMF-IO	AF,UF	•			•					•		
VIVIT-IU	AS,U	•	•	•	•	•	•	•	•	•	•	•
VMF-IR	AF,UF	•			•	•			•	•		
VIVIT-IN	AS,U	•	•	•	•	•	•	•	•	•	•	
/MF-LON	AF,UF	•			•					•		•
VIVIT-LUIN	AS,U	•	•	•	•	•	•	•	•	•	•	
VMF-SW	AF,UF	•			•					•		•
/IVIT-3VV	AS,U	•	•	•	•	•	•	•	•	•	•	
/MF-SW1	AF,UF	•			•					•		
I VVC-JIVIT	AS,U	•	•	•	•	•	•	•	•	•	•	
/MHI	AF,UF	•			•					•		
INILI	AS.U											

Water valves

3 way valve kit

5 Way varve Kit												
	200	201	202	250	300	301	302	350	400	401	402	450
Main coil	VCZ41	VCZ41	VCZ41	VCZ41	VCZ42							
Main Coil	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4224							
C		VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
Secondary coil	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
A 1.1141 1 11 // D.W/	VCF44				VCF44				VCF44			
Additional coil "BV"	VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-
	500	501	502	550	700	701	702	750	900	901	950	
Main coil	VCZ42	VCZ43	VCZ43	VCZ43								
Main coil	VCZ4224	VCZ4324	VCZ4324	VCZ4324								
Casandami sail		VCF44	VCF44			VCF44	VCF44			VCF45		
Secondary coil	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4524	-	
A 1.1141 1 11 // DV//	VCF44				VCF44				VCF45			
Additional coil "BV"	VCF4424	-	-	-	VCF4424	-	-	-	VCF4524	-	-	

VCZ41 - 42 - 43; VCF44 - 45 (230V~50Hz) VCZ4124 - 4224 - 4324; VCF4224 - 4524 (24V)

2 way valve kit

200	201	202	250	300	301	302	350	400	401	402	450
VCZD1	VCZD1	VCZD1	VCZD1	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2
VCZD124	VCZD124	VCZD124	VCZD124	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224
	VCFD4	VCFD4			VCFD4	VCFD4			VCFD4	VCFD4	
-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-
VCFD4				VCFD4				VCFD4			
VCFD424				VCFD424				VCFD424			
500	501	502	550	700	701	702	750	900	901	950	
VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD3	VCZD3	VCZD3	
VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD324	VCZD324	VCZD324	
	VCFD4	VCFD4			VCFD4	VCFD4			VCFD4		
-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	-	
VCFD4				VCFD4				VCFD4			
VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	
	VCZD1 VCZD124 - VCFD4 VCFD424 500 VCZD2 VCZD224 - VCFD4	VCZD1 VCZD1 VCZD124 VCZD124 VCFD4 VCFD424 VCFD424 S00 S01 VCZD2 VCZD2 VCZD224 VCZD224 VCFD424 VCFD424 VCFD424 VCFD424	VCZD1 VCZD1 VCZD124 VCZD124 VCZD124 VCZD124 VCFD4 VCFD4 VCFD424 VCFD4 VCFD424 VCFD424 VCFD4 - - S00 S01 S02 VCZD2 VCZD2 VCZD2 VCZD24 VCZD224 VCZD224 VCFD4 VCFD424 VCFD424 VCFD4 VCFD424 VCFD424	VCZD1 VCZD1 VCZD1 VCZD124 VCZD124 VCZD124 VCZD124 VCZD124 VCFD4 VCFD4 VCFD424 VCFD424 VCFD4 VCFD424 VCFD424 - VCFD4 - - - VCFD424 - - - SO0 SO1 SO2 SSO VCZD2 VCZD2 VCZD2 VCZD2 VCZD224 VCZD224 VCZD224 VCZD224 VCFD4 VCFD424 VCFD424 - VCFD4 - - -	VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD124 VCZD124 VCZD124 VCZD124 VCZD224 VCFD4 VCFD4 VCFD424 VCFD424 VCFD4 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 S00 S01 S02 S50 700 VCZD2 VCZD2 VCZD2 VCZD2 VCZD2 VCZD24 VCZD224 VCZD224 VCZD224 VCZD224 VCFD4 VCFD424 VCFD424 VCFD424 VCFD424 VCFD4 VCFD424 VCFD424 VCFD424 VCFD424	VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD24 VCZD124 VCZD124 VCZD124 VCZD124 VCZD224 VCZD224 VCFD4 VCFD4 VCFD4 VCFD424 VCFD424 VCFD4 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424 SOO SO1 SO2 S50 700 701 VCZD2 VCZD2 VCZD2 VCZD2 VCZD2 VCZD2 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCFD4 VCFD424 VCFD424 VCFD424 VCFD424 VCFD424	VCZD1 VCZD1 VCZD1 VCZD2 VCZD2 VCZD2 VCZD2 VCZD24 VCZD24 VCZD224 VCZD24 VCFD424 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCZD224 VCFD424 VCFD424	VCZD1 VCZD1 VCZD1 VCZD2 VCZD2 VCZD2 VCZD2 VCZD2 VCZD24 VCZD24 VCZD224 VCZD24 VCZD24 VCZD24 VCZD24 VCZD24 VCZD24 VCZD22 VCZD2 VCZD2 VCZD2 VCZD22 VCZD22 VCZD224 VCZD22	VCZD1 VCZD1 VCZD1 VCZD2 VCZD224 VCZD24 VCZD24 VCFD424 VCFD4	VCZD1 VCZD1 VCZD1 VCZD1 VCZD2 VCZD224 VCZD24 VCFD424 VCFD	VCZD1

VCZD1 - 2 - 3; VCFD4 (230V~50Hz) VCZD124 - 224 - 324; VCFD424 (24V)

Valve Kit for 4 pipe systems

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
VCZ1X4L (1)	AF,AS,U,UF	•			•								
VCZ1X4R (1)	AF,AS,U,UF	•			•								
VCZ2X4L (1)	AF,AS,U,UF					•			•	•			
VCZ2X4R (1)	AF,AS,U,UF					•			•	•			•
Model	Ver	500	501	502	550	700	7()1	702	750	900	901	950
VC70V4L (1)	AF,UF	•			•								
VCZ2X4L (1)	AS,U	•			•	•				•			
VCZ2X4R (1)	AF,UF	•			•								
VCZZA4K (1)	AS,U	•			•					•			
VCZ3X4L (1)	AF,AS,U,UF										•		•
VCZ3X4R (1)	AF,AS,U,UF										•		•

(1) The valves can be combined with the units if there is a control panel for managing them.

Combined Adjustment and Balancina Valve Kit

Combined Adjustmer Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
	ACT,AS,U		•	•		•	•			400	401	402	430
/JP060 (1)	AF,UF	•	•	•	•	•		-	•				
	ACT,AS,U	•		•	•	•		•	•				
'JP060M (2)	AF,UF	•											
	ACT,AS,U									•	•	•	
/JP090 (1)	AF,UF												
	ACT,AS,U												
/JP090M (2)	AF,UF												
Model	Ver	500	501	502	550	700	7	01	702	750	900	901	950
viouei	ACT,AS,U			. 502		700		U I	/02	/30	900	901	930
/JP090 (1)	ACT,AS,U AF,UF	<u> </u>	•	•	•								
	ACT,AS,U		•	•	•							-	
VJP090M (2)	ACI,AS,U AF,UF	_ <u>:</u>	•	•	<u>:</u>								
	ACT,AS,U				· ·			•					
/JP150 (1)	AF,UF					· ·		•	•		•		•
	ACT,AS,U							•	•		•	•	·
/JP150M (2)	AF,UF					•		•	<u> </u>		•		•
4) 2201/ 501/	711,01										-		
1) 230V~50Hz 2) 24V													
Heating only) add													
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
BV122 (1)	ACT,AF,AS,U,UF	•											
BV132 (1)	ACT,AF,AS,U,UF					•							
BV142 (1)	ACT,AF,AS,U,UF									•			
Model	Ver	500	501	502	550	700	7	01	702	750	900	901	950
			301	302	330	700		U I	702	/30	700	701	930
BV142 (1)	ACT,AF,AS,U,UF	•											
8V162 (1) 8VZ800 (1)	ACT,AF,AS,U,UF ACT,AS,U										•		
Model AMP20	Ver U	200	201	202	250	300	301	302	350	400	401	402	450
AMPZ	U	•		•	•	•					•	•	
Model	Ver	500	501	502	550	700	7	01	702	750	900	901	950
AMP20	U	•	•	•	•	700		•	702	750	700		
AMPZ	U	•											
			204	202	250	200	204	202	250	400	404	402	
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
DSCZ4 (1)	ACT,AS,U	•	•	•	•	•	•	•	•	•	•	•	•
	AF,UF	•			•	•			•	•			<u> </u>
Model	Ver	500	501	502	550	700	7	01	702	750	900	901	950
DSCZ4 (1)	ACT,AS,U	•	•	•	•	•		•	•	•	•	•	•
J3CET (1)	AF,UF	•			•						•		•
1) DSC4 cannot be mounted if e	even just one of these ac	cessories is als	o installed: AM	IP - AMPZ valve	VCZ1-2-3-4 X4	IL/R and all the	condensat	e collection	trays.				
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
	ACT,AS,U	•	•	•	•		•	•		•	•		•
BCZ4 (1)	AF,UF	•			•	•				•			
DC7F (2)	ACT,AS,U	•	•	•	•				•	•	•		
BCZ5 (2)	AF,UF	•			•	•				•			
Model	Ver	500	501	502	550	700	7	01	702	750	900	901	950
	ACT,AS,U	•						•	•		•	•	•
BCZ4 (1)	ACT,AS,U AF,UF	<u> </u>	•	•	•	•		-	•	•	•	•	
											•		
3CZ5 (2)	ACT,AS,U AF,UF	•	•	•	•	•		•	•	•			
		•			•								
BCZ6 (2)	ACT,AS,U AF,UF										•	•	•
For vertical installation.	ΛΙ,UI										-		
2) For horizontal installation.													
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
PCZ200	ACT,AS,U	•	•	•	•								
	AF,UF	•			•								
PCZ300	ACT,AS,U					•	•	•	•				
	AF,UF					•			•				
	ACT AS II												

ACT,AS,U

AF,UF

PCZ500

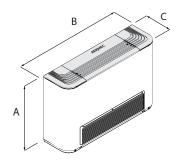
Model	Ver	500	501	502	550	700	70	1	702	750	900	901	950
PCZ1000	ACT,AS,U										•	•	•
1 (21000	AF,UF										•		•
PCZ500	ACT,AS,U	•	•	•	•								
1 (2)00	AF,UF	•			•								
PCZ800	ACT,AS,U					•	•		•	•			
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
GA200	AF,UF	•			•								
unzoo	AS,U	•	•	•	•								
GA300	AF,UF					•			•				
UAJ00	AS,U					•	•	•	•				
GA500	AF,UF									•			•
	AS,U									•	•	•	
Model	Ver	500	501	502	550	700	70	1	702	750	900	901	950
GA500	AF,UF	•			•								
UNCAD	AS,U	•	•	•	•								
GA800	AF,UF										•		•
UA000	AS,U					•	•		•	•	•	•	•
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
FIKIT200	AF,UF	•			•								
FINITZUU	AS,U	•	•	•	•								
FIKIT300	AF,UF					•			•				
	AS,U					•	•	•	•				
FIKIT500	AF,UF									•			•
111111111111111111111111111111111111111	AS,U									•	•	•	•
Model	Ver	500	501	502	550	700	70	1	702	750	900	901	950
FIVITCOO	AF,UF				•								
FIKIT500	AS,U			•									
FIKIT800	AF,UF										•		•
- FINITOUU	AS,U					•	•		•	•	•	•	•
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450
7.17	ACT,AS,U	•	•	•	•	•	•	•	•	•	•	•	•
	AF,UF	•			•	•			•	•			•
ZXZ	AI,UI												
ZXZ Model	Ver	500	501	502	550	700	70	1	702	750	900	901	950
		500	501	502	550	700	70	1	702	750	900	901	950

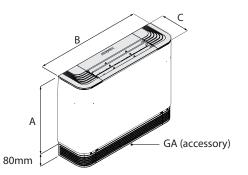
PERFORMANCE SPECIFICATIONS

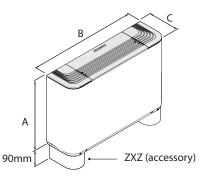
Technical data - 2-pipe systems (main coil)

_			
7.	n	in	Δ

2-pipe		FCZI	200	Т	FCZI250			CZI300	<u> </u>		CZI35	·n		CZI40	n		CZ145			FCZI50	^		FCZI55	0
		1 1		1	2	3	1	2	3	1	7	3	1	2	3	1	2	3	1	2	3	1	2	3
		L		ΙĖ	M	 H	Ĺ	M	 H	Ė	M	 H	i	M	Н	÷	M	 H	Ė	M	 H	Η	M	H
Heating performance 70 °C / 60 °C (1)		1											_											
Heating capacity	kW	2,02 2,	95 3,70	2,20	3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82	5,27	7,31	8,50	5,82	8,34	9,75
Water flow rate system side	I/h	177 25				355	_	391	482	330	431	539	379	503	627	400	551	685	462	641	745	510	731	855
Pressure drop system side	kPa	6 1	2 18	7	15	23	7	12	18	8	14	20	9	16	24	6	11	16	12	21	28	10	20	26
Heating performance 45 °C / 40 °C (2)																								
Heating capacity	kW	1,00 1,4	6 1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88	2,62	3,63	4,22	2,89	4,14	4,85
Water flow rate system side	l/h	174 25	4 319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675	455	631	734	502	720	842
Pressure drop system side	kPa	6 1	2 18	8	15	22	8	12	18	9	14	21	10	16	24	6	11	16	12	21	28	10	20	26
Cooling performance 7 °C / 12 °C (3)																								
Cooling capacity	kW	0,89 1,2	8 1,60	1,06	1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03	2,68	3,69	4,25	2,91	4,13	4,79
Sensible cooling capacity	kW	0,71 1,0	5 1,33	0,79	1,20	1,52	1,26	1,65	2,04	1,33	1,76	2,18	1,59	2,14	2,67	1,69	2,30	2,90	1,94	2,73	3,18	2,07	2,98	3,49
Water flow rate system side	l/h	153 22	1 275	182	267	334	288	374	456	350	460	560	379	503	619	414	552	694	460	634	731	501	711	824
Pressure drop system side	kPa	6 1	18	8	17	25	8	13	18	11	18	25	10	17	24	9	15	22	13	23	29	12	22	28
Fan																								
Туре	type											Centri	fugal											
Fan motor	type											Inve	rter											
Number	no.	1			1			2			2			2			2			2			2	
Air flow rate	m³/h	140 22		140		290	260	350	450	260	350	450	330	460	600	330	460	600	400	600	720	400	600	720
Input power	W	5 8		5	8	14	5	7	13	5	7	13	5	10	18	5	10	18	7	18	34	7	18	38
Signal 0-10V	%	44 6	8 90	44	68	90	52	70	90	52	70	90	49	68	90	49	68	90	50	74	90	50	74	90
Fan coil sound data (4)																								
Sound power level	dB(A)	35,0 46		-		51,0		41,0	48,0	-	41,0		37,0	44,0	51,0	37,0	44,0	51,0	42,0	51,0	56,0	42,0		56,0
Sound pressure	dB(A)	27,0 38	,0 43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	48,0
Diametre hydraulic fittings				_																				
Main coil	Ø	1/	2"		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply																								
Power supply												230V-	~50Hz											
			FC	21700					FCZ	750					FCZ	900					FCZ	1950		
		1		2	3		1			2		3		1	- 2	2	:	2	1	1		2		3
							_													1				
		L		М	Н	l	L		١	Л		Н		L	Λ	Л	ŀ			L		M		H
Heating performance 70 °C / 60 °C (1)		L															ŀ	1		L	I			
Heating capacity	kW	8,10	9	,80	11,	00	9,1	10	11	,30	12	2,50	10	,77	13,	,35	15	,14	11	,20	14	,42	17	',10
Heating capacity Water flow rate system side	l/h	8,10 710	9),80 360	11, 96	00	9,1 79	10	11,	,30 91	12	2,50 096	10	,77 45	13,	,35 71	15, 13	,14 28	11	,20 82	14	,42 164	17 15	7,10 500
Heating capacity Water flow rate system side Pressure drop system side		8,10	9	,80	11,	00	9,1	10	11,	,30	12	2,50	10	,77	13,	,35 71	15	,14 28	11	,20	14	,42	17 15	',10
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	8,10 710 17	9	1,80 360 23	11, 96 29	00 64 9	9,1 79 10	10 8	11, 99	,30 91 5	12 10	2,50 096 18	10 94	,77 45 2	13, 11	,35 71 7	15, 13	14 28 2	11	,20 82	14 12 2	,42 164 15	17 15 3	7,10 500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	8,10 710 17	9	360 23	11, 96 29 5,4	00 64 9	9,1 79 10	10 8 0	11, 99 1	,30 91 5	122	2,50 096 18	10 94 1	,77 45 2	13, 11 1 6,	,35 71 7	15, 13 2	14 28 2	111 9	,20 82 16	14 12 2 7,	,42 164 15	17 15 3	7,10 500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	8,10 710 17 4,03 699	9 8	1,80 360 23 4,87	11, 96 29 5,4	000 64 99	9,1 79 10 4,5	10 8 0 50 66	11, 99 1 5,	,30 91 5 60	12 10 1 6,	2,50 096 18 ,20	10 94 1 5,	,77 45 2 35 30	13, 111 1 6,	,35 71 7 64 52	15, 13 2 7,	14 28 2 53 07	111 9 1 5,	,20 82 16 .57	14 12 2 7,	,42 264 25 17	17 15 3 8,	7,10 500 33 50 476
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	8,10 710 17	9 8	360 23	11, 96 29 5,4	000 64 99	9,1 79 10	10 8 0 50 66	11, 99 1 5,	,30 91 5	12 10 1 6,	2,50 096 18	10 94 1 5,	,77 45 2	13, 11 1 6,	,35 71 7 64 52	15, 13 2	14 28 2 53 07	111 9 1 5,	,20 82 16	14 12 2 7,	,42 164 15	17 15 3 8,	7,10 500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3)	I/h kPa kW I/h kPa	8,10 710 17 4,03 699 17	9 8	1,80 360 23 4,87 346 24	11,1 96 29 5,4 95	00 64 9 17 60	9,1 79 10 4,5 78	10 18 0 50 66	11, 99 1 5, 97	,30 91 5 60 75	12 10 1 6, 10	2,50 096 18 ,20 079	10 94 1 5, 93	,77 45 2 35 30 2	13, 11 1 6, 11	,35 71 7 64 52 7	15, 13 2 7, 13 2	1 ,14 28 2 53 07	55, 9	,20 82 16 .57 .67	14 12 2 7, 12 2	,42 64 5 17 45	177 155 33 8, 14	7,10 500 33 50 50 476
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity	l/h kPa kW l/h kPa	8,10 710 17 4,03 699 17	4 8	7,80 360 23 4,87 346 24	11,/ 96 29 5,4 95 29	00 64 9 17 60 9	9,1 79 10 4,5 78 10	10 18 0 50 66 0	11 99 1 5, 97 1	,30 91 5 60 75 5	12 10 1 6, 10	2,50 096 18 ,20 079 18	100 94 1 5, 93 1	,77 45 2 35 30 2	13, 11 1 6, 11 1 1	35 71 7 64 52 7	15, 13 2 7, 13 2	1 ,14 28 2 53 07 2	111 9 1 5, 9	,20 82 16 .57 67	14 12 2 7, 12 2	,42 264 25 17 245 24	177 155 33 8, 14 3	7,10 500 33 50 476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kW kW	8,10 710 17 4,03 699 17 3,92 2,99	4 4 3	3,80 360 23 4,87 346 24 4,89	11, 96 29 5,4 95 29 5,5 4,3	000 64 99 17 60 99	9,1 79 10 4,5 78 10 4,2 3,2	10 18 10 10 10 10 10 10 10 10 10 10 10 10 10	11, 99 1 5, 97 1 5,	,30 91 5 60 75 5	12 10 1 6, 10 1 6,	2,50 096 18 ,20 079 18	100 94 11 5, 93 11	,77 45 2 35 30 2 29 97	13, 111 1 6, 111 1 5, 3,	,35 71 7 64 52 7	15, 13, 2, 7,, 13, 2, 6,,	1 1,14 228 22 25 353 07 22 291	5, 9	,20 82 16 .57 67 15	14 12 2 7, 12 2 7,	,42 64 55 17 45 44 32 87	177 153 3 8, 14 3 8, 5,	7,10 500 33 50 476 33 60 78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW L/h	8,10 710 17 4,03 699 17 3,92 2,99 675	9 8 8 4 4 8 8 3 3 8 8	3,80 360 23 4,87 346 24 4,89 4,76	11,1 966 29 5,4 95 29 5,5 4,3	000 644 99 77 700 99 750 80 80	9,1 79 10 4,5 78 10 4,2 3,2	00 88 00 00 00 00 00 00 00 00 00 00 00 0	11 99 1 5, 97 1 5, 4,	,30 91 5 60 75 5 34 05	122 100 100 100 100 100 100 100 100 100	2,50 096 18 ,20 079 18 ,14 ,72	10 94 1 5, 93 1 4, 2,	,77 45 2 35 30 2 29 97	13, 11 1 6, 11 1 5,, 86	,35 71 7 64 52 7 00 78	15, 133 2 2 7, 7, 131 2 2 6, 5, 111	1 1,14 28 22 22 553 007 22 291 668 889	5, 5, 9, 5, 3, 9, 9, 9, 1	,20 82 16 .57 67 15 .77 .80	144 122 27 77,7 122 27 77,4,4,12	,42 264 25 17 245 24 32 87	177 155 3 8, 144 3 8, 5,	7,10 500 33 50 476 33 60 ,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa kW kW	8,10 710 17 4,03 699 17 3,92 2,99	9 8 8 4 4 8 8 3 3 8 8	3,80 360 23 4,87 346 24 4,89	11, 96 29 5,4 95 29 5,5 4,3	000 644 99 77 700 99 750 80 80	9,1 79 10 4,5 78 10 4,2 3,2	00 88 00 00 00 00 00 00 00 00 00 00 00 0	11 99 1 5, 97 1 5, 4,	,30 91 5 60 75 5	122 100 100 100 100 100 100 100 100 100	2,50 096 18 ,20 079 18	10 94 1 5, 93 1 4, 2,	,77 45 2 35 30 2 29 97	13, 11 1 6, 11 1 5,, 86	,35 71 7 64 52 7	15, 13, 2, 7,, 13, 2, 6,,	1 1,14 28 22 22 553 007 22 291 668 889	5, 5, 9, 5, 3, 9, 9, 9, 1	,20 82 16 .57 67 15	144 122 27 77,7 122 27 77,4,4,12	,42 64 55 17 45 44 32 87	177 155 3 8, 144 3 8, 5,	7,10 500 33 50 476 33 60 78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW L/h kPa kW kW I/h kPa	8,10 710 17 4,03 699 17 3,92 2,99 675	9 8 8 4 4 8 8 3 3 8 8	3,80 360 23 4,87 346 24 4,89 4,76	11,1 966 29 5,4 95 29 5,5 4,3	000 644 99 77 700 99 750 80 80	9,1 79 10 4,5 78 10 4,2 3,2	00 88 00 00 00 00 00 00 00 00 00 00 00 0	11 99 1 5, 97 1 5, 4,	,30 91 5 60 75 5 34 05	122 100 100 100 100 100 100 100 100 100	2,50 096 118 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17	10 9.4 5, 9.5 1 1 4, 2,	,77 45 2 35 30 2 29 97	13, 11 1 6, 11 1 5,, 86	,35 71 7 64 52 7 00 78	15, 133 2 2 7, 7, 131 2 2 6, 5, 111	1 1,14 28 22 22 553 007 22 291 668 889	5, 5, 9, 5, 3, 9, 9, 9, 1	,20 82 16 .57 67 15 .77 .80	144 122 27 77,7 122 27 77,4,4,12	,42 264 25 17 245 24 32 87	177 155 3 8, 144 3 8, 5,	7,10 500 33 50 476 33 60 ,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fressure drop system side Fan Type	kW I/h kPa kW I/h kPa kW kW I/h kPa type	8,10 710 17 4,03 699 17 3,92 2,99 675	9 8 8 4 4 8 8 3 3 8 8	3,80 360 23 4,87 346 24 4,89 4,76	11,1 966 29 5,4 95 29 5,5 4,3	000 644 99 77 700 99 750 80 80	9,1 79 10 4,5 78 10 4,2 3,2	00 88 00 00 00 00 00 00 00 00 00 00 00 0	11 99 1 5, 97 1 5, 4,	,30 91 5 60 75 5 34 05	122 100 100 100 100 100 100 100 100 100	2,50 18 18 20 20 20 20 20 20 20 20 20 20 20 20 20	10 94 1 5, 92 1 4, 2, 73 1 1 ifugal	,77 45 2 35 30 2 29 97	13, 11 1 6, 11 1 5,, 86	,35 71 7 64 52 7 00 78	15, 133 2 2 7, 7, 131 2 2 6, 5, 111	1 1,14 28 22 22 553 007 22 291 668 889	5, 5, 9, 5, 3, 9, 9, 9, 1	,20 82 16 .57 67 15 .77 .80	144 122 27 77,7 122 27 77,4,4,12	,42 264 25 17 245 24 32 87	177 155 3 8, 144 3 8, 5,	7,10 500 33 50 476 33 60 ,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa kW I/h kPa type type	8,10 710 17 4,03 699 17 3,92 2,99 675	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8,80 860 23 846 24 846 24 8,89 8,76 841	11,1 966 29 5,4 95 29 5,5 4,3	000 644 99 77 700 99 750 80 80	9,1 79 10 4,5 78 10 4,2 3,2	00 88 00 00 00 00 00 00 00 00 00 00 00 0	11, 99, 1 5, 90, 1 5, 4,, 9,	334 005 18 55	122 100 100 100 100 100 100 100 100 100	2,50 18 18 20 20 20 20 20 20 20 20 20 20 20 20 20	10 9.4 5, 9.5 1 1 4, 2,	,77 45 2 35 30 2 29 97	13, 111 1 1 1 1 1 5, 3, 86	77 77 77 77 77 77 77 77 77 77 77 77 78 78	15, 133 2 2 7, 7, 131 2 2 6, 5, 111	1 1,14 28 22 22 553 007 22 291 668 889	5, 5, 9, 5, 3, 9, 9, 9, 1	,20 82 16 .57 67 15 .77 .80	14 12 2 7, 12 2 2 7, 4, 4,	17 17 145 145 145 145 159 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	177 155 3 8, 144 3 8, 5,	7,10 500 33 50 476 33 60 ,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa kW kW I/h kPa type type no.	8,10 710 17 4,03 699 17 3,92 2,99 675 17	99 8	360 360 23 3846 24 5,89 7,76 3841 225	11,/ 9669 25,4,3 955 25,5,4,3 4,3,3 944 36	000 144 199 147 170 199 199 190 190 190 190 190 19	9,1,1 799 10 4,5,2 78 10 4,2 7,3,2 7,3,2	100 188 100 150 166 166 100 177 177 177 177 177 177 177 177 177	11, 99, 11, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	33 33 33	122 100 10 10 10 10 10 10 10 10 10 10 10 10	2,50 188 188 2,20 779 188 7,72 1956	10 94 1 1 5, 92 1 1 4, 4, 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7,77 45 2 335 80 2 2 2 29 997 338 0	13, 111 1 1 6, 6, 111 1 5, 86 1	77 77 77 77 77 77 77 77 77 77 77 77 77	15, 133 2 7, 133 2 6, 5, 111 2	1 1,14 28 22 553 07 22 91 68 89 22	5, 99 1 5, 3, 99 1 1	L ,20 ,20 ,882	14 12 2 2 7,7,1 2 2 7,7,4,4,1 12 2	17 17 145 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	177 155 3 8, 144 3 8, 5, 14	7,10 500 333 33 476 476 4776 4779 4779
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h	8,10 710 17 4,03 699 17 3,92 2,99 675 17	99 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,80 360 23 3,87 8,87 8,89 7,76 841 3 3 3	11,/ 9669 25,/ 5,4,2 25,5 25,5 31,4,3 31,4 31,4 31,4 31,4 31,4 31,4 31	000 144 199 177 170 199 190 190 190 190 190 190 19	9,1,79 79 10 4,5,78 10 4,2 73 10	100 188 100 100 100 100 100 100	111 99 1 5, 99 1 1	334 005 188 338 338	12 10 10 10 10 10 10 10 10 10 10 10 10 10	2,50 18 18 2,20 20 20 779 18 18 4 4 14 14 19	100 9.4 1 1 5.5, 9.5 1 1 4., 2.2, 7.5 1 1 ifugal erter	7,77 45 2 2 335 880 2 2 2 29 997 888 0	13, 111 1 1 6, 111 1 1 5, 3, 3, 1	771 77 77 77 77 77 77 77 77 78 8 60 9 3 3 3	15, 13, 22, 7,, 13, 23, 6,, 5,, 111, 22,	H 14 28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5, 99 11 5, 3, 3, 99 11 77	L ,20 ,20 ,882	144 122 2 7,7,1 12 2 7,7,4,4,1 12 2 2	17 17 145 4 4 32 87 759 33	177 155 3 3 8, 144 3 3 8, 5, 144 3 3	7,10 500 500 333 550 476 333 660 778 4779 300
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h W	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,80 360 23 3,87 8,87 8,89 4,76 8,89 1,76 8,81 1,76 1,76 1,76 1,76 1,76 1,76 1,76 1,7	11,7 966-969-969-969-969-969-969-969-969-969	000 644 99 99 99 99 90 90 90 90 90 90 90 90 90	9,1,1 799 10 4,5,2 788 10 4,2 733 10 700 30	00 00 00 00 00 00	111 99 1 5, 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 55 55 55 55 55 55 55 55 55 55 55 55 55	122 100 1 100 100 100 100 100 100 100 10	2,50 096 18 079 18 8 079 18 18 14 14 19 19	10 9.4 1 5.5, 9.5 1 1 4.4, 2.7 1 1 1 iifugal erter 7 (1 3 3	7,77 45 2 2 2 335 80 2 2 2 2 997 88 0	13, 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 77 77 77 77 77 77 77 77 77 78 860 80 00	15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13	H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L ,20 ,20 ,82	1 144 122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 17 1445 14 14 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	177 155 3 3 8, 144 3 3 3 3 3 111 8	7,10 500 500 550 476 83 83 86 80 80
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,80 360 23 3,87 8,87 8,89 7,76 841 3 3 3	11,/ 9669 25,/ 5,4,2 25,5 25,5 31,4,3 31,4 31,4 31,4 31,4 31,4 31,4 31	000 644 99 99 99 99 90 90 90 90 90 90 90 90 90	9,1,79 79 10 4,5,78 10 4,2 73 10	00 00 00 00 00 00	111 99 1 5, 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	334 005 188 338 338	122 100 1 100 100 100 100 100 100 100 10	2,50 18 18 2,20 20 20 779 18 18 4 4 14 14 19	10 9.4 1 5.5, 9.5 1 1 4.4, 2.7 1 1 1 iifugal erter 7 (1 3 3	7,77 45 2 2 335 880 2 2 2 29 997 888 0	13, 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	771 77 77 77 77 77 77 77 77 78 8 60 9 3 3 3	15, 13, 22, 7,, 13, 23, 6,, 5,, 111, 22,	H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5, 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L ,20 ,20 ,882	1 144 122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 17 145 4 4 32 87 759 33	177 155 3 3 8, 144 3 3 3 3 3 111 8	7,10 500 500 333 550 476 333 660 778 4779 300
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (4)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 8 8 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8	,80 ,80 ,87 ,87 ,884 ,89 ,7,76 ,76 ,341 ,393 ,40 ,772	11,1 966 25 5,4,2 95 25 25 25 4,3 30 11,4 80 90	000 644 99 99 99 90 90 90 90 90 90 90 90 90 90	9,1 79 10 4,5 78 10 4,2 3,2 73 10 70 3(3,5)	200 200 200 200 200 200 200 200 200 200	111 99 1 5, 99 1 1 1 1 99 4 7	330 55 56 660 660 775 55 55 88 88 90 90 90 90 90 90 90 90 90 90	122 100 100 100 100 100 100 100 100 100	Centry Investigation (1990)	10 94 1 5, 9: 1 1 4, 2, 7: 1 1 ifugal erter	7,77 2 2 335 2 2 2 2 9 97 38 8 0 0 0 0 6 6	13, 111 1 1 5, 3, 86 1 1 1 2 3 4 7	77 77 664 6552 77 78 660 33 3	15, 13, 22, 7, 13, 22, 6,, 5,, 111, 22, 111, 8, 9,	1 14 228 22 2553 007 22 2 2 2 40 0 0	55,99 55,33,399 77	L ,20 ,20 ,382 ,366 ,377 ,377 ,380 ,392 ,355 ,377 ,377 ,380 ,380 ,380 ,380 ,380 ,380 ,380 ,380	144 122 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 145 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	177 155 3 8, 144 3 8, 5, 5, 144 3 3	7,10 500 83 83 83 83 83 83 86 80 80 80
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (4) Sound power level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W % dB(A)	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,80 360 23 3,87 3,87 3,89 7,76 341 225 3 3 3 40 772	11,1 966 5,4,2 95 25 25 25 4,3 36 31 4,2 94 86 96	000 44 99 147 100 99 166 166 170 170 170 170 170 170 170 170 170 170	9,1 799 10 4,5 788 10 4,2,2 73 11 70 30 50	10 18 10 10 10 10 10 10 10 10 10 10	111, 999 1 1 5, 99, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 55 56 660 660 775 55 55 880 00 00 77,0	122 100 100 100 100 100 100 100 100 100	2,50 1996 188 2,20 1979 188 2,14 1,72 1956 19 19 19 19 19 19 19 19 19 19 19 19 19	10 94 1 1 5, 99 1 1 1 4, 2, 7 1 1 1 ifugal enter 7 (3 3 5 5)	7,77 145 2 2 335 330 2 2 2 997 88 8 0 0 0 0 6 6	13,3 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 77 664 6552 77 78 660 33 3 3 3 0 0 2 2	15, 13 13 2 2 5, 11 1 1 1 8 8 9 9 62	1 1,14 228 2 2 2 2 3 53 07 2 2 2 40 0 0 0	111 99 15 5, 99 17 77 77 18 18 18 18 18 18 18 18 18 18 18 18 18	L ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20	14 12 2 7, 7, 12 2 2 7, 4, 4, 12 2 2 2 2 3 3 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2,42 664 65 117 145 14 14 1332 887 1559 13 13 13 14 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	177 155 3 8, 8, 144 3 8, 5, 5, 144 111 8 9	7,10 500 33 33 50 776 60 778 779 78 79 79 79 79 79 79 79 79 79 79
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (4) Sound power level Sound pressure	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	,80 ,80 ,87 ,87 ,884 ,89 ,7,76 ,76 ,341 ,393 ,40 ,772	11,1 966 25 5,4,2 95 25 25 25 4,3 30 11,4 80 90	000 44 99 147 100 99 166 166 170 170 170 170 170 170 170 170 170 170	9,1 79 10 4,5 78 10 4,2 3,2 73 10 70 3(3,5)	10 18 10 10 10 10 10 10 10 10 10 10	111, 999 1 1 5, 99, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 55 56 660 660 775 55 55 88 88 90 90 90 90 90 90 90 90 90 90	122 100 100 100 100 100 100 100 100 100	Centry Investigation (1990)	10 94 1 1 5, 99 1 1 1 4, 2, 7 1 1 1 ifugal enter 7 (3 3 5 5)	7,77 2 2 335 2 2 2 2 9 97 38 8 0 0 0 0 6 6	13,3 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 77 664 6552 77 78 660 33 3	15, 13, 22, 7, 13, 22, 6,, 5,, 111, 22, 111, 8, 9,	1 1,14 228 2 2 2 2 3 53 07 2 2 2 40 0 0 0	111 99 15 5, 99 17 77 77 18 18 18 18 18 18 18 18 18 18 18 18 18	L ,20 ,20 ,382 ,366 ,377 ,377 ,380 ,392 ,355 ,377 ,377 ,380 ,380 ,380 ,380 ,380 ,380 ,380 ,380	14 12 2 7, 7, 12 2 2 7, 4, 4, 12 2 2 2 2 3 3 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	17 145 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	177 155 3 8, 8, 144 3 8, 5, 5, 144 111 8 9	7,10 500 83 83 83 83 83 83 86 80 80 80
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (4) Sound power level Sound pressure Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W % dB(A)	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,80 360 23 3,87 3,87 3,89 7,76 341 225 3 3 3 40 772	11,1 966 5,4,2 95 25 25 25 4,3 36 31 4,2 94 86 96	000 44 99 147 100 99 166 166 170 170 170 170 170 170 170 170 170 170	9,1 799 10 4,5 788 10 4,2,2 73 11 70 30 50	10 18 10 10 10 10 10 10 10 10 10 10	111, 999 1 1 5, 99, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 55 56 660 660 775 55 55 880 00 00 77,0	122 100 100 100 100 100 100 100 100 100	2,50 1996 18 18 20 20 779 18 18 14 14 17,72 19 19 19 140 180 19 10 10 10 10 10 10 10 10 10 10 10 10 10	10 9.0 1 1 1 5.5, 99:0 1 1 4.4, 2.7, 7:1 1 1 ifugal erter 7 (1 3 3 5 5 1 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	7,77 145 2 2 335 330 2 2 2 997 88 8 0 0 0 0 6 6	13,3 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 77 664 6552 77 78 660 33 3 3 3 0 0 2 2	15, 13 13 2 2 5, 11 1 1 1 8 8 9 9 62	1 1,14 228 2 2 2 2 3 53 07 2 2 2 40 0 0 0	111 99 15 5, 99 17 77 77 18 18 18 18 18 18 18 18 18 18 18 18 18	L ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20	14 12 2 7, 7, 12 2 2 7, 4, 4, 12 2 2 2 2 3 3 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2,42 664 65 117 145 14 14 1332 887 1559 13 13 13 14 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	177 155 3 8, 8, 144 3 8, 5, 5, 144 111 8 9	7,10 500 33 33 50 776 60 778 779 78 79 79 79 79 79 79 79 79 79 79
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (4) Sound power level Sound pressure Diametre hydraulic fittings Main coil	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W % dB(A)	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,80 360 23 3,87 3,87 3,89 7,76 341 225 3 3 3 40 772	11,1 966 5,4,2 95 25 25 25 4,3 36 31 4,2 94 86 96	000 44 99 147 100 99 166 166 170 170 170 170 170 170 170 170 170 170	9,1 799 10 4,5 788 10 4,2,2 73 11 70 30 50	10 18 10 10 10 10 10 10 10 10 10 10	111, 999 1 1 5, 99, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 55 56 660 660 775 55 55 880 00 00 77,0	122 100 100 100 100 100 100 100 100 100	2,50 1996 18 18 20 20 779 18 18 14 14 17,72 19 19 19 140 180 19 10 10 10 10 10 10 10 10 10 10 10 10 10	10 94 1 1 5, 99 1 1 1 4, 2, 7 1 1 1 ifugal enter 7 (3 3 5 5)	7,77 145 2 2 335 330 2 2 2 997 88 8 0 0 0 0 6 6	13,3 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 77 664 6552 77 78 660 33 3 3 3 0 0 2 2	15, 13 13 2 2 5, 11 1 1 1 8 8 9 9 62	1 1,14 228 2 2 2 2 3 53 07 2 2 2 40 0 0 0	111 99 15 5, 99 17 77 77 18 18 18 18 18 18 18 18 18 18 18 18 18	L ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20	14 12 2 7, 7, 12 2 2 7, 4, 4, 12 2 2 2 2 3 3 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2,42 664 65 117 145 14 14 1332 887 1559 13 13 13 14 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	177 155 3 8, 8, 144 3 8, 5, 5, 144 111 8 9	7,10 500 33 33 50 776 60 778 779 78 79 79 79 79 79 79 79 79 79 79
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Fan coil sound data (4) Sound power level Sound pressure Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W % dB(A)	8,10 710 17 4,03 699 17 3,92 2,99 675 17	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3,80 360 23 3,87 3,87 3,89 7,76 341 225 3 3 3 40 772	11,1 966 5,4,2 95 25 25 25 4,3 36 31 4,2 94 86 96	000 44 99 147 100 99 166 166 170 170 170 170 170 170 170 170 170 170	9,1 799 10 4,5 788 10 4,2,2 73 11 70 30 50	10 18 10 10 10 10 10 10 10 10 10 10	111, 999 1 1 5, 99, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	330 55 56 660 660 775 55 55 880 00 00 77,0	122 100 100 100 100 100 100 100 100 100	2,50 2,50 18 18 18 18 20 18 18 19 19 11 10 10 10 10 10 10 10 10 10	10 9.0 1 1 1 5.5, 99:0 1 1 4.4, 2.7, 7:1 1 1 ifugal erter 7 (1 3 3 5 5 1 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	7,77 145 2 2 335 330 2 2 2 997 88 8 0 0 0 0 6 6	13,3 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77 77 664 6552 77 78 660 33 3 3 3 0 0 2 2	15, 13 13 2 2 5, 11 1 1 1 8 8 9 9 62	1 1,14 228 2 2 2 2 3 53 07 2 2 2 40 0 0 0	111 99 15 5, 99 17 77 77 18 18 18 18 18 18 18 18 18 18 18 18 18	L ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20 ,20	14 12 2 7, 7, 12 2 2 7, 4, 4, 12 2 2 2 2 3 3 4 4 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2,42 664 65 117 145 14 14 1332 887 1559 13 13 13 14 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	177 155 3 8, 8, 144 3 8, 5, 5, 144 111 8 9	7,10 500 33 33 50 776 60 778 779 78 79 79 79 79 79 79 79 79 79 79


⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45°C/40°C; EUROVENT
(3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


Technical data - 4-pipe systems (main coil + secondary coil)


			FCZI201			FCZI301			FCZI401			FCZI501			FCZI701			FCZI901	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)								•			•			•			•		
Heating capacity	kW	1,02	1,35	1,60	1,80	2,18	2,56	2,21	2,65	3,12	2,59	3,34	3,73	3,66	4,29	4,94	4,73	5,63	5,72
Water flow rate system side	I/h	89	118	140	158	191	224	186	232	273	227	293	327	320	375	437	414	492	501
Pressure drop system side	kPa	5	8	11	17	23	31	5	7	9	6	9	11	11	15	19	9	12	12
Cooling performance 7 °C / 12 °C (2)																			
Cooling capacity	kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25	3,92	4,89	5,50	4,29	5,00	6,91
Sensible cooling capacity	kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18	2,99	3,76	4,30	2,97	3,78	5,68
Water flow rate system side	I/h	153	221	275	289	374	456	379	503	619	461	635	731	675	841	946	738	860	1188
Pressure drop system side	kPa	7	13	18	8	13	18	14	24	34	13	23	29	17	25	30	10	15	10
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Inve	erter								
Number	no.		1			2			2			2			3			3	
Air flow rate	m³/h	140	220	290	260	350	450	330	460	600	400	600	720	700	930	1140	700	930	1140
Sound pressure level (10 m)	dB(A)	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0	42,0	49,0	54,0	43,0	49,0	54,0
Sound power level (3)	dB(A)	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0	50,0	57,0	62,0	51,0	57,0	62,0
Diametre hydraulic fittings																			
Туре	type										-								
Main coil	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Fan																			
Input power	W	7	8	14	5	7	13	5	10	18	7	16	31	30	40	80	30	40	80
Signal 0-10V	%	44	68	90	52	70	90	49	68	90	50	74	90	56	72	90	56	72	90
Power supply																			
Power supply										230V	~50Hz								

- (1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
 (2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

z-hihe			FCZ1200 FCZ1250 FCZ1300 FCZ1350 FCZ1																										,								
		FC2	Z1200		FC2	(125)	F	CZ130	0	F	CZI3:	50		FCZI4	00	F	CZI45	0	F	CZI5	00	F	CZ15	50		FCZ17	00	F	CZI7	50	F	CZI90	00	F	CZ195	0
		1	2	3	1	2	3	1	2	3	3 1 2 3 H I M H		3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Dimensions and	ensions and weights																																				
A	mm	4	186		4	186			486			486			486			486			486			486			486			486			591			591	
В	mm	7	750		7	50			980			980			1200)		1200			1200)		1200)		1320)		1320)		1320)		1320	
C	mm	2	220		2	220			220			220			220			220			220	1		220			220			220			220			220	
Empty weight	kg		15			16			17			18			22			24			22			24			29			31			34			34	

			FCZI201			FCZI301			FCZI401			FCZI501			FCZI701			FCZI901	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	M	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Dimensions and	l weights																		
A	mm		486			486			486			486			486			591	
В	mm		750			980			1200			1200			1320			1320	
(mm		220		220				220			220			220			220	
Empty weight	kg		15		17				23			23			30			34	

 $\label{lem:continuous} Aermec \ reserves \ the \ right \ to \ make \ any \ modifications \ deemed \ necessary.$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCZ-D

- Fully silent operation
- Backlit touch command with programming via a smart device
- · Total comfort in every season

Fan coil for vertical wall-mounting or free-standing installation

Cooling capacity 0,89 \div 4,25 kW Heating capacity 2,02 \div 8,50 kW

DESCRIPTION

The perception of uneven temperature distribution in various settings, especially in the vertical direction, is one of the main factors leading to a drastic reduction in the well-being perceived by occupants.

FCZ D are able to provide a pleasant sensation of comfort by directing the air in a way that ensures uniform temperature distribution throughout the setting. In winter, hot air is direct downwards; in summer, cool air is directed upwards.

Air supply switching at the front or from the top by operating directly on the orientable grille.

They can be installed in any type of 2 / 4 pipe system and in combination with any heat generator even at low temperatures. Thanks to the availability of several versions and configurations, it is easy to choose the optimal solution for every requirement.

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

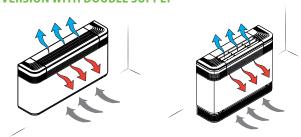
Ventilation group

Consisting of double suction centrifugal fans that are particularly silent, statically and dynamically balanced, and directly coupled with the motor shaft

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

Extractable shrouds for easy, effective cleaning

Heat exchanger coil


With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The hydraulic connections can be inverted during installation.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

VERSION WITH DOUBLE SUPPLY

FCZ D

— With on-board thermostat.

FCZ_DS

- Compatibility with VMF system.
- Without installed switch

ThermApp

In units DS version with a **T-Touch-I** electronic thermostat (accessory) and the **ThermApp** application, the operating mode can be set and the weekly timer programmed by simply resting the smart device on the fan coil. The graphic interface of the app also gives access to a lot more information such as the alarm list, the closest SAT, etc.

Available for Android operating systems.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3	FCZ
4	Size
	2, 3, 4, 5
5	Main coil
0	Standard
6	Secondary coil
0	Without coil
7	Version
D	Dualjet with thermostat TXB on-board the system
D:	Dualjet without on-board thermostat

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH: Touch control on board the machine, for controlling fan coils with asynchronous motors. In 2-pipe systems, it can control standard fan coils or those equipped with an electric heater, with air purifying devices or with FCZ-D twin delivery (Dualjet). In 4-pipe systems, only standard fan coils. The ThermApp application is also available for remote control with smart devices with the Android operating system.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF system

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E2Z: User interface on the machine, to be combined with the VMF-E0X, VMF-E19 or VMF-E19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grev front panel PANTONE

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMHI: The VMHI panel can be used as a user interface for VMF-E0X/ E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_ X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Metal supports for vertical installation of the GA grille.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	300	400	500		
AER503IR (1)	DS	•	•	•	•		
PR0503	DS	•	•	•	•		
SA5 (2)	DS	•	•	•	•		
SW3 (2)	DS	•	•	•	•		
SW5 (2)	DS	•	•	•	•		
T-TOUCH (3)	DS	•	•	•	•		
TX (1)	DS	•	•	•	•		

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted.
- (3) Installation on the fan coil.

VMF system

For more information about VMF system, refer to the dedicated documentation.

Model	Ver	200	300	400	500
VMF-E0X (1)	DS	•	•	•	•
VMF-E19 (1)	DS	•	•	•	•
VMF-E2Z	DS	•	•	•	•
VMF-E3	DS	•	•	•	•
VMF-E4DX	DS	•	•	•	•
VMF-E4X	DS	•	•	•	•
VMF-IO	DS	•	•	•	•
VMF-IR	DS	•	•	•	•
VMHI	DS	•	•	•	•

(1) Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Water valves

3 way valve kit

Model	Ver	200	300	400	500
VCZ41 (1)	D,DS	•			
VCZ4124 (2)	D,DS	•			
VCZ42 (1)	D,DS		•	•	•
VCZ4224 (2)	D,DS		•	•	•

(1) 230V~50Hz (2) 24V

2 way valve kit

Model	Ver	200	300	400	500
VCZD1 (1)	D,DS	•			
VCZD124 (2)	D,DS	•			
VCZD2 (1)	D,DS		•	•	•
VCZD224 (2)	D,DS		•	•	•

(1) 230V~50Hz (2) 24V

Valve Kit for 4 pipe systems - Requires a thermostat with valve management

Model	Ver	200	300	400	500
VCZ1X4L (1)	D,DS	•			
VCZ1X4R (1)	D,DS	•			
VCZ2X4L (1)	D,DS		•	•	•
VCZ2X4R (1)	D,DS		•	•	•

 $(1) \ \ The \ valves \ can \ be \ combined \ with \ the \ units \ if \ there \ is \ a \ control \ panel \ for \ managing \ them.$

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	300	400	500
VJP060 (1)	D,DS	•	•		
VJP060M (2)	D,DS	•	•		
VJP090 (1)	D,DS			•	•
VJP090M (2)	D,DS			•	•

(1) 230V~50Hz (2) 24V

Installation accessories

Condensate recirculation device

Model	Ver	200	300	400	500
DSCZ4 (1)	D,DS	•	•	•	•

(1) DSC4 cannot be mounted if even just one of these accessories is also installed: AMP - AMPZ valve VCZ1-2-3-4 X4L/R and all the condensate collection trays.

Condensate drip

Model	Ver	200	300	400	500
BCZ4 (1)	D,DS	•	•	•	•

(1) For vertical installation.

Panel closing the rear of the unit

Model	Ver	200	300	400	500
PCZ200	D,DS	•			
PCZ300	D,DS		•		
PCZ500	D.DS			•	•

Ornamental grille

Model	Ver	200	300	400	500
GA200	D,DS	•			
GA300	D,DS		•		
GA500	20.0				

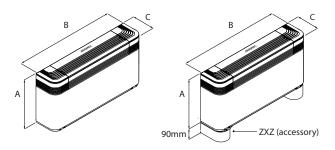
Supports to be combined with the ornamental grille (GA) for floor installation of the fan coil

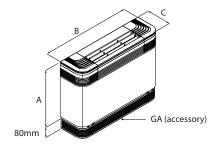
supports to be combined with the ornamental grine (cri) for noon installation of the fall con								
Model	Ver	200	300	400	500			
FIKIT200	D,DS	•						

37

Model	Ver	200	300	400	500
FIKIT300	D,DS		•		
FIKIT500	D,DS			•	•

Pair of stylish structural feet


Model	Ver	200	300	400	500
ZXZ	D,DS	•	•	•	•


PERFORMANCE SPECIFICATIONS

z-pipe			FCZ200D			FCZ300D			FCZ400D			FCZ500D	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)											,		
Heating capacity	kW	2,02	2,95	3,70	3,47	4,46	5,50	4,32	5,74	7,15	5,27	7,31	8,50
Water flow rate system side	l/h	177	258	324	304	391	482	379	503	627	462	641	745
Pressure drop system side	kPa	6	12	18	7	12	18	9	16	24	12	21	28
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	1,00	1,46	1,84	1,72	2,21	2,73	2,14	2,85	3,55	2,62	3,63	4,22
Water flow rate system side	l/h	174	254	319	299	385	475	373	495	617	455	631	734
Pressure drop system side	kPa	6	12	18	8	12	18	10	16	24	12	21	28
Cooling performance 7 °C / 12 °C (3)													
Cooling capacity	kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25
Sensible cooling capacity	kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18
Water flow rate system side	l/h	153	221	275	288	374	456	379	503	619	460	634	731
Pressure drop system side	kPa	7	13	18	8	13	18	10	17	24	13	23	29
Fan													
Туре	type						Centr	ifugal					
Fan motor	type						Asynch	ronous					
Number	no.		1			2			2			2	
Air flow rate	m³/h	140	220	290	260	350	450	330	460	600	400	600	720
Input power	W	13	25	35	25	33	44	30	43	57	38	52	76
Electrical wiring		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (4)													
Sound power level	dB(A)	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0
Sound pressure	dB(A)	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0
Water coil													
Water content main coil	I		0,5			0,8			1,0			1,0	
Diametre hydraulic fittings													
Main coil	Ø		1/2"			3/4"			3/4"			3/4"	
Power supply													
Power supply							230V-	~50Hz					

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZ200D	FCZ300D	FCZ400D	FCZ500D
Dimensions and weights	1				
A	mm	486	486	486	486
В	mm	750	980	1200	1200
C	mm	220	220	220	220
Empty weight	kg	15	17	23	22

FCZI-D

Fan coil for vertical wall-mounting or free-standing installation

Cooling capacity 0,89 ÷ 4,25 kW Heating capacity 2,02 ÷ 8,50 kW

- Total comfort in every season
- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Fully silent operation
- Backlit Touch command with programming via a smart device (DT vesion)

DESCRIPTION

The perception of uneven temperature distribution in various settings, especially in the vertical direction, is one of the main factors leading to a drastic reduction in the well-being perceived by occupants.

FCZI D are able to provide a pleasant sensation of comfort by directing the air in a way that ensures uniform temperature distribution throughout the setting. In winter, hot air is direct downwards; in summer, cool air is directed upwards.

Air supply switching at the front or from the top by operating directly on the orientable grille.

They can be installed in any type of 2 / 4 pipe system and in combination with any heat generator even at low temperatures. Thanks to the availability of several versions and configurations, it is easy to choose the optimal solution for every requirement.

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9003 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Ventilation group

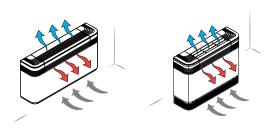
Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

Heat exchanger coil


With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The hydraulic connections can be inverted during installation.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

VERSION WITH DOUBLE SUPPLY

FCZI_D

— With on-board thermostat.

FCZI_D

- With thermostat T-TOUCH-I on-board the system
- Compatibility with VMF system.

FCZI_DS

- Without installed switch
- Compatibility with VMF system.

ThermApp

In units DT version with a **T-Touch-I** electronic thermostat and the **ThermApp** application, the operating mode can be set and the weekly timer programmed by simply resting the smart device on the fan coil. The graphic interface of the app also gives access to a lot more information such as the alarm list, the closest SAT, etc.

Available for Android operating systems.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description						
1,2,3,4	FCZI						
5	Size 2, 3, 4, 5						
6	Main coil						
0	Standard						
7	Secondary coil						
0	Without coil						
8	Version						
D	Dualjet with thermostat TXBI on-board the system						
D	5 Dualjet without on-board thermostat						
D	Dualjet with T-Touch-I thermostat						

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: Water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF system

VMF-E191: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E22: User interface on the machine, to be combined with the VMF-E0X, VMF-E19 or VMF-E19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMHI: The VMHI panel can be used as a user interface for VMF-E0X/E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Metal supports for vertical installation of the GA grille.

DSCZ4: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

ZXZ: Pair of stylish and structural feet

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	300	400	500
AER503IR (1)	DS	•	•	•	•
PR0503	DS	•	•	•	•
SA5 (2)	DS	•	•	•	•
SW3 (2)	DS	•	•	•	•
SW5 (2)	DS	•	•	•	•
TX (1)	DS	•	•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
- (2) Probe for AER503IR-TX thermostats, if fitted

VMF system

For more information about VMF system, refer to the dedicated documentation.

Model	Ver	200	300	400	500
VMF-E19I	DS	•	•	•	•
VMF-E2Z	DS	•	•	•	•
VMF-E3	DS,DT	•	•	•	•
VMF-E4DX	DS,DT	•	•	•	•
VMF-E4X	DS,DT	•	•	•	•
VMF-I0	DS	•	•	•	•
VMF-IR	DS	•		•	•
VMF-SW	DS	•	•	•	•
VMHI	DS	•	•	•	•

Water valves

3 way valve kit

Model	Ver	200	300	400	500
VCZ41 (1)	D,DS,DT	•			
VCZ4124 (2)	D,DS,DT	•			
VCZ42 (1)	D,DS,DT		•	•	•
VCZ4224 (2)	D,DS,DT		•	•	•

^{(1) 230}V~50Hz (2) 24V

2 way valve kit

Model	Ver	200	300	400	500
VCZD1 (1)	D,DS,DT	•			
VCZD124 (2)	D,DS,DT	•			
VCZD2 (1)	D,DS,DT		•	•	•
VCZD224 (2)	D,DS,DT		•		•

^{(1) 230}V~50Hz (2) 24V

Valve Kit for 4 pipe systems

Model	Ver	200	300	400	500
VCZ1X4L (1)	D,DS,DT	•			
VCZ1X4R (1)	D,DS,DT	•			
VCZ2X4L (1)	D,DS,DT		•	•	•
VCZ2X4R (1)	D,DS,DT		•	•	•

 $^{(1) \ \} The \ valves \ can \ be \ combined \ with \ the \ units \ if \ there \ is \ a \ control \ panel \ for \ managing \ them.$

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	300	400	500
VJP060 (1)	D,DS,DT	•	•		
VJP060M (2)	D,DS,DT	•	•		
VJP090 (1)	D,DS,DT			•	•
VJP090M (2)	D,DS,DT			•	

^{(1) 230}V~50Hz (2) 24V

Installation accessories

Condensate recirculation device

Model	Ver	200	300	400	500
DSCZ4 (1)	D,DS,DT	•	•	•	•

⁽¹⁾ DSC4 cannot be mounted if even just one of these accessories is also installed: AMP - AMPZ valve VCZ1-2-3-4 X4L/R and all the condensate collection trays.

Condensate drip

Model	Ver	200	300	400	500
BCZ4 (1)	D,DS,DT	•	•	•	

⁽¹⁾ For vertical installation.

Panel closing the rear of the unit

Model	Ver	200	300	400	500
PCZ200	D,DS,DT	•			
PCZ300	D,DS,DT		•		
PCZ500	D,DS,DT			•	•

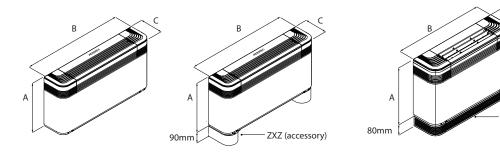
Ornamental grille

Model	Ver	200	300	400	500
GA200	D,DS,DT	•			
GA300	D,DS,DT		•		
GA500	D.DS.DT			•	•

Supports to be combined with the ornamental grille (GA) for floor installation of the fan coil

Model	Ver	200	300	400	500
FIKIT200	D,DS,DT	•			
FIKIT300	D,DS,DT		•		

www.aermec.com


Model	Ver	200	300	400	500
FIKIT500	D,DS,DT			•	•
Pair of stylish s	tructural feet				
Model	Ver	200	300	400	500
7V7	D DC DT		-		

PERFORMANCE SPECIFICATIONS

			FCZI200D			FCZI300D			FCZI400D		FCZI500D		
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)													
Heating capacity	kW	2,02	2,95	3,70	3,47	4,46	5,50	4,32	5,74	7,15	5,27	7,31	8,50
Water flow rate system side	I/h	177	258	324	304	391	482	379	503	627	462	641	745
Pressure drop system side	kPa	6	12	18	7	12	18	9	16	24	12	21	28
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	1,00	1,46	1,84	1,72	2,21	2,73	2,14	2,85	3,55	2,62	3,63	4,22
Water flow rate system side	l/h	174	254	319	299	385	475	373	495	617	455	631	734
Pressure drop system side	kPa	6	12	18	8	12	18	10	16	24	12	21	28
Cooling performance 7 °C / 12 °C (3)													
Cooling capacity	kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25
Sensible cooling capacity	kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18
Water flow rate system side	l/h	153	221	275	288	374	456	379	503	619	460	634	731
Pressure drop system side	kPa	7	13	18	8	13	18	10	17	24	13	23	29
Fan													
Туре	type						Centr	ifugal					
Fan motor	type						Inve	erter					
Number	no.		1			2			2			2	
Air flow rate	m³/h	140	220	290	260	350	450	330	460	600	400	600	720
Input power	W	5	8	14	5	7	13	5	10	18	8	18	34
Signal 0-10V	%	44	68	90	52	70	90	49	68	90	50	74	90
Fan coil sound data (4)													
Sound power level	dB(A)	31,0	43,0	50,0	34,0	41,0	48,0	37,0	44,0	41,0	42,0	51,0	56,0
Sound pressure	dB(A)	23,0	35,0	42,0	26,0	33,0	40,0	29,0	36,0	53,0	34,0	43,0	48,0
Water coil													
Water content main coil	I		0,5			0,8			1,0			1,0	
Diametre hydraulic fittings													
Main coil	Ø		1/2"			3/4"			3/4"			3/4"	
Power supply													
Power supply							230V-	~50Hz					

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZI200D	FCZI300D	FCZI400D	FCZI500D
Dimensions and weights	1				
A	mm	486	486	486	486
В	mm	750	980	1200	1200
(mm	220	220	220	220
Empty weight	kg	15	17	23	22

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

GA (accessory)

FCZ-H

Fan coil with the photocatalytic device, for universal and floor installation

- Photocatalytic device
- Tested effectiveness against viruses, bacteria and allergens
- Active against the SARS-CoV-2 virus, even on surfaces
- Backlit touch command with programming via a smart device (accessory)

DESCRIPTION

Fan coil with built-in **photocatalytic device**.

Active against the airborne Sars-CoV-2 virus (95%-99% abatement efficacy after 20 minutes of operation tested at the Virostatics laboratory in Alghero).

Active against the SARS-CoV-2 virus, even on surfaces - 84% effectiveness after 12 h (tests carried out in collaboration with the Department of Microbiology of the University of Padua).

Suitable for air conditioning in places requiring optimum hygiene levels, such as:

- Hospitals
- Dentists' surgeries
- Doctors' and vets' surgeries
- Analysis laboratories
- Waiting rooms
- Public premises

They can be installed in any type of 2-pipe system (version for 4-pipe systems available upon request) and in combination with any heat generator, even at low temperatures. Thanks to the availability of several versions and configurations, it's easy to find the right solution for every need.

VERSIONS

- H Unit with shell without thermostat vertical and horizontal installation.
- HP Unit without shell and without thermostat vertical and horizontal installation. Can also be supplied in a configuration equipped with a boosted asynchronous motor (HPO).
- **HT** Unit with shell and thermostat vertical installation.

FEATURES

Case

Metallic protective cabinet with rustproofing polyester paint RAL 9003. The head with adjustable air distribution grille is made of plastic RAL 7047. When the grille closes, the fan coil automatically switches off.

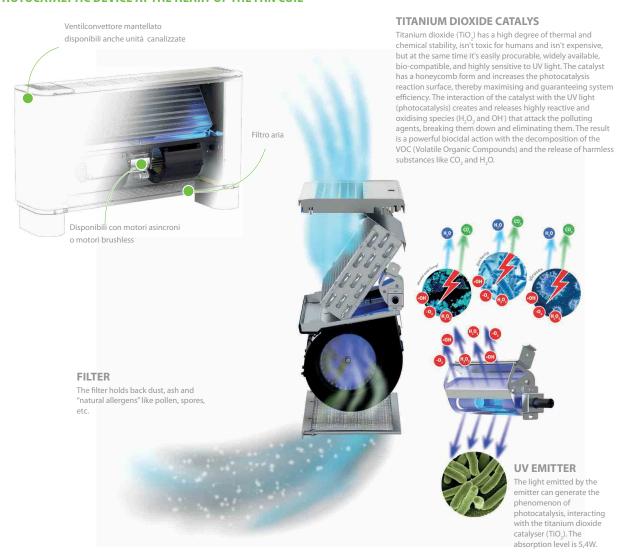
Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase and asynchronous, mounted on anti-vibration supports, and has a permanently engaged condenser. The scroll that protects the fan can be extracted and inspected, for easy and effective cleaning.

 Apart from the traditional asynchronous motor, each unit can also be supplied with an inverter (brushless) motor. Refer to the relative FCZI - H datasheet

Heat exchanger coil


With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

The coil is not reversible during installation but, when ordering, you can choose units with the coil water connections on the right (at no extra charge).

Air 6lta

Air filter class **COARSE 25%** for all versions; easy to pull out and clean. Shrouds can be pulled out and inspected for easy and effective cleaning.

PHOTOCATALYTIC DEVICE AT THE HEART OF THE FAN COIL

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Configuration options FCZ - H

ield	Description
1,2,3	FCZ
	Size
•	2, 3, 4, 5, 6, 9
5	Main coil
0	Standard
5	Oversized
5	Secondary coil
0	Without coil
7	Version
Н	Unit with shell without thermostat - vertical and horizontal mount
HP	Unit without shell and thermostat - vertical and horizontal mount
HP0	Unit without shell and thermostat with upgraded motor - vertical and horizontal mount
HPOR	Unit without shell and thermostat with upgraded motor - vertical and horizontal installation - water connections on the right
HPR	Unit without shell and thermostat - vertical and horizontal installation - water connections on the right
HR	Unit with shell without thermostat - vertical and horizontal installation - water connections on the right
HT	Unit with shell with thermostat - vertical mount
HTR	Unit with shell with thermostat - vertical mount - water connections on the right

ACCESSORIES

Control panels and dedicated accessories - FCZ-H

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils

and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric

heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH: Touch control on board the machine, for controlling fan coils with asynchronous motors. In 2-pipe systems, it can control standard fan coils or those equipped with an electric heater, with air purifying devices or with FCZ-D twin delivery (Dualjet). In 4-pipe systems, only standard fan coils. The ThermApp application is also available for remote control with smart devices with the Android operating system.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

TXB: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF system

■ The fan coil can also be teamed up with the VMF system; please contact headquarters about compatibility with the various system

Common accessories

VCZ: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the

VCF41 - 42 - 43 - for main coil: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit.

AMP: Wall mounting kit

DSC: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Metal supports for vertical installation of the GA grille.

ZXZ: Pair of stylish and structural feet

BC: Condensate drip.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

SPCZ: Brackets to fix the fan coil to the floor.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories - FCZ-H

Model	Ver	200	250	300	350	400	450	500	550	600	650	900	950
AER503IR (1)	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
PR0503	H,HP	•					•	•		•	•	•	
SA5 (2)	H,HP,HT	•	•	•	•	•	•	•	•	•	•	•	•
SIT3 (3)	H,HP,HT	•	•	•	•		•	•	•	•	•		•
SIT5 (4)	H,HP,HT	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)	H,HP,HT	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	H,HP,HT	•		•		•	•	•	•	•	•	•	•
TX (1)	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
TVD (C)	Н	•	•	•	•	•	•	•	•	•	•	•	•
TXB (5)	HP		•				•	•	•		•		

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AER503IR-TX thermostats, if fitted.
- (3) Cards for AER503IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
- (4) Probe for AER503IR-TX thermostats, if fitted.
- (5) Installation on the fan coil.

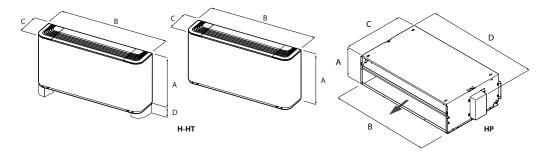
Common accessories

3 way valve kit

Model	Ver	200	250	300	350	400	450	500	550	600	650	900	950
VCZ41 (1)	H,HP,HT	•	•										
VCZ4124 (2)	H,HP,HT	•	•										
VCZ42 (1)	H,HP,HT			•	•	•	•		•	•	•		
VCZ4224 (2)	H,HP,HT			•	•	•	•	•	•	•	•		
VCZ43 (1)	H,HP,HT											•	•

www.aermec.com

Model	Ver	200	250	300	350	400	450	500	550	600	650	900	950
VCZ4324 (2)	H,HP,HT											•	•
(1) 230V~50Hz	,,												
2) 24V													
2 way valve kit													
Model	Ver	200	250	300	350	400	450	500	550	600	650	900	950
VCZD1 (1)	H,HP,HT			300	330	700	730	300	330	000	030	700	730
VCZD124 (2)	Н,НР,НТ	•	•										
VCZD2 (1)	H,HP,HT			•		•			•				
VCZD224 (2)	Н,НР,НТ			•	•	•	•	•	•	•	•		
VCZD3 (1)	Н,НР,НТ												
VCZD324 (2)	Н,НР,НТ												
(1) 230V~50Hz (2) 24V	,,												
(2) 24V Combined Adjustment and B	alancing V	/alve Kit											
Model	Ver	200	250	300	350	400	450	500	550	600	650	900	950
VJP060 (1)	H,HP,HT	•	•	•	•								
VJP060M (2)	Н,НР,НТ												
VJP090 (1)	Н,НР,НТ						•	•	•				
VJP090M (2)	Н,НР,НТ					•							
VJP150 (1)	Н,НР,НТ												
VJP150M (2)	Н,НР,НТ												
(1) 230V~50Hz	,,												
(1) 23UV~5UHZ (2) 24V													
Wall mounting kit													
Ver	200	250	300	350	400	450	500	550	600	650	0	900	950
H,HP	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20	AMP20	AMP		AMP20	AMP20
,	71111 20	711111 20	711111 20	711111 20	711111 20	71111 20	74111 20	71111 20	71111 20	74111		7tivii 20	71111 20
Condensate drainage													
Model	Ver	200	250	300	350	400	450	500	550	600	650	900	950
DSCZ4 (1)	HP	•	•	•	•	•	•	•	•	•	•	•	•
		viac is also insta	Iladi AMD AA	AD7 valvo VC71	2.2.4.VAL/D -	nd all the cond	lancata callacti	ion trace					
(1) DSC4 cannot be mounted if even just one	or these accesso	ries is also insta	iled: AIVIP - AIV	NPZ Valve VCZ I	-2-3-4 X4L/K a	ing all the cond	iensate collecti	ion trays.					
Condensate drip													
Ver	200	250	300	350	400	450	500	550	600	650		900	950
Ver	200 BCZ4 (1),	250 BCZ4 (1),	300 BCZ4 (1),	350 BCZ4 (1),	400 BCZ4 (1),	450 BCZ4 (1),	500 BCZ4 (1),	550 BCZ4 (1),	600 BCZ4 (1),				
·										BCZ4	(1),	900 BCZ6 (2)	950 BCZ6 (2)
Ver H,HP,HT (1) For vertical installation.	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4	(1),		
Ver H,HP,HT (1) For vertical installation.	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4 (1),	BCZ4	(1),		
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1),	BCZ4 (1), BCZ5 (2)	BCZ4 (1),	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4	(1), (2)		
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation.	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 BCZ5	(1), (2)	BCZ6 (2)	BCZ6 (2)
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 BCZ5	(1), (2)	BCZ6 (2)	BCZ6 (2)
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation.	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 (1), BCZ5 (2)	BCZ4 BCZ5	(1), (2)	BCZ6 (2)	BCZ6 (2)
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation.	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	BCZ4 (1), BCZ5 (2) 250 BC8 (1)	BCZ4 (1), BCZ5 (2) 300 BC8 (1)	BCZ4 (1), BCZ5 (2) 350 BC8 (1)	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 450 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1)	BCZ4 (1), BCZ5 (2) 550 BC8 (1)	BCZ4 (1), BCZ5 (2) 600 BC8 (1)	BCZ4 BCZ5 650 BC8 ((1), (2) 0 (1)	900 BC9 (1)	950 BC9 (1)
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the lighter than the lighter t	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200	BCZ4 (1), BCZ5 (2) 250 BC8 (1)	BCZ4 (1), BCZ5 (2) 300 BC8 (1)	BCZ4 (1), BCZ5 (2) 350 BC8 (1)	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 450 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1)	BCZ4 (1), BCZ5 (2) 550 BC8 (1)	BCZ4 (1), BCZ5 (2) 600 BC8 (1)	650 BCZ4 BCZ5	(1), (2) 0 (1)	900 BC9 (1)	950 BC9 (1)
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation.	BCZ4 (1), BCZ5 (2) 200 BC8 (1)	BCZ4 (1), BCZ5 (2) 250 BC8 (1)	BCZ4 (1), BCZ5 (2) 300 BC8 (1)	BCZ4 (1), BCZ5 (2) 350 BC8 (1)	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 450 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1)	BCZ4 (1), BCZ5 (2) 550 BC8 (1)	BCZ4 (1), BCZ5 (2) 600 BC8 (1)	BCZ4 BCZ5 650 BC8 ((1), (2) 0 (1)	900 BC9 (1)	950 BC9 (1)
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the logs with the logs w	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200	BCZ4 (1), BCZ5 (2) 300 BC8 (1)	BCZ4 (1), BCZ5 (2) 350 BC8 (1)	BCZ4 (1), BCZ5 (2) 400 BC8 (1)	BCZ4 (1), BCZ5 (2) 450 BC8 (1)	BCZ4 (1), BCZ5 (2) 500 BC8 (1)	BCZ4 (1), BCZ5 (2) 550 BC8 (1)	BCZ4 (1), BCZ5 (2) 600 BC8 (1)	650 BCZ4 BCZ5	(1), (2) 0 (1)	900 BC9 (1)	950 BC9 (1)
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the over the first the second of the s	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500	BCZ4 (1), BCZ5 (2) 600 BC8 (1) 600 PCZ800	651 651 651 652 651	(1), (2) 0 (1) 0	900 BC9 (1) 900 PC21000	950 BC9 (1) 950 PCZ1000
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the ever H,HT Grille also applicable for floo	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 pr installat	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500	600 BCZ5 (2) 600 BC8 (1) 600 PCZ800	651 651 652 653 653 653	(1), (2) 0 (1) 0 800	900 BC9 (1) 900 PCZ1000	950 BC9 (1) 950 PC21000
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the over the first the second of the s	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500	BCZ4 (1), BCZ5 (2) 600 BC8 (1) 600 PCZ800	651 651 651 652 651	(1), (2) 0 (1) 0 800	900 BC9 (1) 900 PC21000	950 BC9 (1) 950 PCZ1000
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the over the form t	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 pr installat	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500	600 BCZ5 (2) 600 BC8 (1) 600 PCZ800	651 651 652 653 653 653	(1), (2) 0 (1) 0 800	900 BC9 (1) 900 PCZ1000	950 BC9 (1) 950 PC21000
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the over the following the rear of the following t	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 or installati 200 GA200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300 350 GA300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500 400 GA500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500 450 GA500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500 550 GA500	600 BCZ5 (2) 600 BC8 (1) 600 PCZ800 600 GA800	651 651 652 653 653 653 653 653 653	(1), (2) 0 (1) 0 (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900 BC9 (1) 900 PCZ1000 900 GA800	950 BC9 (1) 950 PCZ1000 950 GA800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the experiment of the experi	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat. 200 GA200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300 GA300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500 400 GA500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500 450 GA500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500	550 BC8 (1) 550 BC8 (1) 550 PCZ500 550 GA500	600 600 600 600 600 600 600 600	651 651 652 651 653 654 654 658	(1), (2) 0 0 (1) (1) 0 0 0 0 0 0	900 BC9 (1) 900 PCZ1000 900 GA800	950 BC9 (1) 950 PCZ1000 950 GA800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the over H,HT Grille also applicable for flood Ver H,HP,HT Metal supports for GA grille	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 or installati 200 GA200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300 350 GA300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500 400 GA500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500 450 GA500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500 550 GA500	600 BCZ5 (2) 600 BC8 (1) 600 PCZ800 600 GA800	651 651 652 651 653 654 654 658	(1), (2) 0 0 (1) (1) 0 0 0 0 0 0	900 BC9 (1) 900 PCZ1000 900 GA800	950 BC9 (1) 950 PCZ1000 950 GA800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the ever H,HT Grille also applicable for floor Ver H,HP,HT Metal supports for GA grille Ver H,HP,HT	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat. 200 GA200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300 GA300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500 400 GA500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500 450 GA500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500	550 BC8 (1) 550 BC8 (1) 550 PCZ500 550 GA500	600 600 600 600 600 600 600 600	651 651 652 651 653 654 654 658	(1), (2) 0 0 (1) (1) 0 0 0 0 0 0	900 BC9 (1) 900 PCZ1000 900 GA800	950 BC9 (1) 950 PC21000 950 GA800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the ever h,HT Grille also applicable for floor Ver H,HT Metal supports for GA grille Ver H,HP,HT Ventilcassaforma	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 GA200 FIKIT200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500 400 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500 450 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKITS00	550 BC8 (1) 550 BC8 (1) 550 PCZ500 550 GA500 FIKIT500	600 BCZ5 (2) 600 BC8 (1) 600 PCZ800 600 GA800	650 GA80 GFIKITS	(1), (2) 0 0 (1) 0 0 0 0 0 0 0	900 BC9 (1) 900 PC21000 900 GA800 FIKIT800	950 BC9 (1) 950 PCZ1000 GA800 FIKIT800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the experiment of the experi	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 GA200 FIKIT200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	350 BC8 (1) 350 PC7300 350 GA300 FIKIT300	## BCZ4 (1), ## BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## GAS00 ## 400 ## FIKITS00 ## 400 ## 400 ## 400 ## 400 ## 400 ## 400 ## 400	BC74 (1), BC25 (2) 450 BC8 (1) 450 PC2500 450 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500 550 GA500 FIKIT500	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 GA800	651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 00 0 00 0 00	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800	950 BC9 (1) 950 PCZ1000 950 GA800 FIKIT800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the ever h,HT Grille also applicable for floor Ver H,HT Metal supports for GA grille Ver H,HP,HT Ventilcassaforma	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 GA200 FIKIT200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	BCZ4 (1), BCZ5 (2) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300	BCZ4 (1), BCZ5 (2) 400 BC8 (1) 400 PCZ500 400 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 450 BC8 (1) 450 PCZ500 450 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKITS00	550 BC8 (1) 550 BC8 (1) 550 PCZ500 550 GA500 FIKIT500	600 BCZ5 (2) 600 BC8 (1) 600 PCZ800 600 GA800	651 651 652 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 00 0 00 0 00	900 BC9 (1) 900 PC21000 900 GA800 FIKIT800	950 BC9 (1) 950 PCZ1000 GA800 FIKIT800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the experiments of	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat. 200 GA200 FIKIT200 CHF22	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300	350 BC8 (1) 350 PC7300 350 GA300 FIKIT300	## BCZ4 (1), ## BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## GAS00 ## 400 ## FIKITS00 ## 400 ## 400 ## 400 ## 400 ## 400 ## 400 ## 400	BC74 (1), BC25 (2) 450 BC8 (1) 450 PC2500 450 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500	BCZ4 (1), BCZ5 (2) 550 BC8 (1) 550 PCZ500 550 GA500 FIKIT500	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 GA800	651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 00 0 00 0 00	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800	950 BC9 (1) 950 PCZ1000 950 GA800 FIKIT800
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the ever H,HT Grille also applicable for floor Ver H,HP,HT Metal supports for GA grille Ver H,HP,HT Ventilcassaforma Ver HP Brackets to fix the fan coil to	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat 200 GA200 FIKIT200 CHF22 the floor.	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200 CHF22	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 CHF32	350 BC8 (1) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300	## BCZ4 (1), BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## GA500 ## 400 ## FIKIT500 ## 400 ## CHF42	BC74 (1), BC25 (2) 450 BC8 (1) 450 PC2500 450 GA500 FIKIT500 450 CHF42	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	550 BC8 (1) 550 BC8 (1) 550 PCZ500 550 GA500 FIKIT500	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 FIKIT800 600 CHF62	651 651 651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 00 0 00 0 00 0 0662	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 CHF62	950 BC9 (1) 950 PCZ1000 950 GA800 FIKIT800 CHF62
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the ever h,HT Grille also applicable for flood Ver H,HP,HT Metal supports for GA grille Ver H,HP,HT Ventilcassaforma Ver HP Brackets to fix the fan coil to Ver	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installate 200 GA200 FIKIT200 CHF22 the floor. 200	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 300 250 GA200 FIKIT200 CHF22	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 CHF32	350 BC8 (1) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300 CHF32	## BCZ4 (1), ## BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## GA500 ## 400 ## FIKIT500 ## 400 ## CHF42	## BC74 (1), BC75 (2) ## 450 ## 8C8 (1) ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	550 BC8 (1) 550 BC8 (1) 550 FCZ500 550 GA500 550 FIKIT500 CHF42	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 FIKIT800 600 CHF62	651 651 651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 000 0	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 CHF62	950 BC9 (1) 950 PCZ1000 950 GA800 FIKIT800 CHF62
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the ver H,HT Grille also applicable for floor Ver H,HP,HT Metal supports for GA grille Ver H,HP,HT Ventilcassaforma Ver HP Brackets to fix the fan coil to	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat 200 GA200 FIKIT200 CHF22 the floor.	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200 CHF22	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 CHF32	350 BC8 (1) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300	## BCZ4 (1), BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## GA500 ## 400 ## FIKIT500 ## 400 ## CHF42	BC74 (1), BC25 (2) 450 BC8 (1) 450 PC2500 450 GA500 FIKIT500 450 CHF42	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	550 BC8 (1) 550 BC8 (1) 550 PCZ500 550 GA500 FIKIT500	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 FIKIT800 600 CHF62	651 651 651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 000 0	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 CHF62	950 BC9 (1) 950 PCZ1000 950 GA800 FIKIT800 CHF62
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the experiment of the experi	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 PCZ200 GA200 FIKIT200 CHF22 the floor. 200 SPCZ	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 300 250 GA200 FIKIT200 CHF22	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 CHF32	350 BC8 (1) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300 CHF32	## BCZ4 (1), ## BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## GA500 ## 400 ## FIKIT500 ## 400 ## CHF42	## BC74 (1), BC75 (2) ## 450 ## 8C8 (1) ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450 ## 450	BCZ4 (1), BCZ5 (2) 500 BC8 (1) 500 PCZ500 500 GA500 FIKIT500 CHF42	550 BC8 (1) 550 BC8 (1) 550 FCZ500 550 GA500 550 FIKIT500 CHF42	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 FIKIT800 600 CHF62	651 651 651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 000 0	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 CHF62	950 BC9 (1) 950 PCZ1000 950 GA800 FIKIT800 CHF62
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the experiment of the experi	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat. 200 GA200 FIKIT200 CHF22 the floor. 200 SPCZ	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200 CHF22 250 SPCZ	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 CHF32 300 SPCZ	350 BC8 (1) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300 CHF32	## BCZ4 (1), ## BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## FIKIT500 ## 400 ## CHF42 ## 400 ## SPCZ	## BC74 (1), BC75 (2) ## 450 ## 850	\$67.4 (1), BCZ5 (2) \$00 \$C8 (1) \$00 PCZ500 \$00 GA500 FIKIT500 CHF42 \$900 \$PCZ	## BCZ4 (1), ## BCZ5 (2) ## S50 ## BC8 (1) ## S50 ## S60 ## S60	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 FIKIT800 600 CHF62	651 651 651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 000 0	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 CHF62	950 PCZ1000 950 PCZ1000 950 GA800 PIKIT800 950 CHF62 950 SPCZ
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the experiments of t	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat. 200 GA200 FIKIT200 CHF22 the floor. 200 SPCZ	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200 CHF22 250 SPCZ	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 CHF32 300 SPCZ	350 BC8 (1) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300 CHF32 350 SPCZ	## BCZ4 (1), BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## 400 ## 400 ## FIKIT500 ## 400	## BC74 (1), BC75 (2) ## 450 ## 850	\$67.4 (1), BCZ5 (2) \$00 \$C8 (1) \$00 PCZ500 \$00 GA500 FIKIT500 CHF42 \$00 \$PCZ \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$	## BCZ4 (1), ## BCZ5 (2) ## S50 ## BC8 (1) ## S50 ## S50	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 FIKIT800 600 CHF62	651 651 651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 000 0	900 BC9 (1) 900 PCZ1000 900 GA800 900 FIKIT800 CHF62 900 SPCZ	950 PCZ1000 950 GA800 950 GIKIT800 950 CHF62
Ver H,HP,HT (1) For vertical installation. (2) For horizontal installation. Ver HP (1) For horizontal installation. Panel closing the rear of the experiment of the experi	BCZ4 (1), BCZ5 (2) 200 BC8 (1) unit 200 PCZ200 or installat. 200 GA200 FIKIT200 CHF22 the floor. 200 SPCZ	BCZ4 (1), BCZ5 (2) 250 BC8 (1) 250 PCZ200 ion 250 GA200 FIKIT200 CHF22 250 SPCZ	BCZ4 (1), BCZ5 (2) 300 BC8 (1) 300 PCZ300 300 GA300 FIKIT300 CHF32 300 SPCZ	350 BC8 (1) 350 BC8 (1) 350 PCZ300 350 GA300 FIKIT300 CHF32	## BCZ4 (1), ## BCZ5 (2) ## 400 ## BC8 (1) ## 400 ## FIKIT500 ## 400 ## CHF42 ## 400 ## SPCZ	## BC74 (1), BC75 (2) ## 450 ## 850	\$67.4 (1), BCZ5 (2) \$00 \$C8 (1) \$00 PCZ500 \$00 GA500 FIKIT500 CHF42 \$900 \$PCZ	## BCZ4 (1), ## BCZ5 (2) ## S50 ## BC8 (1) ## S50 ## S60 ## S60	600 BC8 (1) 600 BC8 (1) 600 BC8 (1) 600 GA800 600 FIKIT800 600 CHF62	651 651 651 651 651 651 651 651 651 651	(1), (2) 0 (1) 0 (1) 0 0 0 000 0	900 BC9 (1) 900 PCZ1000 900 GA800 FIKIT800 CHF62	950 BC9 (1) 950 PCZ10000 950 GA800 FIKIT800 CHF62 950 SPCZ


PERFORMANCE SPECIFICATIONS

2-pipe

2-pipe			F.C72001	1	Ι	F.C72F01			F.C72001			F.C72.FAL			F.C74001			FC74FALI	
		1	FCZ200H 2	3	1	FCZ250H	3	1	FCZ300H 2	3	1	FCZ350H 2	3	1	FCZ400H 2	3	1	FCZ450H 2	3
		i	M	H	Ė	M	H	Ė	M	Н	i	M	Н	Ĺ	M	H	Ĺ	M	H
Heating performance 70 °C / 60 °C (1)		_						_											
Heating capacity	kW	2,02	2,95	3,70	2,20	3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82
Water flow rate system side	I/h	177	258	324	193	278	355	304	391	482	330	431	539	379	503	627	400	551	685
Pressure drop system side	kPa	6	12	18	7	15	23	7	12	18	8	14	20	9	16	24	6	11	16
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,00	1,46	1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88
Water flow rate system side	I/h	174	254	319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675
Pressure drop system side	kPa	6	12	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16
Cooling performance 7 °C / 12 °C (3)																			
Cooling capacity	kW	0,89	1,28	1,60	1,06	1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03
Sensible cooling capacity	kW	0,71	1,05	1,33	0,79	1,20	1,52	1,26	1,65	2,04	1,33	1,76	2,18	1,59	2,14	2,67	1,69	2,30	2,90
Water flow rate system side	l/h	153	221	275	182	267	334	288	374	456	350	460	560	379	503	619	414	552	694
Pressure drop system side	kPa	7	13	18	8	17	25	8	13	18	11	18	25	10	17	24	9	15	22
Fan																			
Туре	type	(.entrifuga	ıl	(Centrifuga		(.entrifuga	ıl	(Centrifuga	al	(entrifuga	ıl	-	Centrifuga	al
Fan motor	type	As	ynchrono	us	As	synchrono	us	As	ynchrono	us	As	ynchrono	us	As	ynchrono	us	A:	synchrono	ous
Number	no.		1			1			2			2			2			2	
Air flow rate	m³/h	140	220	290	140	220	290	260	350	450	260	350	450	330	460	600	330	460	600
Input power	W	25	29	33	25	29	33	25	33	44	25	33	44	30	43	57	30	43	57
<u>Electrical wiring</u>		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Diametre hydraulic fittings																			
Туре	type		Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F	
Main coil	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"	
Fan coil sound data (4)	18/11																T		
Sound power level	dB(A)	35,0	46,0	51,0	35,0	46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0
Sound pressure	dB(A)	27,0	38,0	43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0
Power supply		-	201/ 501			201/ 501		_	201/ 501			201/ 501		_	201/ 501			201/ 501	
Power supply			30V~50H	łz		230V~50H	Z		30V~50l	1Z		30V~50H	12		30V~50l	1Z		:30V~50H	1Z
			FCZ500H		_	FCZ550H			FCZ600H		_	FCZ650H		_	FCZ900H			FCZ950H	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
H 11					_						_			_					
• •	LAM	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H
Heating capacity	kW	1 L	2 M	3 H 8,50	1 L	2 M 8,34	3 H 9,75	1 L	2 M 8,10	3 H	1 L	2 M 9,15	3 H 11,50	1 L	2 M	3 H	1 L	2 M	3 H
Heating capacity Water flow rate system side	l/h	1 L 5,27 462	2 M 7,31 641	3 H 8,50 745	1 L 5,82 510	2 M 8,34 731	3 H 9,75 855	1 L 6,50 570	2 M 8,10 710	3 H 10,00 877	7,19 631	2 M 9,15 802	3 H 11,50 1008	1 L 10,77 945	2 M 13,35 1171	3 H 15,14 1328	1 L 11,20 982	2 M 14,42 1264	3 H 17,10 1500
Water flow rate system side Pressure drop system side		1 L	2 M	3 H 8,50	1 L	2 M 8,34	3 H 9,75	1 L	2 M 8,10	3 H	1 L	2 M 9,15	3 H 11,50	1 L	2 M	3 H	1 L	2 M	3 H
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	1 L 5,27 462 12	2 M 7,31 641 21	3 H 8,50 745 28	1 L 5,82 510 10	2 M 8,34 731 20	3 H 9,75 855 26	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	7,19 631 14	2 M 9,15 802 21	3 H 11,50 1008 31	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22	1 L 11,20 982 16	2 M 14,42 1264 25	3 H 17,10 1500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	1 L 5,27 462 12	2 M 7,31 641 21	3 H 8,50 745 28	5,82 510 10	2 M 8,34 731 20	3 H 9,75 855 26	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	7,19 631 14	2 M 9,15 802 21	3 H 11,50 1008 31	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22 7,53	1 L 11,20 982 16	2 M 14,42 1264 25	3 H 17,10 1500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	1 L 5,27 462 12 2,62 455	2 M 7,31 641 21 3,63 631	3 H 8,50 745 28 4,22 734	5,82 510 10 2,89 502	2 M 8,34 731 20 4,14 720	3 H 9,75 855 26 4,85 842	1 L 6,50 570 12 3,32 561	2 M 8,10 710 18 4,03 699	3 H 10,00 877 26 4,97 863	7,19 631 14 3,57 621	2 M 9,15 802 21 4,55 790	3 H 11,50 1008 31 5,72 993	1 L 10,77 945 12 5,35 930	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307	1 L 11,20 982 16 5,57 967	2 M 14,42 1264 25 7,17 1245	3 H 17,10 1500 33 8,50 1476
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	1 L 5,27 462 12	2 M 7,31 641 21	3 H 8,50 745 28	5,82 510 10	2 M 8,34 731 20	3 H 9,75 855 26	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	7,19 631 14	2 M 9,15 802 21	3 H 11,50 1008 31	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22 7,53	1 L 11,20 982 16	2 M 14,42 1264 25	3 H 17,10 1500 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3)	I/h kPa kW I/h kPa	1 L 5,27 462 12 2,62 455 12	7,31 641 21 3,63 631 21	3 H 8,50 745 28 4,22 734 28	5,82 510 10 2,89 502	2 M 8,34 731 20 4,14 720 20	3 H 9,75 855 26 4,85 842 26	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	7,19 631 14 3,57 621 14	2 M 9,15 802 21 4,55 790 20	3 H 11,50 1008 31 5,72 993 31	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307 22	1 L 11,20 982 16 5,57 967 15	2 M 14,42 1264 25 7,17 1245 24	3 H 17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity	I/h kPa kW I/h kPa	1 L 5,27 462 12 2,62 455 12	2 M 7,31 641 21 3,63 631 21	3 H 8,50 745 28 4,22 734 28	5,82 510 10 2,89 502 10	2 M 8,34 731 20 4,14 720 20	3 H 9,75 855 26 4,85 842 26	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,00 877 26 4,97 863 26	7,19 631 14 3,57 621 14 3,95	2 M 9,15 802 21 4,55 790 20	3 H 11,50 1008 31 5,72 993 31	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152 17	3 H 15,14 1328 22 7,53 1307 22	1 L 11,20 982 16 5,57 967 15	2 M 14,42 1264 25 7,17 1245 24	3 H 17,10 1500 33 8,50 1476 33
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa	1 L 5,27 462 12 2,62 455 12 2,68 1,94	2 M 7,31 641 21 3,63 631 21 3,69 2,73	3 H 8,50 745 28 4,22 734 28 4,25 3,18	5,82 510 10 2,89 502 10 2,91 2,07	2 M 8,34 731 20 4,14 720 20 4,13 2,98	3 H 9,75 855 26 4,85 842 26 4,79 3,49	1 L 6,50 570 12 3,32 561 12 3,22 2,56	2 M 8,10 710 18 4,03 699 18 3,90 3,17	3 H 10,00 877 26 4,97 863 26 4,65 3,92	7,19 631 14 3,57 621 14 3,95 2,78	2 M 9,15 802 21 4,55 790 20 4,80 3,43	3 H 11,50 1008 31 5,72 993 31 5,67 4,12	1 L 10,77 945 12 5,35 930 12 4,29 2,97	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	1 L 11,20 982 16 5,57 967 15 5,77 3,80	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW I/h kPa	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731	5,82 510 10 2,89 502 10 2,91 2,07 501	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800	1 L 7,19 631 14 3,57 621 14 3,95 2,78 595	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975	10,77 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa	1 L 5,27 462 12 2,62 455 12 2,68 1,94	2 M 7,31 641 21 3,63 631 21 3,69 2,73	3 H 8,50 745 28 4,22 734 28 4,25 3,18	5,82 510 10 2,89 502 10 2,91 2,07	2 M 8,34 731 20 4,14 720 20 4,13 2,98	3 H 9,75 855 26 4,85 842 26 4,79 3,49	1 L 6,50 570 12 3,32 561 12 3,22 2,56	2 M 8,10 710 18 4,03 699 18 3,90 3,17	3 H 10,00 877 26 4,97 863 26 4,65 3,92	7,19 631 14 3,57 621 14 3,95 2,78	2 M 9,15 802 21 4,55 790 20 4,80 3,43	3 H 11,50 1008 31 5,72 993 31 5,67 4,12	1 L 10,77 945 12 5,35 930 12 4,29 2,97	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	1 L 11,20 982 16 5,57 967 15 5,77 3,80	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW I/h kPa kW kW I/h kPa	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	1 L 5,82 510 10 2,89 502 10 2,91 2,07 501 12	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	1 L 7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type	I/h kPa kW I/h kPa kW I/h kPa type	5,27 462 12 2,62 455 12 2,68 1,94 460 13	7,31 641 21 3,63 631 21 21 3,69 2,73 634 23	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,97 501 12	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22	9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 1 10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 1189 22	1 L 11,20 982 16 5,57 15 5,77 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa kW I/h kPa type type	5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 vynchronod	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,97 501 12	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22	9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 1 10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 1189 22	1 L 11,20 982 16 5,57 15 5,77 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa kW I/h kPa type type no.	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 vnchrono 2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (As	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (Ass	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 3	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 eentrifuga ynchrono 2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720	1 L 5,82 510 10 10 2,89 502 10 2,91 2,07 501 12 400	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C Ass	8,10 710 18 4,03 699 18 3,90 3,17 671 19 Eentrifuga ynchronod 3	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Eintrifuga 3 720	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15 700	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 3 930	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	kW I/h kPa kW I/h kPa type type no.	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 eentrifuga ynchrono 2 600 52	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	1 L 5,82 510 10 10 2,89 502 10 2,91 2,07 501 12 400 38	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52	9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As	8,10 710 18 4,03 699 18 3,90 3,17 671 19 Eentrifuga ynchronod 3 720 60	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15 A:	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 3 930 80	3 H 17,10 1500 33 38,50 1476 33 38,60 5,78 1479 30 1140 1106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h	1 L 5,27 462 12 2,62 455 12 2,68 1,94 460 13	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 eentrifuga ynchrono 2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720	1 L 5,82 510 10 10 2,89 502 10 2,91 2,07 501 12 400	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As	8,10 710 18 4,03 699 18 3,90 3,17 671 19 Eentrifuga ynchronod 3	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Eintrifuga 3 720	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 17 6,64 1152 17 5,00 3,78 860 13	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15 700	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 3 930	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 eentrifuga ynchrono 2 600 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	1 L 5,82 510 10 10 2,89 502 10 2,91 2,07 501 12 400 38	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52 V2	9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Sentrifuga ynchrono 3 720 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 icentrifuga ynchrono 3 930 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15 A:	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 24 25 26 27 27 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3 H 17,10 1500 33 38,50 1476 33 38,60 5,78 1479 30 1140 1106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 eentrifuga ynchrono 2 600 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	1 L 5,82 510 10 10 2,89 502 10 2,91 2,07 501 12 400 38	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 5 600 52 V2	9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 centrifugg ynchronc 3 720 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 Eentrifuga ynchronod 3 930 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15 A:	2 M 14,42 1264 25 7,17 1245 24 4,87 1259 23 Centrifuga synchrono 3 930 V2	3 H 17,10 1500 33 38,50 1476 33 38,60 5,78 1479 30 1140 1106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main coil	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 5,27 462 12 12 2,62 455 12 2,68 1,94 460 13 400 38	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 eentrifuga ynchrono 2 600 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76	1 L 5,82 510 10 10 2,89 502 10 2,91 2,07 501 12 400 38	8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52 V2	9,75 855 26 4,85 842 26 4,79 3,49 824 28	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Sentrifuga ynchrono 3 720 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (0 As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 icentrifuga ynchrono 3 930 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106	1 L 11,20 982 16 5,57 15 5,77 3,80 992 15 A:	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 24 25 26 27 27 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3 H 17,10 1500 33 38,50 1476 33 38,60 5,78 1479 30 1140 1106
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main coil Fan coil sound data (4)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L S,27 462 12 2,62 455 12 2,68 1,94 460 13 C As 400 38 V1	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 2 ynchrono 2 600 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76 V3	1 L 5,82 510 10 2,89 502 10 2,91 12 6 A:	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52 V2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 1 us	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Eentrifuga 720 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 uus	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 900 91 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 Eentrifuga ynchronod 3 930 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 6 A:	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 80 V2	3 H 17,10 1500 33 8,50 1476 33 38,60 5,78 1479 30 1140 106 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main coil Fan coil sound data (4) Sound power level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W type Ø dB(A)	1 L S,27 462 12 2,62 455 12 2,68 1,94 460 13 C As V1	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 entrifuga 2 600 52 V2 Gas-F 3,4"	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76 V3	1 L 5,82 510 10 10 2,89 502 10 10 2,91 12 400 38 V1	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52 V2 Gas-F 3/4"	9,75 855 26 4,85 842 26 4,79 3,49 824 28 720 76 V3	1 L 6,50 570 12 3,32 561 12 3,22 2,56 4 14 C 6,50 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Eentrifuga 720 60 V2 Gas-F 3/4"	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 V3	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 42,0	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2 Gas - F 3/4" 51,0	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 900 91 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (Ass. 2017) 700 59 V1	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 13 Eentrifuga ynchrond 3 930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 24 Entrifuga 80 V2 Gas - F 3,4"	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main coil Fan coil sound data (4) Sound power level Sound pressure	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L S,27 462 12 2,62 455 12 2,68 1,94 460 13 C As 400 38 V1	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 2 ynchrono 2 600 52 V2	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 720 76 V3	1 L 5,82 510 10 10 2,89 502 10 10 2,91 12 6 A:	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52 V2	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 1 us	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Eentrifuga 720 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 uus	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 As	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 900 91 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (As	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 Eentrifuga ynchronod 3 930 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 6 A:	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 Centrifuga 80 V2	3 H 17,10 1500 33 8,50 1476 33 38,60 5,78 1479 30 1140 106 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Diametre hydraulic fittings Type Main coil Fan coil sound data (4) Sound power level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W type Ø dB(A)	1 L S,27 462 12 2,62 455 12 2,68 1,94 460 13 C As V1 42,0 34,0	2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 23 entrifuga 2 600 52 V2 Gas-F 3,4"	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29 71 720 76 V3 56,0 48,0	1 L 5,82 510 10 10 2,89 502 10 10 2,91 2,07 501 12 42,0 38 V1	2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 Centrifuga 2 600 52 V2 Gas-F 3/4"	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14 (C As 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 Eentrifuga 720 60 V2 Gas-F 3/4"	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 11 V3	7,19 631 14 3,57 621 14 3,95 2,78 595 15 62 42,0 34,0	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuga 3 720 60 V2 Gas - F 3/4" 51,0	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 900 91 V3	1 L 10,77 945 12 5,35 930 12 4,29 2,97 738 10 (CA) 59 V1 51,0 43,0	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 13 13 Eentrifuga ynchrond 3 930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 106 V3	1 L 11,20 982 16 5,57 967 15 5,77 3,80 992 15 700 59 V1	2 M 14,42 1264 25 7,17 1245 24 7,32 4,87 1259 23 23 23 24 Entrifuga 80 V2 Gas - F 3,4"	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30 1140 106 V3

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Ci			200	250	200	250	400	450	F00	- FFA		(F0	000	050
Size			200	250	300	350	400	450	500	550	600	650	900	950
Dimensions and weights														
Λ	H,HT	mm	486	-	486	-	486	-	486	-	486	-	591	591
A	HP	mm	216	-	216	-	216	-	216	-	216	-	216	216
В	H,HT	mm	750	-	980	-	1200	-	1200	-	1320	-	1320	1320
В	HP	mm	562	-	793	-	1013	-	1013	-	1147	-	1147	1147
	H,HT	mm	220	-	220	-	220	-	220	-	220	-	220	220
C	HP	mm	453	-	453	-	453	-	453	-	453	-	558	558
	H,HT	mm	90	-	90	-	90	-	90	-	90	-	90	90
D	HP	mm	522	-	753	-	973	-	973	-	1122	-	1122	1122
F	H,HT	kg	15	-	17	-	23	-	22	-	29	-	34	34
Empty weight	HP	kg	12	-	14	-	20	-	23	-	29	-	32	32

FCZI-H

Fan coil with the photocatalytic device, for universal and floor installation

- Photocatalytic device
- Tested effectiveness against viruses, bacteria and allergens
- Active against the SARS-CoV-2 virus, even on surfaces
- Backlit touch command with programming via a smart device (accessory)

DESCRIPTION

Fan coil with built-in **photocatalytic device**.

Active against the airborne Sars-CoV-2 virus (95%-99% abatement efficacy after 20 minutes of operation tested at the Virostatics laboratory in Alghero).

Active against the SARS-CoV-2 virus, even on surfaces - 84% effectiveness after 12 h (tests carried out in collaboration with the Department of Microbiology of the University of Padua).

Suitable for air conditioning in places requiring optimum hygiene levels, such as:

- Hospitals
- Dentists' surgeries
- Doctors' and vets' surgeries
- Analysis laboratories
- Waiting rooms
- Public premises

They can be installed in any type of 2-pipe system (version for 4-pipe systems available upon request) and in combination with any heat generator, even at low temperatures. Thanks to the availability of several versions and configurations, it's easy to find the right solution for every need.

VERSIONS

- H Unit with shell without thermostat vertical and horizontal installation.
- HP Unit without shell and without thermostat vertical and horizontal installation.
- **HT** Unit with shell and thermostat vertical installation.

FEATURES

Case

Metallic protective cabinet with rustproofing polyester paint RAL 9003. The head with adjustable air distribution grille is made of plastic RAL 7047. When the grille closes, the fan coil automatically switches off.

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

Continuous air flow rate variation is made possible by a 0-10V signal generated by Aermec adjustment and control commands or by independent regulation systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

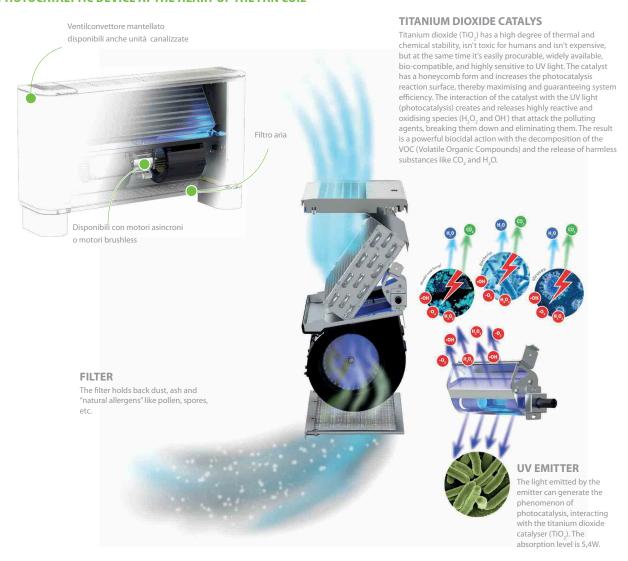
The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

The scroll that protects the fan can be extracted and inspected, for easy and effective cleaning.

 Apart from the brushless motor, each unit can also be supplied with a single-phase asynchronous motor. Refer to the relative FCZ - H datasheet

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environ-


ments where aluminium may be subject to corrosion.

The coil is not reversible during installation but, when ordering, you can choose units with the coil water connections on the right (at no extra charae).

Air filter

Air filter class **COARSE 25%** for all versions; easy to pull out and clean. Shrouds can be pulled out and inspected for easy and effective cleaning.

PHOTOCATALYTIC DEVICE AT THE HEART OF THE FAN COIL

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCZI
5	Size 2, 3, 4, 5, 7, 9
6	Main coil
0	Standard
5	Oversized
7	Secondary coil
0	Without coil
8	Version
Н	Unit with shell without thermostat - vertical and horizontal mount
HP	Unit without shell and thermostat - vertical and horizontal mount
HPR	Unit without shell and thermostat - vertical and horizontal installation - water connections on the right
HR	Unit with shell without thermostat - vertical and horizontal installation - water connections on the right
HT	Unit with shell with thermostat - vertical mount
HTR	Unit with shell with thermostat - vertical mount - water connections on the right

ACCESSORIES

Control panels and dedicated accessories - FCZI-H

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF-E191: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E22: User interface on the machine, to be combined with the VMF-E0X, VMF-E19 or VMF-E19I accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL)

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMF system

■ The fan coil can also be teamed up with the VMF system; please contact headquarters about compatibility with the various system components.

Common accessories

VCZ: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit.

AMP: Wall mounting kit

DSC: Condensate drainage device.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

PCZ: Metal panel for the unit rear closing. SPCZ brackets are necessary to fix floor standing fan coils.

GA: Lower intake grille for encapsulated fan coils. Can also be used in wall-mounted or floor installations, the FIKIT accessory is needed only in the case of floor installation.

FIKIT: Metal supports for vertical installation of the GA grille.

ZXZ: Pair of stylish and structural feet

BC: Condensate drip.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

SPCZ: Brackets to fix the fan coil to the floor.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	200	250	300	350	400	450	500
AER503IR (1)	H,HP	•	•	•	•	•	•	•
PR0503	H,HP	•	•	•	•	•	•	•
SA5 (2)	H,HP	•	•	•	•	•	•	•
SW3 (2)	H,HP,HT	•	•	•	•	•	•	•
SW5 (2)	H,HP	•	•	•	•	•	•	•
3W3 (Z)	HT		•		•		•	
TX (1)	H,HP,HT	•	•	•	•	•	•	•
Model	Ver	550		700	750	900		950
AER503IR (1)	ILLID							
תבוטטווו (ו)	H,HP	•		•	•	•		•
	н,нг Н,НР	•		•	•	•		•
PR0503	· · · · · · · · · · · · · · · · · · ·	•		-				•
PR0503 SA5 (2)	H,HP			•	•	•		-
PR0503 SA5 (2) SW3 (2)	H,HP H,HP	•		•	•	•		•
PR0503 SA5 (2)	Н,НР Н,НР Н,НР,НТ	•			•	•		•

(1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

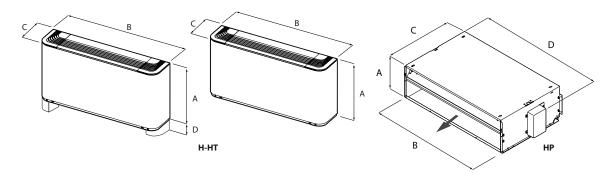
(2) Probe for AER503IR-TX thermostats, if fitted.

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VMF-E19I	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E2Z	Н	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E3	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4DX	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4X	H,HP	•	•	•	•	•	•	•	•	•	•	•	•
VMF-IO	Н	•	•	•	•	•	•	•	•	•	•	•	•

Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
WMF-IR	H,HP	. 200				+00	+30	•	•		730	,	•
VMF-LON	Н	•	•	•	•	•	•	•	•	•	•	•	•
VMF-SW1	H,HP	•	•	•		•	•	•	•	•	•	•	
Common accessories													
3 way valve kit													
Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VCZ41 (1)	H,HP,HT			300	330	700	770	300	330	700	730	700	730
VCZ4124 (2)	H,HP,HT	•	•										
VCZ42 (1)	H,HP,HT			•		•	•				•		
VCZ4224 (2)	H,HP,HT												
VCZ43 (1)	H,HP,HT												•
VCZ4324 (2)	H,HP,HT												•
(1) 230V~50Hz													
(2) 24V 2 way valve kit													
Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VCZD1 (1)	H,HP,HT			500							,,,,	,,,,	,,,,
VCZD124 (2)	H,HP,HT												
VCZD2 (1)	H,HP,HT			•		•	•	•		•	•		
VCZD224 (2)	H,HP,HT			•	•	•	•	•	•		•		
VCZD3 (1)	H,HP,HT											•	•
VCZD324 (2)	H,HP,HT											•	•
(1) 230V~50Hz (2) 24V													
Combined Adjustment and	Balancing \	/alve Kit											
Model	Ver	200	250	300	350	400	450	500	550	700	750	900	950
VJP060 (1)	H,HP,HT	•	•	•	•								
VJP060M (2)	H,HP,HT		•		•								
VJP090 (1)	H,HP,HT					•	•		•				
VJP090M (2)	H,HP,HT								•				
VJP150 (1)	H,HP,HT												•
VJP150 (1) VJP150M (2)	H,HP,HT H,HP,HT					-	-			•	•	•	•
(1) 230V~50Hz						·	-						
VJP150M (2)						· ·							
VJP150M (2) (1) 230V~50Hz (2) 24V		250	300	350	400	450	500	550	700				
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit	Н,НР,НТ	250 AMP20	300 AMP20	350 AMP20	400 AMP20					•	•	٠	•
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP	Н,НР,НТ 200					450	500	550	700	•	750	900	950
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage	H,HP,HT 200 AMP20	AMP20	AMP20	AMP20	AMP20	450 AMP20	500 AMP20	550 AMP20	700 AMP20	•	750 AMP20	900 AMP20	950 AMP20
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model	H,HP,HT 200 AMP20 Ver	AMP20 200	AMP20 250	AMP20 300	AMP20 350	450 AMP20 400	500 AMP20 450	550 AMP20 500	700 AMP20	700	750 AMP20	900 AMP20	950 AMP20
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage	H,HP,HT 200 AMP20 Ver HP	AMP20 200	AMP20 250	300 •	350	450 AMP20 400	500 AMP20 450	550 AMP20 500	700 AMP20	•	750 AMP20	900 AMP20	950 AMP20
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1)	H,HP,HT 200 AMP20 Ver HP	AMP20 200	AMP20 250	300 •	350	450 AMP20 400	500 AMP20 450	550 AMP20 500	700 AMP20	700	750 AMP20	900 AMP20	950 AMP20
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or	H,HP,HT 200 AMP20 Ver HP	AMP20 200	AMP20 250	300 •	350	450 AMP20 400	500 AMP20 450	550 AMP20 500	700 AMP20	700	750 AMP20	900 AMP20	950 AMP20
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip	AMP20 Ver HP ne of these accessor	AMP20 200 ories is also insta	250 •	AMP20 300 • MPZ valve VCZ1	350 • -2-3-4 X4L/R a	450 AMP20 400 •	500 AMP20 450 •	550 AMP20 500 •	700 AMP20 550	700	750 AMP20 750	900 AMP20 900	950 AMP20
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP	200 AMP20 Ver HP ne of these accessor	AMP20 200 ories is also insta	250 • Illed: AMP - AM	300 MPZ valve VCZ1	350 • -2-3-4 X4L/R 3	450 AMP20 400 •	500 AMP20 450 •	550 AMP20 500 •	700 AMP20 550	700	750 AMP20 750	900 AMP20 900	950 AMP20 950
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation.	Ver HP ne of these accessor BCZ4 (1)	200 • ories is also insta 250 BCZ4 (1)	250 • • • • • • • • • • • • • • • • • • •	300	350 -2-3-4 X4L/R a 400 BCZ4 (1)	450 AMP20 400 • and all the cond 450 BCZ4 (1)	500 AMP20 450 • Iensate collect 500 BCZ4(1)	550 AMP20 500 • ion trays. 550 BCZ4 (1)	700 AMP20 550 •	700	750 AMP20 750	900 AMP20 900 •	950 AMP20 950 •
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP	200 AMP20 Ver HP ne of these accessor	AMP20 200 ories is also insta	250 • Illed: AMP - AM	300 MPZ valve VCZ1	350 • -2-3-4 X4L/R 3	450 AMP20 400 • and all the cond 450 BCZ4 (1)	500 AMP20 450 •	550 AMP20 500 • ion trays. 550 BCZ4 (1)	700 AMP20 550	700 ·	750 AMP20 750	900 AMP20 900	950 AMP20 950 •
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver	Ver HP ne of these accessor BCZ4 (1)	200 • ories is also insta 250 BCZ4 (1)	250 · · · · · · · · · · · · · · · · · · ·	300	350	450 AMP20 400 • and all the cond 450 BCZ4 (1)	500 AMP20 450 • Iensate collect 500 BCZ4 (1)	550 AMP20 500 • ion trays. 550 BCZ4 (1)	700 AMP20 550 • 700 BCZ4 (1)	700 ·	750 AMP20 750	900 AMP20 900 •	950 AMP20 950 •
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation.	Ver HP ne of these accessor BCZ4 (1) 200 BC8 (1)	200 • ories is also insta 250 BCZ4 (1)	250 · · · · · · · · · · · · · · · · · · ·	300	350	450 AMP20 400 • and all the cond 450 BCZ4 (1)	500 AMP20 450 • Iensate collect 500 BCZ4 (1)	550 AMP20 500 • ion trays. 550 BCZ4 (1)	700 AMP20 550 • 700 BCZ4 (1)	700 ·	750 AMP20 750	900 AMP20 900 •	950 AMP20 950 •
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the	### H.HP.HT 200 AMP20 Ver HP ne of these accessor 200 BCZ4 (1) 200 BC8 (1)	200 • ories is also insta 250 BCZ4 (1) 250 BC8 (1)	250	300 · · APZ valve VCZ1 350 BCZ4 (1) 350 BC8 (1)	350 -2-3-4 X4L/R; 400 BCZ4 (1) 400 BC8 (1)	450 AMP20 400 • and all the cond 450 BCZ4 (1)	500 AMP20 • • • • • • • • • • • • • • • • • • •	550 AMP20 500 • ion trays. 550 BCZ4 (1) 550 BC8 (1)	700 AMP20 550 700 BC24 (1)	700 ·	750 AMP20 750 750 BCZ4 (1) 750 BC8 (1)	900 AMP20 900 • 900 BCZ4 (1)	950 AMP20 950
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation.	Ver HP ne of these accessor BCZ4 (1) 200 BC8 (1)	200 • ories is also insta 250 BCZ4 (1)	250 · · · · · · · · · · · · · · · · · · ·	300	350	450 AMP20 400 • and all the cond 450 BCZ4 (1)	500 AMP20 450 • Iensate collect 500 BCZ4 (1)	550 AMP20 500 • ion trays. 550 BCZ4 (1)	700 AMP20 550 • 700 BCZ4 (1)	700	750 AMP20 750	900 AMP20 900 •	950 AMP20 950 •
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver	200 AMP20 Ver HP ne of these accessor 200 BCZ4 (1) 200 BC8 (1) e unit 200 PCZ200	200 • ories is also insta 250 BCZ4 (1) 250 BC8 (1) 250 PCZ200	250	300 · · APZ valve VCZ1 350 BCZ4 (1) 350 BC8 (1)	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1)	450 AMP20 400 • and all the cond 450 BCZ4 (1) 450 BC8 (1)	500 AMP20 450 . lensate collect 500 BCZ4 (1) 500 BC8 (1)	550 AMP20 500 • ion trays. 550 BCZ4 (1) 550 BC8 (1)	700 AMP20 550 • 700 BCZ4 (1) 700	700	750 AMP20 750 750 BCZ4 (1) 750 BC8 (1)	900 AMP20 900 • • 900 BCZ4 (1)	950 AMP20 950 - 950 BCZ4(1) 950 BC9(1)
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver H,HT	200 AMP20 Ver HP ne of these accessor 200 BCZ4 (1) 200 BC8 (1) e unit 200 PCZ200	200 • ories is also insta 250 BCZ4 (1) 250 BC8 (1) 250 PCZ200	250	300 · · APZ valve VCZ1 350 BCZ4 (1) 350 BC8 (1)	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1)	450 AMP20 400 • and all the cond 450 BCZ4 (1) 450 BC8 (1)	500 AMP20 450 . lensate collect 500 BCZ4 (1) 500 BC8 (1)	550 AMP20 500 • ion trays. 550 BCZ4 (1) 550 BC8 (1)	700 AMP20 550 • 700 BCZ4 (1) 700	700	750 AMP20 750 750 BCZ4 (1) 750 BC8 (1)	900 AMP20 900 • • 900 BCZ4 (1)	950 AMP20 950 - 950 BCZ4(1) 950 BC9(1)
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver H,HT Grille also applicable for fla	### H.HP.HT 200 AMP20 Ver HP ne of these accessor 200 BCZ4 (1) 200 BC8 (1) e unit 200 PCZ200 PCZ200	200 • ories is also insta 250 BCZ4 (1) 250 BC8 (1) 250 PCZ200	250	300 · · · APZ valve VCZ1 350 BCZ4 (1) 350 BC8 (1) 350 PCZ300	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1) 400 PCZ500	450 AMP20 400 and all the cond 450 BCZ4 (1) 450 BC8 (1) 450 PCZ500	500 AMP20 450 . lensate collect 500 BC74 (1) 500 BC8 (1)	550 AMP20 500 · ion trays. 550 BC74 (1) 550 BC8 (1)	700 AMP20 550 . 700 BCZ4 (1) 700 BC8 (1) 700 PCZ800	700	750 AMP20 750	900 AMP20 900 • 900 BCZ4 (1) 900 BC9 (1)	950 AMP20 950 - 950 BCZ4 (1) 950 BC9 (1)
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver H,HT Grille also applicable for flo	Number N	200	250	300	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1) 400 PCZ500	450 AMP20 400 - and all the cond 450 BCZ4 (1) 450 BC8 (1) 450 PCZ500	500 AMP20 450 . lensate collect 500 BCZ4 (1) 500 PCZ500	550 AMP20 500 • ion trays. 550 BCZ4 (1) 550 BC8 (1)	700 AMP20 550 - 700 BCZ4 (1) 700 BC8 (1) 700 PCZ800	700	750 AMP20 750	900 AMP20 900 . 900 BCZ4 (1) 900 BC9 (1) 900 PCZ1000	950 AMP20 950 - 950 BCZ4(1) 950 BC9(1)
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver H,HT Grille also applicable for flo	Number N	200	250	300	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1) 400 PCZ500	450 AMP20 400 - and all the cond 450 BCZ4 (1) 450 BC8 (1) 450 PCZ500	500 AMP20 450 . lensate collect 500 BCZ4 (1) 500 PCZ500	550 AMP20 500 • ion trays. 550 BCZ4 (1) 550 BC8 (1)	700 AMP20 550 - 700 BCZ4 (1) 700 BC8 (1) 700 PCZ800	700	750 AMP20 750	900 AMP20 900 . 900 BCZ4 (1) 900 BC9 (1) 900 PCZ1000	950 AMP20 950 - 950 BCZ4(1) 950 BC9(1)
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver H,HT Grille also applicable for flo Ver H,HRHT Metal supports for GA grille	200 AMP20 Ver HP ne of these accessor 200 BCZ4 (1) 200 BCS (1) e unit 200 PCZ200 PCZ200 GA200	200	250	300	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1) 400 PCZ500 400 GA500	450 AMP20 400 • and all the cond 450 BCZ4 (1) 450 PCZ500 450 GA500	500 AMP20 450 • Iensate collect 500 BCZ4 (1) 500 PCZ500 500 PCZ500	550 AMP20 500 - ion trays. 550 BCZ4 (1) 550 PCZ500 550 PCZ500	700 AMP20 550 - 700 BC24 (1) 700 PCZ800 700 GA800	700	750 AMP20 750	900 AMP20 900 C 900 BCZ4 (1) 900 PCZ1000 900 GA800	950 AMP20 950 - 950 BC74(1) 950 BC9(1) 950 PC71000
VIP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver H,HT Grille also applicable for flor Ver H,HP,HT Metal supports for GA grille Ver H,HP,HT	H,HP,HT	200	250	300 . APZ valve VCZ1 350 BCZ4 (1) 350 BC8 (1) 350 PCZ300 ASSO GA300	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1) 400 PCZ500 400 GA500	450 AMP20 400 - and all the cond 450 BC24 (1) 450 PC2500 450 GA500	500 AMP20 450 • Iensate collect 500 BCZ4 (1) 500 PCZ500 500 GA500	550 AMP20 500 - ion trays. 550 BCZ4 (1) 550 PCZ500 6A500	700 AMP20 550 700 BC24 (1) 700 PC2800 700 GA800	700	750 AMP20 750	900 AMP20 900 900 BCZ4 (1) 900 BC9 (1) 900 PC71000 900 GA800	950 AMP20 950 - 950 BC74(1) 950 BC9(1) 950 PC71000 950 GA800
VJP150M (2) (1) 230V~50Hz (2) 24V Wall mounting kit Ver H,HP Condensate drainage Model DSC4 (1) (1) DSC4 cannot be mounted if even just or Condensate drip Ver HP (1) For vertical installation. Ver HP (1) For horizontal installation. Panel closing the rear of the Ver H,HT Grille also applicable for flo Ver H,HPHT Metal supports for GA grille Ver	H,HP,HT	200	250	300 . APZ valve VCZ1 350 BCZ4 (1) 350 BC8 (1) 350 PCZ300 ASSO GA300	350 -2-3-4 X4L/R: 400 BCZ4 (1) 400 BC8 (1) 400 PCZ500 400 GA500	450 AMP20 400 - and all the cond 450 BC24 (1) 450 PC2500 450 GA500	500 AMP20 450 • Iensate collect 500 BCZ4 (1) 500 PCZ500 500 GA500	550 AMP20 500 - ion trays. 550 BCZ4 (1) 550 PCZ500 6A500	700 AMP20 550 700 BC24 (1) 700 PC2800 700 GA800	700	750 AMP20 750	900 AMP20 900 900 BCZ4 (1) 900 BC9 (1) 900 PC71000 900 GA800	950 AMP20 950 - 950 BC74(1) 950 BC9(1) 950 PC71000 950 GA800

Ver	200	250	300	350	400	450	500	550	700	750	900	950
H,HT	SPCZ	SPCZ	SPCZ	SPCZ	SPCZ	SPCZ	SPCZ	SPCZ	SPCZ	SPCZ	SPCZ	SPC
air of stylish structural	teet											
iir of stylish structural Ver	<u>200</u>	250	300	350	400	450	500	550	700	750	900	950

PERFORMANCE SPECIFICATIONS


2-	pi	p	е

1			F	CZ12001	Н	F	CZ1250	Н	-	CZI300H	ł		FCZI350I	H	F	CZI400I	1	I	CZ1450	Н	F	CZ1500	Н
Marting papers Mart			1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Marke flow are specially Marke flow are spec			L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Mine from the system side	Heating performance 70 °C / 60 °C (1)																						
Present deport presented 9.5 1.0	Heating capacity	kW	2,02	2,95	3,70	2,20	3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82	5,27	7,31	8,50
Marting performance NT / 40 **	Water flow rate system side	l/h	177	258	324	193	278	355	304	391	482	330	431	539	379	503	627	400	551	685	462	641	745
Mathem found repeated by Mathem found repeat	Pressure drop system side	kPa	6	12	18	7	15	23	7	12	18	8	14	20	9	16	24	6	11	16	12	21	28
Mine Plane designes also Image 19	Heating performance 45 °C / 40 °C (2)																						
Presented player parties of the property of th	Heating capacity	kW	1,00	1,46	1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88	2,62	3,63	4,22
Conting separation Conting	Water flow rate system side	l/h	174	254	319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675	455	631	734
Semile conting percent Wind Age 18 18 18 18 18 18 18 1	. ,	kPa	6	12	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16	12	21	28
Seable conjugaçacity W	Cooling performance 7 °C / 12 °C (3)																						
Mate flow price since 1/1 1/2	Cooling capacity		0,89	1,28	1,60	1,06	1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03	2,68	3,69	4,25
Present depropriemente File File File Present depropriemente File	Sensible cooling capacity		0,71	1,05		0,79	1,20		1,26	1,65	2,04	1,33	1,76		1,59	2,14	-	_		2,90	1,94	2,73	3,18
Part	Water flow rate system side	l/h	153	221	275	182	267	334	288	374	456	350	460	560	379	503	619	414	552	694	460	634	731
Tam motion Tam	Pressure drop system side	kPa	7	13	18	8	17	25	8	13	18	11	18	25	10	17	24	9	15	22	13	23	29
Mumber Min.	Fan																						
Minther Nin	Туре	type										(Centrifug	al									
Productive control Product	Fan motor	type																					
Imput power W S 8 14 S 8 14 S 8 14 S 7 13 S 3 S 10 18 S 7 18 3 S S 3 S 5 5 7 18 3 S S 5 5 5 5 5 5 5 5																							
Signal Ord O	Air flow rate								_														
Page Type	Input power					_			_			_			_			-					
The main column The main c		%	44	68	90	44	68	90	52	70	90	52	70	90	49	68	90	49	68	90	50	74	90
Main coll O	Diametre hydraulic fittings																						
Part	Туре																						
Sound power level GB(A) 35,0 46,0 51,0 35,0 46,0 51,0 35,0 46,0 51,0 37,0 40,0 51,0 37,0 40,0 51,0 37,0 40,0 51,0 40,0 51,0 40,0 51,0 40,0 51,0 40,0 51,0 40,0 51,0 40,0	Main coil	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Sound pressure	Fan coil sound data (4)																						
Power supply	Sound power level	dB(A)	35,0	46,0	51,0	_	46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0	42,0		56,0
Province supply Province P		dB(A)	27,0	38,0	43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0	34,0	43,0	48,0
FC21550H	Power supply																						
The string capacity	Power supply											2	30V~50l	Hz									
L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H L M H H L M H H Reating capacity NW 5,82 8,34 9,75 6,50 8,10 10,00 7,19 9,15 11,50 10,77 13,35 15,14 11,20 14,42 17,10																							
Heating performance 70 °C / 60 °C (1)				FCZI	1550H			FC	Z1700H				FCZI750I	H			FCZI900	DH			FCZ19	50H	
Heating capacity Name S,82 8,34 9,75 6,50 8,10 10,00 7,19 9,15 11,50 10,77 13,35 15,14 11,20 14,42 17,10 Water flow rate system side Name			1			3	1			3	+					1		OH	3	1			3
Water flow rate system side V/h S10 731 855 S70 710 877 631 802 1008 945 1171 1328 982 1264 1500 Pressure drop system side V/h Rate flow rate system side V/h S02 720 842 561 699 863 621 790 993 990 1152 1307 967 71245 1476 Pressure drop system side V/h S02 720 842 561 699 863 621 790 993 990 1152 1307 967 71245 1476 Pressure drop system side V/h S02 720 842 561 699 863 621 790 993 990 1152 1307 967 71245 1476 Pressure drop system side V/h S02 720 842 561 699 863 621 790 993 990 1152 1307 967 71245 1476 Pressure drop system side V/h S02 720 842 561 699 863 621 790 993 990 1152 1307 967 71245 1476 Pressure drop system side V/h S02 720 842 561 699 863 621 790 993 990 1152 1307 967 71245 1476 Pressure drop system side V/h S02 720 842 561 899 863 621 790 993 990 1152 1307 967 71245 1476 Pressure drop system side V/h S02 720 842 546 714 800 595 825 975 738 860 189 992 1259 1479 Pressure drop system side V/h S01 771 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side V/h S01 771 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side V/h S01 771 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side V/h S01 771 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side V/h S01 771 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side V/h S01 771 824 554 671 800 595 825 975 738 860 1189 992 1152 1307 Pressure drop system side V/h S01 771 824 524					2				2		_	1	2	3	_		2	DH			2		
Pressure drop system side RPa 10 20 26 12 18 26 14 21 31 12 17 22 16 25 33 Heating performance 45 °C / 40 °C (2) Heating capacity RW 2,89 4,14 4,85 3,32 4,03 4,97 3,57 4,55 5,72 5,35 6,64 7,53 5,57 7,17 8,50 Mater flow rate system side I/h 502 720 842 561 699 863 621 790 993 930 1152 1307 967 1245 1476 Pressure drop system side RPa 10 20 26 12 18 26 14 20 31 12 17 22 15 24 33 Cooling performance 7 °C / 12 °C (3) Cooling capacity RW 2,91 4,13 4,79 3,22 3,90 4,65 3,95 4,80 5,67 4,29 5,00 6,91 5,77 7,32 8,60 Emsible cooling capacity RW 2,07 2,98 3,49 2,56 3,17 3,02 2,78 3,48 4,12 2,97 3,78 5,68 3,80 4,87 5,78 Pressure drop system side I/h 501 711 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side RPa 12 22 28 14 19 26 15 21 28 10 13 22 15 23 30 Fan motor type	Heating performance 70 °C / 60 °C (1)				2				2		_	1	2	3	_		2	OH			2		
Heating performance 45°C/40°C(2)		kW	L		2 M	Н	L		2 M	Н		1 L	2 M	3 H		Ĺ	2 M		Н	L	2 N	l	Н
Heating capacity No	Heating capacity		5,82	8	2 M	H 9,75	6,5	0	2 M 8,10	H 10,00	7	1 L	2 M	3 H	50	L 10,77	2 M	; 1:	H 5,14	L 11,20	2 N 14,	42	H 17,10
Water flow rate system side	Heating capacity Water flow rate system side	l/h	5,82 510	8 7	2 M 5,34 731	9,75 855	6,5 57	0	2 M 8,10 710	H 10,00 877	7	1 L ,19	2 M 9,15 802	3 H 11,:	50 08	L 10,77 945	2 M 13,35 1171	1:	5,14 328	11,20 982	2 N 14,	42 54	H 17,10 1500
Pressure drop system side RPa 10 20 26 12 18 26 14 20 31 12 17 22 15 24 33	Heating capacity Water flow rate system side Pressure drop system side	l/h	5,82 510	8 7	2 M 5,34 731	9,75 855	6,5 57	0	2 M 8,10 710	H 10,00 877	7	1 L ,19	2 M 9,15 802	3 H 11,:	50 08	L 10,77 945	2 M 13,35 1171	1:	5,14 328	11,20 982	2 N 14,	42 54	H 17,10 1500
Cooling performance 7°C/12°C(3) Cooling capacity kW 2,91 4,13 4,79 3,22 3,90 4,65 3,95 4,80 5,67 4,29 5,00 6,91 5,77 7,32 8,60 Sensible cooling capacity kW 2,07 2,98 3,49 2,56 3,17 3,92 2,78 3,43 4,12 2,97 3,78 5,68 3,80 4,87 5,78 Water flow rate system side l/h 501 711 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side kPa 12 22 28 14 19 26 15 21 28 10 13 22 15 23 30 Fan type Centrifugal Fan motor type Centrifugal Fan motor mo. 2 3 3 3	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	l/h kPa	5,82 510 10	8 7 7	2 M 3,34 731 20	9,75 855 26	6,5 57	0 0	2 M 8,10 710 18	H 10,00 877 26	7	1 L ,19 531	2 M 9,15 802 21	3 H 11,, 100	50 08 1	10,77 945 12	2 M 13,35 1171 17	1.	H 5,14 328 22	11,20 982 16	2 N 14,120 2 !	42 64 5	H 17,10 1500 33
Cooling capacity kW 2,91 4,13 4,79 3,22 3,90 4,65 3,95 4,80 5,67 4,29 5,00 6,91 5,77 7,32 8,60 Sensible cooling capacity kW 2,07 2,98 3,49 2,56 3,17 3,92 2,78 3,43 4,12 2,97 3,78 5,68 3,80 4,87 5,78 Water flow rate system side l/h 501 711 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side kPa 12 22 28 14 19 26 15 21 28 10 13 22 15 23 30 Ear Type Centrifugal Inverter Number no. 2 3 3 3 3 3 3 3 <t< td=""><td>Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity</td><td>I/h kPa kW</td><td>5,82 510 10</td><td>88 77 2</td><td>2 M 731 20</td><td>9,75 855 26</td><td>6,5 57 12</td><td>0 0 0 2</td><td>2 M 8,10 710 18</td><td>H 10,000 877 26 4,97</td><td>3</td><td>1 L ,,19 531 14</td><td>2 M 9,15 802 21</td><td>3 H 11,, 100 31</td><td>50 08 1 1 72 </td><td>10,77 945 12 5,35</td><td>2 M 13,35 1171 17</td><td>i 1: 1</td><td>5,14 328 22 7,53</td><td>11,20 982 16</td><td>2 N 14,120 25</td><td>42 64 5</td><td>H 17,10 1500 33 8,50</td></t<>	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	5,82 510 10	88 77 2	2 M 731 20	9,75 855 26	6,5 57 12	0 0 0 2	2 M 8,10 710 18	H 10,000 877 26 4,97	3	1 L ,,19 531 14	2 M 9,15 802 21	3 H 11,, 100 31	50 08 1 1 72	10,77 945 12 5,35	2 M 13,35 1171 17	i 1: 1	5,14 328 22 7,53	11,20 982 16	2 N 14,120 25	42 64 5	H 17,10 1500 33 8,50
Sensible cooling capacity kW 2,07 2,98 3,49 2,56 3,17 3,92 2,78 3,43 4,12 2,97 3,78 5,68 3,80 4,87 5,78 Water flow rate system side I/h 501 711 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side kPa 12 22 28 14 19 26 15 21 28 10 13 22 15 23 30 Fam motor Type type System side type Solution of S	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	5,82 510 10 2,89 502	8 7 2 4 7	2 M 3,34 731 220	9,75 855 26 4,85 842	6,5 57 12 3,3 56	0 0 2 2 1	2 M 8,10 710 18 4,03 699	H 10,00 877 26 4,97 863	3	1 L ,19 531 14 ,57	2 M 9,15 802 21 4,55 790	3 H 11,, 100 31 5,7	50 08 1 72 33	10,77 945 12 5,35 930	2 M 13,35 1171 17 6,64 1152	1: 1 7	H 5,14 328 22 7,53 307	11,20 982 16 5,57 967	2 N 14,120 25 7,11	42 64 5	H 17,10 1500 33 8,50 1476
Water flow rate system side I/h 501 711 824 554 671 800 595 825 975 738 860 1189 992 1259 1479 Pressure drop system side kPa 12 22 28 14 19 26 15 21 28 10 13 22 15 23 30 Fan Type Centrifugal Fan motor type Centrifugal Number no. 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1140 700 930 1140 700 930 1140 700 930 1140 700 930 1140 700 930 1140 700 930 1140 700 930 1140 700 90 56 72 90 56 72 90<	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW I/h	5,82 510 10 2,89 502	8 7 2 4 7	2 M 3,34 731 220	9,75 855 26 4,85 842	6,5 57 12 3,3 56	0 0 2 2 1	2 M 8,10 710 18 4,03 699	H 10,00 877 26 4,97 863	3	1 L ,19 531 14 ,57	2 M 9,15 802 21 4,55 790	3 H 11,, 100 31 5,7	50 08 1 72 33	10,77 945 12 5,35 930	2 M 13,35 1171 17 6,64 1152	1: 1 7	H 5,14 328 22 7,53 307	11,20 982 16 5,57 967	2 N 14,120 25 7,11	42 64 5	H 17,10 1500 33 8,50 1476
Pressure drop system side	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity	I/h kPa kW I/h kPa	5,82 510 10 2,89 502 10	88 77 24 47 77	2 M 3,34 731 220 4,14 720 220	9,75 855 26 4,85 842 26	6,5 57 12 3,3 56 12	0 0 2 2 1 1	2 M 8,10 710 18 4,03 699 18	H 10,000 877 26 4,97 863 26	3 6	1 L ,19 ,531 14,57,521 14,595	2 M 9,15 802 21 4,55 790 20	33 H 11,1 100 31 5,7 99 3	550 508 11 12 13 11 15 15 15 15 15 15	10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152 17	7 7	H 55,14 328 222 7,53 307 22 5,91	11,20 982 16 5,57 967 15	22 N 14,120 2! 7,1120 20 7,7,2	42 64 5 17 45 4	H 17,10 1500 33 8,50 1476 33
Type type	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kWa	5,82 510 10 2,89 502 10 2,91 2,07	8 7 2 4 7 2	2 M 7,34 731 220 4,14 720 220	H 9,75 855 26 4,85 842 26 4,79 3,49	3,3 3,3 566 12 3,2 2,5	0 0 0 2 2 1 1 2 2 2 2 6 6	2 M 8,10 710 18 4,03 699 18	H 10,000 877 26 4,97 863 26 4,65 3,92	3 6	1 L 3,19 531 14 5,57 521 14	2 M 9,15 802 21 4,55 790 20 4,80 3,43	33 H 11,1 1000 33 5,7 999 37	50 50 50 50 50 50 50 50	10,77 945 12 5,35 930 12 4,29 2,97	2 M 13,35 1171 17 6,64 1152 17	7 1: 7 1	H 328 22 7,53 307 22 5,91 6,68	11,20 982 16 5,57 967 15 5,77 3,80	22 N 14, 120 2! 7,1 124 24	42 55 17 45 4 32	H 17,10 1500 33 8,50 1476 33 8,60 5,78
Type	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kWa	5,82 510 10 2,89 502 10 2,91 2,07	88 77 34 47 77 34 42 27	2 M M 7,34 7,31 20 1,14 7,720 20 1,13 1,98 7,71	H 9,75 855 26 4,85 842 26 4,79 3,49	3,3 3,3 566 12 3,2 2,5	0 0 0 2 2 1 1 2 2 2 2 6 6	2 M 8,10 710 18 4,03 699 18 3,90 3,17	H 10,000 877 26 4,97 863 26 4,65 3,92	3 6	1 L 3,19 531 14 5,57 521 14	2 M 9,15 802 21 4,55 790 20 4,80 3,43	33 H 11,1 1000 33 5,7 999 3 5,6 4,1	50	10,77 945 12 5,35 930 12 4,29 2,97	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78	7 1: 7 1	H 328 22 7,53 307 22 5,91 6,68	11,20 982 16 5,57 967 15 5,77 3,80	22 N 14, 120 2! 7,1 124 24	42 55 17 45 4 32	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Number N	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW kW I/h	5,82 510 10 2,89 502 10 2,91 2,07 501	88 77 34 47 77 34 42 27	2 M M 7,34 7,31 20 1,14 7,720 20 1,13 1,98 7,71	H 9,75 855 26 4,85 842 26 4,79 3,49 824	55 57 12 3,3 56 12 3,2 2,5	0 0 2 2 1 1 2 2 2 6 4	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	H 10,000 877 26 4,97 863 26 4,65 3,92 800	33 6	1 L ,19 .331 14 .,57 .521 14 .,78 .,78 .595	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825	33 H 11,1 1000 33 5,7 999 3 5,6 4,1	50	10,77 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	7 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 328 22 7,53 307 22 6,91 6,68 189	11,20 982 16 5,57 967 15 5,77 3,80 992	22 N 14,4 120 2! 7,1 124 2. 7,3 4,8	42 54 55 17 45 4 4 32 87	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Number no. 2 3 3 3 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW kW I/h	5,82 510 10 2,89 502 10 2,91 2,07 501	88 77 34 47 77 34 42 27	2 M M 7,34 7,31 20 1,14 7,720 20 1,13 1,98 7,71	H 9,75 855 26 4,85 842 26 4,79 3,49 824	55 57 12 3,3 56 12 3,2 2,5	0 0 2 2 1 1 2 2 2 6 4	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	H 10,000 877 26 4,97 863 26 4,65 3,92 800	33 6	1 L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 3 H 11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50	10,77 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	7 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 328 22 7,53 307 22 6,91 6,68 189	11,20 982 16 5,57 967 15 5,77 3,80 992	22 N 14,4 120 2! 7,1 124 2. 7,3 4,8	42 54 55 17 45 4 4 32 87	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Air flow rate m³/h 400 600 720 520 720 900 520 720 900 700 930 1140 700 930 1140 [Input power W 7 18 34 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 80 30 40 80 80 80 80 80 80 80 80 80 80 80 80 80	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	kW I/h kPa kW kW I/h kPa	5,82 510 10 2,89 502 10 2,91 2,07 501	88 77 34 47 77 34 42 27	2 M M 7,34 7,31 20 1,14 7,720 20 1,13 1,98 7,71	H 9,75 855 26 4,85 842 26 4,79 3,49 824	55 57 12 3,3 56 12 3,2 2,5	0 0 2 2 1 1 2 2 2 6 4	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	H 10,000 877 26 4,97 863 26 4,65 3,92 800	33 6	1 L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 3 H 11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50	10,77 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	7 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 328 22 7,53 307 22 6,91 6,68 189	11,20 982 16 5,57 967 15 5,77 3,80 992	22 N 14,4 120 2! 7,1 124 2. 7,3 4,8	42 54 55 17 45 4 4 32 87	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Input power W 7 18 34 30 40 80 30 40 80 30 40 80 30 40 80 30 40 80 80 30 40 80 80 80 80 80 80 8	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	l/h kPa kW l/h kPa kW kW l/h kPa	5,82 510 10 2,89 502 10 2,91 2,07 501	8 8 8 7 7 7 2 4 4 4 2 2 2 7 7 7 2 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	2 MM 3,34 M 31 M 31 M 32 M 31 M 32 M 31 M 32 M 32	H 9,75 855 26 4,85 842 26 4,79 3,49 824	55 57 12 3,3 56 12 3,2 2,5	0 0 2 2 1 1 2 2 2 6 4	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800	33 6	1 L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21	3 3 H 11,1,1000 3 3 5,7,7 999 3 3 5,6,6,7 4,1,1	50	10,77 945 12 5,35 930 12 4,29 2,97 738	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 13	7 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 328 22 7,53 307 22 6,91 6,68 189	11,20 982 16 5,57 967 15 5,77 3,80 992	2 N N 14, 12(1 12) 14, 12(1 12) 14, 12(1 12) 15, 12(1 12) 16, 12(1 12) 17, 12(1 12) 17, 12(1 12) 18, 12(1 12)	142 644 55 17 17 45 4 4	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Signal 0-10V 96 50 74 90 56 72 90 56 72 90 56 72 90 56 72 90 56 72 90	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	l/h kPa kW l/h kPa kW l/h kPa type type no.	5,82 510 10 2,89 502 10 2,91 2,07 501 12	44 44 44 22 77	2 MM M M M M M M M M M M M M M M M M M M	9,75 855 26 4,85 842 26 4,79 3,49 824 28	1. L L	0 0 0 2 2 1 1 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifug Inverter 3	3 3 H H 11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	550 1 1 1 1 1 1 1 1 1	10,77 945 12 5,35 930 12 4,29 2,97 738	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 13	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H	11,20 982 16 5,57 15 5,77 3,80 992 15	2 N N 14,4 12(1 12) 14,4 12(1 12) 12,1 12,1 12,1 12,1 12,1 12,1 12,1	1 42 5 7 7 7 45 4 4 4 32 37 37 37 38 38 38 38 38 38 38 38 38 38 38 38 38	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Type type	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	l/h kPa kW l/h kPa kW l/h kPa type type no. m³/h	5,82 510 10 2,89 502 10 2,91 2,07 501 12	44 44 44 44 44 44 44 44 44 44 44 44 44	2 MM M M M M M M M M M M M M M M M M M M	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,57 57,57 1: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0 0 0 2 2 2 1 1 1 2 2 2 2 2 2 4 4 4 4 4 4 4 4	2 M 8,10 7710 18 4,03 699 18 3,90 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L L L L L L L L L L L L L L L L L L	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifug Inverter 3	3 3 H H 11,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	772	10,77 945 12 12 5,35 930 12 4,29 7,738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 13	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H	11,20 982 16 5,57 15 5,77 3,80 992 15	2 N N 14,4 12 12 12 12 12 12 12 12 12 12 12 12 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Type type Gas - F Main coil Ø 3/4" Fan coil sound data (4) Sound power level dB(A) 42,0 51,0 56,0 42,0 51,0 57,0 57,0 57,0 57,0 57,0 62,0 51,0 57,0 61,0 Sound pressure dB(A) 34,0 48,0 34,0 49,0 34,0 49,0 49,0 49,0 49,0 54,0 49,0 53,0	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	kW I/h kPa kW kW I/h kPa type type no. m³/h W	5,82 510 10 2,89 502 10 2,91 2,07 501 12	4444	2 MM / 3,34 / 31 / 31 / 320 /	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,57 57,77 1: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 M 8,10 710 18 4,03 699 18 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L L L L L L L L L L L L L L L L L L	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifug Inverter 3 720 40	3 3 H H 11,11 110 110 110 110 110 110 110 110 1	1	10,77 945 12 12 5,35 930 12 4,29 7,738 10	2 M 13,355 1171 17 17 6,64 1152 17 5,000 3,78 860 13	77 11 66 55 11	H H 55,14	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14,4 12(1) 1	1 442 54 55 5 7 7 7 7 82 82 83 83 83 83 84 86 86 86 86 86 86 86 86 86 86 86 86 86	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Main coil Ø 3/4" Fan coil sound data (4) Sound power level dB(A) 42,0 51,0 56,0 42,0 51,0 57,0 42,0 51,0 57,0 51,0 57,0 51,0 57,0 51,0 57,0 62,0 51,0 57,0 61,0 Sound pressure dB(A) 34,0 48,0 34,0 49,0 34,0 49,0 43,0 49,0 54,0 49,0 53,0	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V	kW I/h kPa kW kW I/h kPa type type no. m³/h W	5,82 510 10 2,89 502 10 2,91 2,07 501 12	4444	2 MM / 3,34 / 31 / 31 / 320 /	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,57 57,77 1: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 M 8,10 710 18 4,03 699 18 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L L L L L L L L L L L L L L L L L L	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifug Inverter 3 720 40	3 3 H H 11,11 110 110 110 110 110 110 110 110 1	1	10,77 945 12 12 5,35 930 12 4,29 7,738 10	2 M 13,355 1171 17 17 6,64 1152 17 5,000 3,78 860 13	77 11 66 55 11	H H 55,14	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14,4 12(1) 1	1 442 54 55 5 7 7 7 7 82 82 83 83 83 83 83 84 86 86 86 86 86 86 86 86 86 86 86 86 86	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Fan coil sound data (4) Sound power level dB(A) 42,0 51,0 56,0 42,0 51,0 57,0 42,0 51,0 57,0 62,0 51,0 57,0 61,0 Sound pressure dB(A) 34,0 48,0 34,0 49,0 34,0 49,0	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Diametre hydraulic fittings	kW I/h kPa kW kW I/h kPa type type no. m³/h W %	5,82 510 10 2,89 502 10 2,91 2,07 501 12	4444	2 MM / 3,34 / 31 / 31 / 320 /	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,57 57,77 1: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 M 8,10 710 18 4,03 699 18 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L L L L L L L L L L L L L L L L L L	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifug Inverter 3 720 40 72	3 3 H H 11,11 110 110 110 110 110 110 110 110 1	1	10,77 945 12 12 5,35 930 12 4,29 7,738 10	2 M 13,355 1171 17 17 6,64 1152 17 5,000 3,78 860 13	77 11 66 55 11	H H 55,14	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14,4 12(1) 1	1 442 54 55 5 7 7 7 7 82 82 83 83 83 83 83 84 86 86 86 86 86 86 86 86 86 86 86 86 86	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Sound power level dB(A) 42,0 51,0 56,0 42,0 51,0 57,0 42,0 51,0 57,0 62,0 51,0 57,0 61,0 Sound pressure dB(A) 34,0 48,0 34,0 43,0 49,0 34,0 49,0 43,0 49,0 54,0 43,0 49,0 53,0	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Diametre hydraulic fittings Type	kW I/h kPa kW I/h kPa type no. m³/h W %	5,82 510 10 2,89 502 10 2,91 2,07 501 12	4444	2 MM / 3,34 / 31 / 31 / 320 /	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,57 57,77 1: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 M 8,10 710 18 4,03 699 18 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L L L L L L L L L L L L L L L L L L	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Sentrifug Inverter 3 720 40 72	3 3 H H 11,11 110 110 110 110 110 110 110 110 1	1	10,77 945 12 12 5,35 930 12 4,29 7,738 10	2 M 13,355 1171 17 17 6,64 1152 17 5,000 3,78 860 13	77 11 66 55 11	H H 55,14	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14,4 12(1) 1	1 442 54 55 5 7 7 7 7 82 82 83 83 83 83 83 84 86 86 86 86 86 86 86 86 86 86 86 86 86	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Sound pressure dB(A) 34,0 43,0 48,0 34,0 43,0 49,0 34,0 43,0 49,0 43,0 49,0 54,0 49,0 53,0	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Diametre hydraulic fittings Type Main coil	kW I/h kPa kW I/h kPa type no. m³/h W %	5,82 510 10 2,89 502 10 2,91 2,07 501 12	4444	2 MM / 3,34 / 31 / 31 / 320 /	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,57 57,77 1: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0 0 0 0 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2	2 M 8,10 710 18 4,03 699 18 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L L L L L L L L L L L L L L L L L L	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Sentrifug Inverter 3 720 40 72	3 3 H H 11,11 110 110 110 110 110 110 110 110 1	1	10,77 945 12 12 5,35 930 12 4,29 7,738 10	2 M 13,355 1171 17 17 6,64 1152 17 5,000 3,78 860 13	77 11 66 55 11	H H 55,14	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14,4 12(1) 1	1 442 54 55 5 7 7 7 7 82 82 83 83 83 83 83 84 86 86 86 86 86 86 86 86 86 86 86 86 86	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Diametre hydraulic fittings Type Main coil Fan coil sound data (4)	kW I/h kPa kW I/h kPa kW kW I/h kPa type no. m³/h W %	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 7 50	44422277	2 MM 7,34 731 720 720 720 731 720 731 732 731 731 732 731 731 731	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,57 577 11: 3,3,3 3,6 56 56 11: 12: 13: 14: 14: 15: 16: 16: 16: 16: 16: 16: 16: 16: 16: 16	0 0 0 0 1 2 2 1 1 2 2 2 6 6 4 4 4	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 2 5	1 L L ,19 ,531	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifug Inverter 3 720 40 72	3 3 H H 11,11 110 110 110 110 110 110 110 110 1	50 1 1 1 1 1 1 1 1 1	10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,000 3,78 860 13 3 930 40	77 1 1 6 6 5 5 5 1 1 1	H H S, 14 S S S S S S S S S S S S S S S S S S	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14, 12(1 12) 14, 12(1 12) 12(1 12	1 42 54 55 4 4 4 4 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Power supply	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Diametre hydraulic fittings Type Main coil Fan coil sound data (4) Sound power level	kW I/h kPa kW kW I/h kPa type no. m³/h W % dB(A)	5,82 510 10 2,89 502 10 2,91 2,07 501 12	8 8 8 7 7 7 4 4 4 2 2 2 7 7 6 6	2 MM ,334 ,334 ,731 ,731 ,732 ,732 ,731 ,732 ,733 ,733 ,734 ,733 ,738 ,738 ,738 ,738 ,738 ,738 ,738	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,5 57 11: 3,3,3 566 11: 33,2,3,5 56 11: 552 33: 551 51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 40 72	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L 19 19 19 19 19 19 19 19 19 19 19 19 19	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuge 172 40 72 Gas-F 3/4"	3 3 H H 11, 11, 12, 1	550 108 11 11 12 12 13 14 15 15 15 16 16 16 16 16	10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 13 3 930 40 72	77 11 11 11 11 11 11 11 11 11 11 11 11 1	H	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14,4 12 12 12 12 12 12 12 12 12 12 12 12 12	1 42 42 45 4 4 4 4 4 4 82 82 83 87 80 90 90 90 90 90 90 90 90 90 90 90 90 90	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
	Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Signal 0-10V Diametre hydraulic fittings Type Main coil Fan coil sound data (4) Sound power level Sound pressure	kW I/h kPa kW kW I/h kPa type no. m³/h W % dB(A)	5,82 510 10 2,89 502 10 2,91 2,07 501 12	8 8 8 7 7 7 4 4 4 2 2 2 7 7 6 6	2 MM ,334 ,334 ,731 ,731 ,732 ,732 ,731 ,732 ,733 ,733 ,734 ,733 ,738 ,738 ,738 ,738 ,738 ,738 ,738	9,75 855 26 4,85 842 26 4,79 3,49 824 28	6,5,5 57 11: 3,3,3 566 11: 33,2,3,5 56 11: 552 33: 551 51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 40 72	H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	3 3 6	1 L L 19 19 19 19 19 19 19 19 19 19 19 19 19	2 M 9,15 802 21 4,55 790 20 4,80 3,43 825 21 Centrifuge 172 40 72 Gas-F 3/4"	3 3 H H 11, 11, 12, 1	550 108 11 11 12 12 13 14 15 15 15 16 16 16 16 16	10,77 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 13 3 930 40 72	77 11 11 11 11 11 11 11 11 11 11 11 11 1	H	11,20 982 16 5,57 967 15 5,77 3,80 992 15	2 N N 14,4 12 12 12 12 12 12 12 12 12 12 12 12 12	1 42 42 45 4 4 4 4 4 4 82 82 83 87 80 90 90 90 90 90 90 90 90 90 90 90 90 90	H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30

	FCZI550H	FCZ1700H	FCZ1750H	FCZI900H	FCZ1950H
Power supply			230V~50Hz		

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Size			200	250	300	350	400	450	500	550	700	750	900	950
Dimensions and weights														
Λ.	H,HT	mm	486	486	486	486	486	486	486	486	486	486	591	591
Α	HP	mm	216	216	216	216	216	216	216	216	216	216	216	216
D	H,HT	mm	750	750	980	980	1200	1200	1200	1200	1320	1320	1320	1320
D	HP	mm	522	522	753	753	973	973	973	973	1122	1122	1122	1122
(H,HT	mm	220	220	220	220	220	220	220	220	220	220	220	220
	HP	mm	453	453	453	453	453	453	453	453	453	453	558	558
n	H,HT	mm	90	-	90	-	90	-	90	-	90	-	90	90
V	HP	mm	562	-	793	-	1013	-	1013	-	1147	-	1147	1147
Formeronsiale	H,HT	kg	15	16	17	18	22	24	22	24	29	31	34	34
Empty weight	HP	kg	12	14	14	16	20	22	23	24	26	31	32	32

Omnia HL

Fan coil for universal and floor installation

- Very quiet
- Ideal for residential or office solutions
- · Version with Coldplasma Air purifier

DESCRIPTION

Fan coils for heating, cooling, and dehumidification.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

HL Metallic white cabinet with switch

L White cabinet with self-closing louver and electronic thermostat

N White cabinet with electronic thermostat VMF

PC White cabinet with electronic thermostat and Cold Plasma purifier

S Metallic withe cabinet without control board

FEATURES

Case

Top design metal protection cabinet with rounded design and painted with anti-corrosion polyester powders:

- Cover RAL 9002
- Top and supports RAL 7044.

The air distribution grid is adjustable. The fan coil switches off automatically when the grid is closed.

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

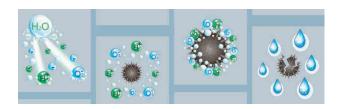
The scroll that protects the fan can be extracted and inspected, for easy and effective cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air yents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.


Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

APC versions equipped with Coldplasma Air purifier.

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant

floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

FMT10: Electronic thermostat for fan coil in to 2/4 pipe systems.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

PX2: Commutator switch.

PX2C6: Commutator switch. Kit to 6 pz.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

SWA: External probe accessory SWA (length L = 6m). It detects the temperature of the room air if connected to the connector (A) of the FMT21 panel. The room air temperature probe, incorporated in the panel, is automatically disabled. It detects the temperature of the water in the system for ventilation consent if connected to the connector (W) of the FMT21 panel. Two SWA probes can be connected simultaneously to the FMT21 panel.

TPF: Electronic thermostat, black, with thermostated or continuous ventilation.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF system

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E2H: User interface on the machine, to be combined with the VMF-E19 accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMHI: The VMHI panel can be used as a user interface for VMF-E0X/ E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Compatibility with VMF system: for more information about the system, refer to the dedicated documentation.

Valves for main coil

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

Installation accessories

BC10: Condensate drip.

DSC5: Condensate drainage device.

PCH: Panel closing the rear of the unit white

ZH1: White skirting for floor mounting.

ZH1B: White feet for floor mounting with skirting board.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	16	26	36
AER503IR (1)	S			•
FMT10	S	•	•	•
PR0503	S	•	•	•
PX2	S	•	•	•
PX2C6 (2)	S	•	•	•
SA5 (3)	S	•	•	•
SIT3 (4)	S	•	•	•
SIT5 (5)	S	•	•	•
SW3 (3)	S	•	•	•
SW5 (3)	S	•	•	•
SWA	S	•	•	•
TPF	S	•	•	•
TX (1)	S	•	•	•
WMT05 (1)	S	•	•	•
WMT10 (1)	S	•	•	•

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

⁽²⁾ Only wall-mount installation
(3) Probe for AER503IR-TX thermostats, if fitted.

⁽⁴⁾ Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere. (5) Probe for AERSO3IR-TX thermostats, if fitted.

Model	Ver	16	26		36
/MF-E19 (1)	S	•			•
VMF-E2H	S	•			
/MF-E3	S	•			
/MF-E4DX	ς	•			
VMF-E4X	S	•	•		•
VMF-IO	S	•	•		•
VMF-IR	S	•	•		•
VMF-LON	ς	•	•		•
VMHI	ς	•	•		•
1) Also the accessory VMF-SIT3\	is mandatory if the unit exceeds 0.7 Ampe	res.			
3 way valve kit					
Accessory			HL16	HL26	HL36
VCH			•	•	
2 way valve kit					
Accessory			HL16	HL26	HL36
/CHD			•	•	•
Condensate drip					
	Ver		16	26	36
	HL,L,N,PC,S		BC10 (1)	BC10 (1)	BC10 (1)
1) For vertical installation.					
Condensate drainage	2				
	Ver		16	26	36
	HL,L,N,PC,S		DSC5 (1)	DSC5 (1)	DSC5 (1)
(1) The accessory cannot be fit if	the accessory BC10 or BC20 is installed.				
Panel closing the rea					
Accessory	i or the unit		HL16	HL26	HL36
PCH16			•	IILZU	IILJU
PCH26			•	•	
PCH36				·	•
i Cilou					•
Wall mounting kit					
Accessory			HL16	HL26	HL36
AMP10			•	•	•
Pair of stylish structu	ral feet				
un vi stynsn stiutta					
Model Model			Ver	16 26	36

Ver

HL,L,N,PC,S

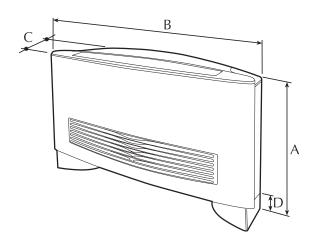
16

26

36

Model

ZH1B


PERFORMANCE SPECIFICATIONS

2-pipe

			HL16			HL26			HL36	
		1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)								•		
Heating capacity	kW	1,54	2,12	2,91	2,89	3,83	4,62	3,53	4,87	5,94
Water flow rate system side	l/h	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)										
Heating capacity	kW	0,73	1,05	1,90	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	126	183	331	249	331	399	305	420	513
Pressure drop system side	kPa	1	3	8	5	8	11	7	13	18
Cooling performance 7 °C / 12 °C (3)										
Cooling capacity	kW	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	2	3	5	5	8	11	7	13	19
Fan										
Туре	type					Centrifugal				
Fan motor	type					On-Off				
Number	no.		1			2			2	
Air flow rate	m³/h	110	160	240	190	270	350	240	350	460
Input power	W	23	25	32	24	27	35	30	35	42
Fan coil sound data (4)										
Sound power level	dB(A)	34,0	43,0	48,0	35,0	43,0	48,0	34,0	43,0	50,0
Sound pressure	dB(A)	26,0	35,0	40,0	27,0	35,0	40,0	26,0	33,0	40,0
Diametre hydraulic fittings										
Main coil	Ø					1/2"				
Power supply										
Power supply						230V~50Hz				

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Dimensions and weights

		HL16	HL26	HL36
Dimensions and weights				
A	mm	605	615	623
C	mm	189	191	198
D	mm	93	93	93
Empty weight	kg	15	18	21

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Omnia ULS

Vertical wall-mounting or freestanding installation

- Compact dimensions, thickness 130 mm
- Low operating temperature
- · Cooling, heating, and dehumidification

DESCRIPTION

The Omnia Slim fan coils have been designed to meet the need to combine the typical features of a classic radiator - namely reduced depth and quiet operation - with the ability of a fan coil to air-condition rooms throughout the year.

They can be installed on any system with a 2-pipe system and it fits with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

VERSIONS

ULS Standard without control board **ULS C** With on-board thermostat

FEATURES

Case

Structure in sheet metal, 12/10 and 8/10 mm.

Front cover in 8/10 mm galvanised sheet metal with RAL9003 white epoxy powder coating and thermal-acoustic insulation of 13 mm thickness.

Ventilation group

These fan coils have extremely silent ventilation by using special tangential fans, which guarantees maximum acoustic comfort.

The electric motor is a 3-speed single-phase motor with a permanently inserted condenser.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The coil has hydraulic connections on the left and is not reversible.

Control

With thermostatic adjustment and manual or no-adjustment switching, for combination with any wall panel or with the AERMEC VMF system.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: Water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH-S: Touch control installation on-board the fan coil. The ThermApp application is also available for remote control with smart devices with the Android operating system.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

TXBS: Thermostat installation on the fan coil.

KITSV: Kit for installing the VMF-E0X or VMF-E19/19I.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E2S: User interface on the fan coil, with two selectors - one for temperature and the other for speed control. For operation, the installation of either the VMF-E0X, VMF-E19 or VMF-E19I accessory is required. **VMF-E3:** Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

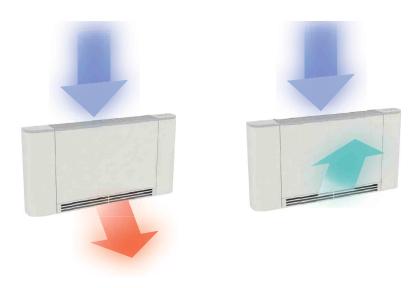
VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

BCSV: Condensate collection tray, for valve kit.

DSC7: Condensate drainage device.

VCS2: 2-way motorised valve kit without insulating shell. The kit is made up of a valve, actuator and relative hydraulic fittings.

VCS3: 3-way motorised valve kit without insulating shell for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings.


ZXS: Pair of stylish and structural feet.

MAIN FEATURES

- 1 Air/water exchange coils with aluminium louvers and copper piping, arranged across 2 rows.
- 2 Front cover in 8/10 mm galvanised sheet metal with RAL9003 white epoxy powder coating and thermal-acoustic insulation of 13 mm thickness.
- 3 Plastic recovery grille with air filter.
- 4 Tangential fan driven by a 3-speed motor.
- 5 Aluminium recovery grille and sheet metal delivery grille, with a special design conceived to create a homogeneous flow of air, both in summer and winter operation.

Flow rates

ACCESSORIES COMPATIBILITY

Model	Ver	10	20	30	40	50
AER503IR (1)	ULS	•	•	•	•	•
PR0503	ULS	•	•	•	•	•
SA5 (2)	ULS	•	•	•	•	•
SW3 (2)	ULS	•	•	•	•	•
SW5 (2)	ULS	•	•	•	•	•
T-TOUCH-S (3)	ULS	•	•	•	•	•
TX (1)	ULS	•	•	•	•	•
TXBS (3)	ULS	•	•	•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted. (3) Installation on the fan coil.

VMF system

Model	Ver	10	20	30	40	50
KITSV (1)	ULS	•	•	•	•	•
VMF-E19 (2)	ULS	•	•	•	•	•
VMF-E2S (3)	ULS	•	•	•	•	•
VMF-E3	ULS	•	•	•	•	•
VMF-E4DX	ULS	•	•	•	•	•
VMF-E4X	ULS	•	•	•	•	•
VMF-IR	ULS	•	•	•	•	•

- (1) Mandatory when the VMF-E19/19l or VMF-E0X thermostat is required.
 (2) Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.
 (3) Installation on the fan coil.

3 way valve kit

Model	Ver	10	20	30	40	50
VCS3 (1)	ULS,ULS_C	•	•	•	•	•

(1) Power supply 230V - Hydraulic connections Ø 1/2"

2 wav valve kit

2 may varre nit							_
Model	Ver	10	20	30	40	50	
VCS2 (1)	ULS.ULS C	•	•	•	•	•	_

(1) Power supply 230V - Hydraulic connections Ø 1/2"

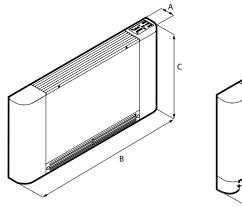
Condensate drip

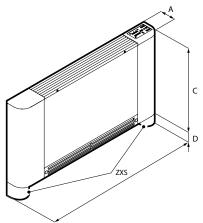
Model	Ver	10	20	30	40	50
BCSV	ULS,ULS_C	•	•	•	•	•

Condensate drainage

Model	Ver	10	20	30	40	50
DSC7	ULS,ULS_C	•	•	•	•	•

Pair of stylish structural feet


Model	Ver	10	20	30	40	50
ZXS	ULS,ULS_C	•	•	•	•	•


PERFORMANCE SPECIFICATIONS

			ULS10			ULS20			ULS30			ULS40			ULS50	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																
Heating capacity	kW	0,61	1,16	1,64	1,14	2,18	3,08	1,48	2,84	4,00	1,89	3,64	5,13	2,27	4,37	6,15
Water flow rate system side	l/h	53	102	144	99	191	269	129	248	350	166	318	448	199	382	538
Pressure drop system side	kPa	1	4	7	4	11	21	3	8	15	4	13	25	3	9	16
Heating performance 45 °C / 40 °C (2)																
Heating capacity	kW	0,30	0,58	0,82	0,56	1,09	1,53	0,73	1,41	1,99	0,94	1,81	2,55	1,13	2,17	3,06
Water flow rate system side	l/h	52	101	142	98	189	266	128	245	346	164	315	443	196	378	532
Pressure drop system side	kPa	1	4	7	4	12	22	3	9	16	4	14	26	3	9	17
Cooling performance 7 °C / 12 °C (3)																
Cooling capacity	kW	0,30	0,57	0,80	0,55	1,07	1,50	0,72	1,38	1,95	0,92	1,78	2,50	1,11	2,13	3,00
Sensible cooling capacity	kW	0,22	0,43	0,62	0,42	0,81	1,17	0,54	1,05	1,52	0,69	1,35	1,95	0,83	1,62	2,34
Water flow rate system side	l/h	51	97	137	95	183	257	124	238	335	158	305	429	190	366	515
Pressure drop system side	kPa	1	4	8	4	13	25	3	10	18	5	16	29	3	10	19
Fan																
Туре	type								Tangential							
Fan motor	type							A	synchronou	IS						
Number	no.		1			1			1			2			2	
Air flow rate	m³/h	36	75	134	62	141	241	76	164	301	91	204	370	103	243	427
Input power	W	8	15	21	15	21	32	17	32	42	21	39	53	18	26	56
Electrical wiring		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (4)																
Sound power level	dB(A)	42,0	49,0	52,0	42,0	49,0	52,0	43,0	50,0	53,0	44,0	51,0	54,0	45,0	52,0	55,0
Sound pressure	dB(A)	34,0	41,0	44,0	34,0	41,0	44,0	35,0	42,0	45,0	36,0	43,0	46,0	39,0	44,0	47,0
Water coil																
Water content main coil	- 1		0,5			0,9			1,2			1,5			1,8	
Diametre hydraulic fittings																
Main coil	Ø								1/2"							
Power supply																
Power supply									230V~50Hz	7						

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Size			10	20	30	40	50
Dimensions and weights							
A	ULS,ULS_C	mm	130	130	130	130	130
В	ULS,ULS_C	mm	745	940	1134	1328	1524
C	ULS,ULS_C	mm	580	580	580	580	580
D	ULS,ULS_C	mm	80	80	80	80	80
Empty weight	ULS,ULS_C	kg	11	13	15	17	19

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com



Omnia ULSI

Vertical wall-mounting or freestanding installation

- Compact dimensions, thickness 130 mm
- Low operating temperature
- · Cooling, heating, and dehumidification

DESCRIPTION

The Omnia Slim fan coils have been designed to meet the need to combine the typical features of a classic radiator - namely reduced depth and quiet operation - with the ability of a fan coil to air-condition rooms throughout the year.

They can be installed on any system with a 2-pipe system and it fits with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

VERSIONS

ULSI Inverter without control board

ULSI C Inverter with on-board thermostat

FEATURES

Case

Structure in sheet metal, 12/10 and 8/10 mm.

Front cover in 8/10 mm galvanised sheet metal with RAL9003 white epoxy powder coating and thermal-acoustic insulation of 13 mm thickness.

Ventilation group

These fan coils have extremely silent ventilation by using special tangential fans, which guarantees maximum acoustic comfort.

Brushless motor with continuous speed variation.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The coil has hydraulic connections on the left and is not reversible.

Control

With thermostatic adjustment and manual or no-adjustment switching, for combination with any wall panel or with the AERMEC VMF system.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

T-TOUCH-IS: Touch control installation on-board the fan coil. The ThermApp application is also available for remote control with smart devices with the Android operating system.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

TXBIS: Thermostat installation on the fan coil.

KITSV: Kit for installing the VMF-E0X or VMF-E19/19I.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E2S: User interface on the fan coil, with two selectors - one for temperature and the other for speed control. For operation, the installation of either the VMF-E0X, VMF-E19 or VMF-E19I accessory is required. **VMF-E3:** Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

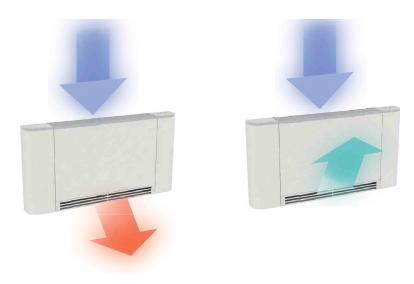
VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

BCSV: Condensate collection tray, for valve kit.

DSC7: Condensate drainage device.

VCS2: 2-way motorised valve kit without insulating shell. The kit is made up of a valve, actuator and relative hydraulic fittings.

VCS3: 3-way motorised valve kit without insulating shell for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings.


ZXS: Pair of stylish and structural feet.

MAIN FEATURES

- 1 Air/water exchange coils with aluminium louvers and copper piping, arranged across 2 rows.
- 2 Front cover in 8/10 mm galvanised sheet metal with RAL9003 white epoxy powder coating and thermal-acoustic insulation of 13 mm thickness.
- 3 Plastic recovery grille with air filter.
- 4 Tangential fan driven by a Brushless motor with continuous speed variation.
- 5 Aluminium recovery grille and sheet metal delivery grille, with a special design conceived to create a homogeneous flow of air, both in summer and winter operation.

Flow rates

ACCESSORIES COMPATIBILITY

Model	Ver	10	20	30	40	50
AER503IR (1)	ULSI	•	•	•	•	•
PR0503	ULSI	•	•	•	•	•
SA5 (2)	ULSI	•	•	•	•	•
SW3 (2)	ULSI	•	•	•	•	•
SW5 (2)	ULSI	•	•	•	•	•
T-TOUCH-IS	ULSI	•	•	•	•	•
TX (1)	ULSI	•	•	•	•	•
TXBIS	ULSI	•	•	•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

Model	Ver	10	20	30	40	50
KITSV (1)	ULSI	•	•	•	•	•
VMF-E19I	ULSI	•	•	•	•	•
VMF-E2S (2)	ULSI	•	•	•	•	•
VMF-E3	ULSI	•	•	•	•	•
VMF-E4DX	ULSI	•	•	•	•	•
VMF-E4X	ULSI	•	•	•	•	•
VMF-IR	ULSI	•	•	•	•	•

- (1) Mandatory when the VMF-E19/19I or VMF-E0X thermostat is required. (2) Installation on the fan coil.

3 way valve kit

5 may rante int							_
Model	Ver	10	20	30	40	50	
VCS3 (1)	IIISLIISI C			•		•	_

(1) Power supply 230V - Hydraulic connections Ø 1/2"

2 way valve kit

Model	Ver	10	20	30	40	50	
VCS2 (1)	ULSLULSI C	•	•	•	•	•	

(1) Power supply 230V - Hydraulic connections Ø 1/2"

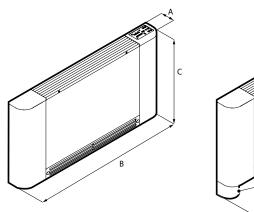
Condensate drip

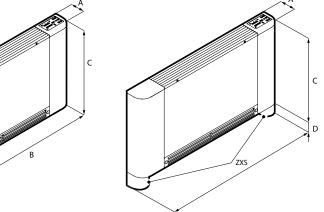
Model	Ver	10	20	30	40	50
BCSV	ULSI,ULSI_C		•	•	•	•

Condensate drainage

Model	Ver	10	20	30	40	50
DSC7	ULSI,ULSI_C	•	•	•	•	•

Pair of stylish structural feet


Model	Ver	10	20	30	40	50
ZXS	ULSI,ULSI_C	•	•	•	•	•


PERFORMANCE SPECIFICATIONS

2 pipe			ULSI10			ULSI20			ULSI30			ULSI40			ULSI50	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	M	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																
Heating capacity	kW	0,70	1,14	1,53	1,27	1,88	2,86	1,88	2,91	3,72	2,32	3,55	4,77	2,49	3,85	5,73
Water flow rate system side	l/h	61	100	134	111	165	251	165	254	326	203	311	418	218	337	501
Pressure drop system side	kPa	2	4	7	5	10	20	6	14	22	6	13	22	5	10	21
Heating performance 45 °C / 40 °C (2)																
Heating capacity	kW	0,35	0,57	0,76	0,63	0,94	1,43	0,94	1,45	1,85	1,15	1,77	2,38	1,24	1,92	2,85
Water flow rate system side	l/h	61	99	132	110	163	248	163	251	322	201	307	413	216	333	495
Pressure drop system side	kPa	2	4	7	5	9	20	6	14	22	6	13	22	5	10	21
Cooling performance 7 °C / 12 °C (3)																
Cooling capacity	kW	0,37	0,60	0,80	0,67	0,98	1,50	0,98	1,52	1,95	1,22	1,86	2,50	1,30	2,02	3,00
Sensible cooling capacity	kW	0,25	0,42	0,57	0,46	0,68	1,08	0,68	1,06	1,39	0,84	1,30	1,79	0,90	1,40	2,15
Water flow rate system side	l/h	63	103	137	114	169	257	169	261	335	209	319	429	224	346	515
Pressure drop system side	kPa	3	6	10	7	13	28	9	19	30	9	18	30	7	14	29
Fan																
Туре	type								Tangential							
Fan motor	type								Inverter							
Number	no.		1			1			1			2			2	
Air flow rate	m³/h	46	82	134	78	128	241	109	188	301	126	218	370	127	225	427
Input power	W	5	8	10	6	9	15	7	12	17	7	14	20	7	13	21
Signal 0-10V	%	40	70	90	40	70	90	40	70	90	40	70	90	40	70	90
Fan coil sound data (4)																
Sound power level	dB(A)	39,0	47,0	51,0	39,0	47,0	51,0	40,0	48,0	53,0	41,0	49,0	54,0	42,0	52,0	56,0
Sound pressure	dB(A)	31,0	39,0	43,0	31,0	39,0	43,0	32,0	40,0	45,0	33,0	41,0	46,0	34,0	44,0	48,0
Water coil																
Water content main coil	- 1		0,5			0,9			1,2			1,5			1,8	
Diametre hydraulic fittings																
Main coil	Ø								1/2"							
Power supply																
Power supply									230V~50Hz	7						

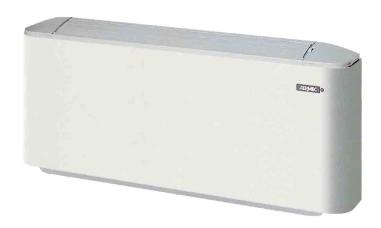
- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45°C/40°C; EUROVENT
 (3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Size			10	20	30	40	50
Dimensions and weights							
A	ULSI,ULSI_C	mm	130	130	130	130	130
В	ULSI,ULSI_C	mm	745	940	1134	1328	1524
(ULSI,ULSI_C	mm	580	580	580	580	580
D	ULSI,ULSI_C	mm	80	80	80	80	80
Empty weight	ULSI,ULSI_C	kg	11	13	15	17	19

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com



Omnia UL

Universal and floor installation

- Fully silent functioning
- Ideal for residential or office solutions

DESCRIPTION

Fan coils with inverter technology for heating, cooling, and dehumidifying. Equipped with a state of the art ventilation unit with continuous modulation of the air flow rate, which allows for precise adaptation of the actual indoor ambient requirements without temperature oscillations, for increased comfort, also in terms of noise, and electrical savings.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

C Vertical installation, intake at base, electronic thermostat

PC Vertical installation, intake at base, electronic thermostat, Cold Plasma purifier

S Vertical and horizontal installation, intake at base, without commands **UL** Standard - Vertical installation, bottom intake, manual switch-over

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9002 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Ventilation group

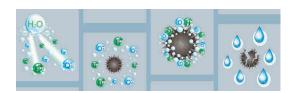
Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. The plastic augers are extractable for easy and efficient cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.


Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

The fan coils have, as standard, precharged electrostatic filters. These filters, thanks to their special execution, attracts and retains all suspended dust particles, thus garanteeing pure breathable air to the whole family. **APC versions equipped with Coldplasma Air purifier.**

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E2D: User interface on the machine, to be combined with the VMF-E19 accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

AMP: Wall mounting kit

DSC: Condensate drainage device.

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

GU: Intake grid covers the front space between the ornamental feet and does not interfere with the filter.

PCU: Sheet metal panel closing the rear of the unit.

ZU: Pair of stylish and structural feet.

ACCESSORIES COMPATIBILITY

Model	Ver	11	16	26	36
AER503IR (1)	ς	•	•	•	•
PR0503	ς	•	•	•	•
SA5 (2)	ς	•	•	•	•
SW3 (2)	C,PC,S	•	•	•	•
SW5 (2)	S	•	•	•	•
TX (1)	ς	•	•	•	•
WMT05 (1)	S	•	•	•	•
WMT10 (1)	ς	•	•	•	•

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

Model	Ver	11	16	26	36
VMF-EOX (1)	S	•	•	•	•
VMF-E19 (1)	S	•	•	•	•
VMF-E2D	S	•	•	•	•
VMF-E3	S	•	•	•	•
VMF-E4DX	S	•	•	•	•
VMF-E4X	S	•	•	•	•
VMF-IR	S	•	•	•	•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Condensate drip

Model	Ver	11	16	26	36
BC10 (1)	C,PC,S,UL	•	•	•	•
BC20 (2)	C,PC,S,UL	•	•	•	•

⁽¹⁾ For vertical installation.

Condensate drainage

Model	Ver	11	16	26	36
DSC5 (1)	C,PC,S,UL	•	•	•	•

⁽¹⁾ The accessory cannot be fit if the accessory BC10 or BC20 is installed.

3 way valve kit

Model	Ver	11	16	26	36
VCH	C,PC,S,UL	•	•	•	•

2 way valve kit					
Model	Ver	11	16	26	36
VCHD	C,PC,S,UL	•	•	•	•

⁽²⁾ For horizontal installation.

Wall mounting kit

Model	Ver	11	16	26	36
AMP10	C,PC	•	•	•	•

Panel closing the rear of the unit

Ver	11	16	26	36
C,PC,S,UL	PCU10	PCU15	PCU25	PCU35

Intake grids

Ver	11	16	26	36
C,PC,S,UL	GU10 (1)	GU15 (1)	GU25 (1)	GU35 (1)

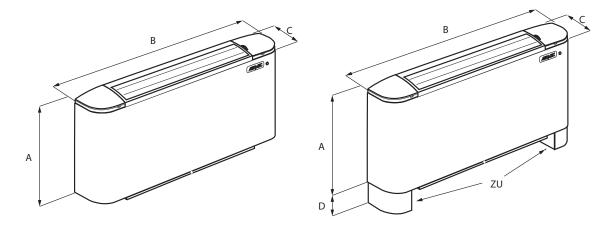
 $(1) \ \ The \ combination \ with \ a \ pair \ of \ stylish \ and \ structural \ feet \ is \ mandatory.$

Pair of stylish structural feet

Model	Ver	11	16	26	36
ZU	C,PC,S,UL	•	•	•	•

Configuration

Field	Description			
1,2 UL				
3,4	Size			
J,4	11, 16, 26, 36			
5	Version			
C	Vertical installation, intake at base, electronic thermostat			
PC	Vertical installation, intake at base, electronic thermostat, Cold Plasma purifier			
S	Vertical and horizontal installation, intake at base, without commands			
UL	Standard - Vertical installation, bottom intake, manual switch-over			


PERFORMANCE SPECIFICATIONS

2-pipe

2 ріре			UL11			UL16			UL26			UL36	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	M	H	L	M	H	L	M	H	L	M	H
Heating performance 70 °C / 60 °C (1)													
Heating capacity	kW	1,06	1,46	2,01	1,54	2,12	2,91	2,89	3,83	4,62	3,63	4,87	5,94
Water flow rate system side	l/h	93	128	176	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	1	2	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	0,52	0,73	1,00	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	92	126	174	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	1	1	2	2	3	3	5	8	11	7	13	18
Cooling performance 7 °C / 12 °C (3)													
Cooling capacity	kW	0,53	0,67	0,82	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,38	0,52	0,68	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	94	117	145	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	1	2	2	2	3	5	5	8	11	7	13	19
Fan													
Туре	type		Centrifugal			Centrifugal			Centrifugal			Centrifugal	
Fan motor	type		0n-0ff			0n-0ff			0n-0ff			On-Off	
Number	no.		1			1			2			2	
Air flow rate	m³/h	80	120	180	110	160	240	190	270	350	240	350	460
Input power	W	8	12	18	23	25	32	24	27	35	30	35	42
Electrical wiring		V1	V2	V3									
Fan coil sound data (4)													
Sound power level	dB(A)	31,0	37,0	46,0	34,0	43,0	48,0	35,0	43,0	48,0	34,0	43,0	50,0
Sound pressure	dB(A)	23,0	29,0	38,0	26,0	35,0	40,0	27,0	35,0	40,0	26,0	33,0	40,0
Water coil													
Water content main coil	1		0,3			0,4			0,6			0,8	
Diametre hydraulic fittings													
Main coil	Ø		1/2"			1/2"			1/2"			1/2"	
Power supply													
Power supply			230V~50Hz			230V~50Hz			230V~50Hz			230V~50Hz	

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

Size			11	16	26	36
Dimensions and weights						
A	C,PC,S,UL	mm	513	513	513	513
В	C,PC,S,UL	mm	640	750	980	1200
C	C,PC,S,UL	mm	173	173	173	173
D	C,PC,S,UL	mm	93	93	93	93
Empty weight	C,PC,S,UL	kg	12	14	16	20

Omnia ULI

Universal and floor installation

- Electric saving equal to 50% compared to a fancoil with 3-speed motor.
- Fully silent functioning
- Ideal for residential or office solutions

DESCRIPTION

Fan coils with inverter technology for heating, cooling, and dehumidifying. Equipped with a state of the art ventilation unit with continuous modulation of the air flow rate, which allows for precise adaptation of the actual indoor ambient requirements without temperature oscillations, for increased comfort, also in terms of noise, and electrical savings.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

C Vertical installation, intake at base, electronic thermostat

PC Vertical installation, intake at base, electronic thermostat, Cold Plasma purifier

S Vertical and horizontal installation, intake at base, without commands

FEATURES

Case

Protective metal cabinet with anti-corrosion polyester RAL 9002 paint, whereas the head with the air distribution grille is in RAL 7047 plastic.

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

Brushless motor with continuous speed variation 0-100%.

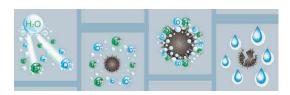
The scroll that protects the fan can be extracted and inspected, for easy and effective cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Condensate drip


Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

The fan coils have, as standard, precharged electrostatic filters. These filters, thanks to their special execution, attracts and retains all suspended dust particles, thus garanteeing pure breathable air to the whole family.

APC versions equipped with Coldplasma Air purifier.

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E2D: User interface on the machine, to be combined with the VMF-E19 accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

AMP: Wall mounting kit

DSC: Condensate drainage device.

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

GU: Intake grid covers the front space between the ornamental feet and does not interfere with the filter.

PCU: Sheet metal panel closing the rear of the unit.

ZU: Pair of stylish and structural feet.

26

36

ACCESSORIES COMPATIBILITY

Model	Ver	16	26	36
AER503IR (1)	S	•	•	•
PR0503	S	•	•	•
SA5 (2)	S	•	•	•
SW3 (2)	C,PC,S	•	•	•
SW5 (2)	S	•	•	•
TX (1)	S	•	•	•

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

Model	Ver	16	26	36
VMF-E19I	S	•	•	•
VMF-E2D	S	•	•	•
VMF-E3	S		•	•
VMF-E4DX	S	•	•	•
VMF-E4X	S		•	•
VMF-IR	S	•	•	•

Condensate drip

Model	Ver	16	26	36
BC10 (1)	C,PC,S	•	•	•
BC20 (2)	C,PC,S	•	•	•

⁽¹⁾ For vertical installation.

Condensate drainage

Model	Ver	16	26	36
DSC5 (1)	C,PC	•	•	•

⁽¹⁾ The accessory cannot be fit if the accessory BC10 or BC20 is installed.

Ver

3 way valve kit

Model

VCH	C,PC	•	•	•
2 way valve kit				
Model	Ver	16	26	36
VCHD	C,PC	•	•	•

16

Wall mounting kit

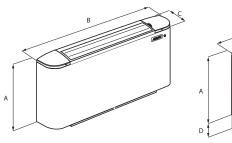
Model	Ver	16	26	36
AMP10	S	•		•

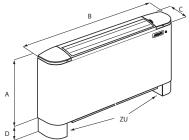
Dair of stylich structural foot

r dii oi stynsii structurur reet											
Model	Ver	16	26	36							
ZU	C,PC,S	•	•	•							

⁽²⁾ For horizontal installation

Configuration


Field	Description
1,2,3	ULI
4,5	Size 16, 26, 36
6	Version
С	Vertical installation, intake at base, electronic thermostat
PC	Vertical installation, intake at base, electronic thermostat, Cold Plasma purifier
S	Vertical and horizontal installation, intake at base, without commands


PERFORMANCE SPECIFICATIONS

2-ріре										
			ULI16			ULI26			ULI36	
		1	2	3	1	2	3	1	2	3
		L	M	Н	L	M	Н	L	M	Н
Heating performance 70 °C / 60 °C (1)										
Heating capacity	kW	1,54	2,12	2,91	2,89	3,83	4,62	3,53	4,87	5,94
Water flow rate system side	l/h	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)										
Heating capacity	kW	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	2	2	2	5	8	11	7	12	18
Cooling performance 7 °C / 12 °C (3)										
Cooling capacity	kW	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	2	3	5	6	8	11	7	13	19
Fan										
Туре	type					Centrifugal				
Fan motor	type					Inverter				
Number	no.		1			2			2	
Air flow rate	m³/h	110	160	240	190	270	350	240	350	460
Input power	W	23	25	32	24	27	35	30	35	42
Signal 0-10V	%	38	56	83	49	70	90	48	70	90
Sound power level	dB(A)	34,0	43,0	48,0	35,0	43,0	48,0	34,0	43,0	50,0
Sound pressure level (10 m)	dB(A)	26,0	35,0	40,0	27,0	35,0	40,0	26,0	33,0	42,0
Water coil										
Water content			0,4			0,6			0,8	
Diametre hydraulic fittings										
Main coil	Ø					1/2"				
Power supply										
Power supply						230V~50Hz				

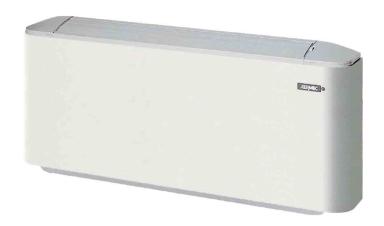
- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20°C d.b.; Water (in/out) 45°C/40°C; EUROVENT (3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT

DIMENSIONS

Size			16	26	36
Dimensions and weights					
A	C,PC,S	mm	513	513	513
В	C,PC,S	mm	750	980	1200
(C,PC,S	mm	173	173	173
D	C,PC,S	mm	93	93	93
Empty weight	C,PC,S	kg	14	16	20

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com



Omnia Radiant

Fan coils with radiant panel for residential use

- Low temperature radiation *
- Ventilated heating
- Cooling dehumidification
- Energy saving
- Low operating temperature

DESCRIPTION

* Radiant technology under licence.

Omnia Radiant and Omnia Radiant Plus Aermec innovative solutions. In this particular worldwide market evolution, we are pleased to present to you OMNIA Radiant, which represents the innovation of the OMNIA AERMEC series, fan coils especially designed for residential comfort.

OMNIA Radiant inherits all the advantages of the OMNIA UL series, and is characterized by the introduction of the frontal plate for radiant heating.

OMNIA Radiant Plus is provided with the DC Brushless electric engine, equipped with the latest Inverter technology, granting the highest energy efficiency and able to regulate the air flow through the continuous fan speed modulation. This allows to achieve up to 60% in energy saving when compared to the traditional On-Off fan system, in both air conditioning and heating.

OMNIA Radiant and Radiant Plus offer the following advantages when compared to the traditional systems:

- The radiant plate combination the finned coil allows the best winter comfort with the lower energy consumption because it provides heating with lower water temperature: only 45°C against the about 65°C needed for the traditional radiator. This not only increases the comfort for the user, but also significantly increases the overall efficiency in case of heat pumps usage;
- The fan system allows to quickly reach the desired temperature, meeting the requirement of a fast start-up;
- The unit can be combined other than the boiler, also to energy saving heat pumps: air to water, water to water and geothermic type;
- The electrostatic charge filter standard supplied, provides pure and clean air;

 During summer Omnia Radiant and Radiant Plus provide air conditioning and dehumidification in a fast and efficient way in every room.

THE FOUR DIFFERENT WORKING MODES OF OMNIA RADIANT ANNUAL FUNCTIONING

Radiant

Heating through radiation, comfortable and noiseless, is granted by the radiant plate placed on the front of the fan coil cover; if necessary, the triple-fins delivery head can be closed to increases the heating of the plate, thus maximizing the radiant effect.

Radiant + Natural Convection

With the triple-fins open, heating through natural convection, obtained thanks to the bigger coil exchange surface, is added to the radiant heating.

As for the radiant-only mode (see above), the fan groups are in off mode. This results in acoustic comfort and energy saving.

Radiant + Forced Convection

The electronic regulation, precise and reliable, continuously compares the effective indoor temperature with the desired temperature: whenever the difference between the two should prove to be too high (e.g. during the heating system start-up) the software will lead the fan system start-up. Start-up is fast and efficient and grants significant energy savings especially in rooms that are occasionally used.

FEATURES

- Radiant plate
- 2 Switching valve
- 3 Water probe
- Condensate storage container, hydraulic hoses

Omnia Radiant during summer provides air conditioning and dehumidification

Forced Convection

During summer, Omnia Radiant and Radiant Plus provide air conditioning and dehumidification for each room of the house in a fast and efficient way. Efficiency and quietness benefit from the quality that has always characterized the Omnia series.

OMNIA Radiant (UL_R) standard features:

- Radiant plate
- Centrifugal fan
- Three-speed cross flow fan
- Condensate storage container, hydraulic hoses
- Two way valve
- Water temperature probe
- VMF-thermostat for asynchronous motor
- Compatibility with VMF system

OMNIA Radiant (UL_RI) standard features:

- Radiant plate
- Centrifugal fan
- Electric DC Brushless motor with Inverter
- Condensate storage container, hydraulic hoses
- Two way valve
- Water temperature probe
- VMF thermostat for DC Brushless motor

ACCESSORIES

Accessories mandatory

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

Common accessories

AMP: Wall mounting kit

GU: Intake grid covers the front space between the ornamental feet and does not interfere with the filter.

PCU: Sheet metal panel closing the rear of the unit.

ZU: Pair of stylish and structural feet.

VCHRAD: Kit consisting of motor-driven 3-way valve copper couplings and pipes.

VMF-E5B: White recessed panel with backlit graphic LCD display and capacitive keyboard, it allows the centralised command/control of a complete hydronic system consisting of Fan coils: up to 64 fan coil zones consisting of 1 master + up to 5 slaves; Chiller/heat pump (accessory required for RS 485 interface), pumps: up to 12 configurable zone pumps; boiler: boiler hook-up management for hot water production; heat recovery units: up to 3 hook-ups per programmable recovery units

Compatibility with VMF system

Ventilation group

Thanks to special centrifugal fans, Omnia Radiant fan coils are incredibly silent, making them the best buy when it comes to acoustic comfort, given the total lack of peak noise.

"The heating by radiation at top speed ensures total silence regime"

The fan blades on the Omnia Radiant are easy to clean. As a matter of fact, the new versions now offer the possibility of opening the worm screw of the fan (the casing that encloses the blades) to perform routine cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The heat exchanger is not reversible.

based on time periods and/or by measuring air quality with the VMF-VOC accessory; domestic water module: complete management of the domestic hot water production through the control of: diverter valve/pump, integrated heating element, storage tank temperature sensor, anti-legionella circuit system.

VMF-E5N: Black recessed panel with backlit graphic LCD display and capacitive keyboard, it allows the centralised command/control of a complete hydronic system consisting of Fan coils: up to 64 fan coil zones consisting of 1 master + up to 5 slaves; Chiller/heat pump (accessory required for RS 485 interface), pumps: up to 12 configurable zone pumps; boiler: boiler hook-up management for hot water production; heat recovery units: up to 3 hook-ups per programmable recovery units based on time periods and/or by measuring air quality with the VMF-VOC accessory; domestic water module: complete management of the domestic hot water production through the control of: diverter valve/pump, integrated heating element, storage tank temperature sensor, anti-legionella circuit system.

For compatibility of the VMF-E5N / VMF-E5B with sizes 26R-36R contact the office.

ACCESSORIES COMPATIBILITY

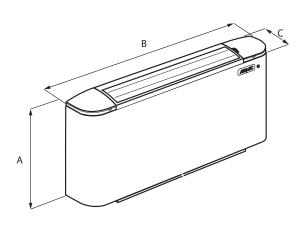
VMF system

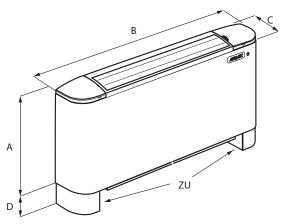
VIVIF SYSTEM				
Accessory	UL26R	UL26RI	UL36R	UL36RI
MF-E4DX	•	•	•	•
MF-E4X	•	•	•	•
/MF-E5B		•		•
/MF-E5N		•		•
ccessory	UL26R	UL26RI	UL36R	UL36RI
CU25	•	•		
PCU35			•	•
Intake grids				
Accessory	UL26R	UL26RI	UL36R	UL36RI
5U25	•	•		
GU35			•	•
3 way valve kit				
Accessory	UL26R	UL26RI	UL36R	UL36RI
/CHRAD	•	•	•	•
Wall mounting kit				
Accessory	UL26R	UL26RI	UL36R	UL36RI
MP10	•	•	•	•
Pair of stylish structural feet				
Accessory	UL26R	UL26RI	UL36R	UL36RI
ZU	•	•		•

PERFORMANCE SPECIFICATIONS

2-pipe

			UL26RI			UL26R			UL36RI		UL36R		
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performances													
Heating capacity (70 °C) (1)	kW	2,89	3,83	4,62	2,89	3,83	4,62	3,53	4,87	5,94	3,53	4,87	5,94
Heating capacity (50 °C) (2)	kW	2,75	2,75	2,75	2,75	2,75	2,75	3,54	3,54	3,54	3,54	3,54	3,54
Water flow rate system side	l/h	397	397	397	397	397	397	511	511	511	511	511	511
Pressure drop system side	kPa	17	17	17	17	17	17	21	21	21	21	21	21
Static heating power (70 °C) (3)	kW	0,65	0,65	0,65	0,65	0,65	0,65	0,75	0,75	0,75	0,75	0,75	0,75
Static heating power (50 °C) (4)	kW	0,39	0,39	0,39	0,39	0,39	0,39	0,45	0,45	0,45	0,45	0,45	0,45
Static heating power (35 °C) (5)	kW	0,20	0,20	0,20	0,20	0,20	0,20	0,23	0,23	0,23	0,23	0,23	0,23
Cooling performance 7 °C / 12 °C (6)													-
Cooling capacity	kW	1,42	1,78	2,03	1,42	1,78	2,03	1,73	2,31	2,83	1,73	2,31	2,83
Sensible cooling capacity	kW	1,05	1,37	1,64	1,05	1,37	1,64	1,28	1,79	2,04	1,28	1,79	2,04
Water flow rate system side	l/h	349	349	349	349	349	349	487	487	487	487	487	487
Pressure drop system side	kPa	18	18	18	18	18	18	22	22	22	22	22	22
Fan													-
Туре	type		Centrifugal			Centrifugal			Centrifugal			Centrifugal	
Fan motor	type		Inverter			Asynchronous	5		Inverter			Asynchronous	;
Number	no.		2			2			2			2	
Air flow rate	m³/h	190	270	350	190	270	350	240	350	460	240	350	460
Fan coil sound data (7)													
Sound power level	dB(A)	35,0	43,0	48,0	35,0	43,0	48,0	34,0	43,0	50,0	34,0	43,0	50,0
Sound pressure	dB(A)	27,0	35,0	40,0	27,0	35,0	40,0	26,0	33,0	40,0	26,0	33,0	40,0
Fan													
Input power	W	12	12	12	35	35	35	16	16	16	42	42	42
Electrical wiring		-	-	-	V1	V2	V1	-	-	-	V1	V2	V3
Signal 0-10V	%	5	7	9	-	-	-	5	7	9	5	-	-
Diametre hydraulic fittings													
Main coil	Ø		1/2"			1/2"			1/2"			1/2"	
Water coil													
Water content main coil			0,8			0,8			1,1			1,1	
Power supply													
Power supply			230V~50Hz			230V~50Hz			230V~50Hz			230V~50Hz	


⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air 20 °C b.s.; Water (in) 50 °C; Water flow rate as in cooling mode (EUROVENT)
(3) Radiant power + natural convection; Hot water (in) 70 °C (water flow same as in heating cycle)
(4) Radiant power + natural convection; Hot water (in) *) 50°C; "C (water flow same as in heating cycle)
(5) Radiant power + natural convection; Hot water (in) *) 55°C; "C (water flow same as in heating cycle)
(6) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(7) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


HEATING CAPACITY WITH FAN OFF

DIMENSIONS

		UL26RI	UL26R	UL36RI	UL36R
Dimensions and weights					
A	mm	513	513	513	513
В	mm	980	980	1200	1200
С	mm	173	173	173	173
D	mm	93	93	93	93
Empty weight	kg	20	20	24	24

FCY

Fan coil unit for ducted installations

- Plug and play installation only in horizontal
- Reduced dimensions
- Inspectable ventilation group

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

They were designed and built for flush horizontal installation in any type of 2/4 pipe system and in combination with any heat generator, also at low temperatures.

Thanks to the availability of various versions and configurations, with a standard or oversized coil, it is easy to select the optimal solution for any requirement.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. The plastic augers are extractable for easy and efficient cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized main coil and the possible secondary coil have female gas water connections on the left side and the manifolds have air vents.

Reversibility of the water connections during installation only for units with a main standard or oversized coil or standard with BV accessory. Not reversible in all other configurations.

Air filter

Where present, the Coarse 25% Class according to ISO16890 (G2 according to EN779) air filter, which is easy to remove and clean.

Condensate drip

In addition to the internal tray, all units are equipped with a **configurable external condensate collection tray** during installation.

The kit comprises a single element, which is made up of two pieces: the **tray** with a double drain to be installed on the right or left, and the **drip moulding**, which must be installed if mounting the valve kit and may not be used for installations without the valves with limited technical spaces.

Control

The unit's electrical box is reversible, with the option of mounting it also on the same side of the water connections.

The standard equipment includes a single 10-pin control board as an interface for the electrical connections, the preparation for the VMF series thermostat fastener and the included supply of a DIN guide for the installation of a third-party control.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3	FCY
4	Size
4	2, 3, 4, 5, 6, 7
5	Main coil (1)
0	Standard
5	Oversized
6	Secondary coil
0	Without coil
1	Standard (2)
7	Version
С	Compact
U	Universal (3)
8	Connections
D	Water connections and electrical panel on the right
G	Water connections and electrical panel on the left
L	Hydraulic connections on the left and electric connections on the opposite side
R	Hydraulic connections on the right and electric connections on the opposite side
9	Options
Н	Electric heater (500W) (4)
P	With the photocatalytic device (4)
Х	No present
10	Filter
F	With air filter
Х	No present

Reversibility of the water connections during installation only for units with a main standard or oversized coil. They are not reversible for units with a secondary coil.
 Only for the standard main coil

SIZE AVAILABLE FOR VERSION

C version

Size	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
Versions produced (by size)																		
Versions available (by size)			•	•	•	•	•		•		•		•	•			•	•
Version U																		
Size		200	20	01	250	30	0	301	350	4	100	401	45	50	500	501		550
Versions produced (by size)																		
Versions available (by size)		•			•			•							•			•

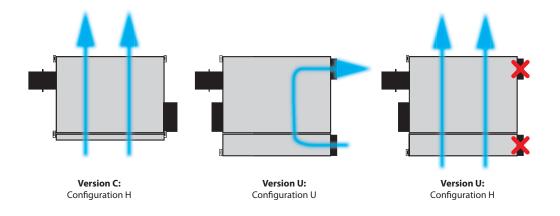
INSTALLATION VERSIONS AND EXAMPLES

C: Compact version.

Compact structure with opposed intake and delivery lines, for an "H"shaped configuration.

The unit is provided without openings and without flanges, which can be purchased separately as an accessory.

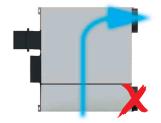
The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake flanges can be replaced by a Ø 125 or 100 mm flange for the intake of outside air. On the side, it can house Ø 125 or 100 mm flanges for the intake of outside air for delivery.

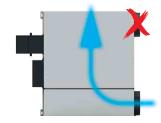

U: Universal version.

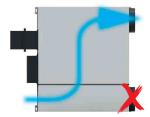
Structure for the "U" configuration with intake and delivery on the same side, opposite of the side with the water connections and the electrical box.

The unit is supplied with Ø 200 mm delivery and intake flanges.

The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake or delivery flanges can be replaced by a \emptyset 125 or 100 mm flange for the intake of outside

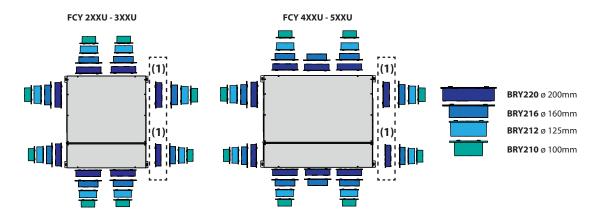

This version is called universal because it guarantees the possible installations permitted by the C version and adds additional possibilities.

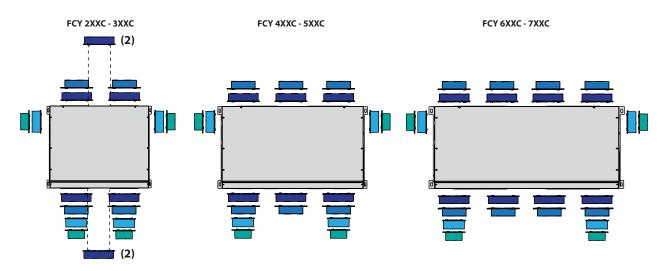



www.aermec.com

⁽³⁾ Only for sizes from 2 to 5(4) Options "P and H" are available only in units for 2-pipe systems.

POSSIBLE ALTERNATIVE CONFIGURATIONS OF THE UVERSION


The performance data for the configurations shown here are equal to those for the U version in the U configuration.


POSSIBLE POSITIONS FOR THE INSTALLATION OF THE BRY ACCESSORIES

In every unit it is possible to use a maximum of one flange accessory for the intake of outside air (BRY210 or BRY212). The number and position of the preparations for the installation of the BRY accessories varies based on the unit size and version.

The standard U version unit is supplied with 2 installed flanges (diameter 200 mm) in the U configuration.

The standard **C version unit is supplied without flanges**, which can be purchased separately as an accessory.

- 1 Accessories BRY220 supplied installed with the standard unit in the U version
- 2 There is a central preparation for the installation of an accessory BRY220 as an alternative to using the two more external preparations.

For the C version: it is necessary to use a number of recirculation air preparations at least equal to the maximum number possible for the size selected less 1.

Example: for FCY6xxC it is necessary to open at least 3 flange preparations for intake recirculation air and 3 flange preparations for delivery recirculation air (= maximum number - 1).

If the number of intake/delivery flanges used is less than the maximum possible for the considered size, their diameter must be 200 mm (BRY220).

For more information about the possible configurations for both versions, refer to the unit's selection software.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF system

VMF-E19Y: Thermostat to be fixed to the side of the fan coil, and fitted as standard with an air probe and water probe. Depending on the option chosen (P - X - H), the VMF-E19 must be completed with the compulsory electric completion unit accessory (VMF-YCC or VMF-YCCH).

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMF-YCC: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YCCH: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

Valves for main coil

VCY41 - 42 - for main coil: -

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections.

VDP15HF: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 230 V powered ac-

tuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HF24: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HFM: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with modulating function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

Valves for secondary coil

VCY44 - for the secondary coil: 3-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections.

Additional hot water coil.

BV: Single row hot water heat exchanger.

Valve support kit

KITVPI: Main coil VDP valve support kit. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

KITVPI12H: VDP valve support kit for the secondary coil. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

Installation accessories

BDP: 200 mm plug.

BRY: Flange with hydraulic "spigot" connection.

GMYC: Plate flange that makes it possible to install the accessory GM either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit.

AFY: the kit is comprised of a Coarse 25% class filter according to ISO16890 (G2 according to EN779) and four fastening brackets to insert in the grille GM17. To be used together with fan coils supplied without a filter installed in unit "X".

GMYU: Plate flange that makes it possible to install the accessory GM17 either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit.

DSC: Condensate drainage device.

BC: Condensate drip.

www.aermec.com

DAYKIT: Air deflector for U versions. To be installed in the delivery plenum, on the side opposite the air outlet, to facilitate the flow towards the delivery opening.

AMPY: Additional brackets for ceiling mount. Only for "U" version.

Accessories in multiple packages

DFA: Size of filter halved on the short side. The kit is comprised of two filters with a length equal to the standard filter and with half the height. This facilitates filter cleaning and/or replacement operations if there is a reduced space for vertical extraction. 20 piece package.

PPB: Protection for flanges to be used during installation to prevent dust from entering the unit before connecting the ducts. To be removed when making the connection. 100 piece package.

CHR12: Hydraulic connection kit for Ø 1/2" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 50 piece package.

CHR34: Hydraulic connection kit for Ø 3/4" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 30 piece package.

81

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
AFDCOOLD (1)	(•	•	•				•	•	•	•	•		•	•	•	•
AER503IR (1)	U		•		•	•	•	•	•	•	•	•	•						
CAT (2)	C		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SA5 (2)	U		•	•	•	•	•	•	•	•	•	•							
SIT3 (3)	C,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
CITE (A)	C		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIT5 (4)	U	•	•		•		•	•	•	•	•	•	•						
CW2 /2)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)	U		•	•	•	•	•	•	•		•	•	•						
CML (3)	C		•		•	•	•	•			•	•	•	•	•	•		•	
SW5 (2)	U		•	•	•	•	•	•	•	•	•	•	•						
TV (1)	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TX (1)	U	•	•	•	•	•	•	•	•	•	•	•	•						

- Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
WHE ELOY	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E19Y —	U																		
WME ED	(
VMF-E3 —	U	•	•		•	•			•	•	•	•							
VMF-E4DX —	(•		•	•		•	•	•	•	•			•	•	•	•	•
VINIT-E4UX —	U	•	•	•	•	•	•	•	•	•	•	•	•						
VME FAV	(•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
VMF-E4X —	U		•	•		•	•	•	•	•	•		•						
VMF-IR —	(•	•	•	•	•	•	•	•		•	•				•
VIVIT-IK —	U		•	•	•	•	•	•	•	•	•	•	•						
VME CW	(•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•
VMF-SW —	U		•		•	•	•	•	•	•	•	•	•						
VME CW1	C		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-SW1 —	U		•	•	•	•	•	•	•	•	•	•	•						
VME VCC	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-YCC —	U		•	•	•	•	•	•	•		•	•							
VME VCCII	(
VMF-YCCH —	U	•	•		•		•	•											

Additional heat only coil for only option "X" (without an electric heater and without a photocatalytic device)

Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
(BV122	-	-	BV132	-	-	BV142	-	-	BV142	-	-	BVZ800	-	-	BVZ800	-	-
U	BV122	-	-	BV132	-	-	BV142	-	-	BV142	-	-	-	-	-	-	-	-

Combined adjustment and balancing valve

	200	201	250	300	301	350	400	401	450
	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF
Main coil	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24
	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM	VDP15HFM
		VDP15HF			VDP15HF			VDP15HF	
Secondary coil	-	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-
		VDP15HFM			VDP15HFM			VDP15HFM	
	VDP15HF			VDP15HF			VDP15HF		
Additional coil "BV"	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-	-
	VDP15HFM			VDP15HFM			VDP15HFM		
	500	501	550	600	601	650	700	701	750
	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF	VDP15HF
	וווכו ועי	VUI IJIII			101 13111				
Main coil	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24	VDP15HF24
Main coil				VDP15HF24 VDP15HFM		VDP15HF24 VDP15HFM	VDP15HF24 VDP15HFM	VDP15HF24 VDP15HFM	VDP15HF24 VDP15HFM
Main coil	VDP15HF24	VDP15HF24	VDP15HF24		VDP15HF24				
Main coil Secondary coil	VDP15HF24	VDP15HF24 VDP15HFM	VDP15HF24		VDP15HF24 VDP15HFM			VDP15HFM	
	VDP15HF24	VDP15HF24 VDP15HFM VDP15HF	VDP15HF24		VDP15HF24 VDP15HFM VDP15HF			VDP15HFM VDP15HF	
	VDP15HF24	VDP15HF24 VDP15HFM VDP15HF VDP15HF24	VDP15HF24		VDP15HF24 VDP15HFM VDP15HF VDP15HF24			VDP15HFM VDP15HF VDP15HF24	
	VDP15HF24 VDP15HFM -	VDP15HF24 VDP15HFM VDP15HF VDP15HF24	VDP15HF24	VDP15HFM -	VDP15HF24 VDP15HFM VDP15HF VDP15HF24		VDP15HFM -	VDP15HFM VDP15HF VDP15HF24	

Valves combinations for main and secondary coil

3-way valve kit - main and secondary coil or accessory BV coil

	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
	VCY41	VCY41	VCY41	VCY42														
Main coil	VCY4124	VCY4124	VCY4124	VCY4224														
Casandamissail		VCY44																
Secondary coil	-	VCY4424	-	-	VCY4424													
Additional coil "BV"	VCY44																	
Additional coll BV	VCY4424		-	VCY4424	-													

2-way valve kit - main and secondary coil or accessory BV coil

	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
Main coil	VCYD1	VCYD1	VCYD1	VCYD2	VCYD2	VCYD2												
Maii Coii	VCYD124	VCYD124	VCYD124	VCY224	VCY224	VCY224												
Ca a and a mu a a il		VCYD1			VCYD1			VCYD1			VCYD1			VCYD1			VCYD1	
Secondary coil	-	VCYD124	-	-	VCYD124	-	-	VCYD124	-	-	VCYD124	-	-	VCYD124	-	-	VCYD124	-
Additional cail//DW//	VCYD1			VCYD1			VCYD1			VCYD1			VCYD1			VCYD1		
Additional coil "BV"	VCYD124	-	-	VCYD124	-	-	VCYD124	-	-	VCYD124	-	-	VCYD124	-	-	VCYD124	-	-

Valve support kit

Main coil VDP valve support kit.

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
KITVPI12 (1)	C,U	•	•	•															
VITVDI24 (2)	C				•	•	•	•			•	•	•	•		•		•	•
KITVPI34 (2)	U					•	•												

⁽¹⁾ Connections Ø 1/2"
(2) Connections Ø 3/4"

Secondary coil VDP valve support kit.

	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650
Main coil	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Secondary coil	-	KITVPI12H	-												
Additional coil "BV"	KITVPI12H	-	-												

	700	701	750
Main coil	-	-	-
Secondary coil	-	KITVPI12H	-
Additional coil "BV"	KITVPI12H	-	-

Ver

201

200

250

300

301

Connections ø 1/2"

Installation accessories

Plastic caps

Model

BDP200		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BDP200	U	•	•	•	•	•	•	•	•	•	•	•	•						
Flange																			
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DDV210 (1)	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BRY210 (1)	U		•	•	•	•	•	•	•		•	•	•						
DDV212 (2)	C		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
BRY212 (2)	U																		

400

401

450

500

501

550

600

601

650

700

701

750

350

DDV212 /2\	(•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•
BRY212 (2)	U		•		•	•			•		•	•							
DDV216 (2)	C	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•
BRY216 (3)	U		•		•	•	•	•	•	•	•								
DDV(220 (4)	C	•	•					•	•		•				•				•
BRY220 (4)	U	•	•	•	•	•	•	•	•	•	•	•	•						

⁽¹⁾ Ø 100 mm (2) Ø 125 mm (3) Ø 160 mm (4) Ø 200 mm

Flange for the installation of the delivery grille GM

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GMY200C (1)	(•	•	•															
GMY300C (1)	C				•	•	•												
GMY400C (1)	(•	•	•	•	•	•						
GMY600C (1)	(•	•		•	•	•

⁽¹⁾ only for "C" version.

Flange for the installation of the grille GM17

riunge for the	c mstanation	or tire g	inc or	****															
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
GMYU (1)	U			•		•	•	•		•									

⁽¹⁾ Only for "U" version with connections "G and D".

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
AFY100 (1)	U	•	•	•	•	•	•	•	•	•	•	•	•						
(1) To be used with fan	coils supplied with	nout a filter ir	nstalled in	unit "X" a	nd in asso	ciation wi	th GM17 a	nd GMYU.											
Air deflector																			
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DAYKIT	U		•	•	•		•	•	•	•			•						
Brackets for cei	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	75
AMPY (1)	U				•	•	•	•	•	•	•	•	•	000	001	030	700	701	-/30
(1) Only for "U" version.										ı									
Condensate dis	charge dev	ice kit																	
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DSC6 (1) —	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	II.																		

(1) Only for "L and R" connections.

Condensate drip

	r																		
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DC0 (1)	(•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BC8 (1)	TI.																		

⁽¹⁾ For horizontal installation.

Accessories in multiple packages

Hydraulic connection kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
CHR12 (1)	C,U	•	•	•															
CUD24 (2)	C				•	•	•	•		•	•	•	•	•	•			•	•
CHR34 (2)	U																		

⁽¹⁾ Hydraulic connections Ø 1/2"
(2) Hydraulic connections Ø 3/4"

Half-size filter kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DFA2	C,U	•		•															
DFA3	C,U				•	•	•												
DFA5	C,U							•	•	•	•	•	•						
DFA7	(•	•				

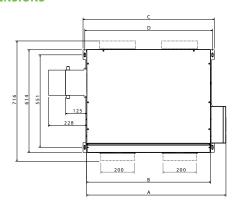
Protection for flange

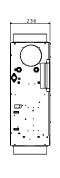
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
DDD	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PPB -	U				•	•	•			•	•	•	•						

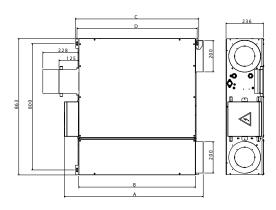
PERFORMANCE DATA - FCY_C AND FCY_U (CONFIGURATION OF THE H NOZZLES) - 2 PIPES

2-pipe

			FCY200C			FCY250C		_	FCY300C		_	FCY350C			FCY4000		_	FCY450C	
		2	4	6	2	4	6	1	4	6	1	4	6	1	3	6	1	3	6
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)	1																		
Heating capacity	kW	2,11	3,00	3,32	2,29	3,24	3,60	3,50	5,03	5,45	3,80	5,59	6,10	4,49	6,02	6,74	4,79	6,62	7,40
Water flow rate system side	I/h	182	258	285	197	179	310	301	433	469	327	481	524	386	517	580	412	569	637
Pressure drop system side	kPa	7	12	15	9	16	19	8	15	18	9	18	21	11	18	22	7	12	15
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,05	1,49	1,65	1,14	1,61	1,79	1,74	2,50	2,71	1,89	2,78	3,03	2,23	2,99	3,35	2,38	3,29	3,68
Water flow rate system side	l/h	160	224	248	196	277	308	299	430	466	325	478	521	383	514	576	409	566	633
Pressure drop system side	kPa	7	12	15	9	16	19	8	15	18	9	17	20	11	18	22	7	12	15
Cooling performance 7 °C / 12 °C (3)																			
Cooling capacity	kW	0,93	1,30	1,44	1,11	1,59	1,74	1,70	2,40	2,63	1,91	2,77	3,00	2,29	3,06	3,41	2,51	3,37	3,79
Sensible cooling capacity	kW	0,74	1,14	1,18	0,83	1,23	1,36	1,27	1,86	2,03	1,34	1,99	2,16	1,66	2,24	2,52	1,76	2,42	2,73
Water flow rate system side	l/h	160	224	248	191	273	299	292	413	452	328	476	516	394	526	586	432	580	652
Pressure drop system side	kPa	8	13	15	10	18	21	9	16	18	11	21	25	11	18	22	11	16	20
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Asynch	ronous								
Air flow rate	m³/h	148	226	254	148	226	254	263	404	446	263	404	446	346	487	559	346	487	559
High static pressure	Pa	21	50	63	21	50	63	21	50	61	21	50	61	25	50	66	25	50	66
Sound power level (inlet + radiated)	dB(A)	41,0	56,0	59,0	41,0	56,0	59,0	39,0	51,0	54,0	39,0	51,0	54,0	44,0	54,0	55,0	44,0	54,0	55,0
Sound power level (outlet)	dB(A)	37,0	52,0	55,0	37,0	52,0	55,0	35,0	47,0	49,0	35,0	47,0	49,0	40,0	50,0	52,0	40,0	50,0	52,0
Input power	W	28	41	74	28	41	74	38	55	78	38	55	78	53	63	102	53	63	102
Water coil																			
Water content	I		0,5			0,7			0,8			1,0			1,0			1,4	
Diametre hydraulic fittings															,				
Main coil	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"	
Power supply																			
Power supply										230V	~50Hz								
			FCVFOO			FCVFFAC			FCVCOOC			FCVCFAC			FCVZ00	_		FCVTFAC	
		1	FCY5000 5		1	FCY5500 5		1	FCY600C 4	7	1	FCY6500	7	2	FCY7000	7	2	FCY750C 5	7
		- 1		6 H	<u> </u>	 M	6 H	L	M		<u> </u>	4 M	 H	L				 M	 H
						IVI				п	l L	IVI	п						
Heating performance 70 °C / 60 °C (1)		L	IVI	- 11	<u> </u>			L	IVI						М	Н	L	IVI	
	LAM	L - C 27									7 ()						10.02		
Heating capacity	kW	5,27	7,22	7,59	5,81	8,25	8,67	6,86	8,55	10,00	7,63	9,72	11,51	8,77	10,10	10,52	10,02	11,65	12,09
Water flow rate system side	l/h	453	7,22 621	7,59 652	5,81 500	8,25 709	8,67 746	6,86 590	8,55 735	10,00 860	656	9,72 836	11,51 990	8,77 754	10,10 868	10,52 905	862	11,65 1002	12,09 1040
Heating capacity Water flow rate system side Pressure drop system side			7,22	7,59	5,81	8,25	8,67	6,86	8,55	10,00		9,72	11,51	8,77	10,10	10,52	-	11,65	12,09 1040
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	453 12	7,22 621 21	7,59 652 23	5,81 500 10	8,25 709 19	8,67 746 21	6,86 590 13	8,55 735 20	10,00 860 26	656 15	9,72 836 23	11,51 990 31	8,77 754 19	10,10 868 25	10,52 905 27	862	11,65 1002 15	12,09 1040 16
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	453 12 2,62	7,22 621 21 3,59	7,59 652 23 3,77	5,81 500 10 2,89	8,25 709 19 4,10	8,67 746 21 4,31	6,86 590 13	8,55 735 20 4,25	10,00 860 26 4,97	656 15 3,79	9,72 836 23 4,83	11,51 990 31 5,72	8,77 754 19 4,36	10,10 868 25 5,02	10,52 905 27 5,23	862 12 4,98	11,65 1002 15 5,79	12,09 1040 16 6,01
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	453 12 2,62 451	7,22 621 21 3,59 617	7,59 652 23 3,77 648	5,81 500 10 2,89 497	8,25 709 19 4,10 705	8,67 746 21 4,31 741	6,86 590 13 3,41 586	8,55 735 20 4,25 731	10,00 860 26 4,97 855	656 15 3,79 652	9,72 836 23 4,83 831	11,51 990 31 5,72 984	8,77 754 19 4,36 750	10,10 868 25 5,02 863	10,52 905 27 5,23 899	862 12 4,98 856	11,65 1002 15 5,79 996	12,09 1040 16 6,01 1034
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	453 12 2,62	7,22 621 21 3,59	7,59 652 23 3,77	5,81 500 10 2,89	8,25 709 19 4,10	8,67 746 21 4,31	6,86 590 13	8,55 735 20 4,25	10,00 860 26 4,97	656 15 3,79	9,72 836 23 4,83	11,51 990 31 5,72	8,77 754 19 4,36	10,10 868 25 5,02	10,52 905 27 5,23	862 12 4,98	11,65 1002 15 5,79	12,09 1040 16 6,01
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3)	I/h kPa kW I/h kPa	453 12 2,62 451 12	7,22 621 21 3,59 617 21	7,59 652 23 3,77 648 23	5,81 500 10 2,89 497 10	8,25 709 19 4,10 705	8,67 746 21 4,31 741 21	6,86 590 13 3,41 586	8,55 735 20 4,25 731	10,00 860 26 4,97 855 25	656 15 3,79 652 15	9,72 836 23 4,83 831 23	11,51 990 31 5,72 984 31	8,77 754 19 4,36 750	10,10 868 25 5,02 863 25	10,52 905 27 5,23 899 27	862 12 4,98 856 12	11,65 1002 15 5,79 996 15	12,09 1040 16 6,01 1034 16
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity	l/h kPa kW l/h kPa	453 12 2,62 451 12 2,68	7,22 621 21 3,59 617 21	7,59 652 23 3,77 648 23	5,81 500 10 2,89 497 10	8,25 709 19 4,10 705 19	8,67 746 21 4,31 741 21	6,86 590 13 3,41 586 13	8,55 735 20 4,25 731 19	10,00 860 26 4,97 855 25	656 15 3,79 652 15	9,72 836 23 4,83 831 23	11,51 990 31 5,72 984 31	8,77 754 19 4,36 750 19	10,10 868 25 5,02 863 25	10,52 905 27 5,23 899 27	862 12 4,98 856 12	11,65 1002 15 5,79 996 15	12,09 1040 16 6,01 1034 16
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kW W kW	453 12 2,62 451 12 2,68 1,94	7,22 621 21 3,59 617 21 3,65 2,70	7,59 652 23 3,77 648 23 3,82 2,83	5,81 500 10 2,89 497 10 2,91 2,07	8,25 709 19 4,10 705 19 4,08 2,94	8,67 746 21 4,31 741 21 4,28 3,09	6,86 590 13 3,41 586 13 3,37 2,70	8,55 735 20 4,25 731 19 4,08 3,34	10,00 860 26 4,97 855 25 4,65 3,92	656 15 3,79 652 15 4,15 2,93	9,72 836 23 4,83 831 23 5,02 3,60	11,51 990 31 5,72 984 31 5,67 4,12	8,77 754 19 4,36 750 19 4,24 3,24	10,10 868 25 5,02 863 25 4,97 3,83	10,52 905 27 5,23 899 27 5,18 4,02	862 12 4,98 856 12 4,69 3,53	11,65 1002 15 5,79 996 15 5,53 4,20	12,09 1040 16 6,01 1034 16 5,80 4,41
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW I/h h	453 12 2,62 451 12 2,68 1,94 461	7,22 621 21 3,59 617 21 3,65 2,70 628	7,59 652 23 3,77 648 23 3,82 2,83 657	5,81 500 10 2,89 497 10 2,91 2,07 500	8,25 709 19 4,10 705 19 4,08 2,94 702	8,67 746 21 4,31 741 21 4,28 3,09 736	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702	10,00 860 26 4,97 855 25 4,65 3,92 800	656 15 3,79 652 15 4,15 2,93 714	9,72 836 23 4,83 831 23 5,02 3,60 863	11,51 990 31 5,72 984 31 5,67 4,12 975	8,77 754 19 4,36 750 19 4,24 3,24 729	10,10 868 25 5,02 863 25 4,97 3,83 855	10,52 905 27 5,23 899 27 5,18 4,02 891	862 12 4,98 856 12 4,69 3,53 807	11,65 1002 15 5,79 996 15 5,53 4,20 951	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa kW W kW	453 12 2,62 451 12 2,68 1,94	7,22 621 21 3,59 617 21 3,65 2,70	7,59 652 23 3,77 648 23 3,82 2,83	5,81 500 10 2,89 497 10 2,91 2,07	8,25 709 19 4,10 705 19 4,08 2,94	8,67 746 21 4,31 741 21 4,28 3,09	6,86 590 13 3,41 586 13 3,37 2,70	8,55 735 20 4,25 731 19 4,08 3,34	10,00 860 26 4,97 855 25 4,65 3,92	656 15 3,79 652 15 4,15 2,93	9,72 836 23 4,83 831 23 5,02 3,60	11,51 990 31 5,72 984 31 5,67 4,12	8,77 754 19 4,36 750 19 4,24 3,24	10,10 868 25 5,02 863 25 4,97 3,83	10,52 905 27 5,23 899 27 5,18 4,02	862 12 4,98 856 12 4,69 3,53	11,65 1002 15 5,79 996 15 5,53 4,20	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW I/h kPa	453 12 2,62 451 12 2,68 1,94 461	7,22 621 21 3,59 617 21 3,65 2,70 628	7,59 652 23 3,77 648 23 3,82 2,83 657	5,81 500 10 2,89 497 10 2,91 2,07 500	8,25 709 19 4,10 705 19 4,08 2,94 702	8,67 746 21 4,31 741 21 4,28 3,09 736	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702	10,00 860 26 4,97 855 25 4,65 3,92 800 26	656 15 3,79 652 15 4,15 2,93 714	9,72 836 23 4,83 831 23 5,02 3,60 863	11,51 990 31 5,72 984 31 5,67 4,12 975	8,77 754 19 4,36 750 19 4,24 3,24 729	10,10 868 25 5,02 863 25 4,97 3,83 855	10,52 905 27 5,23 899 27 5,18 4,02 891	862 12 4,98 856 12 4,69 3,53 807	11,65 1002 15 5,79 996 15 5,53 4,20 951	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	I/h kPa kW I/h kPa kW I/h kPa type	453 12 2,62 451 12 2,68 1,94 461	7,22 621 21 3,59 617 21 3,65 2,70 628	7,59 652 23 3,77 648 23 3,82 2,83 657	5,81 500 10 2,89 497 10 2,91 2,07 500	8,25 709 19 4,10 705 19 4,08 2,94 702	8,67 746 21 4,31 741 21 4,28 3,09 736	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702	10,00 860 26 4,97 855 25 4,65 3,92 800 26	656 15 3,79 652 15 4,15 2,93 714 16	9,72 836 23 4,83 831 23 5,02 3,60 863	11,51 990 31 5,72 984 31 5,67 4,12 975	8,77 754 19 4,36 750 19 4,24 3,24 729	10,10 868 25 5,02 863 25 4,97 3,83 855	10,52 905 27 5,23 899 27 5,18 4,02 891	862 12 4,98 856 12 4,69 3,53 807	11,65 1002 15 5,79 996 15 5,53 4,20 951	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa kW I/h kPa type type	453 12 2,62 451 12 2,68 1,94 461 13	7,22 621 21 3,59 617 21 3,65 2,70 628 22	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26	656 15 3,79 652 15 4,15 2,93 714 16	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	I/h kPa kW I/h kPa kW I/h kPa type type m³/h	453 12 2,62 451 12 2,68 1,94 461 13	7,22 621 21 3,59 617 21 3,65 2,70 628 22	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central Asynctics	656 15 3,79 652 15 4,15 2,93 714 16 ifugal arronous 567	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 28	862 12 4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure	kW I/h kPa kW kW I/h kPa type type m³/h Pa	453 12 2,62 451 12 2,68 1,94 461 13 400 22	7,22 621 21 3,59 617 21 3,65 2,70 628 22	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central Asynch 920 71	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ironous 567 27	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated)	I/h kPa kW I/h kPa kW I/h kPa type type m³/h	453 12 2,62 451 12 2,68 1,94 461 13	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central Asynctics	656 15 3,79 652 15 4,15 2,93 714 16 ifugal arronous 567	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 28	862 12 4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate	kW I/h kPa kW kW I/h kPa type type m³/h Pa	453 12 2,62 451 12 2,68 1,94 461 13 400 22	7,22 621 21 3,59 617 21 3,65 2,70 628 22	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central Asynch 920 71	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ironous 567 27	9,72 836 23 4,83 831 23 5,02 3,60 863 23	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated)	kW I/h kPa kW I/h kPa type m³/h Pa dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12	8,25 709 19 4,10 705 19 4,08 2,94 702 21	8,67 746 21 4,31 741 21 4,28 3,09 736 23	6,86 590 13 3,41 586 13 3,37 2,70 580 15	8,55 735 20 4,25 731 19 4,08 3,34 702 21	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central 920 71 61,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal vironous 567 27 46,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20	10,10 868 25 5,02 863 25 4,97 3,83 855 26	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet)	kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 51,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 51,0	8,67 746 21 4,31 741 21 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15 567 27 46,0 44,0	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 54,0	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centri Asynch 920 71 61,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power	kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 51,0	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 51,0	8,67 746 21 4,31 741 21 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15 567 27 46,0 44,0	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 54,0	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centri Asynch 920 71 61,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Water coil	kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15 567 27 46,0 44,0	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centri Asynch 920 71 61,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,099 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Water coil Water content	kW I/h kPa kW I/h kPa type type m³/h Pa dB(A) dB(A)	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15 567 27 46,0 44,0	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central 4,65 920 71 61,0 60,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ronous 567 27 46,0 44,0	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Fran Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Water coil Water content Diametre hydraulic fittings Main coil	I/h kPa kW I/h kPa kW I/h kPa type m³/h Pa dB(A) dB(A) W	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15 567 27 46,0 44,0	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Central 4,65 920 71 61,0 60,0	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ironous 567 27 46,0 44,0 66	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Water coil Water content Diametre hydraulic fittings	I/h kPa kW I/h kPa kW I/h kPa type m³/h Pa dB(A) dB(A) W	453 12 2,62 451 12 2,68 1,94 461 13 400 22 45,0 41,0	7,22 621 21 3,59 617 21 3,65 2,70 628 22 50 55,0 80	7,59 652 23 3,77 648 23 3,82 2,83 657 24	5,81 500 10 2,89 497 10 2,91 2,07 500 12 400 22 45,0 41,0	8,25 709 19 4,10 705 19 4,08 2,94 702 21 592 50 55,0 80	8,67 746 21 4,31 741 21 21 4,28 3,09 736 23 627 56 57,0 53,0	6,86 590 13 3,41 586 13 3,37 2,70 580 15 567 27 46,0 44,0	8,55 735 20 4,25 731 19 4,08 3,34 702 21 770 50 56,0 89	10,00 860 26 4,97 855 25 4,65 3,92 800 26 Centtr 4,970 61,0 60,0 118	656 15 3,79 652 15 4,15 2,93 714 16 ifugal ironous 567 27 46,0 44,0 66	9,72 836 23 4,83 831 23 5,02 3,60 863 23 770 50 56,0 54,0 89	11,51 990 31 5,72 984 31 5,67 4,12 975 28	8,77 754 19 4,36 750 19 4,24 3,24 729 20 785 32 54,0 52,0	10,10 868 25 5,02 863 25 4,97 3,83 855 26 978 50 60,0 59,0	10,52 905 27 5,23 899 27 5,18 4,02 891 28	862 12 4,98 856 12 4,69 3,53 807 12 785 32 54,0 52,0	11,65 1002 15 5,79 996 15 5,53 4,20 951 16	12,09 1040 16 6,01 1034 16 5,80 4,41 997 17


(1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
Refer to the selection software for performance data related to the different configurations.


PERFORMANCE DATA FCY_C AND FCY_U (CONFIGURATION OF THE H NOZZLES) - 4 PIPES


			FCY201C			FCY3010	:		FCY401C			FCY501C			FCY601C			FCY7010	
		2	4	6	1	4	6	1	3	6	1	5	6	1	4	7	2	5	7
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)	•				•			•			•						•		
Heating capacity	kW	1,06	1,37	1,48	1,82	2,39	2,55	2,19	2,75	2,99	2,59	3,30	3,34	3,13	3,85	4,35	4,13	4,40	4,60
Water flow rate system side	l/h	93	120	130	159	210	223	192	240	262	226	290	301	274	336	381	361	385	403
Pressure drop system side	kPa	5	8	9	8	12	14	5	7	8	6	9	9	9	13	16	16	15	17
Cooling performance 7 °C / 12 °C (2)																			
Cooling capacity	kW	0,93	1,30	1,44	1,70	2,40	2,63	2,29	3,06	3,41	2,68	3,65	3,82	3,37	4,08	4,65	4,24	4,97	5,18
Sensible cooling capacity	kW	0,74	1,14	1,18	1,27	1,86	2,03	1,66	2,24	2,52	1,94	2,70	2,83	2,70	3,34	3,92	3,24	3,83	4,02
Water flow rate system side	l/h	160	224	248	292	413	452	394	526	586	461	628	657	580	702	800	729	855	891
Pressure drop system side	kPa	8	13	15	9	16	18	11	18	22	13	22	24	15	21	26	20	26	28
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Asynch	ronous								
Air flow rate	m³/h	148	226	254	263	404	446	346	487	559	400	592	627	567	770	920	785	978	1050
High static pressure	Pa	21	50	63	21	50	61	25	50	66	22	50	56	27	50	71	32	50	58
Sound power level (inlet + radiated)	dB(A)	41,0	56,0	59,0	39,0	51,0	54,0	44,0	54,0	55,0	45,0	55,0	57,0	46,0	56,0	61,0	54,0	60,0	62,0
Sound power level (outlet)	dB(A)	37,0	52,0	55,0	35,0	47,0	49,0	40,0	50,0	52,0	41,0	51,0	53,0	44,0	54,0	60,0	52,0	59,0	61,0
Input power	W	28	41	74	38	55	78	53	63	102	49	80	96	66	89	118	92	117	138
Diametre hydraulic fittings																			
Main coil	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø									1.	/2"								
Power supply																			
Power supply										230V	~50Hz								

(1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
Refer to the selection software for performance data related to the different con-

DIMENSIONS

FCY-C

Size		200	201	250	300	301	350	400	401	450	500	501	550	600	601	650	700	701	750
Dimensions and weights																			
A	mm	598	598	598	829	829	829	1050	1050	1050	1050	1050	1050	1171	1171	1171	1171	1171	1171
В	mm	507	507	507	735	735	735	960	960	960	960	960	960	1080	1080	1080	1080	1080	1080
(mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003	1122	1122	1122	1122	1122	1122
D	mm	529	529	529	760	760	760	982	982	982	982	982	982	1100	1100	1100	1100	1100	1100
Empty weight	kg	19	20	21	23	24	26	31	32	33	31	32	33	41	43	46	41	43	46

FCY - U

Size		200	201	250	300	301	350	400	401	450	500	501	550
Dimensions and weights													
A	mm	647	647	647	878	878	878	1100	1100	1100	1100	1100	1100
В	mm	508	508	508	739	739	739	960	960	960	960	960	960
C	mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003
D	mm	529	529	529	760	760	760	982	982	982	982	982	982
Empty weight	kg	22	23	24	26	27	29	35	36	37	35	36	37

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCYI

Fan coil unit for ducted installations

- Plug and play installation only in horizontal
- Reduced dimensions
- Inspectable ventilation group

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

They were designed and built for flush horizontal installation in any type of 2/4 pipe system and in combination with any heat generator, also at low temperatures.

Thanks to the availability of various versions and configurations, with a standard or oversized coil, it is easy to select the optimal solution for any requirement.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional

They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

The plastic augers are extractable for easy and efficient cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized main coil and the possible secondary coil have female gas water connections on the left side and the manifolds have air vents.

 Reversibility of the water connections during installation only for units with a main standard or oversized coil or standard with BV accessory. Not reversible in all other configurations.

Air filter

Where present, the Coarse 25% Class according to ISO16890 (G2 according to EN779) air filter, which is easy to remove and clean.

Condensate drip

In addition to the internal tray, all units are equipped with a **configurable external condensate collection tray** during installation.

The kit comprises a single element, which is made up of two pieces: the **tray** with a double drain to be installed on the right or left, and the **drip moulding**, which must be installed if mounting the valve kit and may not be used for installations without the valves with limited technical spaces.

Control

The unit's electrical box is reversible, with the option of mounting it also on the same side of the water connections.

The standard equipment includes a single 10-pin control board as an interface for the electrical connections, the preparation for the VMF series thermostat fastener and the included supply of a DIN guide for the installation of a third-party control.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCYI
5	Size
	2,3,4,5,7
6	Main coil (1)
0	Standard
5	Oversized
7	Secondary coil
0	Without coil
1	Standard (2)
8	Version
C	Compact
U	Universal (3)
9	Connections
D	Water connections and electrical panel on the right
G	Water connections and electrical panel on the left
L	Hydraulic connections on the left and electric connections on the opposite side
R	Hydraulic connections on the right and electric connections on the opposite side
10	Options
Н	Electric heater (500W) (4)
P	With the photocatalytic device (4)
Х	No present
11	Filter
F	With air filter
X	No present

Reversibility of the water connections during installation only for units with a main standard or oversized coil. They are not reversible for units with a secondary coil.
 Only for the standard main coil

SIZE AVAILABLE FOR VERSION

C version

C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1															
Size	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Versions produced (by size)															
Versions available (by size)	•	•	•		•		•		•		•	•	•	•	•
Version U															
Size		200	201	250	300	301		350	400	401	450	50	00	501	550
Versions produced (by size)															
Versions available (by size)		•		•					•				,		

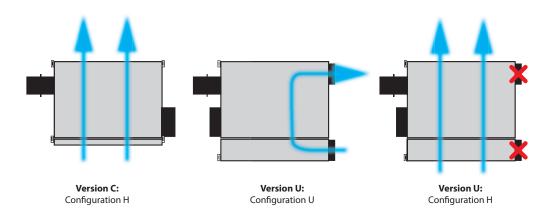
INSTALLATION VERSIONS AND EXAMPLES

C: Compact version.

Compact structure with opposed intake and delivery lines, for an "H"shaped configuration.

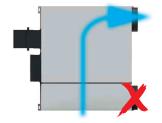
The unit is provided without openings and without flanges, which can be purchased separately as an accessory.

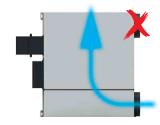
The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake flanges can be replaced by a Ø 125 or 100 mm flange for the intake of outside air. On the side, it can house Ø 125 or 100 mm flanges for the intake of outside air for delivery.

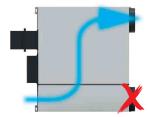

U: Universal version.

Structure for the "U" configuration with intake and delivery on the same side, opposite of the side with the water connections and the electrical box.

The unit is supplied with Ø 200 mm delivery and intake flanges.

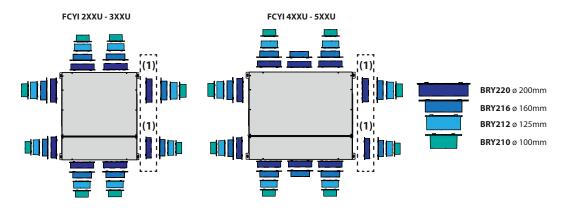

The delivery and intake part of the structure is designed to house flanges of Ø 200 mm (or Ø 160 mm) and one of the intake or delivery flanges can be replaced by a \emptyset 125 or 100 mm flange for the intake of outside

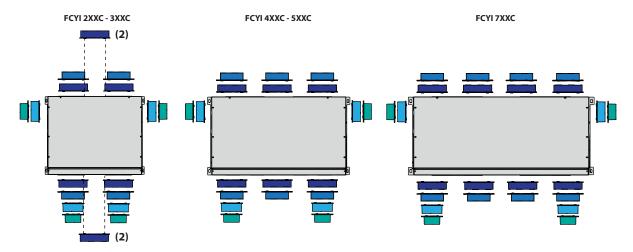

This version is called universal because it guarantees the possible installations permitted by the C version and adds additional possibilities.



⁽³⁾ Only for sizes from 2 to 5(4) Options "P and H" are available only in units for 2-pipe systems.

POSSIBLE ALTERNATIVE CONFIGURATIONS OF THE U VERSION


The performance data for the configurations shown here are equal to those for the U version in the U configuration.


POSSIBLE POSITIONS FOR THE INSTALLATION OF THE BRY ACCESSORIES

In every unit it is possible to use a maximum of one flange accessory for the intake of outside air (BRY210 or BRY212). The number and position of the preparations for the installation of the BRY accessories varies based on the unit size and version.

The standard U version unit is supplied with 2 installed flanges (diameter 200 mm) in the U configuration.

The standard **C version unit is supplied without flanges**, which can be purchased separately as an accessory.

- 1 Accessories BRY220 supplied installed with the standard unit in the U version
- 2 There is a central preparation for the installation of an accessory BRY220 as an alternative to using the two more external preparations.

For the C version:it is necessary to use a number of recirculation air preparations at least equal to the maximum number possible for the size selected less 1.

Example: for FCY6xxC it is necessary to open at least 3 flange preparations for intake recirculation air and 3 flange preparations for delivery recirculation air (= maximum number - 1).

In both versions if the number of intake/delivery flanges used is less than the maximum possible for the considered size, their diameter must be 200 mm (BRY220).

Example: for FCYI7xxC it is necessary to open at least 3 flange preparations for intake recirculation air and 3 flange preparations for delivery recirculation air (= maximum number - 1).

For more information about the possible configurations for both versions, refer to the unit's selection software.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF system

VMF-E19Y: Thermostat to be fixed to the side of the fan coil, and fitted as standard with an air probe and water probe. Depending on the option chosen (P - X - H), the VMF-E19 must be completed with the compulsory electric completion unit accessory (VMF-YCC or VMF-YCCH).

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

VMF-YICC: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YICCH: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

Valves for main coil

VCY41 - 42 - for main coil: -

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections.

VDP15HF: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 230 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HF24: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with On-Off function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

VDP15HFM: Combined adjustment and balancing valve, for 2 and 4 pipe systems to be installed outside the unit. It is comprised of a valve body without nipples with Ø 3/4'M water connections, a 24 V powered actuator with modulating function and a 5 m power supply cable. The valve is supplied without connections or hydraulic components.

Valves for secondary coil

VCY44 - for the secondary coil: 3-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

VCYD for main and secondary coil: The 2-way motorised valve kit for the primary or secondary coil or an additional optional heat only coil. The kit consists of a valve, the actuator and the corresponding hydraulic fittings. It can be installed both on fan coils with right-hand and left-hand connections.

Additional hot water coil.

BV: Single row hot water heat exchanger.

Valve support kit

KITVPI: Main coil VDP valve support kit. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

KITVPI12H: VDP valve support kit for the secondary coil. The kit consists of a bracket for supporting the valve and the corresponding hydraulic fittings.

Installation accessories

BDP: 200 mm plug.

BRY: Flange with hydraulic "spigot" connection.

GMYC: Plate flange that makes it possible to install the accessory GM either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit.

AFY: the kit is comprised of a Coarse 25% class filter according to ISO16890 (G2 according to EN779) and four fastening brackets to insert in the grille GM17. To be used together with fan coils supplied without a filter installed in unit "X".

GMYU: Plate flange that makes it possible to install the accessory GM17 either in the intake section or in the delivery section. The accessory is comprised of a plate flange with gasket and 4 screws to fasten it to the unit.

DSC: Condensate drainage device.

BC: Condensate drip.

DAYKIT: Air deflector for U versions. To be installed in the delivery plenum, on the side opposite the air outlet, to facilitate the flow towards the delivery opening.

AMPY: Additional brackets for ceiling mount. Only for "U" version.

Accessories in multiple packages

DFA: Size of filter halved on the short side. The kit is comprised of two filters with a length equal to the standard filter and with half the height. This facilitates filter cleaning and/or replacement operations if there is a reduced space for vertical extraction. 20 piece package.

PPB: Protection for flanges to be used during installation to prevent dust from entering the unit before connecting the ducts. To be removed when making the connection. 100 piece package.

CHR12: Hydraulic connection kit for Ø 1/2" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 50 piece package

CHR34: Hydraulic connection kit for Ø 3/4" two-way valves, with soft coil side O-ring seal and with a flat plate and system side gasket, which can also be used for installing flat seal two-way valves. 30 piece package.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
AFDEONID (1)	C								•		•			•		
AER503IR (1)	U	•	•	•	•	•	•	•	•	•	•	•	•			
CAT (2)	C						•						•	•		
SA5 (2)	U		•										•			
CW2 /2\	C	•	•	•	•	•		•	•	•	•	•	•	•	•	•
SW3 (2)	U		•								•		•			
CML (3)	C	•		•	•	•		•	•	•	•	•	•	•	•	•
SW5 (2)	U	•											•			
TV (1)	C	•		•		•								•		•
TX (1)	U	•	•	•	•	•	•	•		•						

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
VMF-E19Y	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E19Y	U								•			•				
VME E2	C		•		•		•	•				•	•	•		•
VMF-E3	U	•	•		•	•		•	•		•	•	•			
VIME EADY	C		•		•						•	•	•			•
VMF-E4DX	U	•	•	•	•	•	•	•			•	•	•			
WAS FAV	C	•				•		•	•		•		•			•
VMF-E4X	U	•	•	•		•	•			•	•					
VALE ID	C	•		•		•	•	•			•	•	•	•		•
VMF-IR	U	•	•	•			•				•					
VME CW	C	•	•	•		•	•	•		•	•			•	•	•
VMF-SW	U	•	•				•						•			
VIME CIMA	C	•	•			•	•	•		•	•	•	•	•	•	•
VMF-SW1	U	•	•	•		•		•		•	•		•			
VIME VICE	C	•	•	•		•		•			•		•			•
VMF-YICC	U	•	•	•	•	•	•	•	•	•	•	•	•			
VME VICCII	C	•		•		•		•					•			•
VMF-YICCH	U															

Additional heat only coil for only option "X" (without an electric heater and without a photocatalytic device)

				<u> </u>											
Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
(BV122	-	-	BV132	-	-	BV142	-	-	BV142	-	-	BVZ800	-	-
Ш	RV122	_	-	RV132	_	-	RV142	-	-	RV142	-	_	-	_	_

Combined adjustment and balancing valve

	200	201	250	300	301	350	400	401	450
	VDP15HF								
Main coil	VDP15HF24								
	VDP15HFM								
		VDP15HF			VDP15HF			VDP15HF	
Secondary coil	-	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-
		VDP15HFM			VDP15HFM			VDP15HFM	
	VDP15HF			VDP15HF			VDP15HF		
Additional coil "BV"	VDP15HF24	-	-	VDP15HF24	-	-	VDP15HF24	-	-
	VDP15HFM			VDP15HFM			VDP15HFM		
	500		501	550		700	701		750
	VDP15HF		VDP15HF	VDP15HF		VDP15HF	VDP15HF		VDP15HF
Main coil	VDP15HF24		VDP15HF24	VDP15HF24		VDP15HF24	VDP15HF24		VDP15HF24
	VDP15HFM		VDP15HFM	VDP15HFM		VDP15HFM	VDP15HFM		VDP15HFM
			VDP15HF				VDP15HF		
Secondary coil	-		VDP15HF24	-		-	VDP15HF24		-
			VDP15HFM				VDP15HFM		
	VDP15HF					VDP15HF			
	101 10111								
Additional coil "BV"	VDP15HF24		-	-		VDP15HF24	-		-

Valves combinations for main and secondary coil

3-way valve kit - main and secondary coil or accessory BV coil

3-way varve kit - ilialii alia secolit	ury com	n acces	SUI Y DV	COII											
	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Main coil	VCY41	VCY41	VCY41	VCY42											
Main Coil	VCY4124	VCY4124	VCY4124	VCY4224											
Cocondonycoil		VCY44			VCY44			VCY44			VCY44			VCY44	
Secondary coil	-	VCY4424	-	-	VCY4424	-	-	VCY4424	-	-	VCY4424	-	-	VCY4424	-

			200	201	250	200	201	250	400	401	450	500	E01		700	701	750
Additional coil "BV"			200 VCY44 VCY4424	201	250	300 VCY44 VCY4424	301	350	400 VCY44 VCY4424	401	450	500 VCY44 VCY4424	501 -	550 	700 VCY44 VCY4424	<u>701</u> -	750 -
									VC14424			VC14424			VC14424		
2-way valve kit -	main and s	econda	ry coil c		250 250	<i>coil</i> 300	301	350	400	401	450	500	501	550	700	701	750
Main coil			VCYD1 VCYD124	201 VCYD1 VCYD124	VCYD1 VCYD124	VCYD2 VCY224	VCYD2 VCY224	VCYD2 VCY224	VCYD2 VCY224	VCYD2 VCY224	VCYD2 VCY224	VCYD2 VCY224	VCYD2 VCY224	VCYD2 VCY224	700 VCYD2 VCY224	701 VCYD2 VCY224	VCYD2 VCY224
Secondary coil			-	VCYD1	-	-	VCYD1	-	-	VCYD1	-	-	VCYD1	-	-	VCYD1	-
Additional coil "BV"			VCYD1	VCYD124		VCYD1	VCYD124	_	VCYD1	VCYD124	_	VCYD1	VCYD124		VCYD1	VCYD124	_
			VCYD124			VCYD124			VCYD124			VCYD124			VCYD124		
Valve support k																	
Main coil VDP va																	
Model	Ver	200	201	250	300	301	350	40	0 40	01 4	50	500	501	550	700	701	750
KITVPI12 (1) KITVPI34 (2)	C,U C	•	•	•			•			•		•	•		•	•	•
(1) Connections Ø 1/2"	U				•	•	•	•		•	•	•	•	•			
(2) Connections Ø 3/4"	00		.*.														
Secondary coil VI	DP valve su	pport k	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Main coil																	
Secondary coil Additional coil "BV"			- KITVPI12H	KITVPI12H -	-	- KITVPI12H	KITVPI12H -	-	- KITVPI12H	KITVPI12H -	-	- KITVPI12H	KITVPI12H -	-	- KITVPI12H	KITVPI12H -	-
Connections ø 1/2	2"																
Installation acc	essories																
Plastic caps																	
Model	Ver	200	201	250	300	301	350	40	0 40	01 4	50	500	501	550	700	701	750
BDP200 —	C U	•	•	•	•	•	•	•			•	•	•	•	•	•	•
Flange																	
Model	Ver	200	201	250	300	301	350	40			50	500	501	550	700	701	750
BRY210 (1) ——	U	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
BRY212 (2)	C	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
	U	•	•	•	•	•	•	•		•	•	•	•	•			
BRY216 (3)	C U	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
BRY220 (4)	C	•	•	•	•	•	•							•	•	•	•
(1) Ø 100 mm (2) Ø 125 mm (3) Ø 160 mm (4) Ø 200 mm	•				•	•		•		-	-	•	-	-			
Flange for the ins						201	250	40	n 44	01 4		F00	F01	FF0	700	701	750
Model GMY200C (1)	Ver (200	201	250	300	301	350	40	v 41	01 4	50	500	501	550	700	701	750
GMY300C (1)	C				•	•	•										
CMV/400C (1)	(•		•	•	•	•	•			
GMY400C (1)															•	•	•
GMY600C (1)	(
	-	f the gr	ille GM	17													
GMY600C (1) (1) only for "C" version. Flange for the instance. Model	stallation o	f the gr 200	<i>ille GM</i> 201	250	300	301	350	40	0 40	01 4	50	500	501	550	700	701	750
GMY600C (1) (1) only for "C" version. Flange for the ins Model GMYU (1)	stallation o	200			300	301	350	40			50	500	501	550	700	701	750
GMY600C (1) (1) only for "C" version. Flange for the ins Model GMYU (1)	Ver U th connections "G	200 • i and D".	201	250											700	701	750
GMY600C (1) (1) only for "C" version. Flange for the insomodel GMYU (1) (1) Only for "U" version with Coarse 25% class Model	Ver U th connections "G	200 • i and D".	201	250					,	•					700	701	750 750
GMY600C (1) (1) only for "C" version. Flange for the ins Model GMYU (1) (1) Only for "U" version wi Coarse 25% class Model AFY100 (1)	Ver U th connections "G air filter ki Ver U	200 • i and D". if t 200	201	250	300	301	350	40	0 40	01 4	•	•	•	•			
GMY600C (1) (1) only for "C" version. Flange for the ins Model GMYU (1) (1) Only for "U" version wi Coarse 25% class Model AFY100 (1) (1) To be used with fan coi	Ver U th connections "G air filter ki Ver U	200 • i and D". if t 200	201	250	300	301	350	40	0 40	01 4	50	500	501	550			
GMY600C (1) (1) only for "C" version. Flange for the ins Model GMYU (1) (1) Only for "U" version wi Coarse 25% class Model AFY100 (1)	Ver U th connections "G air filter ki Ver U	200 • i and D". if t 200	201	250	300	301	350	40	D 41	D1 4	50	500	501	550			

Brackets	for	ceilina	mount.

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
AMPY (1)	U	•	•	•	•	•	•		•	•	•	•	•			

(1) Only for "U" version.

Condensate discharge device kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DSC6 (1)	C	•	•	•	•	•	•		•	•	•	•	•	•	•	•
עאכס (ו)	U				•	•			•	•		•				

⁽¹⁾ Only for "L and R" connections.

Condensate drip

conachisate an	קיי															
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DC0 (1)	C	•	•	•	•	•	•		•	•	•	•	•	•	•	•
BC8 (1)	U	•			•			•								

 $^{(1) \ \} For \ horizontal \ installation.$

Accessories in multiple packages

Hydraulic connection kit

Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
CHR12 (1)	C,U	•	•	•												
CUD24 (2)	C				•	•	•	•	•	•	•	•	•	•	•	•
CHR34 (2)	U						•									

⁽¹⁾ Hydraulic connections Ø 1/2"
(2) Hydraulic connections Ø 3/4"

Half-size filter kit

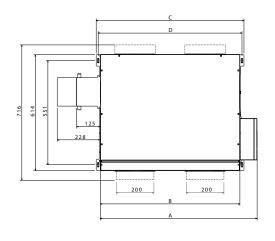
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
DFA2	C,U	•	•	•												
DFA3	C,U				•											
DFA5	C,U										•	•				
DFA7	C													•	•	•

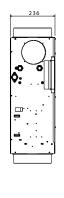
Protection for flange

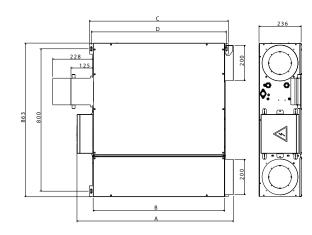
riotectionion	nunge															
Model	Ver	200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
PPB	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
rrb	U															

PERFORMANCE DATA - FCYI_C AND FCYI_U (H NOZZLES CONFIGURATION) 2 PIPES

		FCYI200C FCYI250C						П	CY13000	:	F	CY13500			CYI400	[ı	CY1450	C
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	1,81	3,16	3,34	2,01	3,40	3,62	3,08	4,83	5,23	3,32	5,43	5,83	3,96	5,85	6,34	4,10	6,44	6,96
Water flow rate system side	I/h	156	272	287	173	292	311	265	415	450	285	467	502	341	503	545	353	554	599
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	0,90	1,57	1,66	1,00	1,69	1,80	1,53	2,40	2,60	1,65	2,70	2,90	1,97	2,91	3,15	2,04	3,20	3,46
Water flow rate system side	l/h	155	270	288	172	291	308	263	413	447	284	464	499	339	501	542	351	550	595
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13
Cooling performance 7 °C / 12 °C (3)																			
Cooling capacity	kW	0,80	1,37	1,45	0,95	1,67	1,76	1,40	2,38	2,53	1,66	2,70	2,88	2,03	2,98	3,21	2,22	3,28	3,55
Sensible cooling capacity	kW	0,63	1,13	1,20	0,70	1,29	1,37	1,10	1,82	1,94	1,15	1,94	2,07	1,45	2,18	2,36	1,54	2,35	2,56
Water flow rate system side	l/h	138	236	249	163	287	303	241	409	435	285	464	495	349	512	552	382	564	610
Pressure drop system side	kPa	5	14	16	8	19	21	7	15	17	9	21	23	9	13	20	8	16	18
Fan	2																		
Air flow rate	m³/h	123	240	257	123	240	257	225	390	424	225	390	424	300	470	515	300	470	515
High static pressure	Pa	13	50	57	13	50	57	16	50	59	16	50	59	20	50	60	20	50	60
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59,0	37,0	57,0	59,0	36,0	50,0	53,0	36,0	50,0	53,0	43,0	53,0	55,0	43,0	53,0	55,0
Sound power level (outlet)	dB(A)	33,0	53,0	55,0	33,0	53,0	55,0	32,0	47,0	49,0	32,0	47,0	49,0	39,0	49,0	52,0	39,0	49,0	52,0
Input power	W	7	27	31	7	27	31	10	30	40	10	30	40	14	38	48	14	38	48
Diametre hydraulic fittings			4 /2//			4 /2//			2/4//			2/4//			2/4//			2/4//	
Main coil	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"	
Power supply										2201/	FOLL								
Power supply										2301	~50Hz								
			FC\	/1500C				FCY155	OC			FC	YI700C				FCY175	00	
		1		2	3		1	2		3	1		2	3		1	2		3
T = 00 (50 05 (5)		L		М	Н		L	М		Н	L		М	Н		L	М		Н
Heating performance 70 °C / 60 °C (1)	1111				7.40		F 00			. =4							0.50		40.45
Heating capacity	kW	5,39		7,28	7,63		5,92	8,37		8,71	5,33		8,34	8,88		6,17	9,52		10,15
Water flow rate system side	I/h	464		626	656	_	509	720		749	468		732	779	_	541	835		890
Pressure drop system side	kPa	12		22	23		11	20		21	8		17	20		5	11		12
Heating performance 45 °C / 40 °C (2)	LAM	2.00		2.26	2.70		2.04	410		4 22	2.77		4.15	4.40		2.46	4.00		r 00
Heating capacity	kW	2,68		3,26	3,79		2,94	4,16		4,33	2,67		4,15	4,40	_	2,46	4,69		5,00
Water flow rate system side	I/h	461		623	652		506	715		745	460		720	767		418	806		860
Pressure drop system side Cooling performance 7 °C / 12 °C (3)	kPa	12		22	23		12	22		23	8		18	20		3	11		12
Cooling capacity	kW	2,73		3,68	3,84		2,97	4,15		4,31	2,20		4,00	4,30		2.60	4,41		4,70
Cooling capacity Sensible cooling capacity	kW	1,98		2,73	2,85		2,97	2,98		4,31 3,12	1,71		4,00 3,00	3,20		2,60 1,90	3,30		3,50
Water flow rate system side	I/h	469		2,73 633	660		511	714		3,12 741	378		688	739		447	760		818
Pressure drop system side	kPa	13		22	25		13	22		25	7		18	20		447	11		12
Fan	NI a	13		22			נו	22		23	1		10			7	- 11		12
Air flow rate	m³/h	410		600	630		410	600		630	405		730	799		405	730		799
High static pressure	Pa	23		50	55		23	50		55	15		50	60		15	50		60
Sound power level (inlet + radiated)	dB(A)	45,0		56,0	57,0		45,0	56,0		57,0	38,0		55,0	58,0		38,0	55,0		58,0
Sound power level (outlet)	dB(A)	42,0		52,0	52,0		42,0	52,0		52,0	34,0		51,0	54,0		34,0	51,0		54,0
Input power	W W	18		50	60		18	50		60	21		61	78		21	61		78
Diametre hydraulic fittings	**	10		J0	00		10	30		30	41		VI.	- / 0		41	UI		70
Main coil	Ø									3,	/4"								
Power supply	v									31	•								
Power supply										230V	~50Hz								
(1) Room air temperature 20 °C d h · Water (in/out)	70.05/50.05																		


(1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
Refer to the selection software for performance data related to the different configurations.


PERFORMANCE DATA FCYI_C AND FCYI_U (H NOZZLES CONFIGURATION) 4 PIPES


			FCYI201C			FCYI301C			FCYI401C			FCYI501C			FCYI701C	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	M	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)																
Heating capacity	kW	0,94	1,42	1,49	1,60	2,34	2,47	1,99	2,69	2,85	2,62	3,59	3,45	2,99	3,70	3,92
Water flow rate system side	I/h	81	122	128	138	201	212	171	231	245	225	309	297	257	318	337
Pressure drop system side	kPa	4	9	9	6	12	13	4	7	8	6	9	9	8	12	13
Cooling performance 7 °C / 12 °C (2)																
Cooling capacity	kW	0,80	1,37	1,45	1,40	2,38	2,53	2,03	2,98	3,21	2,73	3,68	3,84	2,20	4,00	4,30
Sensible cooling capacity	kW	0,63	1,13	1,20	1,10	1,82	1,94	1,45	2,18	2,36	1,98	2,73	2,85	1,71	3,00	3,20
Water flow rate system side	l/h	138	236	249	241	409	435	349	512	552	469	633	660	378	688	739
Pressure drop system side	kPa	5	14	16	7	15	17	9	13	20	13	22	25	7	18	20
Fan																
Air flow rate	m³/h	123	240	257	225	390	424	300	470	515	410	600	630	405	730	799
High static pressure	Pa	13	50	57	16	50	59	20	50	60	23	50	55	15	50	60
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59,0	36,0	50,0	53,0	43,0	53,0	55,0	45,0	56,0	57,0	38,0	55,0	58,0
Sound power level (outlet)	dB(A)	33,0	53,0	55,0	32,0	47,0	49,0	39,0	49,0	52,0	42,0	52,0	52,0	34,0	51,0	54,0
Input power	W	7	27	31	10	30	40	14	38	48	18	50	60	21	61	78
Diametre hydraulic fittings																
Main coil	Ø		1/2"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø								1/2"							
Power supply																
Power supply									230V~50H	Z						

(1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
Refer to the selection software for performance data related to the different configurations.

DIMENSIONS

FCYI - C

7611 6																
Size		200	201	250	300	301	350	400	401	450	500	501	550	700	701	750
Dimensions and weights																
A	mm	598	598	598	829	829	829	1050	1050	1050	1050	1050	1050	1171	1171	1171
В	mm	507	507	507	735	735	735	960	960	960	960	960	960	1080	1080	1080
C	mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003	1122	1122	1122
D	mm	529	529	529	760	760	760	982	982	982	982	982	982	1100	1100	1100
Empty weight	kg	19	20	21	23	24	26	31	32	33	31	32	33	41	43	46

FCYI - U

Size		200	201	250	300	301	350	400	401	450	500	501	550
Dimensions and weights													
A	mm	647	647	647	878	878	878	1100	1100	1100	1100	1100	1100
В	mm	508	508	508	739	739	739	960	960	960	960	960	960
(mm	550	550	550	781	781	781	1003	1003	1003	1003	1003	1003
D	mm	529	529	529	760	760	760	982	982	982	982	982	982
Empty weight	kg	22	23	24	26	27	29	35	36	37	35	36	37

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCZ P - PO

Fan coil unit for ducted installations

Cooling capacity 0,65 ÷ 7,62 kW Heating capacity 1,45 ÷ 17,02 kW

- Very quiet
- Suitable for duct-type installations too
- Total comfort: reduced variations in temperature and relative humidity
- · Vertical and horizontal installation

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Ventilation group

Consisting of double suction centrifugal fans that are particularly silent, statically and dynamically balanced, and directly coupled with the motor shaft.

The motor is wired for single phase and has three speeds, with capacitor. The motor is fitted on sealed for life bearings and is secured on anti-vibration and self-lubricating mountings.

Extractable shrouds for easy, effective cleaning

Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized main coil and the possible secondary coil have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main coil, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

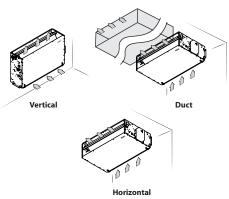
Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

In the PPC version, air purification is guaranteed by the Cold Plan


In the PPC version, air purification is guaranteed by the Cold Plasma purifier.

The purifier is able to reduce pollutants, decomposing their molecules using electrical charges, causing the water molecules in the air to split into positive and negative ions. These ions neutralise the molecules in

the gaseous pollutants, obtaining products normally present in clean air. The device is able to eliminate 90% of the bacteria. The result is clean, ionized air, free of foul odours.

VERSIONS

Flush-mounting and duct-type versions

FCZ_P

— Flush-mounting

FCZ PPC

Flush-mounting with Cold Plasma purifier

FCZ PO

- Flush-mounting, duct-type
- With useful head.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3	FCZ
4	Size 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
5	Main coil
0	Standard
5	Oversized
6	Secondary coil
0	Without coil

Field	1	Description
	1	Standard
	2	Oversized
7		Version
	Р	Flush-mounting, without cabinet
	P0	Flush-mounting, with boosted motor
	POR	Flush-mounting, with boosted motor, with water connections on right-hand side
	PPC	Flush-mounting with Cold Plasma purifier
	PR	Flush-mounting, without cabinet, with water connections on right-hand side

SIZE AVAILABLE FOR VERSION

Size		100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
Versions produced	(by size)																				
Varriana available	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Versions available	PO,POR	-	-	-	-		•	•	•	•		•		•	•	•	•		•		•
(by size)	PPC	•	-		•	•	-	-	•	•	-	-	•	•	-	-	•	•	-	-	•
Size		600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001			
Versions produced	(by size)																				
V!!!	P,PR	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•			
Versions available	PO,POR		•	•	•	•	•	•	•	-	-	-	-	•	•	•	-	-			
(by size)	PPC		-	-		•	-	-	•	•	-	-	•	•	-	•	•	-			

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

PXAI: Thermostat on the machine for controlling the fan coils (both with asynchronous and brushless motors), complete with water and air probes to be positioned in the relative seats, and a plastic support to fix it on the side of the unit. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, purifier devices (Cold Plasma and germicidal lamp), or radiant plate.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF system

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for the secondary coil: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

(Heating only) additional coil

BV: Single row hot water heat exchanger.

RX: Armoured electric coil with safety thermostat.

PCR: Galvanised plate protection for the controls and the electrical element.

Installation accessories

AMP: Wall mounting kit

DSC: Condensate drainage device.

BC: Condensate drip.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

MZA: Cabinet housing with fixed fins.

MZU: Cabinet housing with adjustable fins.

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

GM: Flow grid with adjustable louvers.

PA: Intake plenum in galvanised sheet metal, complete with suction couplings for circular-section ducts.

PAF: Intake plenum providing recovery and delivery on the same side, for all installations where the machine needs to be positioned outside the air conditioned rooms to minimise the noise levels and facilitate maintenance.

PM: Delivery plenum with circular flanges. Sandwich structure in hot galvanised steel, with interposed polyurethane foam (40 kg/m3). The

panel is 15 mm thick. It is installed in place of the delivery panel with a rectangular flange, using the same 4 self-threading screws.

RD: Straight delivery coupling for canalisation.

RDA: Straight suction coupling for canalisation.

RP: 90° delivery coupling. **RPA:** 90° suction coupling.

Accessories for ducting

MZC: Plenum with motorised dampers.

RDA_V: Straight intake connection with rectangular flange.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDA_C: Straight intake connection with circular flanges.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_V: Straight delivery coupling in galvanised sheet metal.

RDM_C: Straight discharge internally insulated, with circular flanges.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR																				
AER503IR (1)	PO,POR						•	•	•	•		•	•	•	•	•	•	•	•	•	
	PPC	•			•	•			•	•			•	•			•				•
	P,PR		•	•	•		•	•	•	•	•	•		•		•	•	•	•		•
PR0503	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			•	•			•	•			•	•				•			•
	P,PR	•	•				•		•				•	•	•	•				•	
PXAI	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			•	•			•	•			•	•			•	•			
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SA5 (2)	PO,POR					•	•	•		•	•	•	•		•	•	•	•	•	•	
	PPC				•								•	•			•				•
	P,PR		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)	PO,POR						•	•	•	•		•	•	•	•	•	•		•	•	
	PPC				•	•			•	•			•	•			•	•			•
	P,PR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	PO,POR						•					•	•	•	•		•		•	•	•
	PPC				•	•			•	•			•	•			•	•			•
	P,PR	•		•			•	•	•					•	•	•	•			•	
TX (1)	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•				•			•	•			•	•			•	•			
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	
WMT05 (1)	PO,POR					•	•	•	•	•	•	•	•		•	•			•	•	•
	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR		•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
WMT06 (1)	PO,POR						•		•	•		•					•		•		
	PPC	•			•				•					•			•	•			
	P,PR				•		•						•			•		•		•	
WMT10 (1)	PO,POR					•	•	•	•	•	•	•	•	•	•	•		•	•	•	•
	PPC																				

Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
	P,PR	•	•	•		•	•	•		•		•	•		•	•		•
AER503IR (1)	PO,POR	•		•				•								•		
	PPC	•			•	•			•	•			•	•		•		
	P,PR	•		•	•	•	•	•	•	•		•			•	•		•
PR0503	PO,POR			•	•	•	•	•							•	•		
	PPC	•			•	•			•	•			•			•	•	
	P,PR	•			•	•	•	•	•	•	•	•			•	•		•
PXAI	PO,POR	•	•	•	•	•	•	•	•					•	•	•		
	PPC	•			•	•			•	•						•		
	P,PR	•		•	•	•		•	•	•	•	•	•			•		
SA5 (2)	PO,POR	•	•	•	•	•	•	•	•					•	•	•		
	PPC	•			•				•	•			•					
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)	PO,POR				•				•									
	PPC	•			•								•			•		
	P,PR	•	•		•	•	•		•	•	•	•			•		•	•
SW5 (2)	PO,POR				•				•									
	PPC	•			•	•			•	•			•	•		•	•	
	P,PR										•						•	
TX (1)	PO,POR	•	•	•	•		•		•					•	•	•		
	PPC																•	
	P,PR		•						•									•
WMT05 (1)	PO,POR				•	•	•		•							•		
	PPC								•									
	P,PR				•	•	•		•		•	•			•	•		
WMT06 (1)	PO,POR							•										
	PPC				•	•				•				•		•	•	
	P,PR									•								•
WMT10 (1)	PO,POR	•		•		•		•						•		•		
. ,	PPC	•				•			•	•								

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

For more information about VMF system, refer to the dedicated documentation.

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	
VMF-E0X (1)	PO,POR						•	•	•	•	•	•		•	•	•	•	•	•		•
	PPC	•			•	•			•	•			•	•			•				•
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E19 (1)	PO,POR					•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E3	PO,POR					•	•	•	•		•		•		•	•	•	•		•	•
	PPC	•				•			•	•			•				•	•			
	P,PR			•		•					•		•		•		•			•	
VMF-E4DX	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4X	PO,POR					•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-IR	PO,POR					•	•		•		•	•	•	•	•	•			•	•	•
	PPC	•			•	•			•	•			•	•			•	•			•
	P,PR	•																			
VMF-SW	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	PPC	•																			
	P,PR			•		•		•	•	•	•		•		•	•	•	•	•	•	
VMF-SW1	PO,POR					•				•			•		•		•		•	•	
	PPC												•								

Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
	P,PR	•	•			•				•		•						•
VMF-E0X (1)	PO,POR	•			•	•			•						•	•		
	PPC	•				•			•	•				•		•		
	P,PR	•								•				•		•		•
VMF-E19 (1)	PO,POR	•																
	PPC	•							•	•			•	•		•	•	
	P,PR	•								•	•							
VMF-E3	PO,POR	•	•	•	•	•	•	•	•					•	•	•		
	PPC	•			•					•			•	•		•	•	
	P,PR	•			•	•			•	•		•			•	•		•
VMF-E4DX	PO,POR	•	•	•	•	•	•	•	•					•	•	•		
	PPC	•			•	•			•				•	•		•	•	
	P,PR	•	•		•		•		•	•	•		•	•	•		•	
VMF-E4X	PO,POR	•	•	•	•	•	•	•	•					•	•	•		
	PPC																	
	P,PR	•	•	•	•		•	•	•		•		•	•	•	•	•	•
VMF-IR	PO,POR				•		•											
	PPC	•			•				•				•	•			•	
	P,PR		•		•		•				•		•				•	
VMF-SW	PO,POR		•	•	•		•	•	•						•			
	PPC	•			•	•			•				•	•		•	•	
	P,PR	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	
VMF-SW1	PO,POR	•	•	•	•		•	•	•					•	•			
	PPC	•		-	•	•	-	-		•			•	•		•	•	

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Water valves

3 way valve kit

100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ41	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42
VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224
	VCF44	VCF44			VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
VCF44				VCF44				VCF44				VCF44			
VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-
500	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850
VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42
VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224
	VCF44	VCF44			VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
VCF44				VCF44				VCF44				VCF44			
VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-	VCF4424	-	-	-
900	901	950	1000	1001											
VCZ43	VCZ43	VCZ43	VCZ43	VCZ43											
VCZ4324	VCZ4324	VCZ4324	VCZ4324	VCZ4324											
	VCF45			VCF45											
-	VCF4524	-	-	VCF4524											
VCF45			VCF45												
VCF4524	-	-	VCF4524	-											
	VCZ41 VCZ4124 - VCF44 VCF4424 500 VCZ42 VCZ4224 - VCF44 VCF4424 900 VCZ43 VCZ4324 - VCZ4324 - VCZ4324 - VCF45	VCZ41 VCZ41 VCZ4124 VCZ4124 VCF4424 VCF4424 VCF4424 SOO SO1 VCZ42 VCZ422 VCZ4224 VCZ4224 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCZ432 VCZ432 VCZ432 VCZ4324 VCZ4324 VCZ4324 VCZ432 VCZ4324 VCZ432 VCZ4324 VCZ452 VCF45 VCF45	VCZ41 VCZ41 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCF44 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4224 VCZ42 VCZ42 VCZ422 VCZ4224 VCZ4224 VCZ4224 VCF4224 VCF4424 VC	VCZ41 VCZ41 VCZ41 VCZ41 VCZ4124 VCZ4224 VCZ42424 VCZ4224 VCZ4324 VCZ43	VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ4124 VCZ424 VCZ424 VCZ424 VCZ424 VCZ422 VCZ42 VCZ42 VCZ422 VCZ422 VCZ422 VCZ4224 VCZ4324 VCZ4324	VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ412 VCZ4124 VCZ424 VCZ424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ4224 VCF4424 VCF4424	WCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ4124 VCF4424 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ422 VCZ4224 VCF4424 VCF4424 <th< td=""><td>VCZ41 VCZ41 VCZ4124 VCF4424 VCZ42 VCZ422 VCZ422 VCZ4224 VCF4424 VCF442</td><td> VCZ41</td><td> VCZ41</td><td> VCZ41</td><td> VCZ41</td><td> WCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ422 VCZ422 VCZ4224 VCZ4224</td><td> VCZ41</td><td> VCZ41</td></th<>	VCZ41 VCZ4124 VCF4424 VCZ42 VCZ422 VCZ422 VCZ4224 VCF4424 VCF442	VCZ41	VCZ41	VCZ41	VCZ41	WCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ422 VCZ422 VCZ4224 VCZ4224	VCZ41	VCZ41

2 way valve kit	t																
		100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450
Main coil		VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD1	VCZD2							
		VCZD124	VCZD124	VCZD124	VCZD124	VCZD124	VCZD124	VCZD124	VCZD124	VCZD224							
Secondary coil		-	VCFD4	VCFD4	-	-	VCFD4	VCFD4	_	-	VCFD4	VCFD4	-	_	VCFD4	VCFD4	-
		VICED 1	VCFD424	VCZD424		LICED 4	VCFD424	VCZD424		LICED 1	VCFD424	VCFD424		ucen.	VCFD424	VCFD424	
Additional coil "BV"		VCFD4	-	-	-	VCFD424	-	-	-	VCFD4	-	-	-	VCFD424	-	-	-
		VCFD424				VCFD424				VCFD424				VCFD424			
		500	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850
		VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2	VCZD2
Main coil		VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224	VCZD224
Ca samdamı sail			VCFD4	VCFD4			VCFD4	VCFD4			VCFD4	VCFD4			VCFD4	VCFD4	
Secondary coil			VCFD424	VCFD424			VCFD424	VCFD424		-	VCFD424	VCFD424			VCFD424	VCFD424	-
Additional coil "BV"		VCFD4	_	_	_	VCFD4	_	_	_	VCFD4	_	_		VCFD4	_	_	
Additional Con DV		VCFD424				VCFD424				VCFD424				VCFD424			
							-										
		900	901	950	1000	1001	_										
Main coil		VCZD3	VCZD3	VCZD3	VCZD3	VCZD3											
		VCZD324	VCZD324	VCZD324	VCZD324	VCZD324	-										
Secondary coil		-	VCFD4	-	-	VCFD424											
		VCEDA	VCFD424		VCED4	VCFD424	-										
Additional coil "BV"		VCFD4 VCFD424	-	-	VCFD4 VCFD424	-											
		VCFD424			VCFD424												
Valve Kit for 4	pipe systems	- Requi	res a th	ermosto	at with	valve n	nanage	ment									
Model	Ver	100	101 1	02 150	200	201	202 2	50 300	301	302	350 4	00 401	402	450	500 5	01 502	2 550
VCZ1X4L (1)	P,PPC,PR	•		•	•			•									
VCZ 1A4L (1)	PO,POR				•			•									
VCZ1X4R (1)	P,PPC,PR	•		•	•			•									
VCL 1/411 (1)	PO,POR				•			•									
VCZ2X4L (1)	P,PO,POR,PPC,PR							•			•	•		•	•		•
VCZ2X4R (1)	P,PO,POR,PPC,PR							•			•	•		•	•		•
Model	Ver	600	601	602	650	700	701	702	750 8	00 8	01 80	2 850	900	901	950	1000	1001
VC72V4L (1)	P,PPC,PR																
VCZ2X4L (1)	PO.POR																

Combined Adjustment and Balancing Valve Kit

PO,POR P,PPC,PR

PO,POR P,PPC,PR

PO,POR P,PPC,PR

PO,POR

VCZ2X4R (1)

VCZ3X4L (1)

VCZ3X4R (1)

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•								
VJP060 (1)	PO,POR					•	•	•	•	•	•	•									
	PPC	•			•	•			•	•			•								
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•								
VJP060M (2)	PO,POR					•	•	•	•	•		•									
	PPC	•			•				•				•								
VID000 (1)	P,PO,POR,PR													•		•	•		•	•	•
VJP090 (1)	PPC													•			•				•
VIDOOM (2)	P,PO,POR,PR													•	•	•	•	•	•	•	
VJP090M (2)	PPC													•			•				•
Model	Ver	600	601	602	2 (550	700	701	702	750	8	00	801	802	850	900	90	1 9	950	1000	1001
VID000 (1)	P,PO,POR,PR	•	•	•		•															
VJP090 (1)	P,PO,POR,PR PPC	•	•	•		•															
			•	•																	
VJP090 (1) 	PPC	•																			
	PPC P,PO,POR,PR	•					•	•	•	•		•	•	•	•				•	•	•
	PPC P,PO,POR,PR PPC	•	•	•		•	•	•	•	•			•	•	•	•	•		•	•	•
VJP090M (2)	PPC P,PO,POR,PR PPC P,PR	•	•	•		•						•	•	•	•					•	•
VJP090M (2)	PPC P,PO,POR,PR PPC P,PR PO,POR	•	•	•		•	•			•			•	•		•			•		•
VJP090M (2)	PPC P,PO,POR,PR PPC P,PR PO,POR PPC	•	•	•		•	•	•	•	•		•			•	•	•				

^{(1) 230}V~50Hz (2) 24V

 $^{(1) \ \} The \ valves \ can \ be \ combined \ with \ the \ units \ if \ there \ is \ a \ control \ panel \ for \ managing \ them.$

(Heating only) additional coil

Heating only additional coil

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
BV117 (1)	P,PR	•																			
BV122 (1)	P,PO,POR,PR					•															
BV132 (1)	P,PO,POR,PPC,PR									•											
BV142 (1)	P,PO,POR,PPC,PR													•				•			
Model	Ver	600	601	602	2 6	50	700	701	702	750	Q	00	801	802	850	900	90		50	1000	1001
									702	750	01	00	0U I	002	030	700	90	. ,	'30	1000	
DV1.C2 /1\	P,PR								702	750	01	JU	001	002	030	•	90	,	750	•	
BV162 (1)									702	750	01	JU	001	002	830		90	,	750	•	
BV162 (1) BVZ800 (1)	P,PR	•					•		702	750	01	•	001	002	830	•	90	,		•	

⁽¹⁾ Not available for sizes with oversized main coil.

Electric coil - Requires a thermostat with heater management. Not available for sizes with an oversized main coil.

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500
RX17 (1)	P,PR	•																
RX22 (1)	P,PO,POR,PR																	
RX32 (1)	P,PO,POR,PPC,PR									•								
RX42 (1)	P,PO,POR,PPC,PR													•				
RX52 (1)	P,PO,POR,PPC,PR																	•
Model	Ver	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850	900	901
RX62 (1)	P,PO,POR,PPC,PR																	
DV7000 (1)	P,PPC,PR								•									
RXZ800 (1)	PO,POR				•				•									
Model	Ver			950	0					1000						1001		
RX62 (1)	P,PR																	

⁽¹⁾ It requires a thermostat with heater management and the units without a housing also require the PCR1 or PCR2 accessory, depending on the unit. The heater is not available for sizes with a larger main battery.

Galvanised plate protection for the controls and the electrical element.

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500
PCR1	P,PO,POR,PR	•				•				•				•				•
Model	Ver	501	502	550	600	601	602	650	700	701	702	750	800	801	802	850	900	901
PCR1	P,PO,POR,PR				•				•				•					
PCR2	P,PO,POR,PR																•	
Model	Ver			950)					1000						1001		
PCR2	P,PO,POR,PR																	

Installation accessories

Wall mounting kit

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR		•													•					•
AMP20	PO,POR						•	•		•				•		•	•				
	PPC	•			•	•			•	•			•	•			•	•			•
Model	Ver	600	601	602	2 6	550	700	701	702	750	80	0	801	802	850	900	90	1	950	1000	1001
										,,,,	- 00	•	001	002	050						
	P,PR	•					•	•	•	•	•		•	•	•	•	•		•	•	•
AMPZ	P,PR PO,POR	•	•	•			•	•	•	•	•		•	•	•	•	•			•	•

Condensate drip

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BCZ4 (1)	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	PPC	•			•				•	•				•			•				•
	Р			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
DC7E (2)	PO,POR					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BCZ5 (2)	PPC	•			•	•			•	•			•	•			•	•			•
	PR	•		•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•

Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	95	0	1000	1001
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•
CZ4 (1)	PO,POR			•															
	PPC	•			•	•			•	•			•	•		•			
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•						
SCZ5 (2)	PO,POR	•	•	•	•	•	•	•	•										
	PPC	•			•	•			•	•			•						
	P,PR													•	•	•		•	•
SCZ6 (2)	PO,POR													•	•	•			
	PPC													•				•	
 For vertical ins For horizontal i 																			
Aodel	Ver	100	101	102 1	150 200	201	202	250	300	301 30	2 350	400	401	402	450	500	501	502	55
iouei	P,PR	•	•			. 201			•		. 330	+00	+01	+02	+30	•			
C8 (1)	PO,POR			-	•	•	•	•	•	• •		•	•	•	•	•	•	•	
(1)	PPC							•	•		•	•			•	•			
						700	704				204		050					4000	400
Model	Ver P,PR	600	601	602	650	700	701	702	750	800	801	802	850	900	901	95	0	1000	100
SC8 (1)	PO,POR	•	· ·	•	•	•	•	•	•	•	•	•	•						
ico (1)	PPC	<u> </u>		<u>·</u>	· ·	•		<u> </u>	·				•						
	P,PR	•				-			•	-			-						
IC9 (1)	PO,POR													·	•	•			
(•)	PPC													•	-				
1) For horizontal i																			
	recirculation de	ovico																	
			101	102 1	150 300	201	202	250	200	201 20) 250	400	401	402	AFO	EOO	EV1	Enz	
Model	Ver P,PR	100	101			201	202	250	300	301 30	350	400	401	402	450	500	501	502	55
OSCZ4 (1)	PO,POR	•	•	•	• •	•	•	•	·	• •		•	·	·	•	•	•	·	
J3CZ4 (1)	PPC					•	•	·-	÷	• •		·		•	÷	÷	•	•	
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	95		1000	100
	P,PR	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•
	00.000																		
DSCZ4 (1)	PO,POR	•	•	•	•	•	•	•	•					•	•	•			
	PPC				•	•			•	•			•	•	•	•		•	
					•	•			•		collection	trays.	•		•			•	
	PPC e mounted if even just on				•	•	e VCZ1-2		•		collection	trays.	•		•			•	
1) DSC4 cannot b	PPC e mounted if even just on forma Ver	e of these a		s is also inst	•	• AMPZ valv			•			trays.	401		450			502	55
1) DSC4 cannot be Ventilcassa: Model	PPC e mounted if even just on forma Ver P,PR	e of these	accessorie	s is also inst	• talled: AMP -	• AMPZ valv	e VCZ1-2	-3-4 X4L/F	• R and all ti	ne condensate				•	,	•			55
1) DSC4 cannot by /entilcassar Model	PPC e mounted if even just on forma Ver P,PR PPC	e of these a	accessorie	s is also inst	talled: AMP -	• AMPZ valv	e VCZ1-2	-3-4 X4L/F	• R and all ti	ne condensate				•	,	•			55
1) DSC4 cannot b	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR	e of these a	accessorie	s is also inst	• talled: AMP -	• AMPZ valv	e VCZ1-2	3-4 X4L/f	• R and all ti	ne condensate				•	,	•			55
1) DSC4 cannot be Ventilcassar Model CHF17	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC PPC	e of these a	accessorie	s is also inst	• talled: AMP -	AMPZ valv	e VCZ1-2	3-4 X4L/F 250	R and all th	301 30	2 350			•	,	•			55
1) DSC4 cannot be when the control of the control o	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR	e of these a	accessorie	s is also inst	• talled: AMP -	AMPZ valv	e VCZ1-2	3-4 X4L/f	300	ne condensate	2 350			•	,	•			55
1) DSC4 cannot be when the control of the control o	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC	e of these a	accessorie	s is also inst	• talled: AMP -	AMPZ valv	e VCZ1-2	3-4 X4L/f	R and all th	301 30	2 350	400	401	402	450	500	501	502	
1) DSC4 cannot b /entilcassar Model CHF17 CHF22	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR	e of these a	accessorie	s is also inst	• talled: AMP -	AMPZ valv	e VCZ1-2	3-4 X4L/f	300	301 30	2 350	400		•	450	500			
1) DSC4 cannot be fentile as said odel CHF17 CHF22 CHF32 CHF42	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC	e of these a	101	s is also inst	talled: AMP -	AMPZ valv	e VCZ1-2-	250	300	301 30.	2 350	400	401	402	450	500	501	502	
1) DSC4 cannot be Ventilcassar Model CHF17	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver	e of these a	accessorie	s is also inst	• talled: AMP -	AMPZ valv	e VCZ1-2	3-4 X4L/f	300	301 30	2 350	400	401	402	450	500	501	502	
1) DSC4 cannot b Ventilcassar Model CHF17 CHF22 CHF32 CHF42 Model	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR	100 · · · · · · · · · · · · · · · · · ·	101	s is also inst	talled: AMP -	AMPZ valv	202	250 • • • • • • • • • • • • • • • • • • •	300	301 30.	2 350	400	401	402	450	500	501	502	100
1) DSC4 cannot b Ventilcassar Model CHF17 CHF22 CHF32 CHF42 Model	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR	100 · · · · · · · · · · · · · · · · · ·	101 •	102 1 ·	talled: AMP - 150 200	. AMPZ valv 201	e VCZ1-2- 202 •	250 • •	300 	301 303 303 303 303 303 303 303 303 303	2 350	400		402	450			. 1000	100
1) DSC4 cannot be fentile as said odel HF17 HF22 HF32 HF42 Model	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR	100 · · · · · · · · · · · · · · · · · ·	101 •	102 1 · · · · · · · · · · · · · · · · · ·	talled: AMP - 150 200	. AMPZ valv 201 .	202	250 • • • • • • • • • • • • • • • • • • •	300	301 30.	2 350	400	401 •	402	450			502	555
1) DSC4 cannot be //entilcassar Model CHF17 CHF22 CHF32 CHF42 Model	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC	100	101 •	102 1 · · · · · · · · · · · · · · · · · ·	talled: AMP - 150 200	. AMPZ valv 201	202	250 • • • • • • • • • • • • • • • • • • •	300 	301 303 303 303 303 303 303 303 303 303	2 350	400		402	450			. 1000	100
1) DSC4 cannot be /entilcassar Model HF17 HF22 HF32 HF42 Model HF62 Cabinet hou	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PO,POR PPC Ver P,PR PO,POR PPC Vsising with fixed in	600	101 · · · · · · · · · · · · · · · · · ·	102 1 · · · · · · · · · · · · · · · · · ·	650	700 .	202	250 	750	800 .	801			900					1000
1) DSC4 cannot be //entilcassar Model CHF17 CHF22 CHF42 Model CHF62 Cabinet how Model	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC	100	101 •	102 1	talled: AMP - 150 200	700 .	202	250 • • • • • • • • • • • • • • • • • • •	300 	301 303 303 303 303 303 303 303 303 303	801	400		402	450			. 1000	1000
1) DSC4 cannot be Ventilcassar Model CHF17 CHF22 CHF32 CHF42 Model CHF62 Cabinet how Model MZA100	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PO,POR PPC Ver P,PR PO,POR PPC Using with fixed in Ver	600 	101 • 601 • 101	102 1	650	700 .	202	250 	750	800 .	801			900					1000
1) DSC4 cannot be Ventilcassar Model CHF17 CHF22 CHF32 CHF42 Model CHF62 Cabinet how MOdel MZA100 MZA200	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Using with fixed in Ver P,PPC,PR	600 	101 • 601 • 101	102 1	650	700	202 	250 	750	800 .	801			900					1000
1) DSC4 cannot be Ventilcassar Model CHF17 CHF22 CHF32 CHF42 Model MCA100 MCA200 MCA300	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Using with fixed in the fix	600 	101 • 601 • 101	102 1	650	700	202 	250 	750	800	801			900					1000
1) DSC4 cannot be sent leaves and sent leaves	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ising with fixed in P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR	600	601 · · · · · · · · · · · · · · · · · · ·	602	650	700	701	702	750 · · · · · · · · · · · · · · · · · · ·	800	801	400	850				501		1000
1) DSC4 cannot be seemed to be	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC ver P,PR PO,POR PPC Ver P,PPC,PR	600 600 600	601 601	602	650 	700 201	701	702 	750 750	800	2 350 	400	850	900	901	95500	501		1000
1) DSC4 cannot be sentile as a	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ising with fixed in P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR	600 	601 · · · · · · · · · · · · · · · · · · ·	602	650	700	701	702	750 · · · · · · · · · · · · · · · · · · ·	800	801	400	850	900	901 450		501		555
1) DSC4 cannot be /entilcassar Model CHF17 CHF22 CHF32 CHF42 Model MZA100 MZA200 MZA300 MZA500 MOdel MZA800 MOdel MZA800	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC ver P,PR PO,POR PPC Ver P,PPC,PR	600 600 600	601 601	602	650 	700 201	701	702 	750 750	800	2 350 	400	850				501		555
1) DSC4 cannot b Ventilcassar Model CHF17 CHF22 CHF32 CHF42 Model CHF62 Model MZA100 MZA200 MZA300 MZA500 MZA900 MZA900	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ising with fixed in P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR P,PPC,PR	600	601 	602	650 	700 201	701	702 	750 750	800	2 350 	400	850	900	901 450		501		555
1) DSC4 cannot b Ventilcassar Model CHF17 CHF22 CHF32 CHF42 Model CHF62 Model MZA100 MZA200 MZA300 MZA500 MZA900 MZA900	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Using with fixed in Ver P,PPC,PR	600	601 	602 	650 	700	701	702 	750 750	800	801	400	850	900	901 450		501		555
1) DSC4 cannot be left for the	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ising with fixed in PPC,PR P,PPC,PR P	600	101 · · · · · · · · · · · · · · · · · ·	602 	650	700	701 · · · · · · · · · · · · · · · · · · ·	702 	750	800	801	400	401 	900 	450 	500 	501		1000
1) DSC4 cannot be sentile as a same sentile as a	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Using with fixed in PPC,PR P,PPC,PR P	600	101	602 	650 	700	701 · · · · · · · · · · · · · · · · · · ·	702 	750	800	801	400	401 	900 	450 	500 	501		555
1) DSC4 cannot be left for the	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Using with fixed in PPC,PR P,PC,PR	600	101	602 	650 	700 201 201 201 201	701 · · · 202 · · · · · · · · · · · · · · ·	702 	750	800	801	400	401 	900 	450 	500 	501		555
1) DSC4 cannot by fentilcass and fen	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Using with fixed in PPC,PR P,PC,PR	600	101	602 	650 	700 201 201 201 201	701 · · · 202 · · · · · · · · · · · · · · ·	702 	750	800	801 	400	401 	900 	450 	500 	501		555
1) DSC4 cannot be lentilcassaria Model HHF17 HHF22 HHF42 Model HHF62 Cabinet hou MAZA200 MAZA200 MAZA300 MAZA500 MOdel MZA900	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ising with fixed is Ver P,PPC,PR	600	101 · · · · · · · · · · · · · · · · · ·	602 	650 650 	700 201 - 700 201 201	701 · · · · · · · · · · · · · · · · · · ·	702 	750 · · · · · · · · · · · · · · · · · · ·	800	2 350 	400 	401 850 401 401		450 901 450 450	500 	501	502 	555
I) DSC4 cannot b //entilcassar //odel HHF17 HHF22 HHF32 HHF42 //odel AZA100 AZA200 AZA200 AZA300 AZA500 //AZA500	PPC e mounted if even just on forma Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC Ver P,PR PO,POR PPC ver P,PR PO,POR PPC ver P,PPC,PR	600	101	602 	650 	700 201 201 201 201	701 · · · 202 · · · · · · · · · · · · · · ·	702 	750	800	801 	400 	401 	402 	450 	500 	501		555

Wall mounting and duct type installation accessories

Lower	intake	arille

Lower intal	ke grille																		
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500	501	502	550
GA17	P,PR	•	•																
UA17	PPC	•			•														
GA22	P,PO,POR,PR				•	•	•	•											_
UNZZ	PPC				•			•											
GA32	P,PO,POR,PR								•		•								
UNJZ	PPC								•		•								
GA42	P,PO,POR,PR											•	•	•	•	•	•	•	•
UA42	PPC											٠			•	٠			•
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	95	0 1	1000	1001
	P,PR	•	•	•	•	•	•	•		•	•	•		•	•	•			•
GA62	PO,POR																		
	PPC	•			•	•				•				•		•			
					-														
Intake grill	es with fixed lou	vers an	d filte	r															
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500	501	502	550
CAF17	P,PR	•	•																
GAF17	PPC				•									•					
C1522	P,PO,POR,PR				•		•												
GAF22	PPC																		
C1500	P,PO,POR,PR								•										
GAF32	PPC																		
****	P,PO,POR,PR																		
GAF42	PPC														•				•
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	95	Λ 1	1000	1001
Model	P,PR	•	•	•	•			102	730	•	•		•	•	701	•		•	•
GAF62	PO,POR	<u>:</u>	<u>:</u>	<u> </u>	<u> </u>	·-	÷	÷	<u> </u>	•	•	•	•	÷	<u>:</u>			•	•
UNI UZ	PPC	<u> </u>			<u> </u>	·-	•	•	·					<u> </u>					
	rrc	<u> </u>			<u> </u>	<u> </u>			<u> </u>	<u> </u>			<u> </u>	<u> </u>		<u> </u>		<u> </u>	
Delivery ar	illes with adjusto	able loi	uvers																
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500	501	502	550
	P,PR	•	•			201	202	230	300	301 30	2 330	100	701	702	730	300	301	302	330
GM17	PPC	•	<u> </u>		•														
	P,PO,POR,PR				•		•												
GM22	PPC				•			•											
	P,PO,POR,PR																		
GM32	PPC								·-	•	•								
									•		•			-					
GM42	P,PO,POR,PR											•	•	•	•	•	•	•	•
	PPC											•			•	•			•
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	95	0 1	1000	1001
	P,PR	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
GM62	PO,POR	•	•	•	•	•	•	•	•					•	•	•			
	PPC	•			•	•			•	٠			•	•		•		•	
	um in sheet met																		
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500	501	502	550
PA17	P,PR	•	•	•	•														
	PPC	•			•														
PA22	P,PO,POR,PR				•	٠	٠	•											
1722	PPC				•			•											
PA32	P,PO,POR,PR								•		•								
1 11 12	PPC								•		•								
	P,PO,POR,PR											•	•						
DAAO						_													
PA42	PPC														<u> </u>				
	PPC	600	401	602	650	700	701	702	750	900	201		9EN	000			0 1	1000	1001
PA42 Model	PPC Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	95		1000	1001
Model	PPC Ver P,PR	•	•	•	•	•	•	•	•	800	801		850	•	901	95			1001
	PPC Ver P,PR PO,POR	•			•	•			•	•		802	•	•	901	95		•	
Model	PPC Ver P,PR	•	•	•	•	•	•	•	•			802		•	901	95			

Model Prem	um providing re Ver	100	101		150 200	201	202	250	300	301 302	350	400	401	402	450	500	501	502	550
	P,PR	100	•	102	• 200	201	202	230	300	JUI 302	. 330	400	40 I	402	430	300	JU I	302	330
A17F	PPC	•			•														
1005	P,PO,POR,PR					•	•												
A22F	PPC				•														
A22F	P,PO,POR,PR								•		•								
'A32F	PPC								•		•								
PA42F	P,PO,POR,PR											•	•	•	•	•	•	•	•
N 1 21	PPC											٠			•	•			•
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	9	50	1000	1001
	P,PR				•												,		
PA62F	PO,POR			•										•					
	PPC				•					•							,		
Delivery ple	enum with circul	ar flan	ges.																
Model	Ver	100	101	102	150 200	201	202	250	300	301 302	350	400	401	402	450	500	501	502	550
PM17	P,PR	•	•	•	•														
	PPC	•			•														
PM22	P,PO,POR,PR				•	•	•	•											
	PPC				•			•											
PM32	P,PO,POR,PR								•	• •	•								
	PPC								•		•								
PM42	P,PO,POR,PR											•	•	•	•	•	•	•	•
	PPC											•			•	•			•
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	9.	50	1000	1001
	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
PM62	PO,POR	•	•	•	•	•	•	•	•					•	•		•		
	PPC	٠			•	•			•	•			•	•			•	•	
C4! - -4	li																		
	livery coupling	4	40-	407	480 22:		262	250	200	204 2		400	465		480	FAC	EC.		
Model	Ver	100	101		150 200	201	202	250	300	301 302	350	400	401	402	450	500	501	502	550
RD17	P,PR	•	•	•	•														
	PPC DOD DD	•			•														
RD22	P,PO,POR,PR PPC				•	•	•	•											
	PPC P,PO,POR,PR				•			•	•		•								
RD32	PPC								•	• •	•								
	P,PO,POR,PR								•		•			•	•			•	
RD42	PPC											<u> </u>	•	•	·	•	•	•	•
						200	W				000							4000	4000
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	9		1000	1001
DDC	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•
RD62	PO,POR	•	•	•	•	•	•	•	•					•	•				
	PPC	•			•	•			•	•			•	•			•	•	
Straiaht su	ction coupling																		
Model	Ver	100	101	102	150 200	201	202	250	300	301 302	350	400	401	402	450	500	501	502	550
	P,PO,POR,PR	100	101	174	130 200		•		300	50: 502	. ,,,,	700	TVI	704	730	500	JU 1	302	330
RDA22	PPC				•			•											
	P,PO,POR,PR										•								
RDA32									•		•								
	PPC																		
20112	PPC P,PO,POR,PR																		
RDA42	PPC P,PO,POR,PR PPC											•							•
RDA42	P,PO,POR,PR PPC	600	601	(03	650	700	701	702	750	000	001	•						1000	٠
	P,PO,POR,PR PPC Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	9:		1000	1001
Model	P,PO,POR,PR PPC Ver P,PR	•	•	•	•	•	•	•	•	800	801	•		900	901	9!		1000	٠
Model	P,PO,POR,PR PPC Ver P,PR PO,POR	•			•	•			•	•		802	850	900	901	9:	,	•	1001
Model	P,PO,POR,PR PPC Ver P,PR	•	•	•	•	•	•	•	•			802	850	900	901	9:			1001
Model RDA62	P,PO,POR,PR PPC Ver P,PR PO,POR PPC	•	•	•	•	•	•	•	•	•		802	850	900	901	9:	,	•	1001
Model RDA62 90° delivery	P,PO,POR,PR PPC Ver P,PR PO,POR PPC // coupling.	•	•	•	•	•	•	•	•	•	•	802	850	900	901	95	•	•	1001
Model RDA62 90° delivery Model	P,PO,POR,PR PPC Ver P,PR PO,POR PPC V coupling. Ver	100	101	102	150 200	•	•	•	•	•	•	802	850	900	901	9:	,	•	1001
Model RDA62 90° delivery Model	P,PO,POR,PR PPC Ver P,PR PO,POR PPC V coupling. Ver P,PR	•	•	•	•	•	•	•	•	•	•	802	850	900	901	95	•	•	1001
Model RDA62 90° delivery Model RP17	P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PPC	100	101	102	150 200	201	202	250	•	•	•	802	850	900	901	95	•	•	1001
Model RDA62 PO° delivery Model RP17	P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PPC P,PR PPC P,PO,POR,PR	100	101	102	150 200	•	•	250	•	•	•	802	850	900	901	95	•	•	1001
Model RDA62 90° delivery Model RP17 RP22	P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PPC P,PO,POR,PR PPC	100	101	102	150 200	201	202	250	300	301 302	2 350	802	850	900	901	95	•	•	1001
Model RDA62 PO° delivery Model RP17 RP22	P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR	100	101	102	150 200	201	202	250	300	•	2 350	802	850	900	901	95	•	•	1001
Andel DAG2 DO° delivery Andel P17 P22	P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC	100	101	102	150 200	201	202	250	300	301 302	2 350	802 •	850	900	901	500	501	502	1001
Model	P,PO,POR,PR PPC Ver P,PR PO,POR PPC Ver P,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR PPC P,PO,POR,PR	100	101	102	150 200	201	202	250	300	301 302	2 350	802	850	900	901	95	•	•	1001

Madal	Van	/00	C04	(0)	650	700	701	702	750	000	001	002	054	000	004	050	1000	1001
Model	Ver P.PR	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
RP62	PO,POR	•	•	•	•	•	·	<u>:</u>	<u> </u>	•	•	•	•	· ·	·	•	•	
NI UZ	PPC	•	•		· ·	•	•		•	•			•	•	•	•	•	
90° suction	coupling.																	
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500 50	1 502	550
RPA22	P,PO,POR,PR				•	•	•	•										
	PPC DDD DD				•			•										
RPA32	P,PO,POR,PR PPC								•	• •	•							
	P,PO,POR,PR										•		•				•	
RPA42	PPC																	
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
mouci	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
RPA62	PO,POR	•	•		•	•		•						•	•	•		
	PPC	•				•				•			•	•		•	•	
	s for ducting																	
Plenum wit	h motorised dan	npers.																
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500 50	1 502	550
MZC220	PO,POR				•	•	•	•										
MZC320	PO,POR								•	• •	•							
MZC530	PO,POR											•	•	•	<u>·</u>	• •		
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
MZC830	PO,POR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
Straight int	ake connection	with re	ctanai	ular flar	ne													
Model	Ver	100	101		50 200	201	202	250	300	301 302	2 350	400	401	402	450	500 50	1 502	550
RDA000V	PO,POR	100	-101	102 1	•	•	•	•		301 30		100	101			300 30	. 302	330
RDA100V	PO,POR								•									
RDA200V	PO,POR											•	•	•	•		•	•
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
RDA300V	PO,POR	•	•	•	•	•	•	•	•				050	•	•	•	1000	1001
	um with rectang																	
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500 50	1 502	550
RPA000V	PO,POR				•	•	•	•	•									
RPA100V RPA200V	PO,POR PO,POR								•	• •	•							
	·																	
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
RPA300V	PO,POR	•	•	•	•	•	•	•	•					•	•	•		
Suction plea	num with plastic	circul	ar flan	ges.														
Model	Ver	100	101		50 200	201	202	250	300	301 30	2 350	400	401	402	450	500 50	1 502	550
PA000V	PO,POR						•	•										
PA100V	PO,POR								•		•							
PA200V	PO,POR											•	•	•	•		•	•
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
PA300V	PO,POR													•				
					_													
	nsulated deliver	<u> </u>																
Model	Ver	100	101	102 1	50 200	201	202	250	300	301 30	2 350	400	401	402	450	500 50	1 502	550
PM000V	PO,POR				•	•	•	•										
PM100V	PO,POR								•	• •	•							
PM200V	PO,POR											•	•	•	•	• •	•	
Model	Ver	600	601	602	650	700	701	702	750	800	801	802	850	900	901	950	1000	1001
PM300V	PO,POR	•	•	•	•	•	•	•	•					•	•	•		
				l	aulas A	anao												
Internally	nsulated deliver	v nlon:	ım wit	n rertar														
	nsulated deliver	<u> </u>					202	250	300	201 20	250	////	/01	402	450	500 50	1 502	EEV
Model	Ver	y plenu 100	101		50 200	201	202	250	300	301 30	2 350	400	401	402	450	500 50	1 502	550
Model RPM000V	Ver PO,POR	<u> </u>					202	250				400	401	402	450	500 50	1 502	550
Model	Ver PO,POR PO,POR	<u> </u>			50 200	201			300	301 30		400	401	402	450	500 50	1 502	550
Model RPM000V RPM100V RPM200V	Ver PO,POR PO,POR PO,POR	100	101	102 1	50 200	201	•	•	•		•	•	•	•	•		•	550
Model RPM000V RPM100V	Ver PO,POR PO,POR	<u> </u>			50 200	201											. 1000	. 1001

Straight delivery coupling in galvanised sheet metal.

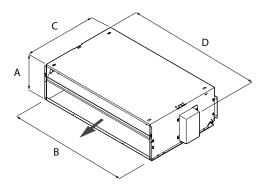
Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
RDM000V	PO,POR					•	•	•	•												
RDM100V	PO,POR									•	•		•								
RDM200V	PO,POR													•	•	•	•	•	•	•	•
Model	Ver	600	601	60	2	650	700	701	702	750	8	00	801	802	850	900	901	1	950	1000	1001
RDM300V	PO,POR							•													
	•	ly incul	ated 1	with c	ircul	ar flar	200														
Straight disc	charge internal																				
<i>Straight disc</i> Model	charge internal Ver	ly insul	ated, 1	with c	<i>ircul</i> 150	ar flan	ges. 201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
<i>Straight disc</i> Model	charge internal							202	250	300	301	302	350	400	401	402	450	500	501	502	550
Straight disc Model RDMC000V	charge internal Ver					200	201			300	301	302	350	400	401	402	450	500	501	502	550
Straight disc Model RDMC000V RDMC100V	charge internal Ver PO,POR					200	201							400	401	402	450	500	501	502	550
	charge internal Ver PO,POR PO,POR				150	200	201				•				401			•	501	502	550

PERFORMANCE DATA FOR UNITS WITHOUT HEAD (EUROVENT CERTIFICATE FC-H)

2-ріре		FC	Z100	P	FC	Z150P		FCZ2	NNP	F	CZ250	P	FC	Z300P	Т	FC7	350P		CZ400	P	F	Z450I	P	F	CZ500	ΠP	F	CZ550	IP
	_	1	2	3	1		3 1		3	1	2	3	1	2	3		2 3	1	2	3	1	2	3	1	2	3	1	2	3
		Ĺ	M	Н	Ĺ		H L	. M		L	M	H	Ĺ	M	Н		M H	Ĺ	M	H	Ĺ	M	Н	L	M	Н	Ĺ	M	H
Heating performance 70 °C / 60 °C	°C (1)																												
Heating capacity	kW	1,45	2,00	2,40	1,55	2,19 2	,65 2,0	02 2,9	5 3,70	2,20	3,18	4,05	3,47	4,46 5	,50 3	3,77 4	,92 6,15	4,32	5,74	7,15	4,57	6,29	7,82	5,27	7,31	8,50	5,82	8,34	9,75
Water flow rate system side	I/h	125	172	206	136	192 2	32 17	77 25	8 324	193	278	355	304	391	182 3	330 4	31 539	379	503	627	400	551	685	462	641	745	510	731	855
Pressure drop system side	kPa	4	7	9	5	9	12 6	12	18	7	15	23	7	12	18	8	14 20	9	16	24	6	11	16	12	21	28	10	20	26
Heating performance 45 °C / 40 °	°C (2)																												
Heating capacity	kW	0,72	0,99	1,19	0,77	1,09 1	,31 1,0	00 1,4	6 1,84	1,09	1,58	2,01	1,72	2,21 2	,73 1	1,87 2	44 3,06	2,14	2,85	3,55	2,27	3,12	3,88	2,62	3,63	4,22	2,89	4,14	4,85
Water flow rate system side	l/h	126	173	207	134	189 2	29 17	4 25	4 319	190	274	350	299	385 4	75 3	325 4	25 531	373	495	617	394	543	675	455	631	734	502	720	842
Pressure drop system side	kPa	4	7	10	5	9	12 6	12	18	8	15	22	8	12	18	8 1	14 20	10	16	24	6	11	16	12	21	28	10	20	26
Cooling performance 7 °C / 12 °C	(3)																												
Cooling capacity	kW	0,65	0,84	1,00	0,65	0,84 1	,00 0,8	39 1,2	8 1,60	1,06	1,55	1,94	1,68			,89 2,	46 3,02	2,20	2,92	3,60	2,41	3,21	4,03	2,68	3,69	4,25	2,91	4,13	4,79
Sensible cooling capacity	kW (0,51	0,69	0,83	0,51 (0,69 0	.83 0,7	71 1,0				1,52		1,65 2			76 2,18		2,14	2,67	1,69	2,30	2,90	1,94	2,73	3,18	2,07	2,98	3,49
Water flow rate system side	l/h	112	144	172	112	144 1	72 15	3 22	1 275	182	267	334	288	374 4	_		60 560	_	503	619		552	694	_	634	731	501	711	824
Pressure drop system side	kPa	4	6	8	4	6	8 6	12	18	8	17	25	8	13	18	11 1	8 25	10	16	24	9	15	22	13	22	29	12	22	28
Fan																													
Туре	type													(entrifu	ugal													
Fan motor	type									_					ynchro												_		
Number	no.		1			1	\perp	1		_	1			2	_		2	1	2			2			2			2	
Air flow rate				$\overline{}$			00 14			_	220	290			_		50 450		460	600			600	400	600		_		720
Input power	W	19	29	35	19		35 2			25	29	33	25		_		33 44	30	43	57	30	43	57	38	52	76	38	52	76
Electrical wiring		V1	V2	V3	V1	V2 '	/3 V	1 V2	2 V3	V1	V2	V3	V1	V2	V3	V1 \	/2 V3	V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Fan coil sound data (4)																		_											
Sound power level																	1,0 48,0												
	dB(A)	23,0	30,0	37,0	23,0	30,0 3	7,0 27	,0 38,	0 43,0	27,0	38,0	43,0	26,0	33,0 4	0,0 2	26,0 3	3,0 40,0	29,0	36,0	43,0	29,0	36,0	43,0	34,0	43,0	48,0	34,0	43,0	48,0
Water coil																													
Water content main coil			0,4			0,5		0,	5		0,7			0,8		1	,0		1,0			1,4			1,0			1,4	
Diametre hydraulic fittings															_			_									1		
Main coil	Ø		1/2"			1/2″		1/2	?"		1/2"			3/4"		3.	/4"		3/4"			3/4"			3/4"			3/4"	
		_	_																										
		F	CZ60($\overline{}$	FCZ65			FCZ700			CZ75			FCZ80		F	CZ850			CZ90		\perp	_	950P	_	FC	Z1000	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1 ·	2	3	1	2	3	1	7	2	3	1	2	3
Hasting and supplied to 70 % / CO	°C (1)				$\overline{}$			+			-			-			_			_			1 L	_	2	3 H			
Heating performance 70 °C/60°		1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	Ĺ	N	2 M	Н	1 L	2 M	3 H
Heating capacity	kW	1 L 6,50	2 M 8,10	3 H	1 L	2 M 9 9,15	3 H	1 L	2 M	3 H 11,00	1 L 9,10	2 M	3 H) 12,50	1 L	2 M	3 H 0 12,0	1 L 0 11,30	2 M 12,35	3 H 14,00	1 L 10,77	2 M	3 H 15,14	L 4 11,2	N 20 14,	,42 1	H 7,10 1	1 L	2 M	3 H 17,02
Heating capacity Water flow rate system side	kW I/h	1 L 6,50 570	2 M 8,10 710	3 H 10,00 877	1 L 7,19 631	2 M 9 9,15 802	3 H 11,50 1008	1 L 8,10 710	2 M 9,80 860	3 H 11,00 964	9,10 798	2 M 11,30 991	3 H) 12,50 1096	1 L 9,80 859	2 M 10,8 947	3 H 0 12,0 ' 105	1 L 0 11,30 2 991	2 M 12,35 1083	3 H 14,00 1227	1 L 10,77 945	2 M 13,35 1171	3 H 15,14 1328	4 11,2 3 982	20 14, 20 12	,42 1 64 1	7,10 1	1 L 12,53	2 M 15,24 1337	3 H 17,02 1493
Heating capacity Water flow rate system side Pressure drop system side	kW I/h kPa	1 L 6,50	2 M 8,10	3 H	1 L	2 M 9 9,15	3 H	1 L	2 M	3 H 11,00	1 L 9,10	2 M	3 H) 12,50	1 L	2 M	3 H 0 12,0	1 L 0 11,30	2 M 12,35	3 H 14,00	1 L 10,77	2 M	3 H 5 15,14	L 4 11,2	20 14, 20 12	,42 1 64 1	H 7,10 1	1 L	2 M	3 H 17,02
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40	kW I/h kPa °C (2)	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	1 L 0 7,19 631 14	2 M 9 9,15 1 802 21	3 H 11,50 1008 31	8,10 710 17	9,80 860 24	3 H 11,00 964 29	9,10 798 10	2 M 11,30 991 15	3 H) 12,50 1096 18	9,80 859 22	2 M 10,8 947 27	3 H 0 12,0 ' 105.	1 L 0 11,30 2 991 17	2 M 12,35 1083 20	3 H 14,00 1227 25	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 5 15,14 1328 22	4 11,2 3 983 16	20 14, 20 12 5 2	,42 1 64 1	7,10 1 500 3	1 L 12,53 1101 22	2 M 15,24 1337 32	3 H 17,02 1493 38
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40' Heating capacity	kW I/h kPa °C (2) kW	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	1 L L 7,19 631 14 3,57	2 M 9 9,15 802 21 7 4,55	3 H 11,50 1008 31	1 L 8,10 710 17	2 M 9,80 860 24	3 H 11,00 964 29 5,47	9,10 798 10	2 M 11,30 991 15	3 H 12,50 1096 18	9,80 859 22	2 M 10,8 947 27	3 H 0 12,0 7 1055 32 7 5,97	1 L 0 11,30 2 991 17	2 M 12,35 1083 20 6,14	3 H 14,00 1227 25 6,96	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22 7,53	4 11,2 3 983 16	20 14, 20 12 5 2	,42 1 64 1 4	7,10 1 500 3 33 3,50	1 L 12,53 1101 22 6,24	2 M 15,24 1337 32 7,58	3 H 17,02 1493 38 8,46
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40' Heating capacity Water flow rate system side	kW I/h kPa °C (2) kW I/h	1 L 6,50 570 12 3,32 561	2 M 8,10 710 18 4,03 699	3 H 10,000 877 26 4,97 863	1 L C C C C C C C C C C C C C C C C C C	2 M 9 9,15 1 802 21 7 4,55 1 790	3 H 11,50 1008 31 5,72 993	1 L 8,10 710 17 4,03 699	2 M 9,80 860 24 4,87 846	3 H 11,00 964 29 5,47 950	9,10 798 10 4,52 786	2 M 11,30 991 15 5,62 975	3 H 12,50 1096 18 6,21 1079	9,80 859 22 4,87 846	2 M 10,8 947 27 5,37 932	3 H 0 12,0 7 1055 32 7 5,97 2 1036	1 L L 1,30 2 991 17 5,62 5 975	2 M 12,35 1083 20 6,14 1066	3 H 14,00 1227 25 6,96 1209	1 L 10,77 945 12 5,35 930	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307	L 11,23 983 16 5,5 7 963	20 14, 20 12, 5 2, 7 7, 7 12	,42 1 64 1 4 17 8 45 1	7,10 1 500 3 33 3 3,50 476	1 L 12,53 1101 22 6,24 1084	2 M 15,24 1337 32 7,58 1316	3 H 17,02 1493 38 8,46 1469
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40' Heating capacity Water flow rate system side Pressure drop system side	kW I/h kPa °C (2) kW I/h kPa	1 L 6,50 570 12	2 M 8,10 710 18	3 H 10,00 877 26	1 L L 7,19 631 14 3,57	2 M 9 9,15 802 21 7 4,55	3 H 11,50 1008 31	1 L 8,10 710 17	2 M 9,80 860 24	3 H 11,00 964 29 5,47	9,10 798 10	2 M 11,30 991 15	3 H 12,50 1096 18	9,80 859 22	2 M 10,8 947 27	3 H 0 12,0 7 1055 32 7 5,97	1 L 0 11,30 2 991 17	2 M 12,35 1083 20 6,14	3 H 14,00 1227 25 6,96	1 L 10,77 945 12	2 M 13,35 1171 17	3 H 15,14 1328 22 7,53	4 11,2 3 983 16	20 14, 20 12, 5 2, 7 7, 7 12	,42 1 64 1 4 17 8 45 1	7,10 1 500 3 33 3,50	1 L 12,53 1101 22 6,24	2 M 15,24 1337 32 7,58	3 H 17,02 1493 38 8,46
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40' Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C	kW I/h kPa °C (2) kW I/h kPa (3)	1 L 6,50 570 12 3,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,000 877 26 4,97 863 26	1 L C 7,19 631 14 3,57 621 14	2 M 9 9,15 1 802 21 7 4,55 1 790 20	3 H 11,50 1008 31 5,72 993 31	1 L 8,10 710 17 4,03 699 16	2 M 9,80 860 24 4,87 846 24	3 H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786	2 M 11,30 991 15 5,62 975 14	3 H 12,50 1096 18 6,21 1079	9,80 859 22 4,87 846 22	2 M 10,8 947 27 5,37 932 26	3 H 0 12,00 7 1055 32 7 5,97 2 1036 32	1 L L 1,30 2 991 17 5,62 5 975 17	2 M 12,35 1083 20 6,14 1066 20	3 H 14,00 1227 25 6,96 1209 25	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152	3 H 15,14 1328 22 7,53 1307 22	L 4 11,2 3 983 16 5,5 7 963	20 14, 20 12, 5 2, 7 7, 7 12, 6 2	2 M	7,10 1 500 33 3,50 476 33	1 L 12,53 1101 22 6,24 1084 22	2 M 15,24 1337 32 7,58 1316 31	3 H 17,02 1493 38 8,46 1469 38
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity	kW I/h kPa °C (2) kW I/h kPa C (3) kW I/h kPa C (3) kW I/h kW KW KW KW KW KW KW KW	1 L 6,50 570 12 33,32 561 12	2 M 8,10 710 18 4,03 699 18	3 H 10,000 877 26 4,97 863 26	1 L L 7,19 631 14 3,57 621 14 3,95	2 M 9 9,15 1 802 21 7 4,55 1 790 20	3 H 11,50 1008 31 5,72 993 31	1 L 8,10 710 17 4,03 699 16	2 M 9,80 860 24 4,87 846 24	3 H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	2 M 11,30 991 15 5,62 975 14	3 H 12,50 1096 18 6,21 1079 18	9,80 859 22 4,87 846 22	2 M 10,88 947 27 5,37 932 26	3 H 0 12,00 7 1055 32 7 5,97 9 1036 32	1 L L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1	2 M 12,35 1083 20 6,14 1066 20	3 H 14,00 1227 25 6,96 1209 25	1 L 10,77 945 12 5,35 930 12	2 M 13,35 1171 17 6,64 1152 17	3 H 15,14 1328 22 7,53 1307 22 6,91	L 4 11,2 3 982 16 5,5 7 962 15	M M 220 14, M 220 14, M 220 14, M 220 120 120 120 120 120 120 120 120 120	2 M 42 11 664 1 44 117 8 445 1 44	7,10 1 500 3 33 3 3,50 476 3 3,60	1 L 12,53 1101 22 6,24 1084 22 5,69	2 M 15,24 1337 32 7,58 1316 31	3 H 17,02 1493 38 8,46 1469 38
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity	kW I/h kPa °C (2) kW I/h kPa C (3) kW kW kW	1 L 570 12 12 12 3,32 12 3,22 2,56	2 M 8,10 710 18 4,03 699 18 3,90 3,17	3 H 10,000 877 26 4,97 863 26 4,65 3,92	1 L 1 L 3,577 621 14 3,992 2,78	2 M 9 9,15 1 802 21 7 4,55 1 790 20 5 4,80 3 3,43	3 H 11,50 1008 31 5,72 993 31 5,67 4,12	1 L 8,10 710 17 4,03 699 16 3,92 2,99	2 M 9,80 860 24 4,87 846 24 4,89 3,76	3 H 11,000 964 29 5,47 950 29 5,50 4,30	9,10 798 10 4,52 786 10 4,27 3,20	2 M 11,30 991 15 5,62 975 14 5,34 4,05	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72	9,80 859 22 4,87 846 22 4,84 3,72	2 M 10,81 947 27 5,37 932 26 5,666 4,42	3 H H 105:32 32 32 32 32 32 32 32 32 32 32 32 32 3	1 L L 1 L 1 L 1 1 1 1 1 1 1 1 1 1 1 1 1	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36	1 L 10,777 945 12 5,35 930 12 4,29 2,97	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78	3 H 1328 22 7,53 1307 22 6,91 5,68	L1,1,2,3,3,4,4,1,1,2,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1	12 N N N N N N N N N N N N N N N N N N N	2 M ,42 1 1664 1 44 117 8 445 1 44 45 1	H	1 L 12,53 11101 22 22 22 1084 22 55,69	2 M 15,24 1337 32 7,58 1316 31	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side	kW I/h kPa °C (2) kW I/h kPa C (3) kW kW I/h kW KW I/h kW I/h kW KW I/h kW KW KW KW KW KW KW KW	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800	1 L 1 L 3,577 621 14 14 3,959 2,78 595	2 M 9 9,155 802 21 77 4,555 20 20 20	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975	1 L 8,10 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974	3 H 0 12,00 12,00 105.32 32 7 5,97 32 32 32 4,83	1 L L L L L L L L L L L L L L L L L L L	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	L 11,2 12,2 13,3 14,1 11,2 12,2 13,3 16,0 15,5 15,7 15,	12 N N N N N N N N N N N N N N N N N N N	2	H 77,10 1 500 333 33,50 4476 333 33 4479	1 L L 12,53 : 11101 22 66,24 1084 22 55,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1118	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	kW I/h kPa °C (2) kW I/h kPa C (3) kW kW kW	1 L 570 12 12 12 3,32 12 3,22 2,56	2 M 8,10 710 18 4,03 699 18 3,90 3,17	3 H 10,000 877 26 4,97 863 26 4,65 3,92	1 L 1 L 3,577 621 14 3,992 2,78	2 M 9 9,155 802 21 77 4,555 20 20 20	3 H 11,50 1008 31 5,72 993 31 5,67 4,12	1 L 8,10 710 17 4,03 699 16 3,92 2,99	2 M 9,80 860 24 4,87 846 24 4,89 3,76	3 H 11,000 964 29 5,47 950 29 5,50 4,30	9,10 798 10 4,52 786 10 4,27 3,20	2 M 11,30 991 15 5,62 975 14 5,34 4,05	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72	9,80 859 22 4,87 846 22 4,84 3,72	2 M 10,81 947 27 5,37 932 26 5,666 4,42	3 H 0 12,00 12,00 105.32 32 7 5,97 32 32 32 4,83	1 L L L L L L L L L L L L L L L L L L L	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36	1 L 10,777 945 12 5,35 930 12 4,29 2,97	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78	3 H 1328 22 7,53 1307 22 6,91 5,68	L 11,2 12,2 13,3 14,1 11,2 12,2 13,3 16,0 15,5 15,7 15,	12 N N N N N N N N N N N N N N N N N N N	2	H	1 L 12,53 11101 22 22 22 1084 22 55,69	2 M 15,24 1337 32 7,58 1316 31	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	kW	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800	1 L 1 L 3,577 621 14 14 3,959 2,78 595	2 M 9 9,155 802 21 77 4,555 20 20 20	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975	1 L 8,10 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,88 947 27 5,37 932 26 5,664 4,42 974 26	3 H H 12,00	1 L L L L L L L L L L L L L L L L L L L	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	L 11,2 12,2 13,3 14,1 11,2 12,2 13,3 16,0 15,5 15,7 15,	12 N N N N N N N N N N N N N N N N N N N	2	H 77,10 1 500 333 33,50 4476 333 33 4479	1 L L 12,53 : 11101 22 66,24 1084 22 55,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1118	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	kW	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800	1 L 1 L 3,577 621 14 14 3,959 2,78 595	2 M 9 9,155 802 21 77 4,555 20 20 20	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975	1 L 8,10 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974	3 H H 10 12,0 10 12,0 10 105.32 10 10 105.32 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 L L L L L L L L L L L L L L L L L L L	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	L 11,2 12,2 13,3 14,1 11,2 12,2 13,3 16,0 15,5 15,7 15,	12 N N N N N N N N N N N N N N N N N N N	2	H 77,10 1 500 333 33,50 4476 333 33 4479	1 L L 12,53 : 11101 22 66,24 1084 22 55,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1118	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	kW I/h kPa °C (2) kW I/h kPa : (3) kW I/h kPa type type	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800	1 L 1 L 3,577 621 14 14 3,959 2,78 595	2 M 802 21 7 4,55 20 20 5 4,802 20 21 20 21	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975	1 L 8,10 710 17 4,03 699 16 3,92 2,99 675	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	9,80 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974 26	3 H H 10 12,0 10 12,0 10 105.32 10 10 105.32 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 L L L L L L L L L L L L L L L L L L L	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	L 11,2 12,2 13,3 14,1 11,2 12,2 13,3 16,0 15,5 15,7 15,	12 N N N N N N N N N N N N N N N N N N N	2 M A A A A A A A A A A A A A A A A A A	H 77,10 1 500 333 33,50 4476 333 33,60 4479	1 L L 12,53 : 11101 22 66,24 1084 22 55,69 4,42 979	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183 31	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa °C (2) kW I/h kPa C (3) kW I/h kPa C type type no.	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	1 L L L L L L L L L L L L L L L L L L L	2 M 9,152 21 802 21 7 4,555 20 20 20 3 3,433 3 3,433 3 3,433	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 8,100 710 17 4,03 699 16 3,92 2,99 675 16	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974 26 entrift	3 H H 105: 32 105: 32 105: 32 106: 107: 108: 108: 108: 108: 108: 108: 108: 108	1 L 1 L 2 991 17 5,62 6 975 17 5,26 4,00 9 904 14	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,355 1171 17 6,64 1152 17 5,00 3,78 860 12	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	L L 11,23 16,33 16	M 20 14, M 20 14, M 20 14, M 20 12, M 20 14, M 20 12, M 20 1	2	H 500 1333 333 3350 476 1333 33 33 33 33 33 33 33 33 33 33 33 3	1 L 1 112,53 11101 22 6,24 11084 22 22 5,69 4,42 979 22	2 M 15,24 1337 32 77,58 1316 31 6,88 5,34 1183 31	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa °C (2) kW I/h kPa : (3) kW I/h kPa type type no.	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	1 L 1 L 3,577 621 14 14 3,959 2,78 595	2 M 9,155 802 21 7 4,555 20 20 20 3 3,433 3,433 3	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 8,100 710 17 4,03 699 16 3,92 2,99 675 16	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974 26 entrift	3 H H 105:32 105:32 105:32 105:32 106:32 107:5,97 108:32 1	1 L L 1,300 11,300 2 991 17 17 17 5,62 5 975 17 14 4,00 9904 14	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189	10,777 945 12 5,35 930 12 4,29 2,97 738	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68	L L L 11,27 16 17 18 18 19 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	120 14, M 220 14, 22 12 12 12 12 12 12 12 12 12 12 12 12 1	2	H 500 1333 333 3350 476 1333 33 33 33 33 33 33 33 33 33 33 33 3	1 L 1 112,53 11101 22 6,24 11084 22 22 5,69 4,42 979 22	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 1183 31	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW /h	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	1 L L L L L L L L L L L L L L L L L L L	2 M M 9,155 21 8022 21 7 4,555 20 20 20 20 3 3 3,433 3 3,433 3 3 3,433 3 3 3,433 3 3 3,433 3 3 3,433 3 3 3,433 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 8,100 710 17 17 17 14,03 699 16 3,92 2,99 675 16 700	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,500 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20	2 M 10,80 947 27 5,37 932 26 5,666 4,422 26 26 1120 100	3 H H 105:32 105:32 105:32 108	1 L L 1,300 11,300 2 991 17 1 5,62 5 975 17 1 5,26 4,00 9 904 14	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20	3 H 14,00 1227 25 6,96 1209 25 6,91 1300 131	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,359 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	L L L 11,27 16 17 18 18 19 18 19 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18	120 14,1 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	2	H 77,10 1 1 5500 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L L 12,53 1101 22 22 6,24 1084 22 22 22 22 9900	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring	kW /h	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,17 671 19	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26	1 L L L L L L L L L L L L L L L L L L L	2 M M 9,155 9,9,156 21 8022 21 21 20 20 20 20 21 3 3 3,433 3 3 3,433 3 3 3,433 3 3 3,433 3 3 3	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 8,100 710 17 17 14,03 699 16 3,92 2,99 675 16 700 59	9,80 9,80 24 4,87 846 24 4,89 3,76 841 24	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,500 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,80 859 22 4,87 846 22 4,84 3,72 833 20 (C As	2 M 10,80 947 27 5,37 932 26 5,666 4,42 974 26 entrific ynchro 3	3 H H 105:32 105:32 105:32 108	1 L L 1,300 11,300 2 991 17 17 17 17 17 17 17 17 17 17 17 17 17	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,359 1171 17 6,64 1152 17 5,00 3,78 860 12	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	L L L L L L L L L L L L L L L L L L L	12	2	H 77,10 1 1 500 4 476 1 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L 12,53 11101 22 66,24 11084 22 22 55,69 4,42 979 22	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 3 1120	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (4)	kW I/h kPa °C (2) kW I/h kPa C (3) kW I/h kPa type type no. m³/h W	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,00 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	1 L L L L L L L L L L L L L L L L L L L	2 M M 802 21 77 4,555 20 20 20 20 20 20 20 20 20 20 20 20 20 2	3 H 11,500 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 8,100 710 17 4,03 699 16 3,922 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 1096 18 6,21 1079 18 6,14 4,72 1056 18	9,800 859 22 4,87 846 22 4,84 3,72 833 20 (C As	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974 26 entrifu 100 V2	3 H H 101200000000000000000000000000000000	1 L L L L L L L L L L L L L L L L L L L	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20 3 1120 100 V2	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10	2 M 13,35 1171 17 6,64 1152 17 5,000 3,78 860 12 3 930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 V3	L 11,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	7	2	H 7,10 1 1 500 3 3 3 3,50 476 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L 1 1 12,53 1101 22 22 66,24 1084 22 22 5,69 4,42 979 22	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (4) Sound power level	kW I/h kPa °C(2) kW I/h kPa C(3) kW I/h kPa type type no. m³/h W I/h kPa dB(A)	1 L 6,50 570 12 561 12 3,32 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 91 V3	1 L L L L L L L L L L L L L L L L L L L	2 M M Solve	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 920 91 V3	1 L 8,100 710 177 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 24 24 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 10, 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3	9,800 859 22 4,87 846 22 4,84 3,72 833 20 (C As 900 80 V1	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974 26 entrifu 100 V2	3 H H 1012,000 1	1 L L 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20 100 V2	3 H 14,00 1227 25 6,96 1209 25 6,91 1300 131 V3	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,35 1171 17 6,64 1152 17 5,000 3,78 860 12 3 930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 V3	L L 11,2,2,3 98,3 166 15,5,5,7 7 96,5 15 15 15 15 15 15 15 15 15 15 15 15 15	7	2	H 77,10 1 1 500 3 3 3 3 3 3 5 0 476 476 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L L 12,53 11101 22 22 66,24 128 22 22 22 22 29 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36 1300 131 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (4) Sound power level	kW I/h kPa °C(2) kW I/h kPa (3) kW I/h kPa type no. m³/h W	1 L 6,50 570 12 3,32 561 12 3,22 2,56 554 14	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 91 V3	1 L L L L L L L L L L L L L L L L L L L	2 M M Solve	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28	1 L 8,100 710 177 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 24 24 3,76 841 24 3 930 V2	3 H 11,000 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 10 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3	9,800 859 22 4,87 846 22 4,84 3,72 833 20 (C As 900 80 V1	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974 26 100 V2	3 H H 101200000000000000000000000000000000	1 L L 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20 100 V2	3 H 14,00 1227 25 6,96 1209 25 6,91 5,36 1189 23	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,35 1171 17 6,64 1152 17 5,000 3,78 860 12 3 930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 V3	5,77 96: 5,77 9	7	2	H 77,10 1 1 500 3 3 3 3 3 3 5 0 476 476 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L 1 1 12,53 1101 22 22 66,24 1084 22 22 5,69 4,42 979 22	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (4) Sound power level Sound pressure Water coil	kW I/h kPa °C(2) kW I/h kPa C(3) kW I/h kPa type type no. m³/h W I/h kPa dB(A)	1 L 6,50 570 12 561 12 3,32 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2 51,0 43,0	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	1 L L L L L L L L L L L L L L L L L L L	2 M M 9,155 N N N N N N N N N N N N N N N N N N	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 920 91 V3	1 L 8,100 710 177 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2 57,0 49,0	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,3(991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2 57,0 49,0	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3 62,0 54,0	9,800 859 22 4,87 846 22 4,84 3,72 833 20 (C As 900 80 V1	2 M 10,8% 947 27 5,37 932 26 5,666 4,42 974 26 1120 100 V2 53,0	3 H 0 12,0 1 105: 32 7 5,97 1 103: 32 5 6,10 2 4,83 1 104: 30 0 130: 0 130: 0 130: 0 58,0	1 L L 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20 100 V2	3 H 14,00 1227 25 6,96 1209 25 6,91 1300 131 V3	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2 57,0 49,0	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 V3	L L 11,2,2,3 98,3 166 15,5,5,7 7 96,5 15 15 15 15 15 15 15 15 15 15 15 15 15	20 14, M 20 14, 20 12 12 2 12 2 12 2 12 12 12 12 12 12 12	22 M .42 11 .64 1 .44 .45 1 .44 .45 1 .44 .45 1 .40 .40 .40 .40 .40 .40 .40 .40	H 77,10 1 1 500 3 3 3 3 3 3 5 0 476 476 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L L 12,53 11101 22 22 66,24 128 22 22 22 22 29 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 31 1120 100 V2	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36 1300 131 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °Heating capacity Water flow rate system side Pressure drop system side Pressure drop system side Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (4) Sound power level Sound pressure Water coil Water content main coil	kW I/h kPa °C(2) kW I/h kPa C(3) kW I/h kPa type type no. m³/h W I/h kPa dB(A)	1 L 6,50 570 12 561 12 3,32 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	1 L L L L L L L L L L L L L L L L L L L	2 M M Solve	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 920 91 V3	1 L 8,100 710 177 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 24 24 3,76 841 24 3 930 V2	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3 62,0 54,0	9,800 859 22 4,87 846 22 4,84 3,72 833 20 (C As 900 80 V1	2 M 10,88 947 27 5,37 932 26 5,666 4,42 974 26 100 V2	3 H 0 12,0 1 105: 32 7 5,97 1 103: 32 5 6,10 2 4,83 1 104: 30 0 130: 0 130: 0 130: 0 58,0	1 L L 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20 100 V2	3 H 14,00 1227 25 6,96 1209 25 6,91 1300 131 V3	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,35 1171 17 6,64 1152 17 5,000 3,78 860 12 3 930 80 V2	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 V3	L L 11,2,2,3 98,3 166 15,5,5,7 7 96,5 15 15 15 15 15 15 15 15 15 15 15 15 15	7	22 M .42 11 .64 1 .44 .45 1 .44 .45 1 .44 .45 1 .40 .40 .40 .40 .40 .40 .40 .40	H 77,10 1 1 500 3 3 3 3 3 3 5 0 476 476 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L L 12,53 11101 22 22 66,24 128 22 22 22 22 29 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 6,88 5,34 11183 31 1120 100 V2	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36 1300 131 V3
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40° Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Electrical wiring Fan coil sound data (4) Sound power level Sound pressure Water coil	kW I/h kPa °C(2) kW I/h kPa C(3) kW I/h kPa type type no. m³/h W I/h kPa dB(A)	1 L 6,50 570 12 561 12 3,32 2,56 554 14 520 38 V1	2 M 8,10 710 18 4,03 699 18 3,90 3,17 671 19 3 720 60 V2 51,0 43,0	3 H 10,000 877 26 4,97 863 26 4,65 3,92 800 26 920 91 V3	1 L L L L L L L L L L L L L L L L L L L	2 M M 9,155 N N N N N N N N N N N N N N N N N N	3 H 11,50 1008 31 5,72 993 31 5,67 4,12 975 28 920 91 V3	1 L 8,100 710 177 4,03 699 16 3,92 2,99 675 16 700 59 V1	2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 V2 57,0 49,0	3 H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 1140 V3	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 59 V1	2 M 11,3(991 15 5,62 975 14 5,34 4,05 918 14 3 930 80 V2 57,0 49,0	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18 1140 V3 62,0 54,0	9,800 859 22 4,87 846 22 4,84 3,72 833 20 (C As 900 80 V1	2 M 10,8% 947 27 5,37 932 26 5,666 4,42 974 26 1120 100 V2 53,0	3 H 0 12,0 1 105: 32 7 5,97 1 103: 32 1 103: 32 1 104: 30 1 131 1	1 L L 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2 M 12,35 1083 20 6,14 1066 20 6,29 4,83 1082 20 100 V2	3 H 14,00 1227 25 6,96 1209 25 6,91 1300 131 V3	1 L 10,777 945 12 5,35 930 12 4,29 2,97 738 10 700 59 V1	2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 80 V2 57,0 49,0	3 H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22 1140 V3	L L 11,2,2,3 98,3 166 15,5,5,7 7 96,5 15 15 15 15 15 15 15 15 15 15 15 15 15	20 14, M 20 14, 20 12 12 2 12 2 12 2 12 12 12 12 12 12 12	22 M .42 11 .64 1 .44 .45 1 .44 .45 1 .44 .45 1 .40 .40 .40 .40 .40 .40 .40 .40	H 77,10 1 1 500 3 3 3 3 3 3 5 0 476 476 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 L L 12,53 11101 22 22 66,24 128 22 22 22 22 29 900 80 V1	2 M 15,24 1337 32 7,58 1316 31 31 1120 100 V2	3 H 17,02 1493 38 8,46 1469 38 7,62 5,53 1311 36

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

PERFORMANCE DATA FOR UNITS WITH HEAD (EUROVENT CERTIFICATE FCP-H)


2-ріре					_						_			_											
		_	CZ200		_	CZ250I		-	CZ300I			Z350		_	Z400I			Z450F		_	CZ500I		-	Z550	
		2	4	6	2	4	6	1	4	6	1	4	6	1	3	6	1	3	6	1	5	6	1	5	6
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)		_																							
Heating capacity	kW	2,11	3,00	3,32	2,29	3,24	3,60	3,50	5,03	5,45	3,80	5,59	6,10	4,49	6,02	6,74	4,79	6,62	7,40	5,27	7,22	7,59	-	8,25	8,67
Water flow rate system side	I/h	182	258	285	197	279	310	301	433	469	327	481	524	386	517	580	412	569	637	453	621	652	500	709	746
Pressure drop system side	kPa	7	12	15	9	16	19	8	15	18	9	18	21	11	18	22	7	12	15	12	21	23	10	19	21
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	1,05	1,49	1,65	1,14	1,61	1,79	1,74	2,50	2,71	1,89	2,78	3,03	2,23	2,99	3,35	2,38	3,29	3,68	2,62	3,59	3,77	2,89	4,10	4,31
Water flow rate system side	l/h	160	224	248	196	277	308	299	430	466	325	478	521	383	514	576	409	566	633	451	617	648	497	705	741
Pressure drop system side	kPa	7	12	15	9	16	19	8	15	18	9	18	21	11	18	22	7	12	15	12	21	23	10	19	21
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	0,93	1,30	1,44	1,11	1,59	1,74	1,70	2,40	2,63	1,91	2,77	3,00	2,29	3,06	3,41	2,51	3,37	3,79	2,68	3,65	3,82	2,91	4,08	4,28
Sensible cooling capacity	kW	0,74	1,14	1,18	0,83	1,23	1,36	1,27	1,86	2,03	1,34	1,99	2,16	1,66	2,24	2,52	1,76	2,42	2,73	1,94	2,70	2,83	2,07	2,94	3,09
Water flow rate system side	l/h	160	224	248	191	273	299	292	413	452	328	476	516	394	526	586	432	580	652	461	628	657	500	702	736
Pressure drop system side	kPa	8	13	15	9	18	21	8	16	18	11	22	25	11	18	22	11	16	20	13	22	24	12	21	23
Fan																									
Туре	type												Centri	fugal											
Fan motor	type												Asynch												
Number	no.		1			1			2			2	,,		2			2			2			2	
Air flow rate	m³/h	148	226	254	148	226	254	263	404	446	263	404	446	346	487	559	346	487	559	400	592	627	400	592	627
High static pressure	Pa	21	50	63	21	50	63	21	50	61	21	50	61	25	50	66	25	50	66	22	50	56	22	50	56
Input power	W	28	41	74	28	41	74	38	55	78	38	55	78	53	63	102	53	63	102	49	80	627	49	80	627
Electrical wiring	**	V2	V4	V6	V2	V4	V6	V1	V4	V6	V1	V4	V6	V1	V3	V6	V1	V3	V6	V1	V5	V6	V1	V5	V6
Duct type fan coil sound data (4)		VZ	VT	VO	V Z	VT	VO	V I	VT	VO	V 1	VT	VO	V I	٧J	VO	V I	- 43	- 10	V 1	¥3	¥0	V 1	٧.5	
	dB(A)	41,0	56,0	59,0	41,0	56,0	59,0	39,0	51,0	54,0	39,0	51,0	54,0	44,0	54,0	55,0	44,0	54,0	55,0	45,0	55,0	57,0	45,0	55,0	E7.0
Sound power level (inlet + radiated)		-			-	52,0		-					49,0	_	50,0			50.0							
Sound power level (outlet)	dB(A)	37,0	52,0	33,0	37,0	52,0	22,0	35,0	4/,0	49,0	35,0	4/,0	49,0	40,0	30,0	52,0	40,0	30,0	32,0	41,0	51,0	33,0	41,0	31,0	33,0
Water coil			0.5			0.7		1			ı	1.0			1.0						1.0				
Water content main coil			0,5			0,7			0,8			1,0			1,0			1,4			1,0		<u> </u>	1,4	
Diametre hydraulic fittings																									
Main coil	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
			FCZ6	00P0			FCZ6	50P0			FCZ7	00P0			FCZ7	50P0			FCZ9	00P0			FCZ9	50P0	
		1		4	7	1	-	4	7	2		5	7	2		5	7	2		5	7	2	5	5	7
		L		М	Н	L	1	М	Н	L	- 1	И	Н	L	1	Л	Н	L	- 1	М	Н	L	٨	Λ	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	1144						0	72	11,51	8,77	10	,10	10,52	10,02	11	,65	12.00	11 01	1 12				3 15,	,07	16,00
	kW	6,86) 8,	,55	10,00	7,63	9,	12	וכווו					.0,0.			12,09	11,81	1 13	,80	14,45	12,43		06	1375
Water flow rate system side	I/h	590		,55 35	10,00 860	7,63 656		36	990	754	8	58	905	862			1040	1016		,80 187	14,45 1242	12,43	12	70	
Water flow rate system side Pressure drop system side		<u> </u>	7			<u> </u>	83			754 19			905 27		10				5 11			-	2		29
•	I/h	590	7	35	860	656	83	36	990	_		58		862	10	02	1040	1016	5 11	187	1242	1069			29
Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h	590	7	35	860 26	656	83	36	990	19	2	5		862	10	02 5	1040	1016	i 11	187	1242	1069	2	6	
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	590 12 3,41	7 2	35 20 .25	860	656 15 3,79	83 2 4,	36 23 83	990 31 5,72	19 4,36	5,	55	27 5,23	862 12 4,98	10 1 5,	02 5 79	1040 16 6,01	1016 14 5,87	5 11 1 6,	187 18	1242 20 7,18	1069	2	6 49	7,95
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa	590 12 3,41 586	7, 2 4,	35	860 26 4,97	656	83 2 4,7 83	36 23 83	990 31 5,72 984	19	5,	58 5 02 53	27 5,23 899	862 12 4,98 856	10 1 5,	02 5 79 96	1040	1016	6, 1	187	1242	1069	2	6 49 88	7,95 1367
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW I/h	590 12 3,41	7, 2 4,	35 20 .25 31	860 26 4,97 855	656 15 3,79 652	83 2 4,7 83	36 23 83 31	990 31 5,72	4,36 750	5,	55	27 5,23	862 12 4,98	10 1 5,	02 5 79 96	1040 16 6,01 1034	1016 14 5,87 1009	6, 1	187 18 86 180	1242 20 7,18 1235	1069 19 6,18 1063	2 3 7,4 3 12	6 49 88	7,95
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3)	I/h kPa kW I/h kPa	590 12 3,41 586 13	4,	35 20 .25 31 20	860 26 4,97 855 26	3,79 652 15	83 2 4,/ 83 2	36 23 83 31 23	990 31 5,72 984 31	4,36 750 19	5, 8i 2	58 5 02 53 5	27 5,23 899 27	862 12 4,98 856 12	10 1 5, 99	02 5 79 96 5	1040 16 6,01 1034 16	1016 14 5,87 1009 14	6, 1 1 1 1 1	86 80 88	7,18 1235 20	1069 19 6,18 1063 19	2 3 7,4 3 12 2	6 49 88 6	7,95 1367 29
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity	I/h kPa kW I/h kPa	590 12 3,41 586 13	7 2 4, 7, 7, 2	35 20 .25 .31 .20	860 26 4,97 855 26	656 15 3,79 652 15	4,/ 83 2 2,5,/	36 23 83 31 23	990 31 5,72 984 31 5,67	4,36 750 19	5, 8, 2	58 5 02 53 5	5,23 899 27 5,18	862 12 4,98 856 12	5, 99 1	02 5 79 96 5	1040 16 6,01 1034 16 5,80	1016 14 5,87 1009 14	6, 11 1 1 1 5,	86 80 88 33	7,18 1235 20 5,95	1069 19 6,18 1063 19	2 3 7,4 3 12 2 2	6 49 88 6	7,95 1367 29 8,07
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kW kW	590 12 3,41 586 13 3,37 2,70	7, 2 4, 7, 2 2, 4, 1, 3,	35 20 25 31 20 08 34	860 26 4,97 855 26 4,65 3,92	656 15 3,79 652 15 4,15 2,93	83 2 4, 83 2 5,, 3,	36 23 83 31 23 02 60	990 31 5,72 984 31 5,67 4,12	4,36 750 19 4,24 3,24	5, 8, 2, 4,	58 5 02 53 5 5 97	5,23 899 27 5,18 4,02	862 12 4,98 856 12 4,69 3,53	5, 99 1	02 5 79 96 5 53	1040 16 6,01 1034 16 5,80 4,41	5,87 1009 14 4,38 3,11	6, 0 11 1 1 5, 4,	86 86 80 8 11	7,18 1235 20 5,95 4,73	1069 19 6,18 1063 19 6,35 4,20	2 7,43 12 2 2 5,6 5,6 5,6	6 49 88 6 6	7,95 1367 29 8,07 5,40
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW I/h kPa	590 12 3,41 586 13 3,37 2,70 580	7 2 4, 7, 2 2 4, 7, 2 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	35 20 .25 .31 .20 .08 .34	860 26 4,97 855 26 4,65 3,92 800	656 15 3,79 652 15 4,15 2,93 580	83 2 4,/ 83 2 5,/ 3,/	36 23 83 31 23 02 60	990 31 5,72 984 31 5,67 4,12 800	4,36 750 19 4,24 3,24 729	5, 80 2 4, 3, 85	68 5 02 63 5 5 97 83	5,23 899 27 5,18 4,02 28	4,98 856 12 4,69 3,53 807	5, 99 1 5, 4,	02 5 79 96 5 5 53 20	1040 16 6,01 1034 16 5,80 4,41 997	1016 14 5,87 1009 14 4,38 3,11 753	6, 6, 11 1 1 5, 4,	86 80 8 8 11 17	7,18 1235 20 5,95 4,73 1023	1069 19 6,18 1063 19 6,35 4,20 1092	2 7,43 12 2 5,01 5,01 2 13	6 49 88 6 6 62 08 10	7,95 1367 29 8,07 5,40
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side	I/h kPa kW I/h kPa kW kW	590 12 3,41 586 13 3,37 2,70	7 2 4, 7, 2 2 4, 7, 2 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	35 20 25 31 20 08 34	860 26 4,97 855 26 4,65 3,92	656 15 3,79 652 15 4,15 2,93	83 2 4,/ 83 2 5,/ 3,/	36 23 83 31 23 02 60	990 31 5,72 984 31 5,67 4,12	4,36 750 19 4,24 3,24	5, 80 2 4, 3, 85	58 5 02 53 5 5 97	5,23 899 27 5,18 4,02	862 12 4,98 856 12 4,69 3,53	5, 99 1 5, 4,	02 5 79 96 5 53	1040 16 6,01 1034 16 5,80 4,41	5,87 1009 14 4,38 3,11	6, 6, 11 1 1 5, 4,	86 86 80 8 11	7,18 1235 20 5,95 4,73	1069 19 6,18 1063 19 6,35 4,20	2 7,43 12 2 2 5,6 5,6 5,6	6 49 88 6 6 62 08 10	7,95 1367 29 8,07 5,40
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW kW L/h kPa	590 12 3,41 586 13 3,37 2,70 580	7 2 4, 7, 2 2 4, 7, 2 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	35 20 .25 .31 .20 .08 .34	860 26 4,97 855 26 4,65 3,92 800	656 15 3,79 652 15 4,15 2,93 580	83 2 4,/ 83 2 5,/ 3,/	36 23 83 31 23 02 60	990 31 5,72 984 31 5,67 4,12 800	4,36 750 19 4,24 3,24 729	5, 80 2 4, 3, 85	68 5 02 63 5 5 97 83	5,23 899 27 5,18 4,02 28 28	862 12 4,98 856 12 4,69 3,53 807 12	5, 99 1 5, 4,	02 5 79 96 5 5 53 20	1040 16 6,01 1034 16 5,80 4,41 997	1016 14 5,87 1009 14 4,38 3,11 753	6, 6, 11 1 1 5, 4,	86 80 8 8 11 17	7,18 1235 20 5,95 4,73 1023	1069 19 6,18 1063 19 6,35 4,20 1092	2 7,43 12 2 5,01 5,01 2 13	6 49 88 6 6 62 08 10	7,95 1367 29 8,07 5,40
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type	l/h kPa kW l/h kPa kW kW l/h kPa type	590 12 3,41 586 13 3,37 2,70 580	7 2 4, 7, 2 2 4, 7, 2 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	35 20 .25 .31 .20 .08 .34	860 26 4,97 855 26 4,65 3,92 800	656 15 3,79 652 15 4,15 2,93 580	83 2 4,/ 83 2 5,/ 3,/	36 23 83 31 23 02 60	990 31 5,72 984 31 5,67 4,12 800	4,36 750 19 4,24 3,24 729	5, 80 2 4, 3, 85	668 55 002 033 55 97 97 883 66	5,23 899 27 5,18 4,02 28 28 Centr	862 12 4,98 856 12 4,69 3,53 807 12	100 10 10 10 10 10 10 10 10 10 10 10 10	02 5 79 96 5 5 53 20	1040 16 6,01 1034 16 5,80 4,41 997	1016 14 5,87 1009 14 4,38 3,11 753	6, 6, 11 1 1 5, 4,	86 80 8 8 11 17	7,18 1235 20 5,95 4,73 1023	1069 19 6,18 1063 19 6,35 4,20 1092	2 7,43 12 2 5,01 5,01 2 13	6 49 88 6 6 62 08 10	7,95 1367 29 8,07 5,40
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor	kW I/h kPa kW kW I/h kPa type type	590 12 3,41 586 13 3,37 2,70 580	7 7 2 2 4,, 7 7 2 2 4,, 1 3, 7 1 2 2 2	.25 .25 .25 .00 .08 .08 .34 .00 .21	860 26 4,97 855 26 4,65 3,92 800	656 15 3,79 652 15 4,15 2,93 580	83 2 4,4 83 2 5,4 7,7 2	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800	4,36 750 19 4,24 3,24 729	2 5, 80 80 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	558 55 502 633 55 55 97 97 883 66	5,23 899 27 5,18 4,02 28 28	862 12 4,98 856 12 4,69 3,53 807 12	100 10 10 10 10 10 10 10 10 10 10 10 10	02 5 5 779 06 5 5 5 5 73 220	1040 16 6,01 1034 16 5,80 4,41 997	1016 14 5,87 1009 14 4,38 3,11 753	5, 11 1 1 5, 6, 1 1 1 1 1	886 886 880 88 333 111 117	7,18 1235 20 5,95 4,73 1023	1069 19 6,18 1063 19 6,35 4,20 1092	2 3 7,4 3 12 2 2 6 7,6 1 5,6 2 13	6 49 88 6 6 62 08 10 4	7,95 1367 29 8,07 5,40
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number	kW I/h kPa kW I/h kPa kW kW I/h kPa type type no.	590 12 3,41 586 13 3,37 2,70 580 15	77 7 2 2 4,4,7 7 7 2 2 3 3,7 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 20 25 33 31 20 08 34 00 21	860 26 4,97 855 26 4,65 3,92 800 26	656 15 3,799 652 15 4,15 2,93 580 16	883 2 4,4,4,83 2 5,7 7,7 2	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28	19 4,366 750 19 4,24 3,24 729 20	2 5,, 5,, 80 80 2 2 2 3 3, 83.	558 55002 533 555 97 97 66	5,23 899 27 5,18 4,02 28 28 Centrr Asynch	4,98 856 12 4,69 3,53 807 12	100 10 10 10 10 10 10 10 10 10 10 10 10	02 5 5 779 06 5 5 5 5 3 3 8	1040 16 6,01 1034 16 55,80 4,41 997 17	5,87 1009 14 4,38 3,11 753	6,6,6,0) 111 1 1 5,5,4,4,9 9 1 1	886 886 880 88 833 111 117 44	7,18 1235 20 5,95 4,73 1023 17	1069 19 6,188 1063 19 6,35 4,20 1092 18	2 2 7,4 3 12 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	6 49 888 6 6 62 208 110 4	7,95 1367 29 8,07 5,40 1388 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h	590 12 3,41 586 13 3,37 2,70 580 15	77 22 44,77 22 44,77 22 22 22 22 22 22 22 22 22 22 22 22 2	25 25 25 25 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	860 26 4,97 855 26 4,65 3,92 800 26	3,79 652 15 4,15 2,93 580 16	838 22 4,/,4 83 2 5,/ 3,/ 70 2	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28	19 4,36 750 19 4,24 3,24 729 20	2 5, 5, 888 888 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55 5002 663 673 675 66	27 5,23 899 27 5,18 4,02 28 28 Centrr Asynch	4,98 856 12 4,69 3,53 807 12 ifugal ronous	100 10 10 10 10 10 10 10 10 10 10 10 10	02 5 5 79 06 5 5 5 5 5 6 6	1040 16 6,01 1034 16 55,80 4,41 997 17	1016 14 5,87 1009 14 4,38 3,11 753 10	6,6,6 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	886 886 880 88 88 111 117 144	7,18 1235 20 5,95 4,73 1023 17	1069 19 6,188 1063 19 6,35 4,20 1092 18	2 2 7,4 7,4 5 7,4 5,6 1 5,6 1 5,7 1 2 13 3 3 3 97	6 49 888 6 6 52 8 10 4	7,95 1367 29 8,07 5,40 1388 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa	3,41 586 13 3,37 2,70 580 15	77 2 2 4, 77 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 225 225 231 200 200 200 200 201 201 201 201 201 20	860 26 4,97 855 26 4,65 3,92 800 26	3,79 652 15 4,15 2,93 580 16	8:3 2 4,,, 8:3 2 2 5,, 70 2 2	83 83 83 33 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28	19 4,36 750 19 4,24 3,24 729 20 785 32	2 5,5,5,88888888888888888888888888888888	55 5002 663 55 55 66 66	5,23 899 27 5,18 4,02 28 28 Centrr Asynch	4,98 856 12 4,69 3,53 807 12 ifugal ronous	100 10 10 10 10 10 10 10 10 10 10 10 10	02 5 79 006 5 5 5 3 8 8 0	1040 16 6,01 1034 16 55,80 4,41 1997 17	1016 14 5,87 1009 14 4,38 3,11 753 10	5 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	886 880 880 88 111 117 44	7,18 1235 20 5,95 4,73 1023 17	1069 19 6,18 1063 19 6,35 4,20 1092 18	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 88 88 6 6 208 110 4 4	7,95 1367 29 8,07 5,40 1388 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h	3,41 586 13 3,37 2,70 580 15 567 27 66	7 7 2 2 4,4,7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	335 220 225 331 200 08 334 002 211 33 360 60 60	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118	656 15 3,79 652 15 4,15 2,93 580 16	88. 2 4,4 88. 2 2 5,4 3,4 77.7 5 5 8 8	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28	4,360 7500 19 4,24 3,24 729 20 785 32 92	2 5, 5, 80 80 2 2 2 3 3, 8.5 2 2 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	002 003 003 003 003 003 004 005 005 005 005 005 005 005 005 005	5,23 899 27 5,18 4,02 28 28 Centr Asynch	4,98 856 12 4,69 3,53 807 12 ifugal ronous 785 32 92	100 10 10 10 10 10 10 10 10 10 10 10 10	02 55 779 66 55 53 220 51 66	1040 16 6,01 1034 16 5,80 4,41 997 17	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92	5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	86 86 88 88 88 88 111 117 44 33 778 60 117	7,18 1235 20 5,95 4,73 1023 17	1069 19 6,18 1063 19 6,35 4,20 1092 18 785 32 92	2 2 2 2 2 2 3 3 3 977 50 111	66 888 66 62 008 110 44	7,95 1367 29 8,07 5,40 1388 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa	3,41 586 13 3,37 2,70 580 15	7 7 2 2 4,4,7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 225 225 231 200 200 200 200 201 201 201 201 201 20	860 26 4,97 855 26 4,65 3,92 800 26	3,79 652 15 4,15 2,93 580 16	88. 2 4,4 88. 2 2 5,4 3,4 77.7 5 5 8 8	83 83 83 33 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28	19 4,36 750 19 4,24 3,24 729 20 785 32	2 5,5,5,88888888888888888888888888888888	002 003 003 003 003 003 004 005 005 005 005 005 005 005 005 005	5,23 899 27 5,18 4,02 28 28 Centrr Asynch	4,98 856 12 4,69 3,53 807 12 ifugal ronous	100 10 10 10 10 10 10 10 10 10 10 10 10	02 55 779 66 55 53 220 51 66	1040 16 6,01 1034 16 55,80 4,41 1997 17	1016 14 5,87 1009 14 4,38 3,11 753 10	5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	886 880 880 88 111 117 44	7,18 1235 20 5,95 4,73 1023 17	1069 19 6,18 1063 19 6,35 4,20 1092 18	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	66 888 66 62 008 110 44	7,95 1367 29 8,07 5,40 1388 27
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring Duct type fan coil sound data (4)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W	5900 12 3,41 5866 13 3,377 2,700 580 15 567 27 66 V1	7 2 2 4, 7. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	335 220 225 331 200 08 334 002 211 33 36 60 60 60 60 60 60 60 60 60 6	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118 V7	656 15 3,79 652 15 4,15 2,93 580 16	8: 2 4,4 8: 2 5,4 3,7 70 2 2	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28 920 71 118 V7	19 4,36 750 19 4,24 3,24 729 20 785 32 92 V2	2 2 5, 88 88 88 88 88 88 88 88 88 88 88 88 88	55 55 55 55 55 55 55 66 67 78 83 78 80 017	27 5,23 899 27 5,18 4,02 28 28 28 Centr Asynch 1050 58 138 V7	862 12 4,98 856 12 4,69 3,53 807 12 ifugal ronous 785 32 92 V2	100 100 100 100 100 100 100 100 100 100	02 55 779 06 55 53 33 220 66 6 8 8 8 8 8 0 0	1040 16 6,01 1034 16 5,80 4,41 997 17	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92 V2	5, 4, 4, 4, 4, 1 1 1 1 1 1 1 1 1 1 1 1 1	87 88 86 88 88 88 33 111 117 44	1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	1069 19 6,188 1063 19 6,355 4,200 1092 18 785 32 92 V2	2 2 2 3 7,4 5 7,6 1 5,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 49 888 66 62 2008 110 4	7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring Duct type fan coil sound data (4) Sound power level (inlet + radiated)	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h Pa W	5900 12 3,41 586 13 3,37 2,70 580 15 567 27 66 V1	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 225 331 200 08 334 002 211 33 3770 60 60 89 94	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118 V7	656 15 3,79 652 15 4,15 2,93 580 16 567 27 66 V1	83 2 4,4 83 2 2 5,4 3,4 70 2 2 2 8 8 8 77 77 5 5 8 8 8 7 7 7 7 7 7 7 8 8 8 8	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28 920 71 118 V7	19 4,36 750 19 4,24 3,24 729 20 785 32 92 V2	2 5, 5, 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55 55 55 55 55 55 55 66 6 78 8 0 0 117 5 5	27 5,23 899 27 5,18 4,02 28 28 Centrr Asynch 1050 58 138 V7	4,98 856 12 4,69 3,53 807 12 fifugal ronous 785 32 92 V2	100 100 100 100 100 100 100 100 100 100	02 55 779 06 55 53 38 78 00 07,7 55	1040 16 6,01 1034 16 5,80 4,41 997 17 1050 58 138 V7	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92 V2	5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87 88 88 88 88 88 88 83 11 11 17 44 86 90 117 17 17 17 17 17 17 17 17 17 17 17 17	1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	1069 19 6,18 1063 19 6,35 4,20 1092 18 785 32 92 V2	2 2 7,7,7 3 12 2 2 2 13 3 3 7 7,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 49 888 66 62 2008 110 4 4	7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring Duct type fan coil sound data (4) Sound power level (inlet + radiated) Sound power level (outlet)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h Pa W	5900 12 3,41 5866 13 3,377 2,700 580 15 567 27 66 V1	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 225 331 200 08 334 002 221 33 370 60 60 89 94	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118 V7	656 15 3,79 652 15 4,15 2,93 580 16	8: 2 4,4 8: 2 5,4 3,7 70 2 2	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28 920 71 118 V7	19 4,36 750 19 4,24 3,24 729 20 785 32 92 V2	2 5, 5, 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	55 55 55 55 55 55 55 66 6 78 8 0 0 117 5 5	27 5,23 899 27 5,18 4,02 28 28 28 Centr Asynch 1050 58 138 V7	862 12 4,98 856 12 4,69 3,53 807 12 ifugal ronous 785 32 92 V2	100 100 100 100 100 100 100 100 100 100	02 55 779 06 55 53 38 78 00 07,7 55	1040 16 6,01 1034 16 5,80 4,41 997 17	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92 V2	5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87 88 88 88 88 88 88 83 11 11 17 44 86 90 117 17 17 17 17 17 17 17 17 17 17 17 17	1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	1069 19 6,188 1063 19 6,355 4,200 1092 18 785 32 92 V2	2 2 7,7,7 3 12 2 2 2 13 3 3 7 7,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 49 888 66 62 2008 110 4 4	7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring Duct type fan coil sound data (4) Sound power level (inlet + radiated) Sound power level (outlet) Water coil	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h Pa W	5900 12 3,41 586 13 3,37 2,70 580 15 567 27 66 V1	7 2 2 4, 4 4, 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 331 200 08 334 202 21 3 3 3 770 60 60 89 9	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118 V7	656 15 3,79 652 15 4,15 2,93 580 16 567 27 66 V1	83. 44,4 83. 2 5,4 7,7 5,5 8,8 V	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28 920 71 118 V7	19 4,36 750 19 4,24 3,24 729 20 785 32 92 V2	2 5,5,5,88 88 88 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	558 55 55 563 55 57 97 883 555 66 67 77 75 75	27 5,23 899 27 5,18 4,02 28 28 Centrr Asynch 1050 58 138 V7	4,98 856 12 4,69 3,53 807 12 fifugal ronous 785 32 92 V2	100 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 55 79 79 66 55 53 320 66 68 88 80 017 75 55	1040 16 6,01 1034 16 5,80 4,41 997 17 1050 58 138 V7	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92 V2	5, 4, 4, 99 99 55 11 V	886 886 1880 1883 333 111 117 144 175 175 170 170 170 170 170 170 170 170	1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	1069 19 6,18 1063 19 6,35 4,20 1092 18 785 32 92 V2	2 2 3 7,4 5 5,6 5 9 1 1 1 1 1 60 5 9 1 5 9	66 449 888 66 62 888 100 44 44 44 55 100 100 100 100 100 100 100	7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring Duct type fan coil sound data (4) Sound power level (inlet + radiated) Sound power level (outlet)	kW I/h kPa kW I/h kPa kW L/h kPa type type no. m³/h Pa W	5900 12 3,41 586 13 3,37 2,70 580 15 567 27 66 V1	7 2 2 4, 4 4, 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 225 331 200 08 334 002 211 33 3770 60 60 89 94	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118 V7	656 15 3,79 652 15 4,15 2,93 580 16 567 27 66 V1	83 2 4,4 83 2 2 5,4 3,4 70 2 2 2 8 8 8 77 77 5 5 8 8 8 7 7 7 7 7 7 7 8 8 8 8	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28 920 71 118 V7	19 4,36 750 19 4,24 3,24 729 20 785 32 92 V2	2 5, 5, 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	558 55 55 563 55 57 97 883 555 66 67 77 75 75	27 5,23 899 27 5,18 4,02 28 28 Centrr Asynch 1050 58 138 V7	4,98 856 12 4,69 3,53 807 12 fifugal ronous 785 32 92 V2	100 100 100 100 100 100 100 100 100 100	02 55 79 79 66 55 53 320 66 68 88 80 017 75 55	1040 16 6,01 1034 16 5,80 4,41 997 17 1050 58 138 V7	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92 V2	5, 4, 4, 99 99 55 11 V	87 88 88 88 88 88 88 83 11 11 17 44 86 90 117 17 17 17 17 17 17 17 17 17 17 17 17	1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	1069 19 6,18 1063 19 6,35 4,20 1092 18 785 32 92 V2	2 2 7,7,7 3 12 2 2 2 13 3 3 7 7,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 449 888 66 62 888 100 44 44 44 55 100 100 100 100 100 100 100	7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring Duct type fan coil sound data (4) Sound power level (inlet + radiated) Sound power level (outlet) Water coil	l/h kPa kW l/h kPa kW kW l/h kPa type type no. m³/h Pa W	5900 12 3,41 586 13 3,37 2,70 580 15 567 27 66 V1	7 2 2 4, 4 4, 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 331 200 08 334 202 21 3 3 3 770 60 60 89 9	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118 V7	656 15 3,79 652 15 4,15 2,93 580 16 567 27 66 V1	83. 44,4 83. 2 5,4 7,7 5,5 8,8 V	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28 920 71 118 V7	19 4,36 750 19 4,24 3,24 729 20 785 32 92 V2	2 5,5,5,88 88 88 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	558 55 55 563 55 57 97 883 555 66 67 78 77 75 75	27 5,23 899 27 5,18 4,02 28 28 Centrr Asynch 1050 58 138 V7	4,98 856 12 4,69 3,53 807 12 fifugal ronous 785 32 92 V2	100 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 55 79 79 66 55 53 320 66 68 88 80 017 75 55	1040 16 6,01 1034 16 5,80 4,41 997 17 1050 58 138 V7	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92 V2	5, 4, 4, 99 99 55 11 V	886 886 1880 1883 333 111 117 144 175 175 170 170 170 170 170 170 170 170	1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	1069 19 6,18 1063 19 6,35 4,20 1092 18 785 32 92 V2	2 2 3 7,4 5 5,6 5 9 1 1 1 1 1 60 5 9 1 5 9	66 449 888 66 62 888 100 44 44 44 55 100 100 100 100 100 100 100	7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7
Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Input power Electrical wiring Duct type fan coil sound data (4) Sound power level (inlet + radiated) Sound power level (outlet) Water coil Water coil	l/h kPa kW l/h kPa kW kW l/h kPa type type no. m³/h Pa W	5900 12 3,41 586 13 3,37 2,70 580 15 567 27 66 V1	7 2 2 4, 4 4, 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 331 200 08 334 202 21 3 3 3 770 60 60 89 9	860 26 4,97 855 26 4,65 3,92 800 26 920 71 118 V7	656 15 3,79 652 15 4,15 2,93 580 16 567 27 66 V1	83. 44,4 83. 2 5,4 7,7 5,5 8,8 V	83 83 83 83 83 83 83 83 83 83 83 83 83 8	990 31 5,72 984 31 5,67 4,12 800 28 920 71 118 V7	19 4,36 750 19 4,24 3,24 729 20 785 32 92 V2	2 5,5,5,88 88 88 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	558 55 55 563 55 57 97 883 555 66 67 78 77 75 75	5,23 899 27 5,18 4,02 28 28 Centrr Asynch 1050 58 138 V7	4,98 856 12 4,69 3,53 807 12 fifugal ronous 785 32 92 V2	100 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02 55 79 79 66 55 53 320 66 68 88 80 017 75 55	1040 16 6,01 1034 16 5,80 4,41 997 17 1050 58 138 V7	1016 14 5,87 1009 14 4,38 3,11 753 10 785 32 92 V2	5, 4, 4, 99 99 55 11 V	886 886 1880 1883 333 111 117 144 175 175 170 170 170 170 170 170 170 170	1242 20 7,18 1235 20 5,95 4,73 1023 17 1050 58 138 V7	1069 19 6,18 1063 19 6,35 4,20 1092 18 785 32 92 V2	2 2 3 7,4 5 5,6 5 9 1 1 1 1 1 60 5 9 1 5 9	66 449 888 66 62 888 100 44 44 44 55 100 100 100 100 100 100 100	7,95 1367 29 8,07 5,40 1388 27 1050 58 138 V7

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

		F	CZ201P	0	F	CZ301P	0	F	CZ401P	0	F	CZ501P	0	F	CZ601P	0	F	CZ701P	0	F	CZ901P	0
		2	4	6	1	4	6	1	3	6	1	5	6	1	4	7	2	5	7	2	5	7
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)																						
Heating capacity	kW	1,06	1,37	1,48	1,82	2,39	2,55	2,19	2,75	2,99	2,59	3,30	3,34	3,13	3,85	4,35	4,13	4,40	4,60	5,16	5,71	5,77
Water flow rate system side	l/h	93	120	130	159	210	223	192	240	262	226	290	301	274	336	381	361	385	403	452	500	504
Pressure drop system side	kPa	5	8	9	8	12	14	5	7	8	6	9	9	9	13	16	16	15	17	10	12	12
Cooling performance 7 °C / 12 °C (2)																						
Cooling capacity	kW	0,93	1,30	1,44	1,70	2,40	2,63	2,29	3,06	3,41	2,68	3,65	3,82	3,37	4,08	4,65	4,24	4,97	5,18	4,38	5,33	5,95
Sensible cooling capacity	kW	0,74	1,14	1,18	1,27	1,86	2,03	1,66	2,24	2,52	1,94	2,70	2,83	2,70	3,34	3,92	3,24	3,83	4,02	3,11	4,11	4,73
Water flow rate system side	I/h	160	224	248	292	413	452	394	526	586	461	628	657	580	702	800	729	855	28	753	917	1023
Pressure drop system side	kPa	8	13	15	8	16	18	11	18	22	13	22	24	15	21	26	20	26	28	10	14	17
Fan																						
Туре	type										(entrifug	al									
Fan motor	type										Asy	ynchron	ous									
Number	no.		1			2			2			2			3			3			3	
Air flow rate	m³/h	148	226	254	263	404	446	346	487	559	400	592	627	567	770	920	785	978	1050	785	978	1050
High static pressure	Pa	21	50	63	21	50	61	25	50	66	22	50	56	27	50	71	32	50	58	32	50	58
Input power	W	28	41	74	38	55	78	53	63	102	49	80	627	66	89	118	92	117	138	92	117	138
Electrical wiring		V2	V4	V6	V1	٧4	V6	V1	V3	V6	V1	V5	V6	V1	V4	٧7	V2	V5	V7	V2	V 5	٧7
Duct type fan coil sound data (3)																						
Sound power level (inlet + radiated)	dB(A)	41,0	56,0	59,0	39,0	51,0	54,0	44,0	54,0	55,0	45,0	55,0	57,0	46,0	56,0	61,0	54,0	60,0	62,0	54,0	60,0	62,0
Sound power level (outlet)	dB(A)	37,0	52,0	55,0	35,0	47,0	49,0	40,0	50,0	52,0	41,0	51,0	53,0	44,0	54,0	60,0	52,0	59,0	61,0	52,0	59,0	61,0
Water coil																						
Water content main coil	- 1		0,5			0,8			1,0			1,0			1,2			1,2			1,8	
Water content the secondary coil	I		0,2			0,3			0,3			0,3			0,4			0,4			0,7	
Diametre hydraulic fittings																						
Main coil	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø											1/2"										

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZ100P	FCZ150P	FCZ200P	FCZ250P	FCZ300P	FCZ350P	FCZ400P	FCZ450P	FCZ500P	FCZ550P
Dimensions and weights											
<u>A</u>	mm	216	216	216	216	216	216	216	216	216	216
В	mm	412	412	522	522	753	753	973	973	973	973
(mm	453	453	453	453	453	453	453	453	453	453
D	mm	452	452	562	562	793	793	1013	1013	1013	1013
Net weight	kg	12,00	13,00	12,00	14,00	14,00	16,00	20,00	22,00	23,00	24,00
		FCZ600P	FCZ650P	FCZ700P	FCZ750P	FC	Z800P	FCZ850P	FCZ900P	FCZ950P	FCZ1000P
Dimensions and weights											
A	mm	216	216	216	216		216	216	216	216	216
В	mm	1122	1122	1122	1122	1	122	1122	1122	1122	1122
C	mm	453	453	453	453		453	453	558	558	558
D	mm	1147	1147	1147	1147	1	147	1147	1147	1147	1147
Net weight	kg	29,00	31,00	29,00	31,00	2	9,00	31,00	32,00	32,00	32,00
		FCZ101P	FCZ102P	FCZ201P	FCZ202P	FCZ301P	FCZ302P	FCZ401P	FCZ402P	FCZ501P	FCZ502P
Dimensions and weights		FCZ101P	FCZ102P	FCZ201P	FCZ202P	FCZ301P	FCZ302P	FCZ401P	FCZ402P	FCZ501P	FCZ502P
Dimensions and weights	mm	FCZ101P 216	FCZ102P 216	FCZ201P 216	FCZ202P 216	FCZ301P 216	FCZ302P 216	FCZ401P 216	FCZ402P 216	FCZ501P 216	FCZ502P 216
Dimensions and weights A B	mm mm										
Dimensions and weights A B C		216	216	216	216	216	216	216	216	216	216
Dimensions and weights A B C D	mm	216 412	216 412	216 522	216 522	216 753	216 753	216 973	216 973	216 973	216 973
A B C	mm mm	216 412 453	216 412 453	216 522 453	216 522 453	216 753 453	216 753 453	216 973 453	216 973 453	216 973 453	216 973 453
B C D	mm mm mm	216 412 453 452	216 412 453 452	216 522 453 562 13,00	216 522 453 562 14,00	216 753 453 793	216 753 453 793	216 973 453 1013 21,00	216 973 453 1013 22,00	216 973 453 1013	216 973 453 1013
B C D	mm mm mm	216 412 453 452 12,00	216 412 453 452 13,00	216 522 453 562 13,00	216 522 453 562 14,00	216 753 453 793 15,00	216 753 453 793 16,00	216 973 453 1013 21,00	216 973 453 1013 22,00	216 973 453 1013 23,00	216 973 453 1013 24,00
A B C D Net weight	mm mm mm	216 412 453 452 12,00	216 412 453 452 13,00	216 522 453 562 13,00	216 522 453 562 14,00	216 753 453 793 15,00	216 753 453 793 16,00	216 973 453 1013 21,00 P FCZ	216 973 453 1013 22,00	216 973 453 1013 23,00	216 973 453 1013 24,00
A B C D Net weight	mm mm mm kg	216 412 453 452 12,00 FCZ601P	216 412 453 452 13,00	216 522 453 562 13,00 FCZ	216 522 453 562 14,00	216 753 453 793 15,00	216 753 453 793 16,00 FCZ801	216 973 453 1013 21,00 P FCZ	216 973 453 1013 22,00	216 973 453 1013 23,00 FCZ901P	216 973 453 1013 24,00 FCZ1001P
A B C D Net weight	mm mm mm kg	216 412 453 452 12,00 FCZ601P	216 412 453 452 13,00 FCZ602F	216 522 453 562 13,00 FCZ	216 522 453 562 14,00 701P	216 753 453 793 15,00 FCZ702P	216 753 453 793 16,00 FCZ801	216 973 453 1013 21,00 P FC2	216 973 453 1013 22,00	216 973 453 1013 23,00 FCZ901P	216 973 453 1013 24,00 FCZ1001P
A B C D Net weight	mm mm kg mm	216 412 453 452 12,00 FCZ601P	216 412 453 452 13,00 FCZ602F 216 1122	216 522 453 562 13,00 FCZ	216 522 453 562 14,00 701P	216 753 453 793 15,00 FCZ702P 216 1122	216 753 453 793 16,00 FCZ801 216	216 973 453 1013 21,00 P FC2	216 973 453 1013 22,00 802P	216 973 453 1013 23,00 FCZ901P 216 1122	216 973 453 1013 24,00 FCZ1001P

FCZIP

Fan coil unit for ducted installations

Cooling capacity $0.89 \div 8.60 \text{ kW}$ Heating capacity $2.02 \div 17.02 \text{ kW}$

- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Suitable for duct-type installations too
- Total comfort: reduced variations in temperature and relative humidity
- Vertical and horizontal installation
- Very quiet

DESCRIPTION

fan coil can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures, and thanks to varied versions and settings, it is easy to pick the ideal solution for any need.

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

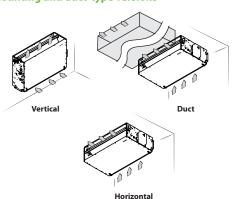
Heat exchanger coil

With copper pipes and aluminium louvers, the standard or oversized main coil and the possible secondary coil have female gas water connections on the left side and the manifolds have air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Reversibility of the water connections during installation only for units with a standard or boosted main coil, or standard with BV accessory. Not reversible in all other configurations. In any case, units with the coil water connections on the right are available at the time of ordering.

Condensate drip


Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

Air filter class Coarse 25% for all versions easy to pull out and clean.

VERSIONS

Flush-mounting and duct-type versions

In the standard configuration there is no useful static pressure available. If necessary for canaled installations, you must act on the engine dip switches, for more details refer to the technical documentation.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Field	Description
1,2,3,4	FCZI
	Size
	2, 3, 4, 5, 7, 9
6	Main coil
0	Standard
5	Oversized
7	Secondary coil

Field	Description
0	Without coil
1	Standard
2	Oversized
8	Version
Р	Flush-mounting, without cabinet
PR	Flush-mounting, without cabinet, with water connections on right-hand side

SIZE AVAILABLE FOR VERSION

Size		200	201	202	250	300	301	302	350	400	401	402	450
Versions produced (by size)													
Versions available (by size)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•
		500	501	502	550	700	701	702	750	900	901	950	
Versions produced (by size)													
Versions available (by size)	P,PR												

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

PXAI: Thermostat on the machine for controlling the fan coils (both with asynchronous and brushless motors), complete with water and air probes to be positioned in the relative seats, and a plastic support to fix it on the side of the unit. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, purifier devices (Cold Plasma and germicidal lamp), or radiant plate.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF system

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Water valves

VCZ_X: 3-way valve kit for single-coil fan coil, RH connections, (VCZ_X4R) or LH (VCZ_X4L) for 4-pipe systems. With totally separate "heat-

ing" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. X4L version for fan coils with LH connections, and X4R for fan coils with RH connections. 230V~50Hz power supply.

VCZ41: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ4124: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ42: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ4224: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ43: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The

kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCZ4324: 3-way motorised valve kit. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the 3-way insulating shell. The kit consists of a valve with its insulating shell, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for the secondary coil: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCZD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

(Heating only) additional coil

BV: Single row hot water heat exchanger.

Installation accessories

AMP: Wall mounting kit

DSC: Condensate drainage device.

BC: Condensate drip.

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

MZA: Cabinet housing with fixed fins. MZU: Cabinet housing with adjustable fins.

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

GM: Flow grid with adjustable louvers.

PA: Intake plenum in galvanised sheet metal, complete with suction couplings for circular-section ducts.

PAF: Intake plenum providing recovery and delivery on the same side, for all installations where the machine needs to be positioned outside the air conditioned rooms to minimise the noise levels and facilitate maintenance.

PM: Delivery plenum with circular flanges. Sandwich structure in hot galvanised steel, with interposed polyurethane foam (40 kg/m3). The panel is 15 mm thick. It is installed in place of the delivery panel with a rectangular flange, using the same 4 self-threading screws.

RD: Straight delivery coupling for canalisation.

RDA: Straight suction coupling for canalisation.

RP: 90° delivery coupling. RPA: 90° suction coupling.

Accessories for ducting

MZC: Plenum with motorised dampers.

RDA_V: Straight intake connection with rectangular flange.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDA_C: Straight intake connection with circular flanges.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_V: Straight delivery coupling in galvanised sheet metal.

RDM C: Straight discharge internally insulated, with circular flanges.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
AER503IR (1)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PR0503	P,PR	•	•	•	•	•			•	•	•	•	•		•	•	•	•		•	•	•	•	•
PXAI	P,PR	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
SA5 (2)	P,PR	•	•			•				•	•		•	•		•	•	•		•	•			•
SW3 (2)	P,PR	•				•				•	•		•							•	•			•
SW5 (2)	P,PR	•	•	•		•				•	•		•	•			•	•		•	•	•		•
TX (1)	P,PR		•	•	•	•			•	•	•		•	•	•	•	•	•	•	•	•	•	•	•

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

For more information about VMF system, refer to the dedicated documentation.

VMF system

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
VMF-E19I	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E3	P,PR	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•
VMF-E4DX	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4X	P,PR		•			•	•				•		•	•		•		•		•				•
VMF-IR	P,PR	•	•		•	•	•		•	•						•		•	•	•	•			•
VMF-SW	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-SW1	P,PR		•			•	•			•	•		•	•	•		•	•		•	•			•

Water valves

Valve Kit for 4 pipe systems

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
VCZ1X4L (1)	P,PR	•			٠																			
VCZ1X4R (1)	P,PR	•			•																			
VCZ2X4L (1)	P,PR					•			•	•			•	•			•	•			•			
VCZ2X4R (1)	P,PR								•	•			•	•			•	•			•			
VCZ3X4L (1)	P,PR																					•		•

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
VCZ3X4R (1)	P,PR																							•

 $(1) \ \ The valves can be combined with the units if there is a control panel for managing them.$

3 way valve kit

200	201	202	250	300	301	302	350	400	401	402	450
VCZ41	VCZ41	VCZ41	VCZ41	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42	VCZ42
VCZ4124	VCZ4124	VCZ4124	VCZ4124	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224
	VCF44	VCF44			VCF44	VCF44			VCF44	VCF44	
-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-
VCF44				VCF44				VCF44			
VCF4424				VCF4424				VCF4424			
500	501	502	550	700	701	702	750	900	901	950	
VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4224	VCZ4324	VCZ4324	VCZ4324	
	VCF44	VCF44			VCF44	VCF44			VCF45		
-	VCF4424	VCF4424	-	-	VCF4424	VCF4424	-	-	VCF4524	-	
VCF44				VCF44				VCF45			
VCF4424	-	-	-	VCF4424	-	-	-	VCF4524	-	-	
	VCZ41 VCZ4124 - VCF44 VCF4424 500 VCZ42 VCZ4224 - VCF44	VCZ41 VCZ4124 VCZ4124 VCZ4124 VCF44 VCF4424 VCF4424 - S00 S01 VCZ42 VCZ42 VCZ42 VCZ4224 VCF44 VCF4424	VCZ41 VCZ41 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 VCF4424 - - 500 501 502 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ4224 VCZ4224 VCF44 VCF44 VCF4424 VCF442 VCF4424 VCF4424	VCZ41 VCZ41 VCZ41 VCZ4124 VCZ4224 VCZ4	VCZ41 VCZ41 VCZ41 VCZ42 VCZ4124 VCZ4124 VCZ4124 VCZ4124 VCF44 VCF44 VCF4424 - VCF44 VCF4424 - - VCF44 VCF4424 - - VCF44 VCF4424 - - VCF4424 - - - VCF4424 - - - VCF4424 - - - VCZ424 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ4224 VCZ4224 VCZ4224 VCF44 VCF442 - - VCF44 VCF4424 - - VCF44 VCF4424 - -	VCZ41 VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ4224 VCF44224 VCZ4222 VCZ422 VCZ422 VCZ422 VCZ4224 VCZ42224 VCZ4222	VCZ41 VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ422 VCZ422 VCZ422 VCZ422 VCZ4224 VCZ4224	VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ422 VCZ422 VCZ422 VCZ422 VCZ4224 VCZ4224	VCZ41 VCZ41 VCZ41 VCZ41 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ42 VCZ4224 VCZ42424 VCF4424 VCF4424	VCZ41 VCZ41 VCZ41 VCZ41 VCZ42 VCZ4224 V	VCZ41 VCZ41 VCZ41 VCZ42 VCZ424 VCZ424 VCZ424 VCZ4224 VCZ422 VCZ4224 VCZ4224

VCF41 - 42 - 43; VCF44 - 45 (230V~50Hz) VCF4124 - 4224 - 4324; VCF4424 - 4524 (24V)

2 way valve kit

,												
	200	201	202	250	300	301	302	350	400	401	402	450
Main coil	VCZD1	VCZD1	VCZD1	VCZD1	VCZD2							
Maili Coli	VCZD124	VCZD124	VCZD124	VCZD124	VCZD224							
C		VCFD4	VCFD4			VCFD4	VCFD4			VCFD4	VCFD4	
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-
A.I.I.'s.' I! I // DW//	VCFD4				VCFD4				VCFD4			
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	-
	500	501	502	550	700	701	702	750	900	901	950	
Main coil	VCZD2	VCZD3	VCZD3	VCZD3								
Maili Coli	VCZD224	VCZD324	VCZD324	VCZD324								
Ca aan dama aail		VCFD4	VCFD4			VCFD4	VCFD4			VCFD4		
Secondary coil	-	VCFD424	VCFD424	-	-	VCFD424	VCFD424	-	-	VCFD424	-	
Additional sail //DW//	VCFD4				VCFD4				VCFD4			
Additional coil "BV"	VCFD424	-	-	-	VCFD424	-	-	-	VCFD424	-	-	

VCZD1 - 2 - 3; VCFD4 (230V~50Hz) VCZD124 - 224 - 324; VCF424 (24V)

Combined Adjustment and Balancing Valve Kit

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
VJP060 (1)	P,PR	•	•	•	•	•	•	•	•															
VJP060M (2)	P,PR	•	•	•	•	•	•	•	•															
VJP090 (1)	P,PR													•										
VJP090M (2)	P,PR									•			•		•	•								
VJP150 (1)	P,PR																	•		•	•		•	•
VJP150M (2)	P,PR																	•						•

(1) 230V~50Hz (2) 24V

(Heating only) additional coil

Heating only additional coil

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
BV122 (1)	P,PR	•																						
BV132 (1)	P,PR					•																		
BV142 (1)	P,PR									•				•										
BV162 (1)	P,PR																					•		
BVZ800 (1)	P,PR																	•						

(1) Not available for sizes with oversized main coil.

Installation accessories

Wall mounting kit

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
AMP20	P,PR	•	•		•	•	•	•		•	•	•	•	•	•	•								
AMPZ	P.PR																		•					•

Condensate drip

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
BCZ4 (1)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
BCZ5 (2)	P,PR	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•			

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
BCZ6 (2) 1) For vertical install	P,PR ation																					•	•	•
2) For horizontal inst	allation.																							
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
BC8 (1) BC9 (1)	P,PR P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
(1) For horizontal inst	,																							
Condensate re		levice																						
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
DSCZ4 (1)	P,PR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
(1) DSC4 cannot be m	ounted if even just o	one of these	e access	ories is a	lso inst	alled: Al	MP - AM	PZ valve	VCZ1-2	-3-4 X4	L/R and	all the c	ondensa	ite colle	ction tra	ays.								
Ventilcassafo	rma																							
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
CHF22	P,PR	•	•	•	•																			
CHF32	P,PR					•	•	•	•															
CHF42	P,PR									•	•	•	•	٠	•	•	•							
CHF62	P,PR																	•	•	•	•	•	<u>·</u>	•
Cabinet housi	ng with fixed	l fins.																						
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
MZA200	P,PR	•	•	•	•																			
MZA300	P,PR					•	•	•	•															
MZA500	P,PR									•	•	•	•	•	•	•	•							
MZA800 MZA900	P,PR P,PR																	•	•	•	•			
IVIZAZUU	r,r n																					·	·	·
Cabinet housi	ng with adju	stable t	fins.																					
Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
MZU100	P,PR	•	•	•	•																			
MZU300	P,PR					•	•	•	•															
MZU500	P,PR P,PR									•	•	•	•	•	•	•	•							
MZU800 MZU900	P,PR																	•	•	•	•			
L <i>ower intake <u>e</u> </i> Model	grille Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	
GA22	P,PR	•	•	•	•																			95
GA32	P,PR																							95
GA42	P,PR P,PR					•	•	•	•															95
GA62	r.rn					•	•	•	•	•			•	•	•		•							95
Intake grilles	.,					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		95
		ıvers aı	nd fil	ter		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	95
	with fixed lou Ver	200	nd fil	ter 202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	•
GAF22	with fixed lou Ver P,PR				250	300	301	302										700	701	702	750	•	901	•
GAF22 GAF32	with fixed lou Ver P,PR P,PR	200	201	202					350									700	701	702	750	•	901	
GAF22 GAF32 GAF42	With fixed low Ver P,PR P,PR P,PR	200	201	202		300	301	302										700	701	702	750	•	901	
GAF22 GAF32 GAF42 GAF62	Ver P,PR P,PR P,PR P,PR P,PR	200	201	202		300	301	302											701	702	750	•	901	•
GAF22 GAF32 GAF42 GAF62 Delivery grille	Ver PPR PPR PPR PPR PPR PPR	200 ·	201 ·	202 •	•	300	301	302	•	400	401	402	450	500	501	502	550	•	•	•	•	900	•	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model	Ver P,PR P,PR P,PR P,PR P,PR P,PR Ver	200 • table lo	201	202 •	250	300	301	302											701	702	750	•	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR Ver P,PR	200 ·	201 ·	202 •	•	300	301	302	350	400	401	402	450	500	501	502	550	•	•	•	•	900	•	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	200 • table lo	201 ·	202 •	250	300	301	302	•	400	401	402	450	500	501	502	550	•	•	•	•	900	•	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM32	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR Ver P,PR	200 • table lo	201 ·	202 •	250	300	301	302	350	400	401	402	450	500	501	502	550	•	•	•	•	900	•	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	200 • table lo 200	201 • • • • • • • • • • • • • • • • • • •	202 • **s 202 •	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	table lo	201 ouver 201	202 ss 202	250 •	300	301	302	350	400 400	401 401	402	450	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	200 • table lo 200	201 • • • • • • • • • • • • • • • • • • •	202 • **s 202 •	250 ·	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62 Intake plenum Model	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	table lo 200 . table lo 200 .	201 · · · · · · · · · · · · · · · · · · ·	202 202	250 •	300	301	302	350	400 400	401 401	402	450	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62 Intake plenum Model PA22 PA32	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	table lo 200 . table lo 200 .	201 · · · · · · · · · · · · · · · · · · ·	202 202	250 ·	300	301 	302	350	400 400	401 401	402	450	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62 Intake plenum Model PA22 PA32 PA42	Ver P,PR P,PR P,PR P,PR P,PR P,PR P,PR P,P	table lo 200 . table lo 200 .	201 · · · · · · · · · · · · · · · · · · ·	202 202	250 ·	300	301 	302	350	400 	401 401	402	450 	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62 Intake plenum Model PA22 PA32 PA42 PA62	Ver PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	200 	201 . buver 201	202 · · · · · · · · · · · · · · · · · ·	250 ·	300	301 	302	350	400 	401 401	402	450 	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM42 GM62 Intake plenum Model PA22 PA32 PA42 PA62 Intake plenum Model	Ver PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	200 	201 . buver 201	202 · · · · · · · · · · · · · · · · · ·	250 ·	300	301 	302	350	400 	401 401	402	450 	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62 Intake plenun Model PA22 PA32 PA42 PA62 Intake plenun Model PA22F	With fixed low Ver PPR PPR PPR PPR PPR PPR PPR P	table lo 200 . table lo 200 . tal com 200 .	201 · 201 · 201 · 201 ·	202 · · · · · · · · · · · · · · · · · ·	250 · · · · · · · · · · · · · · · · · · ·	300 . 300 . nectos 300 .	301	302	350	400 	401 . 401	402	450	500	501	502	550	700	701	702	750	900	901	95
GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM62 Intake plenum Model PA22 PA32 PA42 PA62 Intake plenum Model PA22 PA32 PA42 PA62	With fixed low Ver PPR PPR PPR PPR PPR PPR PPR P	table lo 200 . table lo 200 . tal com 200 .	201 201 201 201 201	202 · · · · · · · · · · · · · · · · · ·	250 · · · · · · · · · · · · · · · · · · ·	300 . 300 . nectos 300 .	301	302	350	400 	401 . 401	402	450	500	501	502	550	700	701	702	750	900	901	95
Model GAF22 GAF32 GAF42 GAF62 Delivery grille Model GM22 GM32 GM42 GM42 GM62 Intake plenum Model PA22 PA32 PA42 PA62 Intake plenum Model PA22F PA32F PA42F PA62F	With fixed low Ver PPR PPR PPR PPR PPR PPR PPR P	table lo 200 . table lo 200 . tal com 200 .	201 201 201 201 201	202 · · · · · · · · · · · · · · · · · ·	250 · · · · · · · · · · · · · · · · · · ·	300 . 300	301 301 301 301 .	302 . 302 . 7 circ. 302 .	350	400 	401 . 401	402	450	500	501	502	550	700	701	702	750	900	901	950 950 950

Property	Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	95
Part							300	301	302	330	400	401	402	430	300	301	302	220	/00	/01	/02	/30	900	901	93
Section Sect			•	•	•	•																			
Traight delivery coupling taked we 20 20 20 20 20 20 30 30							•	•	•	•															
Traight delivery coupling used											•	•	•	•	•	•	•	•							
Section Sect	M62	P,PR																	•	•	•	•	•	•	
Second Bell New 200 201 202 208 300 301 302 309 400 401 402 450 500 501 502 500 700 701 702 750 900 901 502 503 50	traight deliv	ery coupling																							
Property			200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9:
1972 1978 1978 1979																									
Property																									
Traight suction coupling timeded							•	•	•	•															
Traight suction coupling Indeed											•	•	•	•	•	<u> </u>	•	•							
Indeed	D62	P,PR																	•	٠	•	•	•	•	
Marcin PR	traight sucti	ion coupling																							
DAILY	Nodel	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9.
Procedative	DA22	P,PR	•	•	•	•																			
PR	DA32	P,PR					•																		
00° delivery coupling. 100° delivery coupling. 100° delivery coup	DA42														•										
Company Comp																									
Second	DAOZ	r,rn																	<u> </u>	<u> </u>	<u> </u>	<u> </u>	·	·	
PR	0° delivery c	oupling.																							
PR			200				300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
PR	P22		•	•	•	•																			
PRISE	IP32	P,PR																							
Property	RP42														•	•									
Indee																					•			•	
Indee	00° suction co	nunlina																							
PRIZE			200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
PR							300	301	302	330	100	701	702	130			302	330	700	701	702	730			<u> </u>
PRACE PPR																									
Property							•	•	•	<u> </u>															
Coccessories for ducting Coccessories for ducting Coccessories for ducting Coccessories for ducting Coccessories C	PA42	P,PR									•	•	•	•	•	•	•	•							
AZCAZOO PPR AZCAZOO PR AZCAZOO PPR AZCAZO PPR AZCAZOO PPR AZCAZOO PPR AZCAZOO PPR AZCAZOO		_	mpers.																						
MICISSO PPR	Plenum with	motorised da			202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
MICISSO PPR	Plenum with I Nodel	motorised dai Ver	200	201			300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
ACCESSION P.P.R Straight intake connection with rectangular flanges. Addel Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901 502 500 50	Plenum with I Model MZC220	motorised dan Ver P,PR	200	201							400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
Straight intake connection with rectangular flanges.	Plenum with A Model MZC220 MZC320	wotorised dan Ver P,PR P,PR	200	201								401	402						700	701	702	750	900	901	9:
Model Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901 90	Plenum with I Model MZC220 MZC320 MZC530	ver P,PR P,PR P,PR P,PR	200	201								401	402												
RDA100V PPR	Plenum with a Model MZC220 MZC320 MZC330 MZC830	Wer P,PR P,PR P,PR P,PR P,PR	200	201	•	•	•					401	402												9:
Marian M	Plenum with a Model MZC220 MZC320 MZC330 MZC330 MZC330	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 ·	201 ·	ngula	r flan	nge.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Note Proper Pro	Plenum with I Model MZC220 MZC320 MZC330 MZC830 Straight intak Model	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 ·	201 ·	ngula	r flan	nge.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
DA200V P.PR	Plenum with I Model MZC220 MZC320 MZC330 MZC830 Straight intak Model	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r	201 ectar 201	ngula	r flan 250	nge.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Model Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901 90	Plenum with I Model MZC220 MZC320 MZC330 MZC830 Straight intak Model	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r	201 ectar 201	ngula	r flan 250	1 ge. 300	301	302	350	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Node Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901	Plenum with I Model MZC220 MZC320 MZC330 MZC830 Straight intak Model DA000V DA100V	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.PR	200 with r	201 ectar 201	ngula	r flan 250	1 ge. 300	301	302	350	400	401	402	450	500	501	502	550	•	•	•	•	•	•	
Node Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901	Plenum with I Nodel NZC220 NZC330 NZC330 NZC330 NZC830 NZC	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r	201 ectar 201	ngula	r flan 250	1 ge. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	•	
PAGOOV	Plenum with I Model MZC220 MZC320 MZC330 MZC830 Straight intak Model DA000V DA100V DA200V	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r 200	201 ectar 201	ngula 202	r flan 250	1 ge. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	•	
PACOV P.P.R	Plenum with Indoel MZC220 MZC320 MZC330 MZC830 MZC830 Straight intak Model DA000V DA100V DA200V DA300V DA300V	Wer PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	with r	201 ectar 201	ngula 202 ·	er flan 250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
PAZOOV P.P.R	Plenum with Indoel MZC220 MZC320 MZC320 MZC830 MZC830 Straight intak Model DA000V DA100V DA200V DA300V DA300V MACAB Plenum Model	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r 200 	201 ectar 201	ngula 202	. r flan 250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
PASOV PR	Plenum with Indel MZC220 MZC320 MZC320 MZC830 MZC83	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r 200 	201 ectar 201	ngula 202	. r flan 250	. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
Addel Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901 901 9000000	Plenum with Indeel MacC220 MacC320 MacC320 MacC330 Mac	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r 200 	201 ectar 201	ngula 202	. r flan 250	. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
Node Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901	Plenum with Indel	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r 200 	201 ectar 201	ngula 202	. r flan 250	. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
Node Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901	Plenum with a Model MZC220 MZC320 MZC320 MZC330 MZC830 Straight intak Model MDA000V MDA300V	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	200 with r 200 	201 ectar 201	ngula 202	. r flan 250	. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	ç
A000V	Plenum with I Nodel NZC220 NZC330 NZC530 NZC830 NZC	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with r	ectar 201	ngula 202	250 ·	. 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	9
A100V	Plenum with Indel	Wer PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	with r 200 . gular f 200 .	ectair 201 dange 201 .	ongula 202 · ·	250 · · · · · · · · · · · · · · · · · · ·	. 300 · . 300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	. 750	900	901	9
A200V P,PR	Plenum with I Iodel I/C2220 I/C3220 I/C3320 I/C3330 I/	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.PR	with r 200 . gular f 200 .	ectar 201		250	. 300 · . 300	301	302	350	400	401	. 402	450	500	501	502	550	700	701	. 702	. 750	900	901	9
A300V P,PR **********************************	Plenum with Indoel IAC2220 IAC2320 IAC2320 IAC2330 IAC	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with r 200 . gular f 200 .	ectar 201		250	300	301	302	350	400	401	. 402	450	500	501	502	550	700	701	. 702	. 750	900	901	9
Internally insulated delivery plenum with circular flanges. Iddel Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901	Plenum with Indel	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with r 200 . gular f 200 .	ectar 201		250	300	301	302	350	400	401	402	450	500	501	. 502 . 502	550	700	701	. 702	. 750	900	901	9
Model Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901 9 M000V P,PR .	Plenum with a Model MZC220 MZC320 MZC330 MZC330 MZC330 MZC830 MZC830 MZC830	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with r 200 . gular f 200 .	ectar 201		250	300	301	302	350	400	401	402	450	500	501	. 502 . 502	550	700	701	. 702	. 750	900	901	9
Iodel Ver 200 201 202 250 300 301 302 350 400 401 402 450 500 501 502 550 700 701 702 750 900 901 900 M100V P,PR .	Ilenum with I Iodel IZC220 IZC320 IZC330 IZC330 IZC330 Itraight intak Iodel DA000V DA100V DA300V Intake plenum Iodel PA000V PA100V PA300V Intake plenum Iodel IA000V IA000	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with r 200 . gular f 200 .	ectar 201		250	300	301	302	350	400	401	402	450	500	501	. 502 . 502	550	700	701	. 702	750	900	901	9
M000V P,PR • • • • • M100V P,PR • • • • • • • • • M200V P,PR • • • • • • • • • • • • • • • • • • •	Plenum with I Iodel IZC220 IZC320 IZC330 IZC830 IZC	Wer PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	200 with r 200 gular f 200	ectai 201 danga 201		250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	400	401	402	450	500	501	. 502 . 502	550	700	701	. 702	750	900	901	9
M100V P,PR • • • • • • • M200V P,PR	Plenum with Indeed Inde	Wer P.PR P.PR P.PR P.PR P.PR P.PR P.PR P.P	with r 200 . gular f 200 . c circu 200 .	ectai 201	e. 202 ·	250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	400	401	402	450	500 - 500 -	501	. 502 . 502 		700	. 701 . 701 . 701	. 702 · . 702 ·	750	900	901	9
M200V P,PR • • • • • •	Plenum with Indoel INC220 INC220 INC2320 INC2330 INC23	Wer PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	200 with r 200 gular f 200 c circu 200	201		250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	400	401	402	450	500 - 500 -	501	. 502 . 502 		700	. 701 . 701 . 701	. 702 · . 702 ·	750	900	901	9
	Plenum with a Model MZC220 MZC320 MZC320 MZC330 MZC830 MZC	Wer PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	200 with r 200 gular f 200 c circu 200	201		250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	400	401	402	450	500 - 500 -	501	. 502 . 502 		700	. 701 . 701 . 701	. 702 · . 702 ·	750	900	901	9
M300V P,PR • • • • • • • • • • • • • • • • • • •	Plenum with a Model MZC220 MZC320 MZC320 MZC330 MZC530 MZC830 MZC830 Straight intak Model DA000V DA100V DA200V DA300V mtake plenum Model PA000V PA100V PA300V iuction plenum Model A000V A100V A300V mternally ins Model M000V M100V M100V	Wer PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	200 with r 200 gular f 200 c circu 200	201		250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	. 400 . 400 . 400	401	. 402 . 402 402	450	500 500 500	501	. 502 . 502 		700	. 701 . 701 . 701	. 702 · . 702 ·	750	900	901	
	Plenum with a Model MZC220 MZC320 MZC320 MZC330 MZC330 MZC830 MZC830 Straight intak Model RDA000V RDA100V RDA200V RDA300V RPA100V RPA200V RPA300V RPA300V SPA300V MOdel PA300V RPA300V	Wer PPR PPR PPR PPR PPR PPR PPR PPR PPR PP	200 with r 200 gular f 200 c circu 200	201		250 · · · · · · · · · · · · · · · · · · ·	300	301	302	350	. 400 . 400 . 400	401	. 402 . 402 402	450	500 500 500	501	. 502 . 502 		700	. 701 . 701 . 701	. 702 · . 702 ·	750	900	901	9

Intornally inculator	l delivery plenum with	voctonoulay flanco
internaliv insulated	ı aeliverv bienum witn	rectanaular flanae.

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
RPM000V	P,PR	•	•	•	•																			
RPM100V	P,PR					•	•																	
RPM200V	P,PR											•	•	•		•	•							
RPM300V	P.PR																							

${\it Straight\ delivery\ coupling\ in\ galvanised\ sheet\ metal.}$

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
RDM000V	P,PR	•	•	•	•																			
RDM100V	P,PR					•	•	•	•															
RDM200V	P,PR									•	•	•	•	•		•	•							
RDM300V	P,PR																	•	•		•		•	•

$Straight\ discharge\ internally\ insulated,\ with\ circular\ flanges.$

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
RDMC000V	P,PR	•	•	•	•																			
RDMC100V	P,PR					•	•		•															
RDMC200V	P,PR												•	•		•	•							
RDMC300V	P,PR																	•	•	•	•	•	•	•

PERFORMANCE DATA FOR UNITS WITHOUT HEAD (EUROVENT CERTIFICATE FC-H)

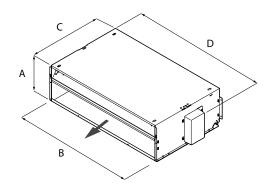
2-pipe	_	FCZI200F	<u> </u>		FCZI250P			FCZI300P			FCZI350P			FCZI400P			FCZI450P	
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	Ĺ	M	Н	L	M	Н	Ĺ	M	Н	L	M	Н	Ĺ	M	Н	L	M	H
Heating performance 70 °C / 60 °C (1)																	
Heating capacity kW	2,02	2,95	3,70	2,20	3,18	4,05	3,47	4,46	5,50	3,77	4,92	6,15	4,32	5,74	7,15	4,57	6,29	7,82
Water flow rate system side I/h	177	258	324	193	278	355	304	391	482	330	431	539	379	503	627	400	551	685
Pressure drop system side kPa	6	12	18	7	15	23	7	12	18	8	14	20	9	16	24	6	11	16
Heating performance 45 °C / 40 °C (2	1																	
Heating capacity kW	1,00	1,46	1,84	1,09	1,58	2,01	1,72	2,21	2,73	1,87	2,44	3,06	2,14	2,85	3,55	2,27	3,12	3,88
Water flow rate system side I/h	174	254	319	190	274	350	299	385	475	325	425	531	373	495	617	394	543	675
Pressure drop system side kPa	6	12	18	8	15	22	8	12	18	8	14	20	10	16	24	6	11	16
Cooling performance 7 °C / 12 °C (3)																		
Cooling capacity kW	0,89	1,28	1,60	1,06	1,55	1,94	1,68	2,17	2,65	1,89	2,46	3,02	2,20	2,92	3,60	2,41	3,21	4,03
Sensible cooling capacity kW	0,71	1,05	1,33	0,79	1,20	1,52	1,26	1,65	2,04	1,33	1,76	2,18	1,59	2,14	2,67	1,69	2,30	2,90
Water flow rate system side I/h	153	221	275	182	267	334	288	374	456	350	460	560	379	503	619	414	552	694
Pressure drop system side kPa	6	12	18	8	17	25	8	13	18	11	18	25	10	16	24	9	15	22
Fan																		
Type type	:								Centr	ifugal								
Fan motor type	:								Inve	rter								
Number no.	-	1			1			2			2			2			2	
Air flow rate m ³ /l		220	290	140	220	290	260	350	450	260	350	450	330	460	600	330	460	600
Input power W	7	8	14	7	8	14	5	7	13	5	7	13	5	10	18	5	10	18
Signal 0-10V %	44	68	90	44	68	90	52	70	90	52	70	90	49	68	90	49	68	90
Fan coil sound data (4)																		
Sound power level dB(A		46,0	51,0	35,0	46,0	51,0	34,0	41,0	48,0	34,0	41,0	48,0	37,0	44,0	51,0	37,0	44,0	51,0
Sound pressure dB(A	27,0	38,0	43,0	27,0	38,0	43,0	26,0	33,0	40,0	26,0	33,0	40,0	29,0	36,0	43,0	29,0	36,0	43,0
Water coil				1			1			l						I		
Water content main coil		0,5			0,7			0,8			1,0			1,0			1,4	
Diametre hydraulic fittings Main coil Ø		1 /2//		1	1/2"		I	3/4"			3/4"			3/4"			3/4"	
																	3/4	
Main coil Ø	+	1/2"														!		
Main Coil 9		FCZI500F			FCZI550P		1	FCZI700P		1	FCZI750P			FCZI900P	-		FCZ1950P	
Main Coil 9	1	FCZI500F	3	1	FCZI550P	3	1	FCZI700P	3	1	FCZI750P	3	1	FCZI900P	3	1	FCZI950P	3
	L	FCZI500F		1 L	FCZI550P		1 L	FCZI700P	3 H	1 L	FCZI750P		1 L	FCZI900P	3 H	1 L	FCZ1950P	
Heating performance 70 °C / 60 °C (1	L	FCZI500F 2 M	3 H	L	FCZI550P 2 M	3 H	L	FCZI700P 2 M	Н	L	FCZI750P 2 M	3 H	Ĺ	FCZI900P 2 M	Н	L	FCZI950P 2 M	3 H
Heating performance 70 °C / 60 °C (1	5,27	FCZI500F 2 M	3 H 8,50	L 5,82	FCZI550P 2 M 8,34	3 H 9,75	8,10	PCZI700P 2 M	H 11,00	9,10	FCZI750P 2 M	3 H	L 10,77	FCZI900P 2 M	H 15,14	L 11,20	PCZI950P 2 M	3 H
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h	5,27 462	FCZI500F 2 M 7,31 641	3 H 8,50 745	5,82 510	FCZI550P 2 M 8,34 731	3 H 9,75 855	8,10 710	FCZI700P 2 M 9,80 860	H 11,00 964	9,10 798	FCZI750P 2 M 11,30 991	3 H 12,50 1096	10,77 945	FCZI900P 2 M 13,35 1171	H 15,14 1328	11,20 982	FCZI950P 2 M 14,42 1264	3 H 17,10 1500
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa	5,27 462	FCZI500F 2 M	3 H 8,50	L 5,82	FCZI550P 2 M 8,34	3 H 9,75	8,10	PCZI700P 2 M	H 11,00	9,10	FCZI750P 2 M	3 H	L 10,77	FCZI900P 2 M	H 15,14	L 11,20	PCZI950P 2 M	3 H
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2	5,27 462 12	7,31 641 21	3 H 8,50 745 28	5,82 510 10	FCZI550P 2 M 8,34 731 20	3 H 9,75 855 26	8,10 710 17	FCZI700P 2 M 9,80 860 24	H 11,00 964 29	9,10 798 10	FCZI750P 2 M 11,30 991 15	3 H 12,50 1096 18	10,77 945 12	FCZI900P 2 M 13,35 1171 17	H 15,14 1328 22	11,20 982 16	FCZI950P 2 M 14,42 1264 24	3 H 17,10 1500 33
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW	5,27 462 12	FCZI500F 2 M 7,31 641 21	3 H 8,50 745 28	5,82 510 10	ECZI550P 2 M 8,34 731 20 4,14	3 H 9,75 855 26	8,10 710 17	9,80 860 24	H 11,00 964 29 5,47	9,10 798 10 4,52	FCZI750P 2 M 11,30 991 15	3 H 12,50 1096 18	10,77 945 12	ECZI900P 2 M 13,35 1171 17	H 15,14 1328 22 7,53	11,20 982 16	FCZI950P 2 M 14,42 1264 24 7,17	3 H 17,10 1500 33
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h	5,27 462 12	FCZI500F 2 M 7,31 641 21 3,63 631	3 H 8,50 745 28 4,22 734	5,82 510 10 2,89 502	FCZI550P 2 M 8,34 731 20	3 H 9,75 855 26 4,85 842	8,10 710 17 4,03 699	FCZI700P 2 M 9,80 860 24 4,87 846	H 11,00 964 29	9,10 798 10 4,52 786	FCZI750P 2 M 11,30 991 15 5,62 975	3 H 12,50 1096 18 6,21 1079	10,77 945 12 5,35 930	FCZI900P 2 M 13,35 1171 17	H 15,14 1328 22 7,53 1307	11,20 982 16 5,57 967	FCZI950P 2 M 14,42 1264 24	3 H 17,10 1500 33 8,50 1476
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa	5,27 462 12 2,62 455	FCZI500F 2 M 7,31 641 21	3 H 8,50 745 28	5,82 510 10	FCZI550P 2 M 8,34 731 20 4,14 720	3 H 9,75 855 26	8,10 710 17	9,80 860 24	H 11,00 964 29 5,47 950	9,10 798 10 4,52	FCZI750P 2 M 11,30 991 15	3 H 12,50 1096 18	10,77 945 12	FCZI900P 2 M 13,35 1171 17 6,64 1152	H 15,14 1328 22 7,53	11,20 982 16	FCZI950P 2 M 14,42 1264 24 7,17 1245	3 H 17,10 1500 33
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h	5,27 462 12 2,62 455	FCZI500F 2 M 7,31 641 21 3,63 631	3 H 8,50 745 28 4,22 734	5,82 510 10 2,89 502	FCZI550P 2 M 8,34 731 20 4,14 720	3 H 9,75 855 26 4,85 842	8,10 710 17 4,03 699	FCZI700P 2 M 9,80 860 24 4,87 846	H 11,00 964 29 5,47 950	9,10 798 10 4,52 786	FCZI750P 2 M 11,30 991 15 5,62 975	3 H 12,50 1096 18 6,21 1079	10,77 945 12 5,35 930	FCZI900P 2 M 13,35 1171 17 6,64 1152	H 15,14 1328 22 7,53 1307	11,20 982 16 5,57 967	FCZI950P 2 M 14,42 1264 24 7,17 1245	3 H 17,10 1500 33 8,50 1476
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3)	5,27 462 12 2,62 455	7,31 641 21 3,63 631 21	3 H 8,50 745 28 4,22 734 28	5,82 510 10 2,89 502	FCZI550P 2 M 8,34 731 20 4,14 720 20	3 H 9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	FCZI700P 2 M 9,80 860 24 4,87 846 24	H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786	FCZI750P 2 M 11,30 991 15 5,62 975 14	3 H 12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930	FCZI900P 2 M 13,35 1171 17 6,64 1152 17	H 15,14 1328 22 7,53 1307 22	11,20 982 16 5,57 967 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24	3 H 17,10 1500 33 8,50 1476 33
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW	5,27 462 12 2,62 455 12	FCZI500F 2 M 7,31 641 21 3,63 631 21	3 H 8,50 745 28 4,22 734 28	5,82 510 10 2,89 502 10	FCZI550P 2 M 8,34 731 20 4,14 720 20	3 H 9,75 855 26 4,85 842 26	8,10 710 17 4,03 699 16	9,80 860 24 4,87 846 24	H 11,00 964 29 5,47 950 29	9,10 798 10 4,52 786 10	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34	3 H 12,50 1096 18 6,21 1079 18	10,77 945 12 5,35 930 12	FCZI900P 2 M 13,35 1171 17 6,64 1152 17	H 15,14 1328 22 7,53 1307 22 6,91	11,20 982 16 5,57 967 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW	5,27 462 12 2,62 455 12 2,68 1,94 460	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73	3 H 8,50 745 28 4,22 734 28 4,25 3,18	5,82 510 10 2,89 502 10 2,91 2,07	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98	3 H 9,75 855 26 4,85 842 26 4,79 3,49	8,10 710 17 4,03 699 16 3,92 2,99	9,80 860 24 4,87 846 24 4,89 3,76	H 11,00 964 29 5,47 950 29 5,50 4,30	9,10 798 10 4,52 786 10 4,27 3,20	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72	10,77 945 12 5,35 930 12 4,29 2,97	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78	H 15,14 1328 22 7,53 1307 22 6,91 5,68	11,20 982 16 5,57 967 15 5,77 3,80	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87	3 H 17,10 1500 33 8,50 1476 33
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h	5,27 462 12 2,62 455 12 2,68 1,94 460	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731	5,82 510 10 2,89 502 10 2,91 2,07 501	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824	8,10 710 17 4,03 699 16 3,92 2,99 675	9,80 860 24 4,87 846 24 4,89 3,76 841	H 11,00 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	10,77 945 12 5,35 930 12 4,29 2,97 738	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189	11,20 982 16 5,57 967 15 5,77 3,80 992	7,17 1245 24 7,32 4,87 1259	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side l/h Pressure drop system side l/h Pressure drop system side kPa Fan	2,62 455 12 2,68 1,94 460 13	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731	5,82 510 10 2,89 502 10 2,91 2,07 501	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824	8,10 710 17 4,03 699 16 3,92 2,99 675	9,80 860 24 4,87 846 24 4,89 3,76 841	H 11,00 964 29 5,47 950 29 5,50 4,30 946	9,10 798 10 4,52 786 10 4,27 3,20 734	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	10,77 945 12 5,35 930 12 4,29 2,97 738	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189	11,20 982 16 5,57 967 15 5,77 3,80 992	7,17 1245 24 7,32 4,87 1259	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side l/h Pressure drop system side l/h Pressure drop system side kPa Fan	5,27 462 12 2,62 455 12 2,68 1,94 460 13	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731	5,82 510 10 2,89 502 10 2,91 2,07 501	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824	8,10 710 17 4,03 699 16 3,92 2,99 675	9,80 860 24 4,87 846 24 4,89 3,76 841	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	10,77 945 12 5,35 930 12 4,29 2,97 738	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189	11,20 982 16 5,57 967 15 5,77 3,80 992	7,17 1245 24 7,32 4,87 1259	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type	5,27 462 12 2,62 455 12 2,68 1,94 460 13	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731	5,82 510 10 2,89 502 10 2,91 2,07 501	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824	8,10 710 17 4,03 699 16 3,92 2,99 675	9,80 860 24 4,87 846 24 4,89 3,76 841	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	10,77 945 12 5,35 930 12 4,29 2,97 738	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189	11,20 982 16 5,57 967 15 5,77 3,80 992	7,17 1245 24 7,32 4,87 1259	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor	L	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731	5,82 510 10 2,89 502 10 2,91 2,07 501	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824	8,10 710 17 4,03 699 16 3,92 2,99 675	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056	10,77 945 12 5,35 930 12 4,29 2,97 738	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189	11,20 982 16 5,57 967 15 5,77 3,80 992	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side //h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate m³/l Input power W	L	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 2 600 18	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	11,00 964 29 5,47 950 29 5,50 4,30 946 30	9,10 798 10 4,52 786 10 4,27 3,20 734 10 ifugal	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate m³/l Input power W Signal 0-10V %6	L	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 2 600	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 2 600	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 Centr Inve	9,10 798 10 4,52 786 10 4,27 3,20 734 10 iffugal erter	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22 3 930	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate m³/l Input power W Signal 0-10V % Fan coil sound data (4)	2,62 455 12 2,68 1,94 460 13	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 2 600 18	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 600 10	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 40	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 Centr Inve	9,10 798 10 4,52 786 10 4,27 3,20 734 10 ifugal erter	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 40	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 40	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22 3 930 40	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate m³/l Input power W Signal 0-10V % Fan coil sound data (4) Sound power level dB(A	L	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 2 600 18	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 4	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 600 10	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 40	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 Centr Inve	9,10 798 10 4,52 786 10 4,27 3,20 734 10 ifugal erter	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 40	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 40	H 15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22 3 930 40	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate m³/l Input power W Signal 0-10V % Fan coil sound data (4) Sound power level dB(A Sound pressure drop system del B(A Sound pressure dB(A Sound pres	2,62 455 12 2,62 455 12 2,68 1,94 460 13	FCZI500F 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 2 600 18 74	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 4 50	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 2 600 10 74	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 40 72	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 Centr Inve	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 30 56	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 40 72	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 40 72	15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22 3 930 40 72	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate m³/l Input power W Signal 0-10V % Fan coil sound data (4) Sound power level dB(A) Sound pressure dB(A) Water coil	L	FCZISOOF 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 600 18 74 51,0 43,0	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 4 50 42,0	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 2 600 10 74 51,0	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 40 72 57,0	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 Centr Inve	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 30 56	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 40 72 57,0	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 40 72 57,0	15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22 3 930 40 72 57,0	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Sensible cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate Input power W Signal 0-10V % Fan coil sound data (4) Sound power level dB(A Sound pressure dB(A Water coil Water content main coil	L	FCZISOOF 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 2 600 18 74	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 4 50 42,0	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 2 600 10 74 51,0	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 40 72 57,0	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 Centr Inve	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 30 56	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 40 72 57,0	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 40 72 57,0	15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22 3 930 40 72 57,0	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30
Heating performance 70 °C / 60 °C (1 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Heating performance 45 °C / 40 °C (2 Heating performance 45 °C / 40 °C (2 Heating capacity kW Water flow rate system side l/h Pressure drop system side kPa Cooling performance 7 °C / 12 °C (3) Cooling capacity kW Water flow rate system side l/h Pressure drop system side kPa Fan Type type Fan motor type Number no. Air flow rate m³/l Input power W Signal 0-10V % Fan coil sound data (4) Sound power level dB(A) Sound pressure dB(A) Water coil	L	FCZISOOF 2 M 7,31 641 21 3,63 631 21 3,69 2,73 634 22 600 18 74 51,0 43,0	3 H 8,50 745 28 4,22 734 28 4,25 3,18 731 29	5,82 510 10 2,89 502 10 2,91 2,07 501 12 400 4 50 42,0	FCZI550P 2 M 8,34 731 20 4,14 720 20 4,13 2,98 711 22 600 10 74 51,0 43,0	3 H 9,75 855 26 4,85 842 26 4,79 3,49 824 28	8,10 710 17 4,03 699 16 3,92 2,99 675 16	FCZI700P 2 M 9,80 860 24 4,87 846 24 4,89 3,76 841 24 3 930 40 72 57,0 49,0	H 11,00 964 29 5,47 950 29 5,50 4,30 946 30 Centr Inve 1140 80 90 62,0 54,0	9,10 798 10 4,52 786 10 4,27 3,20 734 10 700 30 56	FCZI750P 2 M 11,30 991 15 5,62 975 14 5,34 4,05 918 14 3 930 40 72 57,0 49,0	3 H 12,50 1096 18 6,21 1079 18 6,14 4,72 1056 18	10,77 945 12 5,35 930 12 4,29 2,97 738 10	FCZI900P 2 M 13,35 1171 17 6,64 1152 17 5,00 3,78 860 12 3 930 40 72 57,0 49,0	15,14 1328 22 7,53 1307 22 6,91 5,68 1189 22	11,20 982 16 5,57 967 15 5,77 3,80 992 15	FCZI950P 2 M 14,42 1264 24 7,17 1245 24 7,32 4,87 1259 22 3 930 40 72 57,0 49,0	3 H 17,10 1500 33 8,50 1476 33 8,60 5,78 1479 30

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

			FCZI201P)		FCZI301P			FCZI401P			FCZI501P			FCZI701P)		FCZI901P	i
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C/5	5 °C (1)																		
Heating capacity	kW	1,02	1,35	1,60	1,80	2,18	2,56	2,21	2,65	3,12	2,59	3,34	3,73	3,66	4,29	4,94	4,73	5,63	5,72
Water flow rate system side	l/h	89	118	140	158	191	224	186	232	273	227	293	327	320	375	437	414	492	501
Pressure drop system side	kPa	4	8	10	16	23	30	4	6	8	6	8	10	11	14	18	8	12	12
Cooling performance 7 °C / 12	°C (2)																		
Cooling capacity	kW	0,89	1,28	1,60	1,68	2,17	2,65	2,20	2,92	3,60	2,68	3,69	4,25	3,92	4,89	5,50	4,29	5,00	6,91
Sensible cooling capacity	kW	0,71	1,05	1,33	1,26	1,65	2,04	1,59	2,14	2,67	1,94	2,73	3,18	2,99	3,76	4,30	2,97	3,78	5,68
Water flow rate system side	l/h	153	221	275	288	374	456	379	503	619	460	634	731	675	841	946	738	860	1189
Pressure drop system side	kPa	6	12	18	8	13	18	10	16	24	13	22	29	16	24	30	10	12	22
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Inve	erter								
Number	no.		1			2			2			2			3			3	
Air flow rate	m³/h	140	220	290	260	350	450	330	460	600	400	600	720	700	930	1140	700	930	1140
Input power	W	7	8	14	5	7	13	5	10	18	7	16	31	30	40	80	30	40	80
Signal 0-10V	%	44	68	90	52	70	90	49	68	90	50	74	90	56	72	90	56	72	90
Fan coil sound data (3)																			
Sound power level	dB(A)	35,0	46,0	51,0	34,0	41,0	48,0	37,0	44,0	51,0	42,0	51,0	56,0	50,0	57,0	62,0	51,0	57,0	62,0
Sound pressure	dB(A)	27,0	38,0	43,0	26,0	33,0	40,0	29,0	36,0	43,0	34,0	43,0	48,0	42,0	49,0	54,0	43,0	49,0	54,0
Water coil																			
Water content main coil	-		0,5			0,8			1,0			1,0			1,2			1,8	
Water content the secondary coil			0,2			0,3			0,3			0,3			0,4			0,7	
Diametre hydraulic fittings																			
Main coil	Ø		1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø		1/2"																

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

PERFORMANCE DATA FOR UNITS WITH HEAD (EUROVENT CERTIFICATE FCP-H)


2-pipe		_	C7120	•••	_	. C712 F			67120			C712 F	•••		C71.404			<u> </u>			C7150		_	<i></i>	
		1	CZI20 0	JP 3	1	CZI25 0	3	1 1	CZI300 2	JP 3	1 1	CZ1350 2	JP 3	1 1	CZ140 0	JP 3	1 T	CZI450 2)P 3	1 1	CZI500 2	3	1 1	CZI550 2	3
		i i	M	H	i i	M	 H	Ė	M	 H	L	M	H	i	M	H	i	M	H	i i	M	 H	i	M	 H
Heating performance 70 °C / 60 °C (1)					_												_								
Heating capacity	kW	1,81	3,16	3,34	2,01	3,40	3,62	3,08	4,83	5,23	3,32	5,43	5,83	3,96	5,85	6,34	4,10	6,44	6,96	5,39	7,28	7,63	5,92	8,37	8,71
Water flow rate system side	I/h	156	272	287	173	292	311	265	415	450	285	467	502	341	503	545	353	554	599	464	626	656	509	720	749
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13	12	22	23	11	20	21
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,90	1,57	1,66	1,00	1,69	1,80	1,53	2,40	2,60	1,65	2,70	2,90	1,97	2,91	3,15	2,04	3,20	3,46	2,68	3,62	3,79	2,94	4,16	4,33
Water flow rate system side	l/h	155	270	288	172	291	308	263	413	447	284	464	499	339	501	542	351	550	595	461	623	652	506	715	745
Pressure drop system side	kPa	6	13	16	7	17	19	7	14	16	7	17	19	9	17	19	5	12	13	12	22	23	11	20	21
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	0,80	1,37	1,45	0,95		1,76	1,40		2,53	-	2,70		2,03	2,98	3,21	_			2,73	3,68	3,84	2,97	4,15	4,31
Sensible cooling capacity	kW	0,63	1,13	1,20	0,70	1,29	1,37	1,10	1,82	1,94	1,15	1,94	2,07	1,45	2,18	2,36	1,54	2,35	2,56	1,98	2,73	2,85	2,11	2,98	3,12
Water flow rate system side	I/h	138	236	249	163	287	303	241	409	435	285	464	495	349	512	552	382	564	610	469	633	660	511	714	741
Pressure drop system side	kPa	5	13	16	8	17	19	7	14	16	9	17	19	9	17	19	8	12	13	13	22	23	12	20	21
Fan																									
Туре	type													ifugal											
Fan motor	type	_	4			4		_					Inve	erter			1			1					
Number	no.	122	1	257	122	1	257	225	2	121	225	2	121	200	2	F1F	200	2	F1F	410	2	(20	110	2	(20
Air flow rate	m³/h	123	240	257	123	240	257	225	390	424	225	390	424	300	470	515	300	470	515	410	600	630	410	600	630
High static pressure	Pa W	13	50	57	13 7	50	57	16	50 11	59	16	50	53 40	20	50 38	60	20	50	56 48	23	50	55	23	50 50	55 60
Input power Signal 0-10V	W %	7 43	27 84	31 90	43	27 84	31 90	10 48	83	40 90	10 48	30 83	90	14 52	38 82	48 90	14 52	38 82	48 90	18 58	50 85	60 90	18 58	85	90
Duct type fan coil sound data (4)	70	43	04	90	43	04	90	40	03	90	40	00	90	32	02	90	32	02	90	30	0.0	90	00	0.0	90
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59.0	37,0	57,0	59,0	36,0	50,0	53,0	36,0	50,0	53,0	43,0	53,0	55,0	43,0	53,0	55,0	45,0	56,0	57,0	45,0	56,0	57,0
Sound power level (outlet)	dB(A)	33,0		,-	<u> </u>	53,0						47,0		39,0		52,0		49,0		42,0	52,0			52,0	
Water coil	ub(n)	33,0	33,0	33,0	33,0	33,0	33,0	32,0	47,0	47,0	32,0	47,0	47,0	33,0	47,0	32,0	37,0	47,0	32,0	42,0	32,0	32,0	42,0	32,0	32,0
Water content main coil			0,5			0,7			0,8		Г	1,0			1,0			1,4		Τ	1,0		Π	1,4	
Diametre hydraulic fittings			0,5			0,1			0,0			1,0			1,0			1,1			1,0			1,1	
Main coil	Ø		1/2"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
				F.C71	700D				-, .	FCZI	7500	-, -				FCZI	OOOD					F (7)	950P		=
			1	FCZI			3		1	_			2		1	_			3		1				
		_	1 L	<u> </u>	<u>2</u> 1		э Н	_	1 I		<u>2</u> И		3 H	_	1 <u> </u>		<u>2</u> И		э Н	_	1 <u> </u>		2 VI		3 H
Heating performance 70 °C / 60 °C (1)					VI					- 1	ΥI		11		L		VI				L		VI		
Heating capacity	kW	5	,33	8	34	8	88	6	,17	9	52	10),15	6	58	11	,15	11	,87	6	68	11	,63	12	,66
Water flow rate system side	I/h	_	68	73			79		41		35		90		66		58)21	-	74		000)88
Pressure drop system side	kPa	_	8	1			10	_	5	1			12	-	5	1			14	-	6 6		7		9
Heating performance 45 °C / 40 °C (2)					•					•	•		-						•						-
Heating capacity	kW	2	,67	4,	15	4,	40	2,	,46	4,	69	5,	,00	3,	27	5,	54	5,	.90	3,	32	5,	78	6,	29
Water flow rate system side	I/h	4	60	72		7	67	4	18	8(06	8	60	5	62	9.	53	10)15	5	71	9	94	10)82
Pressure drop system side	kPa		8		8	2	.0		3	1	1	1	12	_	5	1	3	1	14		6	1	7		9
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	2,	,20	4,	00	4,	30	2,	,60	4,	41	4,	,70	2,	81	4,	80	5,	.20	3,	58	6,	00	6,	46
Sensible cooling capacity	kW	1,	,71	3,	00	3,	20	1,	,90	3,	30	3,	,50	2,	10	3,	60	3,	.90	2,	33	3,	94	4,	27
Water flow rate system side	I/h	_	78	68			39		47	70			18		83	82			94	_	16		132		11
Pressure drop system side	kPa		7	1	8	2	.0		4	1	1	1	12		5	1	3	1	14		7	1	7	1	9
Fan																									
Туре	type												Centr	ifugal											
Fan motor	type												Inve	erter											
Number	no.				3						3						3						3		
Air flow rate	m³/h	_	05	7:			99	_	05	7:			99	-	05	7.			99	-	05		30		99
High static pressure	Pa	_	15	5			0	_	15	5			50		5	5			50	_	5		0		50
Input power	W	_	21	6			8		21	6			78	-	!1	6			78	_	21		51		8
Signal 0-10V	%	L 4	16	8	2		0		16	8	12	9	90	1 4	15	8	4	9	90	4	15		34	9	90
Duct type fan coil sound data (4)	/1/UF	٠,	0.0		. v		2.0	34	0.0		- 0	r.	0 0		1.0		. 0		0 0	Α.	1.0	-	- 0		
Sound power level (inlet + radiated)	dB(A)		8,0	55			3,0		8,0	55	_		8,0	_	1,0		5,0		8,0	+	1,0		5,0		3,0
Sound power level (outlet) Water coil	dB(A)		4,0	5	,0)·	1,0	34	4,0	51	1,0	5	4,0	4(),0)	,0	54	4,0	40	0,0)	1,0	54	1,0
Water content main coil	I			1	,2					1	,6					1	,8					1	,3		
Diametre hydraulic fittings	I			I	,∠					I	,υ					I	,0						د,		
Main coil	Ø												2	/4"											—
													/د	т											

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

		FCZI201P				FCZI301I			FCZI401	,		FCZI501I	•		FCZI701I	,		FCZI901	P
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)																			
Heating capacity	kW	0,94	1,42	1,49	1,60	2,34	2,47	1,99	2,69	2,85	2,62	3,59	3,45	2,99	3,70	3,92	3,17	5,09	5,47
Water flow rate system side	l/h	81	122	128	138	201	212	171	231	245	225	309	297	257	318	337	273	438	470
Pressure drop system side	kPa	4	9	9	6	12	13	4	7	8	6	9	9	8	12	13	4	10	11
Cooling performance 7 °C / 12 °C (2)																			
Cooling capacity	kW	0,80								3,21	2,73	3,68	3,84	2,20	4,00	4,30	2,80	4,80	5,24
Sensible cooling capacity	kW	0,63	The The The The The The					1,45	2,18	2,36	1,98	2,73	2,85	1,71	3,00	3,20	2,10	3,60	3,90
Water flow rate system side	l/h	138	38 236 249 241 409 435					349	512	552	469	633	660	378	688	739	482	825	901
Pressure drop system side	kPa	5	14	16	7	15	17	9	13	20	13	23	25	6	18	20	5	12	13
Fan																			
Туре	type									Centr	ifugal								
Fan motor	type									Inve	rter								
Number	no.		1			2			2			2			3			3	
Air flow rate	m³/h	123	240	257	225	390	424	300	470	515	410	600	630	405	730	799	405	730	799
High static pressure	Pa	13	50	57	16	50	59	20	50	60	23	50	55	15	50	60	15	50	60
Input power	W	7	27	31	10	31	40	14	38	58	18	50	60	21	61	78	21	61	78
Signal 0-10V	%	43	84	90	48	83	90	52	82	90	58	85	90	46	82	90	45	84	90
Duct type fan coil sound data (3)																			
Sound power level (inlet + radiated)	dB(A)	37,0	57,0	59,0	36,0	50,0	53,0	43,0	53,0	55,0	45,0	56,0	57,0	38,0	55,0	58,0	38,0	55,0	58,0
Sound power level (outlet)	dB(A)	33,0	53,0	55,0	32,0	47,0	49,0	39,0	49,0	52,0	42,0	52,0	52,0	34,0	51,0	54,0	34,0	51,0	54,0
Water coil																			
Water content main coil	- 1		0,5			0,8			1,0			1,0			1,2			1,8	
Water content the secondary coil	- 1		0,2			0,3			0,3			0,3			0,4			0,7	
Diametre hydraulic fittings		7					,												
Main coil	Ø		1/2" 3/4"						3/4"			3/4"		3/4"				3/4"	
Secondary coil	Ø		1/2 3/1						1/2"										

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCZI200P	FCZI250P	FCZI300P	FCZI350P	FCZI400P	FCZI450P
Dimensions and weights							
A	mm	216	216	216	216	216	216
В	mm	522	522	753	753	973	973
C	mm	453	453	453	453	453	453
D	mm	562	562	793	793	1013	1013
Net weight	kg	12,00	14,00	14,00	16,00	20,00	22,00
		FCZI500P	FCZI550P	FCZI700P	FCZI750P	FCZI900P	FCZI950P
Dimensions and weights							
A	mm	216	216	216	216	216	216
В	mm	973	973	1122	1122	1122	1122
C	mm	453	453	453	453	558	558
D	mm	1013	1013	1147	1147	1147	1147
Net weight	kg	23,00	24,00	29,00	31,00	32,00	32,00
		FCZI201P	FCZI202P	FCZI301P	FCZI302P	FCZI401P	FCZI402P
Dimensions and weights							
A	mm	216	216	216	216	216	216
В	mm	522	522	753	753	973	973
(mm	453	453	453	453	453	453
D	mm	562	562	793	793	1013	1013
Net weight	kg	13,00	14,00	15,00	16,00	21,00	22,00
		FCZI501P	FCZI502P		FCZI701P	FCZI702P	FCZI901P
Ni							
Dimensions and Weights							
A	mm	216	216		216	216	216
A	mm mm	216 973	216 973		216 1122	216 1122	216 1122
Dimensions and weights A B C							
A	mm	973	973		1122	1122	1122

Fan coil unit for ducted installations

- Very quiet
- · Ideal for residential or office solutions
- Version with Coldplasma Air purifier

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

P Without shell, vertical and horizontal installation, lower intake, without commands

PAF Without shell, vertical and horizontal installation, front intake, without commands

FEATURES

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

The fan coils have, as standard, precharged electrostatic filters. These filters, thanks to their special execution, attracts and retains all suspended dust particles, thus garanteeing pure breathable air to the whole family.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF system

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E2D: User interface on the machine, to be combined with the VMF-E19 accessory.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

Common accessories

DSC: Condensate drainage device.

ACCESSORIES COMPATIBILITY

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Omnia ULP

Field		Description
1,2,3		ULP
4,5		Size 11, 16, 26, 36
6		Version
-	Р	Without shell, vertical and horizontal installation, lower intake, without commands
	PAF	Without shell, vertical and horizontal installation, front intake, without commands

Control panels and dedicated accessories - Omnia ULP

Model	Ver	11	16	26	36
AER503IR (1)	P,PAF	•	•	•	•
PR0503	P,PAF	•	•	•	•
SA5 (2)	P,PAF	•	•	•	•
SIT3 (3)	P,PAF	•	•	•	•
SIT5 (4)	P,PAF	•	•	•	•
SW5 (2)	P,PAF	•	•	•	•
TX (1)	P,PAF	•	•	•	•
WMT05 (1)	P,PAF	•	•	•	•
WMT10 (1)	P,PAF	•	•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
- (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 (4) Probe for AERSO3IR-TX thermostats, if fitted.

VMF system - Omnia ULP

Model	Ver	11	16	26	36
VMF-E0X (1)	P,PAF	•	•	•	•
VMF-E19 (1)	P,PAF	•	•	•	•
VMF-E3	P,PAF	•	•	•	•
VMF-E4DX	P,PAF	•	•	•	•
VMF-E4X	P,PAF	•	•	•	•
VMF-IO	P,PAF	•	•	•	•
VMF-IR	P,PAF	•	•	•	•
VMF-LON	P,PAF	•	•	•	•
VMF-SW	P,PAF	•	•	•	•
VMF-SW1	P,PAF	•	•	•	•

(1) Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Condensate drip

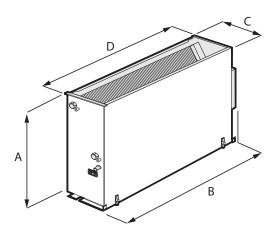
Model	Ver	11	16	26	36
BC10 (1)	P,PAF	•	•	•	•
BC20 (2)	P,PAF	•	•	•	•

(1) For vertical installation.(2) For horizontal installation.

Condensate drainage

er 1'	1 16	26	36
PAF •			•
3C20 is installed.			
er 1 ⁻	1 16	26	36
PAF •	•	•	•
3	CC20 is installed.	AF • • • • • • • • • • • • • • • • • • •	AF · · · · · · · · · · · · · · · · · · ·

2 way vaive Kit					
Model	Ver	11	16	26	36
VCHD	P,PAF	•	•	•	•


PERFORMANCE SPECIFICATIONS

2-pipe

			UL11P			UL16P			UL26P			UL36P	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)					,								
Heating capacity	kW	1,06	1,46	2,01	1,54	2,12	2,91	2,89	3,83	4,62	3,63	4,87	5,94
Water flow rate system side	l/h	93	128	176	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	1	2	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	0,52	0,73	1,00	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	I/h	92	126	174	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	1	1	2	2	3	3	5	8	11	7	13	18
Cooling performance 7 °C / 12 °C (3)													
Cooling capacity	kW	0,53	0,67	0,82	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,38	0,52	0,68	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	I/h	94	117	145	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	1	2	2	2	3	5	5	8	11	7	13	19
Fan													
Туре	type						Centr	ifugal					
Fan motor	type						Asynch	ronous					
Number	no.		1			1			2			2	
Air flow rate	m³/h	80	120	180	110	160	240	190	270	350	240	350	460
Input power	W	8	12	18	23	25	32	24	27	35	30	35	42
Electrical wiring		V1	V2	V3	V1	V2	V3	V1	V2	V3	V1	V2	V3
Diametre hydraulic fittings													
Main coil	Ø						1,	/2"					
Water coil													
Water content main coil			0,3			0,4			0,6			0,8	
Power supply													
Power supply							230V-	~50Hz					

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20°C d.b.; Water (in/out) 45°C/40°C; EUROVENT (3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT

DIMENSIONS

		UL11P	UL16P	UL26P	UL36P
Dimensions and weigh	ts				
A	mm	465	465	465	465
В	mm	420	530	761	981
C	mm	171	171	171	171
D	mm	360	470	701	921
Net weight	kg	10,00	12,00	15,00	18,00

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Fan coil unit for ducted installations

- Very quiet
- Ideal for residential or office solutions

DESCRIPTION

Monobloc duct type fan coils for heating and/or cooling small and medium-sized environments for civil and commercial use.

It can be installed on 2-pipe systems and combined with any heat generator even at low temperatures. Choosing the optimal solution for any requirement is easy thanks to the various versions available and to the possibility of horizontal or vertical installation, depending on the version.

VERSIONS

P Without the shell, floor installation, ceiling mount, intake at base, without controls

PAF Without the shell, floor installation, ceiling mount, front suction, without controls

FEATURES

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

The plastic augers are extractable for easy and efficient cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Condensate drip

Provided standard in plastic and fixed to the interior structure; with external condensate discharge.

Air filter

The fan coils have, as standard, precharged electrostatic filters. These filters, thanks to their special execution, attracts and retains all suspended dust particles, thus garanteeing pure breathable air to the whole family.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L=15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF system

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

Common accessories

DSC: Condensate drainage device.

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

Ventilcassaforma: Galvanised sheet metal template. It makes it possible to obtain directly in the wall a space for housing the fan coil.

GUIDE TO SELECTING THE POSSIBLE CONFIGURATIONS

Omnia III P

Fiel	d	Description
1,2,	3	ULP
4,5		Size 11, 16, 26, 36
6		Version
	Р	Without shell, vertical and horizontal installation, lower intake, without commands
	PAF	Without shell, vertical and horizontal installation, front intake, without commands

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories - Omnia ULP

Model	Ver	16	26	36
AER503IR (1)	P,PAF	•	•	•
PR0503	P,PAF	•	•	•
SA5 (2)	P,PAF		•	•
SW5 (2)	P,PAF	•	•	•
TX (1)	P,PAF	•	•	•

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required. (2) Probe for AER503IR-TX thermostats, if fitted.

VMF system - Omnia ULP

Model	Ver	16	26	36
VMF-E0X (1)	P,PAF	•	•	•
VMF-E19I	P,PAF	•	•	•
VMF-E3	P,PAF	•	•	•
VMF-E4DX	P,PAF	•	•	•
VMF-E4X	P,PAF	•	•	•
VMF-IO	P,PAF	•	•	•
VMF-IR	P,PAF	•	•	•
VMF-LON	P,PAF	•	•	•
VMF-SW	P,PAF	•		•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Condensate drip

Model	Ver	16	26	36
BC10 (1)	P,PAF	•	•	•
BC20 (2)	P,PAF	•	•	•

Condensate drainage

Model	Ver	16	26	36
DSC5 (1)	P,PAF	•	•	•

⁽¹⁾ The accessory cannot be fit if the accessory BC10 or BC20 is installed.

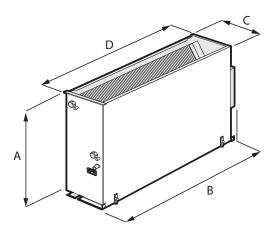
2 way valve kit

Model	Ver	16	26	36
VCHD	P,PAF	•	•	•

3 wav valve kit

Model	Ver	16	26	36
VCH	P,PAF	•	•	•

⁽¹⁾ For vertical installation.(2) For horizontal installation


PERFORMANCE SPECIFICATIONS

2-pipe

			ULI16P			ULI26P			ULI36P	
		1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)								•		
Heating capacity	kW	1,54	2,12	2,91	2,89	3,83	4,62	3,53	4,87	5,94
Water flow rate system side	I/h	135	186	255	254	336	405	310	427	521
Pressure drop system side	kPa	1	2	4	5	8	11	3	5	7
Heating performance 45 °C / 40 °C (2)										
Heating capacity	kW	0,76	1,05	1,44	1,44	1,90	2,29	1,75	2,42	2,95
Water flow rate system side	l/h	133	183	251	249	331	399	305	420	513
Pressure drop system side	kPa	2	2	2	5	8	11	7	12	18
Cooling performance 7 °C / 12 °C (3)										
Cooling capacity	kW	0,69	0,87	1,17	1,26	1,65	1,99	1,63	2,26	2,79
Sensible cooling capacity	kW	0,52	0,69	0,96	0,97	1,30	1,61	1,13	1,59	2,00
Water flow rate system side	l/h	122	153	206	220	289	349	286	394	487
Pressure drop system side	kPa	2	3	5	6	8	11	7	13	19
Fan										
Туре	type					Centrifugal				
Fan motor	type					Inverter				
Number	no.		1			2			2	
Air flow rate	m³/h	110	160	240	190	270	350	240	350	460
Input power	W	6	8	12	7	10	15	8	12	18
Diametre hydraulic fittings										
Main coil	Ø					1/2"				
Water coil										
Water content main coil	1		0,4			0,6			0,8	
Power supply										
Power supply						230V~50Hz				

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 20°C d.b.; Water (in/out) 45°C/40°C; EUROVENT (3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT

DIMENSIONS

		ULI16P	ULI26P	ULI36P
Dimensions and weigh	ts			
A	mm	465	465	465
В	mm	530	761	981
C	mm	171	171	171
D	mm	470	701	921
Net weight	kg	12,00	15,00	18,00

VED 030-340

Fan coil unit for ducted installations

- Horizontal and vertical installation
- Large range of available static pressure
- Inspectable ventilation group

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. Fan housing in plastic material removable for easy and effective cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Coarse 25% Class air filter, easy to remove and clean.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF Components

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SIT3V: Relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Valves and additional water coil

BV: Single row hot water heat exchanger.

VCF_X: Kit of 3-way valves for fan coils with a single coil and the water connections on the left, for installation in 4-pipe systems. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. 230V power supply. Water connections: Valve body Ø G 3/4" male; Valve side connection tubes Ø G 3/4" female; Unit side connection tubes Ø G 3/4" male.

VCF41 - 42 - 43 - for main coil: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - **45** - **for the secondary coil:** The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the laft

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

AMP: Wall mounting kit

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better

DSC: Condensate drainage device.

Accessories for intake

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

SE_X: External air shutter with manual control.

RDA_V: Straight intake connection with rectangular flange.

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

Delivery accessories

MZC: Plenum with motorised dampers.

MZCAC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with an asynchronous motor.

MZCACV: Electrical system with relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

GM: Flow grid with adjustable louvers.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_C: Straight discharge internally insulated, with circular flanges.

RDM_V: Straight delivery coupling in galvanised sheet metal.

KFV: Circular flanges kit for plenum.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	030	040	130	140	230	240	330	340
AER503IR (1)		•	•		•	•	•	•	•
PR0503		•	•	•	•	•	•	•	•
SA5 (2)		•	•	•	•	•	•	•	•
SIT3 (3)		•	•	•	•	•	•	•	•
SIT5 (4)		•	•	•	•	•	•	•	•
SW3 (2)		•	•	•	•	•	•	•	•
SW5 (2)		•	•	•	•	•	•	•	•
TX (1)		•	•	•	•	•	•	•	•
WMT05 (1)		•	•	•	•	•	•	•	•
WMT06 (1)		•	•	•	•			•	•
WMT10 (1)		•	•	•	•		•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
- (2) Probe for AER503IR-TX thermostats, if fitted.
- (2) Trobe for AERSOSIN-TA (Identification, Integr.
 (3) Cards for AERSOSIR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 (4) Probe for AERSOSIR-TX thermostats, if fitted.

VMF system

Model	Ver	030	040	130	140	230	240	330	340
VMF-E0X (1)		•	•	•	•	•	•	•	•
VMF-E19 (1)		•	•	•	•		•	•	•
VMF-E3		•	•	•	•	•	•	•	•
VMF-E4DX		•	•	•	•	•	•	•	•
VMF-E4X		•	•	•	•	•	•	•	•
VMF-IO		•	•	•	•	•	•	•	•
VMF-IR		•	•	•	•		•		•
VMF-SIT3V (2)								•	•
VMF-SW		•	•	•	•	•	•	•	•
VMF-SW1			•	•		•	•	•	

- (1) Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.
- (2) For the selection, consult the documentation for the thermostat and the fan coil.

(Heating only) additional coil

Ver	030	040	130	140	230	240	330	340
	BV030 (1)	-	BV130 (1)	-	BV230 (1)	-	BV162 (1)	-

(1) Not available for sizes with oversized main coil.
The accessory cannot be fitted on the configurations indicated with

Water valves

Valve Kit for 4 pipe systems with main coil

Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
VCF3X4L	•	•	•		•		•	•
VCF3X4LS				•		•		
VCF3X4R	•	•	•		•		•	•
VCF3X4RS				•		•		

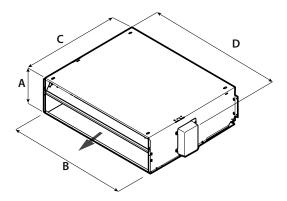
3 way valve kit

	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
3 way valve kit								
Main coil	VCF43-VCF4324	VCF43-VCF4324	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43-VCF4324
Additional coil "BV"	VCF45-VCF4524	-	VCF45-VFC4524	-	VCF45-VCF4524	-	VCF45-VCF4524	-

VCF43 - 45 Power supply 230V, VCF4324-4524 Power supply 24V - Hydraulic connections \emptyset 3/4"

	2	wav	val	lve	kit
--	---	-----	-----	-----	-----

) way yalyo kit	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
way valve kit ain coil	VCFD3-VCFD324	VCFD3-VCFD324	VCFD3-VCFD324	VCFD3-VCFD324	VCFD3-VCFD324	VCFD3-VCFD324	VCFD3-VCFD324	VCFD3-VCFD324
ain coii dditional coil "BV"	VCFD3-VCFD324 VCFD4-VCFD424	VCFD3-VCFD324 -	VCFD3-VCFD324 VCFD4-VCFD424	VCFD3-VCFD324 -	VCFD3-VCFD324 VCFD4-VCFD424	-	VCFD3-VCFD324 VCFD4-VCFD424	VCFD3-VCFD32 -
		estions (4.2 / 4"	VCI DT VCI DT2T		VCI DT VCI DT2T		VCI DT VCI DT2T	
FD3 Power supply 230V, VCFD324 Pov FD4 Power supply 230V, VCFD424 Pov	ver supply 24V - Hydraulic conn	ections Ø 1/2"; For add	litional coil (heating or	ly) BV.				
ombined adjustment an			VED120	VFD140	VEDOOR	VED240	VED220	V/FD2.40
ccessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
1P060	•	•		•				
JP060M JP090	•	•	•	•				
JP090M					•	•	•	•
IP150					•	•	•	·
IP150M							•	•
nstallation accessories	5							
ccessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
MP	•	•	•	•	•	•	•	•
ondensate drip	VEDOOR	NEDO 40	VEDAGE	VED440	VEDOSS	MED3 : 2	VEDOOR	VED2 12
ccessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
774	•	•	•	•	•	•	•	•
CZ6	•	•	•	•	•	•	•	•
ccessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
(9	•	•	•	•	•	•	•	•
CZ4 For vertical installation. CZ6 For horizontal installation. C9 For horizontal installation.								
ondensate recirculation	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
5(4	•	•	•	•	•	• VEDZ40	•	•
5CZ4	•	•	•	•	•	•	•	· ·
ntake grids Ver	030	040	130	140	230	240	330	340
•	GA22	GA22	GA32	GA32	GA42	GA42	GA62	GA62
ntake grid with filter and	l fixed louvers							
Ver	030	040	130	140	230	240	330	340
	GAF22	GAF22	GAF32	GAF32	GAF42	GAF42	GAF62	GAF62
xternal air shutter with	manual control							
Ver	030	040	130	140	230	240	330	340
	SE20X	SE20X	SE30X	SE30X	SE40X	SE40X	SE80X	SE80X
ntake straight with recto	maular flanaes							
Ver	030	040	130	140	230	240	330	340
	RDA000V	RDA000V	RDA100V	RDA100V	RDA200V	RDA200V	RDA300V	RDA300V
ntake straight internally								
Ver	030	040	130	140	230	240	330	340
	RDAC000V	RDAC000V	RDAC100V	RDAC100V	RDAC200V	RDAC200V	RDAC300V	RDAC300V
ntake plenum with recta	ngular flanges							· · ·
Ver	030	040	130	140	230	240	330	340
	RPA000V	RPA000V	RPA100V	RPA100V	RPA200V	RPA200V	RPA300V	RPA300V
ntake plenum with circu	lar flanges							
Ver	030	040	130	140	230	240	330	340
	PA000V	PA000V	PA100V	PA100V	PA200V	PA200V	PA300V	PA300V
elivery accessories								
•	n dampers							
Delivery accessories Plenum with motor-drive Ver	on dampers 030 MZC220	040 MZC220	130 MZC320	140 MZC320	230 MZC530	240 MZC530	330 MZC830	340 MZC830


Florida - I				
Electrical	svstem	with	rei	avs

	Electrical syst	em with relays																				
It is mandatory to use MZCACV if the lintake of the unit combined with the MZC accessory exceeds 0.7 Ampere. Neer	Ver																					
Petric plant Petr		MZCACV (1)	MZCACV (1)		MZCA	CV (1)		MZCACV (1)		M	ZCACV (1	1)	٨	NZCACV	(1)		MZC	ACV (1)			MZCAC	<i>l</i> (1)
Ver	It is mandatory to	use MZCACV if the inta	ke of the unit combine	ed with the l	MZC acc	essory exc	eeds 0.7	Ampere.														
MZCAC MZCA	lectric plant																					
Ver	Ver	030	040		13	0		140			230			240				330			340	i
Ver 030 040 130 140 230 240 330 340		MZCAC	MZCAC		MZ	CAC		MZCAC			MZCAC			MZCAC	<u> </u>		N	IZCAC			MZCA	(C
Company Comp	low grid with	n adjustable lo	uvers																			
Ver 0.30	V	ler er	030	0	40		130		140			230			240			33()		34	0
Ver 030 040 130 140 230 240 330 340			GM22	GA	A22		GM32		GM3	2		GM4	2		GM42	2		GM6	52		GM	62
PM000V	Delivery plent	um internally ii	nsulated, with	circula	r flan	iges																
Ver 030 040 130 140 230 240 330 340	V	/er	030	0	40		130		140			230			240			330)		34	0
Ver 030 040 130 140 230 240 330 344			PM000V	PM	V000		PM100\	1	PM10	OV		PM200	V		PM200	OV		PM30	0V		PM3	00V
RPM000V RPM000V RPM100V RPM100V RPM200V RPM200V RPM300V RPM30V RPM						flang																
Ver 030 040 130 140 230 240 330 340	V	/er										_										
Ver 030 040 130 140 230 240 330 344 346			RPM000V	RPM	000V		RPM100	V	RPM10	10V		RPM20	0V	ŀ	RPM20	10V		RPM3	00V		RPM.	600V
RDMC000V RDMC000V RDMC100V RDMC100V RDMC200V RDMC200V RDMC300V RDMC300V RDMC3 Straight delivery coupling						nges																
Ver 030 040 130 140 230 240 330 340	V	ler																				
Ver 030 040 130 140 230 240 330 340 . RDM000V RDM000V RDM100V RDM100V RDM200V RDM200V RDM300V RDM300V RDM300V RDM300V RDM300V RDM300V RDM300V RDM300V RDM300V VED330 VED33			RDMC000V	RDM	C000V		RDMC100)V	RDMC1	00V		RDMC2	V00	R	DMC20	00V		RDMC3	V000		RDMC	300V
RDM000V RDM100V RDM100V RDM200V RDM200V RDM300V RDM30V RDM30 Circular flanges kit for plenum ccessory VED030 VED040 VED130 VED140 VED230 VED240 VED330 VED35 FV10 .	traight deliv	ery coupling																				
Circular flanges kit for plenum	V	/er	030	0	40		130		140			230			240	1		33()		34	0
VED030 VED040 VED130 VED140 VED230 VED240 VED330 VED350 V			RDM000V	RDM	V000		RDM100	V	RDM10	V0V		RDM20	OV	F	RDM20	V00		RDM3	00V		RDM.	300V
PERFORMANCE SPECIFICATIONS -pipe VED030 VED040 VED130 VED140 VED230 VED240 VED330 VED	ircular flang	es kit for plenu	ım																			
PERFORMANCE SPECIFICATIONS -pipe VED030 VED040 VED130 VED140 VED230 VED240 VED330 VED 1 4 6 1 4 6 1 4 6 1 4 6 1 3 6 1 3 6 1 3 7 1 3	Accessory		VED030	VEC	0040		VED130		VED14	10		VED23	0		VED24	10		VED3	30		VED	340
VED030 VED040 VED130 VED140 VED230 VED240 VED330 VED330<	(FV10		•		•		٠		•			٠			•			•				
VED030 VED040 VED130 VED140 VED230 VED240 VED330 VED 1 4 6 1 4 6 1 4 6 1 3 6 1 3 6 1 3 7 1 3		NCE SPECIFI	CATIONS																			
1 4 6 1 4 6 1 4 6 1 3 6 1 3 6 1 3 7 1 3	-pipe		Т	VEDO		VES		VF5-	20 1		FD446		VERS			UFDa :			FDDD		15-	22.65
					_					VI						_	_	_		$\overline{}$		
				1 4 L M	6 H			1 4 L M	6 H	1		6 ·	1 3 . M	6 H	1	3 M	6 H	1	3 M	7 H		3 M

- Princ		1	VED030 VED040 VED130 VED140 1 4 6 1 4 6 1 4 6					1	/ED23	0	1	VED24	0	1	/ED33	0		VED340	, <u> </u>						
		1	4	6	1	4	6	1	4	6	1	4	6	1	3	6	1	3	6	1	3	7	1	3	7
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,82	3,37	3,69	2,37	3,57	3,92	4,40	5,83	6,29	4,52	6,09	6,58	5,35	6,50	7,16	5,80	7,14	7,91	7,81	9,34	10,51	8,31	10,02	10,95
Water flow rate system side	I/h	160	296	323	207	313	343	386	512	552	396	534	577	469	570	628	509	626	694	685	819	921	729	878	960
Pressure drop system side	kPa	3	7	9	4	10	12	13	22	26	9	16	18	27	30	37	18	26	32	9	13	16	22	28	32
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,90	1,67	1,83	1,18	1,77	1,94	2,18	2,90	3,12	2,24	3,02	3,27	2,66	3,23	3,56	2,88	3,55	3,93	3,88	4,64	5,22	3,98	4,98	5,44
Water flow rate system side	l/h	157	291	318	204	208	338	380	504	543	390	526	568	462	561	618	501	616	683	674	807	907	718	865	945
Pressure drop system side	kPa	3	8	9	5	11	13	15	24	28	10	16	19	26	29	36	18	27	32	10	14	17	13	20	23
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	0,97	1,41	1,56	1,10	1,68	1,84	2,05	2,74	2,91	2,24	3,00	3,22	2,55	3,07	3,33	2,86	3,57	3,93	3,62	4,35	4,90	3,92	4,72	5,26
Sensible cooling capacity	kW	0,73	1,07	1,18	0,79	1,19	1,29	1,41	1,89	2,01	1,58	2,14	2,30	1,96	2,38	2,61	2,16	2,65	2,92	2,74	3,26	3,63	2,89	3,50	3,89
Water flow rate system side	l/h	170	250	279	193	296	327	358	480	515	390	525	566	445	538	588	499	624	691	633	760	860	685	824	922
Pressure drop system side	kPa	3	7	9	5	12	14	15	27	31	11	20	23	25	36	44	16	31	37	10	14	18	16	21	26
Fan																									
Туре	type												Centri	fugal											
Fan motor	type												Asynch	ronous											
Number	no.		1			1			2			2			2			2			3			3	
Air flow rate	m³/h	161	256	285	160	249	277	287	397	433	280	386	420	417	524	590	406	509	570	572	704	805	563	685	775
High static pressure	Pa	21	50	61	21	50	61	26	50	60	26	50	60	32	50	64	32	50	63	33	50	66	34	50	64
Input power	W	23	38	59	23	38	58	34	53	76	34	52	75	43	57	93	43	57	92	63	75	104	63	74	107
Electrical wiring		V1	V4	۷6	٧1	V4	۷6	V1	V4	۷6	٧1	٧4	۷6	V1	V3	۷6	V1	V3	۷6	V1	٧3	٧7	٧1	V3	٧7
Duct type fan coil sound data (4)																									
Sound power level (inlet + radiated)	dB(A)	44,0	52,0	54,0	44,0	52,0	54,0	47,0	53,0	55,0	47,0	53,0	55,0	49,0	54,0	57,0	49,0	54,0	57,0	49,0	55,0	58,0	49,0	55,0	58,0
Sound power level (outlet)	dB(A)	40,0	48,0	50,0	40,0	48,0	50,0	42,0	48,0	50,0	42,0	48,0	50,0	44,0	49,0	52,0	44,0	49,0	52,0	45,0	51,0	54,0	45,0	51,0	54,0
Water coil																									
Water content main coil			0,7			1,0			1,1			1,5			1,5			2,1			1,8			2,3	
Diametre hydraulic fittings																									
Main coil	Ø	0 3/4"																							
Power supply																									
Power supply													230V~	~50Hz											

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
Dimensions and weights									
A	mm	217	217	217	217	217	217	217	217
В	mm	550	550	781	781	1001	1001	1122	1122
С	mm	560	560	560	560	560	560	560	560
D	mm	576	576	807	807	1027	1027	1148	1148

Fan coil unit for ducted installations

- · Horizontal and vertical installation
- Large range of available static pressure
- Inspectable ventilation group
- Total comfort: reduced temperature and humidity oscillations
- Electricity savings of 50% compared with a fan coil with multi-speed motor

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Brushless motor with continuous speed variation 0-100%.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

SWAI: External air or water temperature probe.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT21: Electronic thermostat for inverter fancoils.

VMF Components

VMF-E191: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Valves and additional water coil

BV: Single row hot water heat exchanger.

VCF_X: Kit of 3-way valves for fan coils with a single coil and the water connections on the left, for installation in 4-pipe systems. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. 230V power supply. Water connections: Valve body Ø G 3/4" male; Valve side connection tubes Ø G 3/4" female; Unit side connection tubes Ø G 3/4" male.

VCF41 - **42** - **43** - **for main coil:** 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - **45** - **for the secondary coil:** The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

AMP: Wall mounting kit **BC:** Condensate drip.

DSC: Condensate drainage device.

Accessories for intake

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

SE_X: External air shutter with manual control.

RDA_V: Straight intake connection with rectangular flange.

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

Delivery accessories

GM: Flow grid with adjustable louvers.

MZC: Plenum with motorised dampers.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_C: Straight discharge internally insulated, with circular flanges.

RDM_V: Straight delivery coupling in galvanised sheet metal.

KFV: Circular flanges kit for plenum.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
AER503IR	•	•	•	•	•	•	•	•
PR0503	•		•	•	•	•	•	•
SA5	•	•	•	•	•	•	•	•
SW3	•	•	•	•	•	•	•	•
SW5	•	•	•	•	•	•	•	•
SWAI	•	•	•	•	•	•	•	•
TX	•	•	•			•	•	•
WMT21	•	•			•	•	•	•

VMF system

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
VMF-E19I	•	•	•	•	•	•	•	•
VMF-E3	•	•	•	•	•	•	•	•
VMF-E4DX	•	•	•	•	•	•	•	•
VMF-E4X	•	•	•	•	•	•	•	•
VMF-IO	•	•	•	•	•	•	•	•
VMF-IR	•		•		•	•	•	•
VMF-LON	•	•	•	•	•	•	•	•
VMF-SW	•	•	•	•	•	•	•	•
VMF-SW1	•					•		•

(Heating only) additional coil

<u>, , , , , , , , , , , , , , , , , , , </u>									_
Ver	030	040	130	140	230	240	330	340	
	BV030	-	BV130	-	BV230	-	BV162	-	_

Water valves

Valve Kit for 4 pipe systems with main coil

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
VCF3X4L	•	•	•		•		•	•
VCF3X4LS				•		•		_
VCF3X4R	•	•	•		•		•	•
VCF3X4RS								

3 way valve kit

	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
3 way valve kit	,							
Main coil	VCF43-VCF4324	VCF43-VCF4324	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43-VCF4324
Additional coil "BV"	VCF45-VCF4524	-	VCF45-VFC4524	=	VCF45-VCF4524	-	VCF45-VCF4524	-

 $VCF43-45\ Power\ supply\ 230V, VCF4324-4524\ Power\ supply\ 24V-Hydraulic\ connections\ \emptyset\ 3/4"$

2 way valve kit

	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
2 way valve kit								
Main coil	VCFD3-VCFD324							
Additional coil "BV"	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-

VCFD3 Power supply 230V, VCFD324 Power supply 24V - Hydraulic connections Ø 3/4" VCFD4 Power supply 230V, VCFD424 Power supply 24V - Hydraulic connections Ø 1/2"; For additional coil (heating only) BV.

Combined adjustment and balancing valve cold side

Model	Ver	030	040	130	140	230	240	330	340
VJP060 (1)		•	•	•	•				
VJP060M (2)	1	•	•	•	•				
VJP090 (1)	- 1					•	•	•	•
VJP090M (2)	l					•	•	•	•
VJP150 (1)									•
VJP150M (2)								•	•

(1) 230V~50Hz (2) 24V VJP060 - 090 - 150 (230V~50Hz); VJP060M-090M-150M (24V)

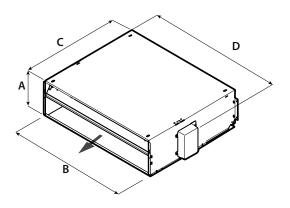
Installation accessories

Wall mounting accessories

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED340I
AMP	•	•	•	•	•	•	•

Condensate drip

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
BCZ4	•	•	•	•	•	•	•	•
BCZ6	•	•	•		•		•	•


Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
309	•	•	•	•	•	•	•	•
CZ4 For vertical installation. CZ6 For horizontal installation.								
C9 For horizontal installation.								
ondensate drainage								
Ver	030	040	130	140	230	240	330	340
	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4	DSC4
· · · · · · · · · · · · · · · · · · ·	550.	5501		5501	550.	550.	550.	550.
Accessories for intake								
ntake grids								
Ver	030	040	130	140	230	240	330	340
	GA22	GA22	GA32	GA32	GA42	GA42	GA62	GA62
ntake grid with filter and	l fixed louvers							
Ver	030	040	130	140	230	240	330	340
	GAF22	GAF22	GAF32	GAF32	GAF42	GAF42	GAF62	GAF62
external air shutter with								
Ver	030	040	130	140	230	240	330	340
<u> </u>	SE20X (1)	SE20X (1)	SE30X (1)	SE30X (1)	SE40X (1)	SE40X (1)	SE80X (1)	SE80X (1)
The SE accessories must be combine	d with the design and struct	ural feet.						
ntake straight with recta	ıngular flanges							
Ver	030	040	130	140	230	240	330	340
	RDA000V	RDA000V	RDA100V	RDA100V	RDA200V	RDA200V	RDA300V	RDA300V
ntake straight internally								
Ver	030	040	130	140	230	240	330	340
l	RDAC000V	RDAC000V	RDAC100V	RDAC100V	RDAC200V	RDAC200V	RDAC300V	RDAC300V
ntake plenum with recta	naular flanaes							
Ver	030	040	130	140	230	240	330	340
ver	RPA000V	RPA000V	RPA100V	RPA100V	RPA200V	RPA200V	RPA300V	
·	NFAUUUV	NI AUUUV	MATOUV	MATOUV	NFAZUUV	NFAZUUV	NEADUV	RPA300V
·		NI AUUUV	REATOUV	NIATOUV	NFAZUUV	NFAZUUV	NEADOUV	KPA3UUV
ntake plenum with circu				140		240		
<u> </u>	lar flanges	040 PA000V	130 PA100V		230 PA200V		330 PA300V	340 PA300V
Intake plenum with circul	lar flanges 030	040	130	140	230	240	330	340
Intake plenum with circu Ver	lar flanges 030	040	130	140	230	240	330	340
Intake plenum with circul Ver Delivery accessories	lar flanges 030 PA000V	040	130	140	230	240	330	340
Ntake plenum with circul Ver Delivery accessories Dutlet grille with adjusta	lar flanges 030 PA000V ble louvers	040 PA000V	130 PA100V	140 PA100V	230 PA200V	240 PA200V	330 PA300V	340 PA300V
ntake plenum with circul Ver Delivery accessories	O30 PA000V ble louvers 030	040 PA000V	130 PA100V	140 PA100V	230 PA200V	240 PA200V 240	330 PA300V	340 PA300V
Ver Delivery accessories Outlet grille with adjusta	lar flanges 030 PA000V ble louvers	040 PA000V	130 PA100V	140 PA100V	230 PA200V	240 PA200V	330 PA300V	340 PA300V
Ver	Dar flanges 030 PA000V ble louvers 030 GM22	040 PA000V	130 PA100V	140 PA100V	230 PA200V	240 PA200V 240	330 PA300V	340 PA300V
Ner	Dar flanges 030 PA000V ble louvers 030 GM22	040 PA000V	130 PA100V	140 PA100V	230 PA200V	240 PA200V 240	330 PA300V	340 PA300V
Ntake plenum with circul Ver Delivery accessories Outlet grille with adjusta Ver 	Dar flanges 030 PA000V ble louvers 030 GM22 an dampers	040 PA000V 040 GM22	130 PA100V 130 GM32	140 PA100V 140 GM32	230 PA200V 230 GM42	240 PA200V 240 GM42	330 PA300V 330 GM62	340 PA300V 340 GM62
Delivery accessories Outlet grille with adjusta Ver	ble louvers 030 GM22 an dampers 030 MZC220	040 PA000V 040 GM22 040 MZC220	130 PA100V 130 GM32 130 MZC320	140 PA100V 140 GM32	230 PA200V 230 GM42	240 PA200V 240 GM42	330 PA300V 330 GM62	340 PA300V 340 GM62
Delivery accessories Ver Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal	ble louvers 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220	040 PA000V 040 GM22 040 MZC220 circular flange	130 PA100V 130 GM32 130 MZC320	140 PA100V 140 GM32 140 MZC320	230 PA200V 230 GM42 230 MZC530	240 PA200V 240 GM42 240 MZC530	330 PA300V 330 GM62 330 MZC830	340 PA300V 340 GM62 340 MZC830
Delivery accessories Outlet grille with adjusta Ver	ble louvers 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030	040 PA000V 040 GM22 040 MZC220 circular flange 040	130 PA100V 130 GM32 130 MZC320	140 PA100V 140 GM32 140 MZC320	230 PA200V 230 GM42 230 MZC530	240 PA200V 240 GM42 240 MZC530	330 PA300V 330 GM62 330 MZC830	340 PA300V 340 GM62 340 MZC830
Net ake plenum with circum Ver	ble louvers 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220	040 PA000V 040 GM22 040 MZC220 circular flange	130 PA100V 130 GM32 130 MZC320	140 PA100V 140 GM32 140 MZC320	230 PA200V 230 GM42 230 MZC530	240 PA200V 240 GM42 240 MZC530	330 PA300V 330 GM62 330 MZC830	340 PA300V 340 GM62 340 MZC830
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver	ble louvers 030 GM22 an dampers 030 MZC220 bly insulated, with	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V	130 PA100V 130 GM32 130 MZC320 130 PM100V	140 PA100V 140 GM32 140 MZC320	230 PA200V 230 GM42 230 MZC530	240 PA200V 240 GM42 240 MZC530	330 PA300V 330 GM62 330 MZC830	340 PA300V 340 GM62 340 MZC830
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal	ble louvers 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030 PM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla	130 PA100V 130 GM32 130 MZC320 SS 130 PM100V	140 PA100V 140 GM32 140 MZ(320 140 PM100V	230 PA200V 230 GM42 230 MZC530 230 PM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V	330 PA300V 330 GM62 330 MZC830 PM300V	340 PA300V 340 GM62 340 MZC830 340 PM300V
Ner	ble louvers 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030 PM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla	130 PA100V 130 GM32 130 MZC320 130 PM100V 130 PM100V	140 PA100V 140 GM32 140 MZ(320 140 PM100V	230 PA200V 230 GM42 230 MZC530 230 PM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V	330 PA300V 330 GM62 330 MZ(830 MZ(830) PM300V	340 PA300V 340 GM62 340 MZC830 PM300V
Ver	ble louvers 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030 PM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla	130 PA100V 130 GM32 130 MZC320 SS 130 PM100V	140 PA100V 140 GM32 140 MZ(320 140 PM100V	230 PA200V 230 GM42 230 MZC530 230 PM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V	330 PA300V 330 GM62 330 MZC830 PM300V	340 PA300V 340 GM62 340 MZC830 340 PM300V
Ner	ble louvers 030 GM22 an dampers 030 MZC220 bly insulated, with 030 PM000V bly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla Q40 RPM000V	130 PA100V 130 GM32 130 MZC320 S 130 PM100V 2009 2019 2020 2020	140 PA100V 140 GM32 140 MZ(320 140 PM100V	230 PA200V 230 GM42 230 MZC530 230 PM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V	330 PA300V 330 GM62 330 MZ(830 MZ(830) PM300V	340 PA300V 340 GM62 340 MZC830 PM300V
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery plenum internal	ble louvers 030 GM22 on dampers 030 MZC220 ly insulated, with 030 PM000V ly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla RPM000V circular flange	130 PA100V 130 GM32 130 MZC320 SS 130 PM100V anges 130 RPM100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V	230 PA200V 230 GM42 230 MZC530 PM200V 230 PM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V	330 PA300V 330 GM62 330 MZC830 PM300V 330 PM300V	340 PA300V 340 GM62 340 MZC830 340 PM300V 340 RPM300V
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal Ver	lar flanges 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030 PM000V ly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla QH0 RPM000V circular flange	130 PA100V 130 GM32 130 MZC320 SS 130 PM100V anges 130 RPM100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V	230 PA200V 230 GM42 230 MZC530 230 PM200V 230 RPM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V	330 PA300V 330 GM62 330 MZC830 330 PM300V 330 RPM300V	340 PA300V 340 GM62 340 MZC830 340 PM300V 340 RPM300V
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery plenum internal	ble louvers 030 GM22 on dampers 030 MZC220 ly insulated, with 030 PM000V ly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla RPM000V circular flange	130 PA100V 130 GM32 130 MZC320 SS 130 PM100V anges 130 RPM100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V	230 PA200V 230 GM42 230 MZC530 PM200V 230 PM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V	330 PA300V 330 GM62 330 MZC830 PM300V 330 PM300V	340 PA300V 340 GM62 340 MZC830 340 PM300V 340 RPM300V
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery plenum internal	lar flanges 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030 PM000V ly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla QH0 RPM000V circular flange	130 PA100V 130 GM32 130 MZC320 SS 130 PM100V anges 130 RPM100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V	230 PA200V 230 GM42 230 MZC530 230 PM200V 230 RPM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V	330 PA300V 330 GM62 330 MZC830 330 PM300V 330 RPM300V	340 PA300V 340 GM62 340 MZC830 340 PM300V 340 RPM300V
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery straight internal Ver	lar flanges 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030 RPM000V ly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla RPM000V circular flange 040 RPM000V	130 PA100V 130 GM32 130 MZ(320 SS 130 PM100V Anges 130 RPM100V RPM100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V	230 PA200V 230 GM42 230 MZC530 230 PM200V 230 RPM200V 230 RPM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V 240 RDMC200V	330 PA300V 330 GM62 330 MZC830 MZC830 PM300V 330 RPM300V	340 PA300V 340 GM62 340 MZ(830 PM300V 340 RPM300V 340 RPM300V
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery straight internal Ver Delivery straight internal Ver	lar flanges 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 ly insulated, with 030 PM000V ly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla QH0 RPM000V circular flange	130 PA100V 130 GM32 130 MZC320 SS 130 PM100V anges 130 RPM100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V 140 RDMC100V	230 PA200V 230 GM42 230 MZC530 230 PM200V 230 RPM200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V	330 PA300V 330 GM62 330 MZC830 330 PM300V 330 RPM300V	340 PA300V 340 GM62 340 MZC830 340 PM300V 340 RPM300V
Delivery accessories Outlet grille with adjustate Ver Delivery method motor-drive Ver Delivery plenum internal Ver Delivery straight internal Ver	lar flanges 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 lly insulated, with 030 RPM000V lly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla RPM000V circular flange 040 RPM000V	130 PA100V 130 GM32 130 MZ(320 SS 130 PM100V Anges 130 RPM100V RPM100V 130 RDMC100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V 140 RDMC100V	230 PA200V 230 GM42 230 MZC530 230 PM200V 230 RPM200V 230 RDMC200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V 240 RDMC200V	330 PA300V 330 GM62 330 MZC830 MZC830 PM300V 330 RPM300V 330 RDMC300V	340 PA300V 340 GM62 340 MZ(830 A40 PM300V 340 RPM300V 340 RDM(300V
Delivery accessories Outlet grille with adjustate Ver Delivery method motor-drive Ver Delivery plenum internal Ver Delivery straight internal Ver	lar flanges 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 lly insulated, with 030 RPM000V lly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla RPM000V circular flange 040 RPM000V	130 PA100V 130 GM32 130 MZ(320 SS 130 PM100V Anges 130 RPM100V RPM100V 130 RDMC100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V 140 RDMC100V	230 PA200V 230 GM42 230 MZC530 230 PM200V 230 RPM200V 230 RDMC200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V 240 RDMC200V	330 PA300V 330 GM62 330 MZC830 MZC830 PM300V 330 RPM300V 330 RDMC300V	340 PA300V 340 GM62 340 MZ(830 A40 PM300V 340 RPM300V 340 RDM(300V
Delivery accessories Outlet grille with adjusta Ver Plenum with motor-drive Ver Delivery plenum internal Ver Delivery plenum internal Ver Delivery straight internal Ver Delivery straight internal Ver	lar flanges 030 PA000V ble louvers 030 GM22 an dampers 030 MZC220 lly insulated, with 030 RPM000V lly insulated, with 030 RPM000V	040 PA000V 040 GM22 040 MZC220 circular flange 040 PM000V rectangular fla RPM000V circular flange 040 RPM000V	130 PA100V 130 GM32 130 MZ(320 SS 130 PM100V Anges 130 RPM100V RPM100V 130 RDMC100V	140 PA100V 140 GM32 140 MZC320 140 PM100V 140 RPM100V 140 RDMC100V	230 PA200V 230 GM42 230 MZC530 230 PM200V 230 RPM200V 230 RDMC200V	240 PA200V 240 GM42 240 MZC530 240 PM200V 240 RPM200V 240 RDMC200V	330 PA300V 330 GM62 330 MZC830 MZC830 PM300V 330 RPM300V 330 RDMC300V	340 PA300V 340 GM62 340 MZ(830 A40 PM300V 340 RPM300V 340 RDM(300V

PERFORMANCE SPECIFICATIONS

		١	/ED03	Ol	1	/ED040)I	١	/ED13()I	١	/ED14	01	١	/ED23(DI	١	/ED240	DI	1	/ED33()I	1	/ED340)I
		1	5	7	1	5	7	1	5	7	1	5	7	1	5	7	1	5	7	1	5	7	1	5	7
		L	M	Н	L	М	Н	L	М	Н	L	М	Н	L	M	Н	L	М	Н	L	M	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,82	3,37	3,69	2,37	3,57	3,92	4,40	5,83	6,29	4,52	6,09	6,58	5,35	6,50	7,16	5,80	7,14	7,91	7,81	9,34	10,51	8,31	10,08	10,95
Water flow rate system side	I/h	160	296	323	207	313	343	386	512	552	396	534	577	469	570	628	509	626	694	685	819	921	729	878	960
Pressure drop system side	kPa	3	7	9	4	10	12	13	22	26	9	16	18	27	30	37	18	26	32	9	13	16	22	28	32
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,90	1,67	1,83	1,17	1,77	1,94	2,18	2,90	3,12	2,24	3,02	3,27	2,66	3,23	3,56	2,88	3,55	3,93	3,88	4,64	5,22	3,98	4,98	5,44
Water flow rate system side	l/h	157	291	318	204	308	338	380	504	543	390	526	568	462	561	618	501	616	683	674	807	907	718	865	945
Pressure drop system side	kPa	3	8	9	5	11	13	15	24	28	10	16	19	26	29	36	18	27	32	10	14	17	13	20	23
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	0,98	1,42	1,58	1,11	1,69	1,86	2,06	2,76	2,95	2,25	3,02	3,25	2,57	3,09	3,37	2,88	3,59	3,97	3,62	4,36	4,91	3,95	4,72	5,27
Sensible cooling capacity	kW	0,74	1,08	1,20	0,80	1,20	1,31	1,42	1,91	2,05	1,59	2,16	2,32	1,98	2,40	2,65	2,18	2,67	2,96	2,77	3,27	3,64	2,92	3,51	3,90
Water flow rate system side	I/h	170	250	279	193	296	327	358	480	515	390	525	566	445	538	588	499	624	691	633	760	860	563	824	922
Pressure drop system side	kPa	3	7	9	5	12	14	15	27	41	11	20	23	25	36	44	16	31	37	10	14	18	34	21	26
Fan																									
Туре	type												Centr	fugal											
Fan motor	type												Inve	rter											
Number	no.		1			1			2			2			2			2			3			3	
Air flow rate	m³/h	161	256	285	160	249	277	287	397	434	280	386	420	417	524	590	406	509	570	572	704	805	563	685	775
High static pressure	Pa	21	50	61	21	50	61	26	50	60	26	50	60	32	50	64	32	50	63	33	50	66	34	50	64
Input power	W	12	29	36	12	29	36	17	33	45	17	33	45	24	40	53	24	40	53	35	60	86	35	60	86
Signal 0-10V	%	54	80	90	54	80	90	58	82	90	58	82	90	66	80	90	62	80	90	62	78	90	66	84	90
Duct type fan coil sound data (4)																									
Sound power level (inlet + radiated)	dB(A)	44,0	52,0	54,0	44,0	52,0	54,0	47,0	53,0	55,0	47,0	53,0	55,0	49,0	54,0	57,0	49,0	54,0	57,0	49,0	55,0	58,0	49,0	55,0	58,0
Sound power level (outlet)	dB(A)	40,0	48,0	50,0	40,0	48,0	50,0	42,0	48,0	50,0	42,0	48,0	50,0	44,0	49,0	52,0	44,0	49,0	52,0	45,0	51,0	54,0	45,0	51,0	54,0
Diametre hydraulic fittings																									
Туре	type												Gas	-F											
Main coil	Ø												3/	4″											
Power supply																									
Power supply													230V	~50Hz											

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45°C/40°C; EUROVENT
 (3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
Dimensions and weights									
A	mm	217	217	217	217	217	217	217	217
В	mm	550	550	781	781	1001	1001	1122	1122
C	mm	584	584	584	584	584	584	584	584
D	mm	576	576	807	807	1027	1027	1148	1148
U	mm	3/0	3/0	807	807	1027	1027	1148	1148

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

VED 430-741

Fan coil unit for ducted installations

- Horizontal and vertical installation
- · Ventilation group to 5 speed
- Large range of available static pressure
- Inspectable ventilation group

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. Fan housing in plastic material removable for easy and effective cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each

fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF system

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-MOD: Expansion board for the management of modulating valves.

VMF-SIT3V: Relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Water valves

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic com-

ponents. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adjustment provided.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/adjustment provided.

VCF45C - 47C - 47CS - for main coil: Motorized 3-way valve kit for main coil. The kit consists of a 4-way 4-way valve with its insulating shell, the actuator and the relative hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF45H - 47H - for heating only coil: Motorized 3-way valve kit for hot only coil. The kit consists of a 3-way 4-way valve, the actuator and its hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25C - 25CS - for main coil: 2-way motorized valve kit for main coil. The kit consists of a valve with its insulating shell, the actuator and the relative hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25H - for heating only coil: 2-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

BCV: Condensate drip.

Installation accessories

MZC: Plenum with motorised dampers.

 $\textbf{RDA_V:} \ \textbf{Straight intake connection with rectangular flange}.$

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out \emptyset 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

KFV: Circular flanges kit for plenum.

MZCACV: Electrical system with relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

MZCAC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with an asynchronous motor.

Configurator

Field	Description	
1,2,3	VED	
	Size	
4	4, 5, 6, 7	
5	Main coil	
3	3-row coil	
4	4-row coil	
6	Secondary coil	
0	Without coil	
1	1-row coil for heating only	
2	2-row coil for heating only	

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
AER503IR (1)																	
PR0503		•	•		•	•			•	•				•	•		•
SA5 (2)			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIT3 (3)			•	•	•	•	•	•	•	•	•	•		•	•	•	
SIT5 (4)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW3 (2)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TX (1)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
WMT05 (1)								•				•				•	
WMT06 (1)		•	•	•	•	•		•	•	•		•	•	•	•	•	•
WMT10 (1)		•		•									•			•	

Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
 Probe for AERSO3IR-TX thermostats, if fitted.
 Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 Probe for AERSO3IR-TX thermostats, if fitted.

VMF system

Model	Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
VMF-E0X (1)		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E19 (1)		•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
VMF-E3		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4DX		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-E4X		•	•	•	•	•	•	•	•	•	•	•		•	•	•	
VMF-IO		•	•	•	•	•		•		•	•	•			•	•	•
VMF-IR		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
VMF-MOD			•	•	•		•	•	•	•	•	•	•			•	•
VMF-SIT3V (2)		•	•	•	•	•	•	•	•	•		•	•	•		•	•
VMF-SW		•		•	•	•	•	•	•	•		•	•	•			•
VMF-SW1		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•

Water valves

3 way valve kit

	VED430	VED440	VED530	VED540	VED630	VED640	VED730	VED740
3 way valve kit								
Main coil	VCF45C	VCF45C	VCF45C	VCF45C	VCF47CS	VCF47CS	VCF47CS	VCF47CS
	VED432	VED441	VED532	VED541	VED632	VED641	VED732	VED741
3 way valve kit								
Main coil	VCF45C	VCF45C	VCF45C	VCF45C	VCF47CS	VCF47CS	VCF47CS	VCF47CS
Secondary coil x 4-pipe	VCF45H	VCF45H	VCF45H	VCF45H	VCF47H	VCF47H	VCF47H	VCF47H

230V power supply - Hydraulic connection Ø 3/4"

2 way valve kit

	VED430	VED440	VED530	VED540	VED630	VED640	VED730	VED740
2 way valve kit								_
Main coil	VCF25C	VCF25C	VCF25C	VCF25C	VCF25CS	VCF25CS	VCF25CS	VCF25CS
	VED432	VED441	VED532	VED541	VED632	VED641	VED732	VED741
2 way valve kit								
Main coil	VCF25C	VCF25C	VCF25C	VCF25C	VCF25CS	VCF25CS	VCF25CS	VCF25CS
Secondary coil x 4-pipe	VCF25H	VCF25H	VCF25H	VCF25H	VCF25H	VCF25H	VCF25H	VCF25H

230V power supply - Hydraulic connection Ø 3/4"

430

VCT103

VCT103

440

VCT103

441

VCT103

530

VCT103

2-way globe valves actuator excluded

Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	VCT102	VCT202														

540

VCT103

541

VCT103

630

VCT203

632

VCT203

640

VCT203

641

VCT203

730

VCT203

732

VCT203

740

VCT403

741

VCT403

532

VCT103

3-way globe valves actuator excluded

Ver

Actuator 230V																
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	VCTK															

Actuator 24V

ACLUATOR 24V																
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	VCTKM															

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.
(2) For the selection, consult the documentation for the thermostat and the fan coil.

Combined adjustment and balancing valve cold side

Model	Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
VJP150 (1)		•	•	•	•	•	•	•	•								
VJP150M (2)		•		•	•	•		•	•								
VJP270M (2)										•				•			•

(1) 230V~50Hz (2) 24V

VJP/VJP_M the compatibility of the hot water valves with the designed air flow in a four-pipe installation is to be verified.

Accessories for intake

Intake straight with rectangular flanges

Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	RDA450V	RDA450V	RDA450V	RDA450V	RDA450V	RDA450V	RDA450V	RDA450V	RDA670V							
Intake plenum with rec	tangular fla	nges														
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	RPA450V	RPA450V	RPA450V	RPA450V	RPA450V	RPA450V	RPA450V	RPA450V	RPA670V							
Intake plenum with circ	cular flanges	;														
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	PA450V	PA450V	PA450V	PA450V	PA450V	PA450V	PA450V	PA450V	PA670V							

Delivery accessories

Delivery plenum internally insulated, with rectangular flanges

Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	RPM450V	RPM450V	RPM450V	RPM450V	RPM450V	RPM450V	RPM450V	RPM450V	RPM670V							
Delivery plenum internally	insulate	d, with	circula	r flange	25											

Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	PM450V	PM670V														
	_															
Circular flanges kit for p	lenum															
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	KFV															
Condensate drip																
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	BCV45	BCV67														

MZC

Plenum with motor-driven dampers

VCI	430	432	770	771	220	332	240	J41	030	032	040	041	/30	132	740	/41
	MZC5040	MZC7050														
Electric plant																
Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	MZCAC	-	-	-	-	-	-									

The accessory cannot be fitted on the configurations indicated with -

Electrical system with relays

Ver	430	432	440	441	530	532	540	541	630	632	640	641	730	732	740	741
	-	-	-	-	-	-	-	-	-	-	MZCACV (1)					

⁽¹⁾ It is mandatory to use MZCACV if the intake of the unit combined with the MZC accessory exceeds 0.7 Ampere.

The accessory cannot be fitted on the configurations indicated with -

For more information, please refer to the MZC plenum sheet.

PERFORMANCE SPECIFICATIONS

2-pipe

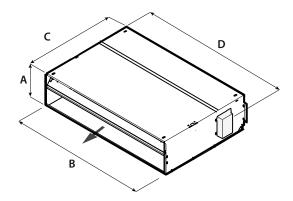
<u>z-pipe</u>		,	VED43	0		VED44	0		VED53	0	1	VED54	0		VED63	0	1	VED64	0		VED73	0		VED74	0
		1	3	5	1	3	5	2	4	5	2	4	5	1	3	5	1	3	5	1	3	5	1	3	5
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																	-								
Heating capacity	kW	10,47	13,85	15,97	11,45	15,36	18,11	13,80	16,47	17,57	15,38	18,59	19,91	18,63	22,67	27,02	22,45	27,74	32,69	21,18	25,36	29,00	22,88	27,65	31,71
Water flow rate system side	l/h	918	1214	1401	1004	1347	1588	1210	1444	1541	1349	1630	1746	1634	1988	2369	1969	2433	2867	1857	2224	2543	2007	2425	2781
Pressure drop system side	kPa	9	14	19	11	18	24	13	158	21	18	25	29	30	43	58	19	29	38	38	55	67	26	36	46
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	5,20	5,88	7,94	5,69	7,64	9,01	6,86	8,19	8,74	7,45	9,24	9,90	9,26	11,20	13,40	9,88	12,40	14,80	10,50	12,60	14,20	11,30	13,70	15,70
Water flow rate system side	I/h	894	1183	1366	979	1314	1550	1180	1409	1503	1281	1589	1703	1593	1926	2305	1699	2133	2546	1806	2167	2442	1944	2356	2700
Pressure drop system side	kPa	9	14	19	11	18	24	14	19	21	21	25	30	30	42	58	16	24	32	38	52	66	26	36	35
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	4,54	5,98	6,72	5,21	6,88	7,79	5,99	7,16	7,49	7,26	8,31	8,70	8,67	10,43	12,19	10,20	12,50	14,80	10,17	11,92	13,48	11,73	13,95	15,71
Sensible cooling capacity	kW	3,40	4,54	5,13	3,65	4,86	5,51	4,55	5,48	5,75	4,87	5,90	6,18	7,00	8,48	9,96	7,02	8,62	10,30	8,25	9,71	11,07	8,11	9,69	10,95
Water flow rate system side	l/h	781	1029	1156	896	1183	1340	1030	1232	1288	1249	1429	1496	1491	1794	2097	1754	2150	2546	1749	2050	2319	2018	2399	2702
Pressure drop system side	kPa	8	13	17	10	17	22	12	19	21	19	25	28	26	36	48	24	34	47	35	46	58	27	37	45
Fan																									
Туре	type												Centr	ifugal											
Fan motor	type												Asynch	ronous											
Number	no.		2			2			2			2			3			3			3			3	
Air flow rate	m³/h	790	1130	1350	780	1100	1340	1120	1400	1520	1100	1380	1500	1380	1800	2210	1567	2004	2440	1640	2040	2410	1600	2000	2350
High static pressure	Pa	24	50	72	-	50	63	32	50	70	32	50	56	30	50	75	30	50	75	32	50	69	32	50	64
Input power	W	137	175	228	135	178	222	175	232	270	172	230	267	220	271	340	220	293	340	234	285	371	234	285	371
Electrical wiring		٧1	V3	V5	V1	V3	V5	V2	V4	V5	V2	٧4	V5	V1	V3	V5	٧1	V3	V5	V1	٧3	V5	V1	V3	V5
Duct type fan coil sound data (4)																									
Sound power level (inlet + radiated)	dB(A)	51,0	57,0	61,0	51,0	57,0	61,0	53,0	59,0	62,0	53,0	59,0	62,0	61,0	64,0	68,0	61,0	64,0	68,0	62,0	66,0	68,0	62,0	66,0	68,0
Sound power level (outlet)	dB(A)	47,0	53,0	57,0	47,0	53,0	57,0	49,0	55,0	58,0	49,0	55,0	58,0	57,0	60,0	64,0	57,0	60,0	64,0	58,0	62,0	64,0	58,0	62,0	64,0
Diametre hydraulic fittings																									
Туре	type													-											
Main coil	Ø												3/	/4"											
Water coil																									
Water content main coil	I		2,9			3,9			2,9			3,9			4,7			6,3			4,7			6,3	
Power supply																									
Power supply													230V	~50Hz											

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

 4-pipe

			VED441			VED541			VED641			VED741	
		1	3	5	2	4	5	1	3	5	1	3	5
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)													
Heating capacity	kW	5,53	6,68	7,30	6,70	7,62	7,89	9,65	11,00	12,30	10,50	11,80	12,90
Water flow rate system side	l/h	475	574	627	576	655	678	829	946	1057	903	1014	1109
Pressure drop system side	kPa	14	20	23	20	25	26	15	19	24	18	22	25
Cooling performance 7 °C / 12 °C (2)													
Cooling capacity	kW	5,35	7,05	8,00	7,46	8,56	8,94	10,40	12,70	15,20	11,90	14,20	16,10
Sensible cooling capacity	kW	3,79	5,03	5,74	5,07	6,14	6,42	7,26	8,92	10,70	8,37	9,96	11,30
Water flow rate system side	l/h	920	1212	1376	1283	1472	1537	1788	2184	2614	2046	2442	2769
Pressure drop system side	kPa	12	19	24	21	27	29	24	35	48	27	37	46
Fan													
Туре	type						Centr	ifugal					
Fan motor	type						Asynch	ironous					
Number	no.		2			2			3			3	
Air flow rate	m³/h	750	1060	1253	1060	1360	1453	1340	1730	2120	1600	2000	2358
High static pressure	Pa	25	50	70	32	50	57	30	50	75	32	50	69
Input power	W	121	175	215	170	229	265	224	264	341	224	288	373
Electrical wiring		V1	V3	V5	V2	V4	V5	V1	V3	V5	V1	V3	V5
Duct type fan coil sound data (3)													
Sound power level (inlet + radiated)	dB(A)	51,0	57,0	61,0	53,0	59,0	62,0	61,0	64,0	68,0	62,0	66,0	68,0
Sound power level (outlet)	dB(A)	47,0	53,0	57,0	49,0	55,0	58,0	57,0	60,0	64,0	58,0	62,0	64,0
Diametre hydraulic fittings													
Туре	type							-					
Main coil	Ø						3/	4"					
Secondary coil	Ø						1/	2"					
Water coil													
Water content main coil	- 1		3,9			3,9			6,3			6,3	
Water content the secondary coil	- 1		1,0			1,0			1,6			1,6	
Power supply													

	VED441	VED541	VED641	VED741
Power supply		230V-	~50Hz	


- (1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
 (2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

VED			From VED 4					
Fan speed	V1	V2	V3	V4	V5			
Motor connection	L5	L4	L3	L2	L1			

The speed of associates may differ from the standard factory configuration.

For more information refer to the selection program and to to the dedicated documentation.

DIMENSIONS

		WED 424	VED 440	VEDERA	VEDEAN	WED CO.	VEDCAR	VEDERA	VERTAG
		VED430	VED440	VED530	VED540	VED630	VED640	VED730	VED740
Dimensions and weights									
A	mm	300	300	300	300	351	351	351	351
В	mm	1133	1133	1133	1133	1533	1533	1533	1533
C	mm	737	737	737	737	789	789	789	789
D	mm	1158	1158	1158	1158	1558	1558	1558	1558
Net weight	kg	41,00	43,00	42,00	47,00	57,00	60,00	58,00	61,00
		VED432	VED441	VED532	VED541	VED632	VED641	VED732	VED741
Dimensions and weights									
a gii to									
A	mm	300	300	300	300	351	351	351	351
A B	mm mm	300 1133	300 1133	300 1133	300 1133	351 1533	351 1533	351 1533	351 1533
A B C									
A B C D	mm	1133	1133	1133	1133	1533	1533	1533	1533

VED 530I-741I

Fan coil unit for ducted installations

- Horizontal and vertical installation
- Ventilation group to 5 speed
- Large range of available static pressure
- Inspectable ventilation group

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Brushless motor with continuous speed variation 0-100%.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT21: Electronic thermostat for inverter fancoils.

VMF system

VMF-E191: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Configurator

Coming	juittoi
Field	Description
1,2,3	VED
4	Size 5, 7
5	Main coil
3	3-row coil
4	4-row coil
6	Secondary coil
0	Without coil
1	1-row coil for heating only
2	2-row coil for heating only

Water valves

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

VCF45C - 47C - 47CS - for main coil: Motorized 3-way valve kit for main coil. The kit consists of a 4-way 4-way valve with its insulating shell, the actuator and the relative hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF45H - 47H - for heating only coil: Motorized 3-way valve kit for hot only coil. The kit consists of a 3-way 4-way valve, the actuator and its hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25C - 25CS - for main coil: 2-way motorized valve kit for main coil. The kit consists of a valve with its insulating shell, the actuator and the relative hydraulic fittings, it is suitable for installation on both fan coil units with hydraulic connections on the right and left.

VCF25H - **for heating only coil:** 2-way motorized valve kit for hot only coil. The kit consists of a valve, actuator and relative hydraulic fittings, it is suitable for installation on both fan coils with hydraulic connections on the right and left.

BCV: Condensate drip.

Installation accessories

MZC: Plenum with motorised dampers.

RDA_V: Straight intake connection with rectangular flange.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

KFV: Circular flanges kit for plenum.

MZCBC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with a brushless motor.

Field	Description
7	Fans

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	VED530I	VED540I	VED730I	VED740I
AER503IR	•	•	•	•
PR0503	•	•	•	•
SA5	•	•	•	•
SW5	•	•	•	•
TX	•	•	•	•
WMT21	•	•	•	•
Accessory	VED532I	VED541I	VED732I	VED741I
AER503IR	•	•	•	•
PR0503	•	•	•	•
SA5	•	•	•	•
SW5	•	•	•	•
TX	•	•	•	•

VMF system

vivir system				
Accessory	VED530I	VED540I	VED730I	VED740I
VMF-E19I	•	•	•	•
VMF-E3	•	•	•	•
VMF-E4DX	•	•	•	•
VMF-E4X	•	•	•	•
VMF-I0	•	•	•	•
VMF-IR	•	•	•	•
VMF-SW	•	•	•	•
VMF-SW1	•	•	•	•
Accessory	VED532I	VED541I	VED732I	VED741I
VMF-E19I	•	•	•	•
VMF-E3	•	•	•	•
VMF-E4DX	•	•	•	•
VMF-E4X	•	•	•	•
VMF-IO	•	•	•	•
VMF-IR	•	•	•	•
VMF-LON	•	•	•	•
VMF-SW	•	•	•	•
VMF-SW1	•	•	•	•

Water valves

3 way valve kit

	VED530I	VED540I	VED730I	VED740I
3 way valve kit				
Main coil	VCF45C	VCF45C	VCF47CS	VCF47CS
Secondary coil x 4-pipe	-	-	-	-
	VED532I	VED541I	VED732I	VED741I
3 way valve kit				
Main coil	VCF45C	VCF45C	VCF47CS	VCF47CS
Secondary coil x 4-pipe	VCF45H	VCF45H	VCF47H	VCF47H

230V power supply - Hydraulic connection Ø 3/4"

2 way valve kit

	VED530I	VED540I	VED730I	VED740I
2 way valve kit				
Main coil	VCF25C	VCF25C	VCF25CS	VCF25CS
Secondary coil x 4-pipe	-	-	-	-
	VED532I	VED541I	VED732I	VED741I
2 way valve kit				
Main coil	VCF25C	VCF25C	VCF25CS	VCF25CS
Secondary coil x 4-pipe	VCF25H	VCF25H	VCF25H	VCF25H

230V power supply - Hydraulic connection Ø 3/4"

2-way globe valves actuator excluded

Accessory	VED530I	VED540I	VED730I	VED740I
VCT102	•	•		
VCT202			•	•
Accessory	VED532I	VED541I	VED732I	VED741I
Accessory VCT102	VED532I •	VED541I •	VED732I	VED741I

10	t 111	ato	r 2	31	11/

Actuator 230V				\rac{1}{2}
Accessory VCTK	VED540I	VED	7301	VED740I
Accessory VCTK	VED532I	VED541I	VED732I	VED741I
Actuator 24V				
Accessory	VED540I	VED	7301	VED740I
VCTKM	•		,	•
Accessory	VED532I	VED541I	VED732I	VED741I
/CTKM	•	•	• • • • • • • • • • • • • • • • • • •	VED/411 •
Combined adjustment and	balancina valve cold side			
Accessory	VED530I	VED540I	VED730I	VED740I
JP150	•	•		
JP150M		•		
JP270M			•	•
ccessory	VED532I	VED541I	VED732I	VED741I
JP150	•	•		
JP150M	•	•		
JP270M			•	•
	ity of the hot water valves with	the de-		
-	pe installation is to be verified.			
ondensate drip)		
CCESSORY	VED530I	VED540I	VED730I	VED740I
CV45 CV67	•	•	•	•
ccessory	VED532I	VED541I	VED732I	VED741I
CV45	•	•	VLD/ 321	VLD/411
CV67				
ntake straight with rectan	VED530I	VED540I	VED730I	VED740I
DA450V DA670V	•	•	•	•
	VED532I	VED541I	VED732I	VED741I
ccessory DA450V	•	• VEUJ411	VED/32I	VED/411
DA670V	·	·	•	•
ntake plenum with rectang	aular flanaes			
ccessory	VED530I	VED540I	VED730I	VED740I
PA450V	•	•		
PA670V			•	•
ccessory	VED532I	VED541I	VED732I	VED741I
PA450V	•	•		
PA670V			•	•
ntake plenum with circular	r flanges			
ccessory	VED530I	VED540I	VED730I	VED740I
A450V	•	•		
A670V	UPA	NED CO.	, ALED TOOL	• VEDT 441
A450V	VED532I	VED541I •	VED732I	VED741I
A450V A670V	•	•	•	
Delivery accessories				
Delivery plenum internally	insulated, with rectangular flan			
ccessory	VED530I	VED540I	VED730I	VED740I
PM450V	•	•		
PM670V			•	•
ccessory	VED532I	VED541I	VED732I	VED741I
PM450V	•	•		
RPM670V			•	•

Delivery plenum internally insulated, with circular flanges

Accessory	VED530I	VED540I	VED730I	VED740I
PM450V	•	•		
PM670V			•	•
				1/50=141
Accessory	VED532I	VED541I	VED732I	VED741I
Accessory PM450V	VED532I •	VED541I •	VED732I	VED/41I

Circular flanges kit for plenum

Accessory	VED530I	VED540I	VED730I	VED740I
KFV	•	•	•	•
Accessory	VED532I	VED541I	VED732I	VED741I
KFV	•	•	•	•

MZC

Plenum with motor-driven dampers

Accessory	VED530I	VED540I	VED730I	VED740I
MZC5040	•	•		
MZC7050			•	•
Accessory	VED532I	VED541I	VED732I	VED741I
necessory	1203321	VLDJTII	V L D / J Z I	VLU/ T I I
MZC5040	•	•	VLU/ 321	YLD/TII

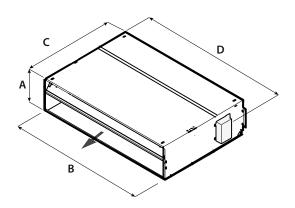
Electric plant

Accessory	VED540I	VEC)730l	VED740I	
MZCBC	•		•	•	
Accessory	VED532I	VED541I	VED732I	VED741I	
MZCBC	•	•	•	•	

PERFORMANCE SPECIFICATIONS

2-pipe

			VED530I			VED540I			VED730I			VED740I	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	M	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)	·												
Heating capacity	kW	13,80	16,47	17,57	15,38	18,59	19,91	21,18	25,36	29,00	22,88	27,65	31,71
Water flow rate system side	l/h	1210	1444	1541	1349	1630	1746	1857	2224	2543	2007	2425	2781
Pressure drop system side	kPa	13	18	21	18	25	29	38	55	67	26	36	46
Heating performance 45 °C / 40 °C (2)													
Heating capacity	kW	6,86	8,19	8,74	7,65	9,24	9,90	10,53	12,61	14,22	11,34	27,65	15,81
Water flow rate system side	l/h	1180	1409	1503	1316	1589	1703	1811	2169	2446	1950	2425	2719
Pressure drop system side	kPa	14	19	21	21	25	30	38	52	66	26	36	46
Cooling performance 7 °C / 12 °C (3)													
Cooling capacity	kW	6,05	7,25	7,39	7,31	8,40	8,70	10,25	11,96	13,48	11,81	13,99	15,71
Sensible cooling capacity	kW	4,61	5,57	6,02	4,93	5,99	6,18	8,33	9,75	11,07	8,19	9,73	10,95
Water flow rate system side	l/h	1041	1247	1271	1257	1445	1496	1763	2057	2319	2031	2406	2702
Pressure drop system side	kPa	12	19	21	19	25	28	35	46	58	27	37	45
Fan													
Туре	type						Centi	rifugal					
Fan motor	type						Inv	erter					
Number	no.		2			2			3			3	
Air flow rate	m³/h	1120	1400	1520	1100	1380	1500	1640	2040	2410	1600	2000	2358
High static pressure	Pa	32	50	58	32	50	56	32	50	69	32	50	69
Input power	W	115	160	205	115	160	205	147	241	370	147	241	370
Signal 0-10V	%	66	76	62	62	76	90	62	76	90	62	76	90
Duct type fan coil sound data (4)													
Sound power level (inlet + radiated)	dB(A)	53,0	59,0	62,0	53,0	59,0	62,0	62,0	66,0	68,0	62,0	66,0	68,0
Sound power level (outlet)	dB(A)	49,0	55,0	58,0	49,0	55,0	58,0	58,0	62,0	64,0	58,0	62,0	64,0
Diametre hydraulic fittings													
Main coil	Ø						3,	/4"					
Power supply													
Power supply							230V	~50Hz					


- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

4-pipe

			VED541I			VED741I	
		1	2	3	1	2	3
		L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)							
Heating capacity	kW	6,70	7,62	7,90	10,57	11,88	12,96
Water flow rate system side	I/h	584	666	692	925	1040	1133
Pressure drop system side	kPa	19	24	26	17	21	25
Cooling performance 7 °C / 12 °C (2)							
Cooling capacity	kW	7,43	8,54	8,97	11,96	14,23	16,08
Sensible cooling capacity	kW	5,04	6,13	6,45	8,34	9,97	11,32
Water flow rate system side	I/h	1278	1469	1543	2057	2448	2766
Pressure drop system side	kPa	21	27	29	27	37	46
Fan							
Туре	type			Centr	ifugal		
Fan motor	type			Inve	erter		
Number	no.		2			3	
Air flow rate	m³/h	1060	1360	1460	1600	2000	2350
High static pressure	Pa	32	50	56	32	50	69
Input power	W	106	163	185	138	240	363
Signal 0-10V	%	66	84	90	64	78	90
Duct type fan coil sound data (3)							
Sound power level (inlet + radiated)	dB(A)	53,0	59,0	62,0	62,0	66,0	68,0
Sound power level (outlet)	dB(A)	49,0	55,0	58,0	58,0	62,0	64,0
Diametre hydraulic fittings							
Main coil	Ø			3,	4"		
Secondary coil	Ø			1,	2"		
Power supply							
Power supply				230V-	~50Hz		

- (1) Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
 (2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		VED530I	VED540I	VED730I	VED740I
Dimensions and weights		VLDJJOI	VLDJANI	VLD/ JUI	VLD/401
A	mm	300	300	351	351
В	mm	1133	1133	1533	1533
С	mm	737	737	789	789
D	mm	1158	1158	1558	1558
Net weight	kg	42,00	47,00	58,00	61,00
		VED532I	VED541I	VED732I	VED741I
Dimensions and weights					
A	mm	300	300	351	351
n .	111111	300	300	331	221
В	mm	1133	1133	1533	1533
B C					
B C D	mm	1133	1133	1533	1533

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Fan coil unit for ducted installations

- Horizontal and vertical installation
- Large range of available static pressure
- Heat eschanger developed to optimize the performance sensitive

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection.

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. Fan housing in plastic material removable for easy and effective cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

- The heat eschanger, reversible during installation, is designed to ensure high heat transfer, ideal for applications in a sensitive environment.
- The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Air filte

Air filter Class COARSE 25%, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

ACCESSORIES

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF Components

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SIT3V: Relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Valves and additional water coil

BV: Single row hot water heat exchanger.

VCF_X: Kit of 3-way valves for fan coils with a single coil and the water connections on the left, for installation in 4-pipe systems. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. 230V power supply. Water connections: Valve body Ø G 3/4" male; Valve side connection tubes Ø G 3/4" female; Unit side connection tubes Ø G 3/4" male.

VCF41 - **42** - **43** - **for main coil:** 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - 45 - for the secondary coil: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

AMP: Wall mounting kit

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better

DSC: Condensate drainage device.

Accessories for intake

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

SE_X: External air shutter with manual control.

RDA_V: Straight intake connection with rectangular flange.

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

Delivery accessories

GM: Flow grid with adjustable louvers.

MZC: Plenum with motorised dampers.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_C: Straight discharge internally insulated, with circular flanges.

KFV: Circular flanges kit for plenum.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Model	Ver	030	040	130	140	230	240	330	340
AER503IR (1)		•	•	•	•	•	•	•	•
FMT10		•	•	•	•	•	•	•	•
PX2		•	•	•	•	•	•	•	•
SA5 (2)		•	•	•	•	•	•	•	•
SIT3 (3)		•	•	•	•	•	•	•	•
SIT5 (4)		•	•	•	•	•		•	•
SW5 (2)		•	•	•	•	•	•	•	•
SWA		•	•	•	•	•	•	•	•
TX (1)		•	•	•	•	•	•	•	•
WMT05 (1)		•	•	•	•	•	•	•	•
WMT06 (1)		•	•	•	•	•		•	•
WMT10 (1)		•	•		•	•	•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
- (2) Probe for AERSO3IR-TX thermostats, if fitted.
 (3) Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
- (4) Probe for AER503IR-TX thermostats, if fitted.

VMF system

Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
VMF-E0X	•	•	•	•	•		•	•
VMF-E19	•	•	•	•	•		•	•
VMF-E4DX	•	•	•	•	•	•	•	•
VMF-E4X	•	•	•	•	•	•	•	•
VMF-SW	•	•	•	•	•	•	•	•
VMF-SW1							•	

(Heating only) additional coil

Accessory	VES030	VES130	VES230	VES330
BV030	•			
BV130		•		
BV162				•
BV230			•	

Water valves

Valve Kit for 4 pipe systems with main coil

Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
VCF3X4L	•	•	٠					
VCF3X4LS				•	•	•	•	•
VCF3X4R	•	•	•					
VCF3X4RS				•	•	•	•	•

3 way valve kit

	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
3 way valve kit								
Main coil	VCF43-VCF4324	VCF43-VCF4324	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43S-VCF4324S	VCF43-VCF4324	VCF43-VCF4324
Additional coil "BV"	VCF45-VCF4524	-	VCF45-VFC4524	-	VCF45-VCF4524	-	VCF45-VCF4524	-

VCF43 - 45 Power supply 230V, VCF4324-4524 Power supply 24V - Hydraulic connections Ø 3/4" $\,$

2 way valve kit

2 way valve kit								
	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
2 way valve kit								
Main coil	VCFD3-VCFD324							
Additional coil "RV"	VCFD4-VCFD424	_	VCFD4-VCFD424	_	VCFD4-VCFD424	-	VCFD4-VCFD424	-

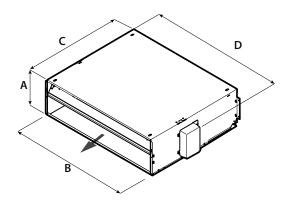
VCFD3 Power supply 230V, VCFD324 Power supply 24V - Hydraulic connections Ø 3/4"

VCFD4 Power supply 230V, VCFD424 Power supply 24V - Hydraulic connections Ø 1/2"; For additional coil (heating only) BV.

Accessory	VESO30	VESO40	VES130	VES140	VES230	VES240	VES330	VES340
JP060	•	•	•	•	VE3230	VESE 10	123330	125510
JP060M	•	•	•	•				
/JP090					•	•	•	•
/JP090M					•	•	•	•
/JP150							•	•
/JP150M							•	•
nstallation accessories								
Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
AMP	•		•	•				
c 1 . 1:								
Condensate drip	VECODO	VFC0.40	VECANO	VEC4.40	VECTOR	NEC3 10	VECTOR	VECTA
Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
BCZ4 BCZ6	•	•	•	•	•	•	•	•
Accessory	VES030	VESO40	VES130	VES140	VES230	VES240	VES330	VES340
809	•	•	•	•	•	•	•	•
BCZ4 For vertical installation. BCZ6 For horizontal installation.								
BC9 For horizontal installation.								
Accessories for intake								
Intake grids								
Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
GA22	•	•						
GA32			•	•				
GA42					•	•		
GA62							•	•
Intake grid with filter and fix	red louvers							
Accessory	VESO30	VESO40	VES130	VES140	VES230	VES240	VES330	VES340
GAF22	•	•	123130	123110	VESES0	VESE 10	123330	VE33 10
GAF32			•	•				
GAF42					•	•		
GAF62							•	•
External air shutter with ma	nual control							
Accessory	VESO30	VES040	VES130	VES140	VES230	VES240	VES330	VES340
SE20X	•	•	VE5150	YESTHO	VL3230	VE32-10	VE3330	VL33-10
SE30X			•	•				
SE40X					•	•		
SE80X							•	
Intake straight with rectang		VFC0.40	VECADA	VEC440	VECTOR	1/502.40	VECTOR	VECTA
Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
RDA000V RDA100V	•	•	•	•				
RDA200V			· · ·	<u> </u>	•	•		
RDA300V							•	
	_							
Intake straight internally ins								
Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
RDACOOOV	•	•						
RDAC100V RDAC200V			•	•	•	•		
RDAC300V					•	•	•	•
								-
/ES								
ntake plenum with rectang								
Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
RPA000V	•	•						
RPA100V			•	•				
RPA200V					•	•		
RPA300V							•	•
ntake plenum with circular	flanges							
Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
PA000V	•	•						

PA100V PA200V

Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
300V							•	
elivery accessorie								
low grid with adjust								
ccessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
iM22	•	•						
GM32			•	•				
GM42					•	•		
iM62							•	•
Plenum with motor-o	driven dampers							
ccessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
MZC220	•	•						
MZC320			•	•				
NZC530					•	•		
MZC830							•	•
/ES								
Delivery plenum inte	rnally insulated, with	circular flange	25					
ccessory	VES030	VESO40	VES130	VES140	VES230	VES240	VES330	VES340
M000V	•	•						
M100V			•	•				
PM200V					•	•		
					•	•	•	•
M300V	ornally insulated with	rectangular fl	anaes		•	•	•	•
M300V Delivery plenum inte	rnally insulated, with			VF\$140				-
M300V Delivery plenum inte Accessory	VES030	VES040	anges VES130	VES140	VES230	VES240	VES330	• VES340
PM300V Delivery plenum inte Accessory RPM000V			VES130					-
PM300V Delivery plenum inte Accessory APM000V APM100V	VES030	VES040		VES140	VES230	VES240		-
PM300V Delivery plenum inte Accessory APM100V APM100V APM200V	VES030	VES040	VES130				VES330	VES340
PM300V Delivery plenum intel Locessory PM000V PM100V PM200V PM300V	VES030 •	VESO40	VES130 •		VES230	VES240		-
M300V Delivery plenum inte ccessory PM000V PM100V PM200V PM300V PM300V Delivery straight inte	VES030 . ernally insulated, with	VES040 • circular flango	VES130 ·	•	VES230 •	VES240	VES330 •	VES340
PM300V Delivery plenum intel CCCESSORY LPM000V LPM100V LPM200V LPM300V Delivery straight intel CCCESSORY	VESO30 • ernally insulated, with VESO30	VES040 • circular flango VES040	VES130 •		VES230	VES240	VES330	VES340
PM300V Delivery plenum interaccesory RPM000V RPM100V RPM300V RPM300V Delivery straight interaccesory RDMC000V	VES030 . ernally insulated, with	VES040 • circular flango	• VES130 • VES130	VES140	VES230 •	VES240	VES330 •	VES340
PM300V Delivery plenum interaccessory RPM000V RPM100V RPM300V RPM300V Delivery straight interaccessory RDMC000V RDMC000V	VESO30 • ernally insulated, with VESO30	VES040 • circular flango VES040	VES130 ·	•	• VES230 • VES230	VES240 • VES240	VES330 •	VES340
PM300V Delivery plenum interaccesory RPM000V RPM100V RPM300V RPM300V Delivery straight interaccesory RDMC000V RDMC000V RDMC100V	VESO30 • ernally insulated, with VESO30	VES040 • circular flango VES040	• VES130 • VES130	VES140	VES230 •	VES240	VES330 • VES330	VES340 • VES340
M300V Delivery plenum intercessory PM000V PM100V PM200V PM300V Delivery straight intercessory DMC000V DMC100V DMC100V DMC200V	VESO30 • ernally insulated, with VESO30	VES040 • circular flango VES040	• VES130 • VES130	VES140	• VES230 • VES230	VES240 • VES240	VES330 •	VES340
M300V Delivery plenum inte ccessory PM000V PM100V PM300V PM300V Delivery straight inte ccessory DMC000V DMC100V DMC200V DMC300V	VESO30 • ernally insulated, with VESO30 •	VES040 • circular flango VES040	• VES130 • VES130	VES140	• VES230 • VES230	VES240 • VES240	VES330 • VES330	VES340 • VES340
PM300V Delivery plenum interacesory RPM000V RPM100V RPM300V RPM300V Delivery straight interacesory RDMC000V RDMC100V RDMC200V RDMC300V	VESO30 • ernally insulated, with VESO30 •	VES040 • circular flango VES040	• VES130 • VES130	VES140	• VES230 • VES230	VES240 • VES240	VES330 • VES330	VES340 • VES340
PM300V Delivery plenum intel Cccssory PM000V PM100V PM300V PM300V Delivery straight intel Cccssory DMC000V DMC100V DMC100V DMC200V DMC300V Straight delivery cou	VESO30 • ernally insulated, with VESO30 •	VES040 • circular flango VES040	• VES130 • VES130	VES140	• VES230 • VES230	VES240 • VES240	VES330 • VES330	VES340 • VES340
Accessory RPM000V RPM100V RPM200V RPM300V	VESO30 • ernally insulated, with VESO30 •	VES040 • circular flango VES040	• VES130 • VES130	VES140	• VES230 • VES230	VES240 • VES240	VES330 • VES330	VES340 • VES340


PERFORMANCE SPECIFICATIONS

2-pipe

			VES03	0		VES04	0		VES13	0		VES14	0	1	VES23	0	1	VES24	0	1	VES33	0		VES340)
		1	4	6	1	4	6	1	4	6	1	4	6	1	3	6	1	3	6	1	3	7	1	3	7
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,82	3,37	3,69	2,37	3,57	3,92	4,40	5,83	6,29	4,52	6,09	6,58	5,35	6,50	7,16	5,80	7,14	7,91	7,81	9,34	10,51	8,31	10,02	10,95
Water flow rate system side	l/h	160	296	323	207	313	343	386	512	552	396	534	577	469	570	628	509	626	694	685	819	921	729	878	960
Pressure drop system side	kPa	3	7	9	4	10	12	13	22	26	9	16	18	27	30	37	18	26	32	9	13	16	22	28	32
Heating performance 50 °C / 45 °C (2)																									
Heating capacity	kW	1,09	2,03	2,22	1,42	2,15	2,36	2,65	3,52	3,79	2,72	3,67	3,96	3,22	3,92	4,31	3,49	4,30	4,77	4,71	5,63	6,33	5,01	6,04	6,60
Water flow rate system side	l/h	189	350	383	245	370	406	461	612	660	469	632	682	555	674	743	602	741	820	810	969	1090	862	1039	1136
Pressure drop system side	kPa	4	10	13	4	14	17	20	34	39	13	22	25	39	44	54	26	38	48	13	18	22	32	39	45
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	1,25	1,75	1,91	1,30	1,89	2,75	2,20	2,87	3,11	2,43	3,08	3,30	2,85	3,57	3,95	3,40	3,76	4,08	4,00	4,82	5,36	4,46	5,12	5,71
Sensible cooling capacity	kW	0,88	1,24	1,36	0,86	1,32	1,46	1,59	2,17	2,34	1,68	2,21	2,38	2,13	2,62	2,90	2,35	2,73	3,01	2,85	3,44	3,85	3,18	3,66	4,09
Water flow rate system side	l/h	215	302	330	224	325	360	379	496	535	419	530	569	491	614	679	584	646	702	689	829	922	768	880	982
Pressure drop system side	kPa	11	21	24	15	30	36	30	49	56	17	25	29	57	85	101	40	48	56	18	25	30	32	41	50
Cooling performance 13 °C / 18 °C (4)																									
Cooling capacity	kW	0,57	0,80	0,88	0,33	0,51	0,78	1,00	1,32	1,42	1,11	1,40	1,52	1,30	1,64	1,93	1,57	1,74	1,93	2,03	2,30	2,58	2,05	2,41	2,68
Sensible cooling capacity	kW	0,57	0,80	0,88	0,33	0,51	0,78	1,00	1,32	1,42	1,11	1,40	1,52	1,30	1,64	1,93	1,57	1,74	1,93	2,03	2,30	2,58	2,05	2,41	2,68
Water flow rate system side	l/h	98	138	151	57	88	136	173	228	244	192	242	262	225	283	333	270	300	333	349	397	445	354	416	461
Pressure drop system side	kPa	2	4	4	1	2	5	5	9	10	3	4	5	10	15	9	6	7	9	3	4	6	5	6	8
Fan																									
Туре	type	(entrifu	gal	G	entrifu	gal	G	entrifu	gal	C	entrifu	gal	Ce	entrifu	gal	Ce	entrifug	gal	Ce	entrifu	gal	(entrifug	jal
Air flow rate	m³/h	161	256	285	160	249	277	287	397	434	280	386	420	417	524	590	406	509	570	572	704	805	563	685	775
High static pressure	Pa	21	50	61	21	50	61	26	50	60	26	50	60	32	50	64	32	50	63	33	50	66	34	50	64
Sound power level (inlet + radiated)	dB(A)	44,0	52,0	54,0	44,0	52,0	54,0	47,0	53,0	55,0	47,0	53,0	55,0	49,0	54,0	57,0	49,0	54,0	57,0	38,0	55,0	58,0	38,0	55,0	58,0
Sound power level (outlet)	dB(A)	40,0	48,0	50,0	40,0	48,0	50,0	42,0	48,0	50,0	42,0	48,0	50,0	44,0	49,0	52,0	44,0	49,0	52,0	45,0	51,0	54,0	34,0	51,0	54,0
Input power	W	12	38	59	-	38	58	-	53	76	-	52	75	-	57	93	-	57	92	-	75	104	-	74	103
Electrical wiring		V1	V4	V6	٧1	٧4	V6	٧1	V4	٧6	٧1	V4	V6	٧1	V3	V6	٧1	V3	٧6	V1	V3	٧7	V1	V3	٧7
Diametre hydraulic fittings																									
Main coil	Ø		3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø		-			-			-			-			-			-			-			-	
Fan																									
Input current	A		0,4			0,4			0,4			0,4			0,6			0,6			0,7			0,7	
Power supply																									
Power supply		23	30V~50)Hz	23	0V~50)Hz	23	0V~50	Hz	23	0V~50)Hz	23	0V~50	Hz	23	0V~50	Hz	23	0V~50)Hz	23	0V~50	Hz

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 50 °C/45 °C
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 13 °C/18 °C;

DIMENSIONS

		VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
Dimensions and weights									_
A	mm	217	217	217	217	217	217	217	217
В	mm	550	550	781	781	1001	1001	1122	1122
C	mm	584	584	584	584	584	584	584	584
D	mm	576	576	807	807	1027	1027	1148	1148

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

VES 030-340 I

Fan coil unit for ducted installations

- Horizontal and vertical installation
- Large range of available static pressure
- Heat eschanger developed to optimize the performance sensitive

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Equipped with a state of the art ventilation unit with continuous modulation of the air flow rate, for increased comfort, also in terms of noise, and electrical savings.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

Designed to maintain the set temperature over time, ensuring very low sound levels

Can be installed in any 2 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

Unit for internal installation.

Internally insulated structure with class 1 fire resistance and IP20 protection

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. Fan housing in plastic material removable for easy and effective cleaning.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

- The heat eschanger, reversible during installation, is designed to ensure high heat transfer, ideal for applications in a sensitive environment.
- The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Air filte

www.aermec.com

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.

The unit is supplied with the delivery connection supplied.

Control panels

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

SWAI: External air or water temperature probe.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT21: Electronic thermostat for inverter fancoils.

VMF Components

VMF-E191: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (MFTAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Valves and additional water coil

BV: Single row hot water heat exchanger.

VCF_X: Kit of 3-way valves for fan coils with a single coil and the water connections on the left, for installation in 4-pipe systems. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings. 230V power supply. Water connections: Valve body Ø G 3/4" male; Valve side connection tubes Ø G 3/4" female; Unit side connection tubes Ø G 3/4" male.

VCF41 - **42** - **43** - **for main coil:** 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

VCF44 - **45** - **for the secondary coil:** The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left

VJP: Control and balancing combination valve for 2 and 4 pipe systems to install outside the unit, supplied without fittings and hydraulic components. The valve, which can guarantee a constant water flow rate in the terminal, within its operating range.

Installation accessories

AMP: Wall mounting kit

BCZ: Condensate drip. If the valve is paired with the BCZ5 or BCZ6 condensate drip tray, the insulating shell can be removed to ensure better housing.

DSC: Condensate drainage device.

Accessories for intake

GA: Intake grid with fixed louvers

GAF: Intake grid with filter and fixed louvers

SE X: External air shutter with manual control.

 $\textbf{RDA_V:} \ Straight\ intake\ connection\ with\ rectangular\ flange.$

RDA_C: Straight intake connection with circular flanges.

RPA_V: Suction plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

PA_V: Suction plenum with circular plastic flanges; both sides have a circular push-out Ø 150mm that can be removed.

Delivery accessories

GM: Flow grid with adjustable louvers. **MZC:** Plenum with motorised dampers.

PM_V: Internally insulated delivery plenum with circular flanges; both sides have a circular push-out Ø 150mm that can be removed.

RPM_V: Internally insulated delivery plenum with rectangular flange; both sides have a circular push-out Ø 150mm that can be removed.

RDM_C: Straight discharge internally insulated, with circular flanges. KFV: Circular flanges kit for plenum.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Control panels and dedicated accessories

Model	Ver	030	040	130	140	230	240	330	340
AER503IR (1)		•	•	•	•	•	•	•	•
SA5 (2)		•	•	•	•	•	•	•	•
SIT3 (3)		•	•	•	•	•	•	•	•
SIT5 (4)		•	•		•	•	•	•	•
SW5 (2)		•	•	•	•	•	•	•	•
SWAI (5)		•	•	•	•	•	•	•	•
TX (1)		•	•	•	•		•	•	•
WMT21		•	•	•	•	•	•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
 (2) Probe for AER503IR-TX thermostats, if fitted.
 (3) Cards for AER503IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.
 (4) Probe for AER503IR-TX thermostats, if fitted.

- (5) Probe for thermostat WMT21.

VMF system

VMF system

Accessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
VMF-E19I	•	•	•	•	•	•	•	•
VMF-E4DX	•	•	•	•	•	•	•	•
VMF-E4X	•	•	•	•	•	•	•	•
VMF-IO	•	•	•	•	•	•	•	•
VMF-LON	•	•	•	•	•	•	•	•
VMF-SW	•	•	•	•	•	•	•	•
VMF-SW1	•							

(Heating only) additional coil

(Heating only) additional coil

Accessory	VESO30I	VES130I	VES230I	VES330I
BV030	•			
BV130		•		
BV162				•
BV230			•	

Water valves

Valve Kit for 4 pipe systems with main coil

Accessory	VESO30I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
VCF3X4L	•	•	•					
VCF3X4LS				•	•	•	•	•
VCF3X4R	•		•					_
VCF3X4RS				•	•	•	•	•

3 way valve kit

	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
3 way valve kit								
Main coil	VCF43-VCF4324							
Additional coil "BV"	VCF45-VCF4524	-	VCF45-VFC4524	-	VCF45-VCF4524	-	VCF45-VCF4524	-

VCF43 - 45 Power supply 230V, VCF4324-4524 Power supply 24V - Hydraulic connections Ø 3/4" $\,$

2 way valve kit

	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
2 way valve kit								
Main coil	VCFD3-VCFD324							
Additional coil "BV"	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-	VCFD4-VCFD424	-

VCFD3 Power supply 230V, VCFD324 Power supply 24V - Hydraulic connections Ø 3/4" VCFD4 Power supply 230V, VCFD424 Power supply 24V - Hydraulic connections Ø 1/2"; For additional coil (heating only) BV.

Combined adjustment and balancing valve cold side

Accessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
VJP060	•	•	•	•				
VJP060M	•	•	•	•				
VJP090					•	•	•	•
VJP090M					•	•		•
VJP150							•	•
VJP150M							•	•

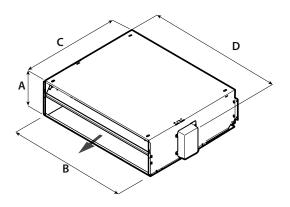
Installation accessories

Installation accessories								
Accessory	VES030I	VESO40I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
AMP	•		•	•	•	•		•
Condensate drip								
Accessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
GCZ4	•	•	•	•	•	•	•	•
CZ6	•		•		•		•	•
ccessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
(9	•	•	•	•	•	•	•	•
CZ4 For vertical installation. CZ6 For horizontal installation. C9 For horizontal installation.								
Condensate recirculation	n device							
ccessory	VESO30I	VESO40I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
SC4	•	•	•			•		
SCZ4	•	•	•		•		•	
Accessories for intal	ke							
ntake grids								
ccessory	VES040I	VES130I	VES140I	VE	<u> </u>	VES240I	VES330I	VES340I
A22	•							
A32		•	•					
A42					•	•		
A62							•	•
ntake grid with filter an	nd fixed louvers							
ccessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
AF22	•	•						
AF32		-	•					
AF42			•	<u> </u>	•			
					•	•		
AF62							•	•
xternal air shutter with	manual control							
		VECOAN	VECTOR	VEC4.401	VECARAL	VEC2401	VECAZOL	VEC2 401
ccessory	VES030I	VESO40I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
E20X	•	•						
E30X			•	•				
E40X					•	•		
E80X							•	•
ntake straight with rect	tangular flanges							
ccessory	VESO30I	VESO40I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
DA000V	•							
DA100V			•	•				
DA200V					•	•		
DA300V								
VAJUUV							•	•
ntake straight internalle	y insulated, with circula	ar flanaes						
			VEC1201	VEC140I	VECTOR	VECTANI	VECTOR	VEC 3 401
ccessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
DACOOOV	•	•						
DAC100V			•	•				
DAC200V					•	•		
DAC300V							•	•
ntake plenum with rect								
ccessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
PA000V	•	•						
PA100V			•	•				
PA200V					•	•		
PA300V					· · · · · · · · · · · · · · · · · · ·			
11 NJ 00 V							•	•
	ular flanaes							
ntake nlenum with circ	aiai iiaiiges		VES130I	VES140I	VES230I	VES240I	VES330I	VLC 3 401
ntake plenum with circu	VECAZAL	MECUANI				VF\/401	VF33301	VES340I
ccessory	VES030I	VESO40I	VES 1301	VE3 1401	V LJZJUI	VESE 101	7233301	
Accessory A000V	VES030I •	VESO40I •			VL32301	7 L J L 101	125501	
ACCESSORY AA000V AA100V			•	•	YLJZJVI	YESE IVI	125550.	
ntake plenum with circl Accessory PA100V PA200V PA300V					VL32301	•	725500	

Delivery accessories

Outlet grille with adjustable louvers

Accessory	VES030I	VESO40I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
M22	•	VE3040I	4LJ IJUI	V LJ 1401	¥L3Z30I	VLJ2 1 UI	AFOOON	VLJJ401
M32	•	•	•	•				
M42			•	•	•	•		
M62					•	•	•	•
IMOZ							•	<u> </u>
Plenum with motor-driven dam								
ccessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
NZC220	•	•						
NZC320			•	•				
AZC530					•	•		
MZC830							•	•
Delivery plenum internally insul	ated, with circเ	lar flanges						
Accessory	VES030I	VESO40I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
PM000V	•	•						
M100V			•	•				
M200V					•	•		
M300V								
ccessory PM000V	VES030I •	VES040I •	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
RPM100V	•	•						
PM200V			•	•	•	•		
PM300V					•	•	•	
Delivery straight internally insul	ated with circu	ılar flanaes					<u> </u>	· ·
ccessory	VESO30I	VESO40I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
								VE3340I
DMC000V	•						1255501	VE3340I
	•	•	•					VE3340I
DMC100V	•	•	•				725500	VE3340I
IDMC000V IDMC100V IDMC200V IDMC300V	•	•	•					VE3340I
DMC100V DMC200V DMC300V	•	•			•			
DMC100V DMC200V DMC300V itraight delivery coupling	• VES030I	• VESO40I	• VES130I		ves1401			
DMC100V DMC200V DMC300V Straight delivery coupling						•		•
DMC100V DMC200V DMC300V Straight delivery coupling ACCESSORY DM000V	VESO30I	VESO401				•		•
DMC100V DMC200V DMC300V Straight delivery coupling sccessory DM000V DM100V	VESO30I	VESO401	VES130I		VES140I	•		
DMC100V DMC200V DMC300V itraight delivery coupling ccessory DM000V DM100V DM200V	VESO30I	VESO401	VES130I		VES140I	• VES2301	• VES240I	•
DMC100V DMC200V DMC300V Straight delivery coupling sccessory DM000V DM100V DM200V DM300V	VESO30I	VESO401	VES130I		VES140I	• VES2301	• VES240I	• VES340I
DMC100V DMC200V	VESO30I	VESO401	VES130I		VES140I	• VES2301	• VES240I	• VES3401


PERFORMANCE SPECIFICATIONS

2-pipe

		1	VES03	Ol	1	VES04	Ol	1	VES13)I	1	/ES140	DI	١	/ES23()l	١	/ES240)l	١	/ES330)l	1	/ES340)I
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,82	3,37	3,69	2,37	3,57	3,92	4,40	5,83	6,29	4,52	6,09	6,58	5,35	6,50	7,16	5,80	7,14	7,91	7,81	9,34	10,51	8,31	10,02	10,95
Water flow rate system side	l/h	160	296	323	207	313	343	386	512	552	396	534	577	469	570	628	509	626	694	685	819	921	729	878	960
Pressure drop system side	kPa	3	7	9	4	10	12	13	22	26	9	16	18	27	30	37	18	26	32	9	13	16	22	28	32
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,80	1,67	1,85	1,18	1,77	1,95	2,19	2,90	3,13	2,25	3,02	3,26	2,38	2,96	3,29	2,88	3,55	3,93	3,88	4,64	5,22	4,13	4,96	5,45
Water flow rate system side	l/h	140	291	321	205	308	339	380	504	544	391	525	566	414	514	572	500	616	683	673	806	907	717	865	946
Pressure drop system side	kPa	2	7	9	5	11	12	14	24	27	9	16	18	28	41	50	18	26	32	10	13	16	17	24	28
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	1,26	1,75	1,91	1,30	1,89	2,00	2,20	2,87	3,12	2,43	3,10	3,31	2,84	3,56	3,95	3,39	3,37	4,10	3,99	4,81	5,24	4,46	5,12	5,71
Sensible cooling capacity	kW	0,89	1,24	1,35	0,86	1,32	1,45	1,59	2,17	2,34	1,68	2,20	2,38	2,12	2,61	2,89	2,34	2,73	3,02	2,84	3,44	3,86	3,18	3,66	4,09
Water flow rate system side	I/h	98	138	151	57	88	136	173	228	244	192	242	262	225	283	309	270	300	333	349	397	445	354	416	461
Pressure drop system side	kPa	12	21	25	16	31	36	30	49	57	17	23	29	56	85	102	41	49	57	18	25	31	32	41	50
Cooling performance 13 °C / 18 °C (4)																									
Cooling capacity	kW	0,57	0,80	0,88	0,33	0,51	0,78	1,00	1,32	1,42	1,11	1,40	1,52	1,30	1,64	1,80	1,57	1,74	1,93	2,03	2,30	2,58	2,05	2,41	2,68
Sensible cooling capacity	kW	0,57	0,80	0,88	0,33	0,51	0,78	1,00	1,32	1,42	1,11	1,40	1,52	1,30	1,64	1,80	1,57	1,74	1,93	2,03	2,30	2,58	2,05	2,41	2,68
Water flow rate system side	I/h	98	138	151	57	88	136	173	228	244	192	242	262	225	283	309	270	300	333	349	397	445	354	416	461
Pressure drop system side	kPa	2	4	4	1	2	5	5	9	10	3	4	5	10	15	18	6	7	9	3	4	6	5	6	8
Fan																									
Туре	type	(entrifu	gal	(entrifu	gal	0	entrifu	gal	C	entrifu	gal	C	entrifu	gal	C	entrifug	jal	C	entrifug	gal	C	entrifug	jal
Fan motor	type	Asy	ynchror	nous	Asy	/nchror	nous	Asy	/nchror	nous	Asy	nchror	nous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous
Number	no.		1			1			2			2			2			2			3			3	
Air flow rate	m³/h	161	256	285	160	249	277	287	397	434	420	386	420	416	524	590	406	509	570	571	704	805	563	685	776
High static pressure	Pa	21	50	61	21	50	61	26	50	60	26	50	60	32	50	64	32	50	63	33	50	66	34	50	64
Sound power level (inlet + radiated)	dB(A)	44,0	52,0	54,0	44,0	52,0	54,0	47,0	53,0	55,0	47,0	53,0	55,0	49,0	54,0	57,0	49,0	54,0	57,0	38,0	55,0	58,0	38,0	55,0	58,0
Sound power level (outlet)	dB(A)	40,0	48,0	50,0	40,0	48,0	50,0	42,0	48,0	50,0	42,0	48,0	50,0	44,0	49,0	52,0	44,0	49,0	52,0	45,0	51,0	54,0	34,0	51,0	54,0
Input power	W	12	29	36	12	29	36	17	33	45	17	33	45	24	40	53	24	40	53	35	60	86	35	60	86
Signal 0-10V	%	54	80	90	54	80	90	58	82	90	58	82	90	62	80	90	62	80	90	62	78	90	66	78	90
Diametre hydraulic fittings																									
Main coil	Ø		3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply																									
Power supply		23	80V~50)Hz	23	0V~50	Hz	23	0V~50	Hz	23	0V~50	Hz	23	0V~50	Hz									

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 13 °C/18 °C;

DIMENSIONS

		VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
Dimensions and weights									
A	mm	217	217	217	217	217	217	217	217
В	mm	550	550	781	781	1001	1001	1122	1122
C	mm	584	584	584	584	584	584	584	584
D	mm	576	576	807	807	1027	1027	1148	1148
Net weight	kg	22,00	24,00	25,00	33,00	33,00	34,00	35,00	34,00

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

VES 5300-7400-I

Fan coil unit for ducted installations

- Horizontal and vertical installation
- Large range of available static pressure
- Heat eschanger developed to optimize the performance sensitive
- · Height 217 mm

DESCRIPTION

Ducted fan coil, for heating, cooling and dehumidifying.

Equipped with a state of the art ventilation unit with continuous modulation of the air flow rate, for increased comfort, also in terms of noise, and electrical savings.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

Designed to maintain the set temperature over time, ensuring very low sound levels.

Can be installed in any 2/4 pipe system and operates with any heat generator even at low temperatures.

Thanks to the availability of various options, with standard or increased coil, for horizontal or vertical installation, it is easy to choose the optimal solution for any need.

FEATURES

Case

- Internally insulated structure with class 1 fire resistance.
- Casing protection rating: IP20

Ventilation group

Centrifugal fans in anti-static plastic material with aerofoil profile designed to achieve high airflows and pressures whilst at the same time producing low noise.

Their characteristics permit energy savings compared to conventional fans.

They are statically and dynamically balanced and directly coupled to the motor shaft.

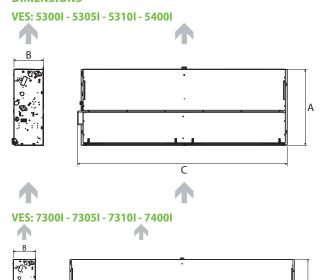
The electric motor is single-phase multi-speed (3 selectable), mounted on anti-vibration supports and with a permanently inserted capacitor. Fan housing in plastic material removable for easy and effective cleaning.

Air filter

Air filter Class G3, for easy removal and cleaning.

Controls and Accessoires

There is a wide selection of controls and a huge choice of accessories, to meet every system requirement.


PERFORMANCE SPECIFICATIONS

2-pipe

		VESS300I VESS400I VES7300I				VES7400I							
		1	2	3	1	2	3	1	2	3	1	2	3
Heating was former to 70 °C / C0 °C		L	М	Н	L	M	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C Heating capacity	kW	9,91	11,27	12,18	10,29	11,92	12,98	16,78	21,67	23,50	17,88	23,30	25,37
Water flow rate system side	I/h	869	989	1069	902	1046	1139	1472	1901	2061	1569	2044	2225
Pressure drop system side	kPa	22	26	32	11	14	16	23	40	47	18	28	33
Heating performance 45 °C / 40 °C													
Heating capacity	kW	4,93	5,60	6,06	5,11	5,92	6,45	8,34	10,78	11,69	8,89	11,59	12,62
Water flow rate system side	l/h	855	972	1051	888	1028	1120	1448	1870	2028	1543	2011	2187
Pressure drop system side	kPa	22	28	32	10	14	16	25	40	46	17	28	33
Cooling performance 7 °C / 12 °C													
Cooling capacity	kW	4,44	5,18	5,62	4,56	5,35	5,85	8,17	9,94	10,63	8,00	10,80	11,80
Sensible cooling capacity	kW	3,02	3,51	3,92	3,12	3,59	3,91	5,35	6,75	7,29	5,48	7,26	7,90
Water flow rate system side Pressure drop system side	I/h kPa	764 23	891 31	967 36	784 12	920 17	1006 19	1405 31	1710 44	1828 50	1376	1858 34	2030 39
Cooling performance 13 °C / 18 °C	KPd	23	31	30	IZ.	1/	19	31	44	30	20	34	39
Cooling capacity	kW	2,03	2,37	2,57	2,08	2,45	2,68	3,74	4,55	4,87	3,68	4,97	5,41
Sensible cooling capacity	kW	2,03	2,37	2,57	2,08	2,45	2,68	3,74	4,55	4,87	3,68	4,97	5,41
Water flow rate system side	I/h	350	408	443	359	421	461	644	783	839	634	856	931
Pressure drop system side	kPa	6	8	9	3	4	5	8	11	12	5	8	10
Fan													
Туре	type		Centrifugal			Centrifugal			Centrifugal			Centrifugal	
Fan motor	type		Inverter			Inverter			Inverter			Inverter	
Number	no.		4			4			6			6	
Air flow rate	m³/h	640	750	825	640	750	825	1138	1500	1650	1138	1500	1650
High static pressure	Pa	37	50	60	36	50	60	29	50	60	29	50	60
Sound power level (inlet + radiated) Sound power level (outlet)	dB(A) dB(A)	52,0 48,0	56,0 52,0	58,0 54,0	52,0 48,0	56,0 52,0	58,0 54,0	40,0 36,0	60,0 56,0	62,0 58,0	40,0 36,0	60,0 56,0	62,0 58,0
Input power	W W	38	53	72	38	53	72	59	120	153	59	120	153
Signal 0-10V	%	70	82	90	70	82	90	62	82	90	62	82	90
Diametre hydraulic fittings	70	70	02	- 70	70	02	- 70	02	02	- 70	02	02	- 70
Main coil	Ø		3/4"			3/4"			3/4"			3/4"	
Power supply													
Power supply			230V~50Hz			230V~50Hz			230V~50Hz			230V~50Hz	
4-pipe													
- F-F-			VES53051			VES5310I		1	VES73051			VES7310I	
		1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	- 14	
Heating performance 70 °C / 60 °C (1)											L	M	Н
Heating capacity												M	
	kW	3,55	3,91	4,15	5,95	6,64	7,07	4,06	4,94	5,24	7,54	9,01	8,56
Water flow rate system side	l/h	311	343	364	522	582	621	356	434	460	7,54 662	9,01 790	8,56 838
Pressure drop system side					_						7,54	9,01	8,56
Pressure drop system side Cooling performance 7 °C / 12 °C (2)	I/h kPa	311 6	343 8	364 9	522 8	582 10	621 11	356 6	434 9	460 10	7,54 662 11	9,01 790 14	8,56 838 17
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity	I/h kPa kW	311 6 4,44	343 8 5,18	364 9 5,62	522 8 4,44	582 10 5,18	621 11 5,62	356 6 8,17	9 9,94	460 10 10,63	7,54 662 11 8,17	9,01 790 14	8,56 838 17
Pressure drop system side Cooling performance 7 °C/12 °C(2) Cooling capacity Sensible cooling capacity	I/h kPa kW kW	311 6 4,44 3,02	343 8 5,18 3,51	364 9 5,62 3,92	522 8 4,44 3,02	582 10 5,18 3,51	621 11 5,62 3,92	356 6 8,17 5,35	9,94 6,75	460 10 10,63 7,29	7,54 662 11 8,17 5,35	9,01 790 14 9,94 6,75	8,56 838 17 10,63 7,29
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW kW	311 6 4,44 3,02 764	343 8 5,18 3,51 891	364 9 5,62 3,92 967	522 8 4,44 3,02 764	582 10 5,18 3,51 891	621 11 5,62 3,92 967	356 6 8,17 5,35 1405	9,94 6,75 1710	460 10 10,63 7,29 1828	7,54 662 11 8,17 5,35 1405	9,01 790 14 9,94 6,75 1710	8,56 838 17 10,63 7,29 1828
Pressure drop system side Cooling performance 7 °C/12 °C(2) Cooling capacity Sensible cooling capacity	I/h kPa kW kW	311 6 4,44 3,02	343 8 5,18 3,51	364 9 5,62 3,92	522 8 4,44 3,02	582 10 5,18 3,51	621 11 5,62 3,92	356 6 8,17 5,35	9,94 6,75	460 10 10,63 7,29	7,54 662 11 8,17 5,35	9,01 790 14 9,94 6,75	8,56 838 17 10,63 7,29
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side	I/h kPa kW kW	311 6 4,44 3,02 764	343 8 5,18 3,51 891	364 9 5,62 3,92 967	522 8 4,44 3,02 764	582 10 5,18 3,51 891	621 11 5,62 3,92 967	356 6 8,17 5,35 1405	9,94 6,75 1710	460 10 10,63 7,29 1828	7,54 662 11 8,17 5,35 1405	9,01 790 14 9,94 6,75 1710	8,56 838 17 10,63 7,29 1828
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3)	I/h kPa kW kW I/h kPa	311 6 4,44 3,02 764 23	343 8 5,18 3,51 891 31	364 9 5,62 3,92 967 36	522 8 4,44 3,02 764 23	582 10 5,18 3,51 891 31	621 11 5,62 3,92 967 36	356 6 8,17 5,35 1405 31	9 9,94 6,75 1710 44	460 10 10,63 7,29 1828 50	7,54 662 11 8,17 5,35 1405 31	9,01 790 14 9,94 6,75 1710 44	8,56 838 17 10,63 7,29 1828 50
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity	I/h kPa kW kW I/h kPa	311 6 4,44 3,02 764 23	343 8 5,18 3,51 891 31	364 9 5,62 3,92 967 36 2,57 2,57 443	522 8 4,44 3,02 764 23	582 10 5,18 3,51 891 31	621 11 5,62 3,92 967 36	356 6 8,17 5,35 1405 31	9 9,94 6,75 1710 44 4,55	460 10 10,63 7,29 1828 50 4,87	7,54 662 11 8,17 5,35 1405 31	9,01 790 14 9,94 6,75 1710 44	8,56 838 17 10,63 7,29 1828 50
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity	I/h kPa kW kW I/h kPa kW kW	311 6 4,44 3,02 764 23 2,03 2,03	343 8 5,18 3,51 891 31 2,37 2,37	364 9 5,62 3,92 967 36 2,57 2,57	522 8 4,44 3,02 764 23 2,03 2,03	582 10 5,18 3,51 891 31 2,37 2,37	621 11 5,62 3,92 967 36 2,57 2,57	356 6 8,17 5,35 1405 31 3,74 3,74	434 9 9,94 6,75 1710 44 4,55 4,55	460 10 10,63 7,29 1828 50 4,87 4,87	7,54 662 11 8,17 5,35 1405 31	9,01 790 14 9,94 6,75 1710 44 4,55 4,55	8,56 838 17 10,63 7,29 1828 50 4,87 4,87
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan	I/h kPa kW kW I/h kPa kW kW L/h kPa	311 6 4,44 3,02 764 23 2,03 2,03 350	343 8 5,18 3,51 891 31 2,37 2,37 408 8	364 9 5,62 3,92 967 36 2,57 2,57 443	522 8 4,44 3,02 764 23 2,03 2,03 350	582 10 5,18 3,51 891 31 2,37 2,37 408 8	5,62 3,92 967 36 2,57 2,57 443	356 6 8,17 5,35 1405 31 3,74 3,74 644	9,94 6,75 1710 44 4,55 4,55 783	460 10 10,63 7,29 1828 50 4,87 4,87 839	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	kW kW l/h kPa kW kW l/h kPa kW kW l/h kPa	311 6 4,44 3,02 764 23 2,03 2,03 350	343 8 5,18 3,51 891 31 2,37 2,37 408 8	364 9 5,62 3,92 967 36 2,57 2,57 443	522 8 4,44 3,02 764 23 2,03 2,03 350	582 10 5,18 3,51 891 31 2,37 2,37 408 8	5,62 3,92 967 36 2,57 2,57 443	356 6 8,17 5,35 1405 31 3,74 3,74 644	9,94 6,75 1710 44 4,55 4,55 783 11	460 10 10,63 7,29 1828 50 4,87 4,87 839	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	I/h kPa kW kW I/h kPa kW type type	311 6 4,44 3,02 764 23 2,03 2,03 350	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter	364 9 5,62 3,92 967 36 2,57 2,57 443	522 8 4,44 3,02 764 23 2,03 2,03 350	582 10 5,18 3,51 891 31 2,37 2,37 408 8	5,62 3,92 967 36 2,57 2,57 443	356 6 8,17 5,35 1405 31 3,74 3,74 644	9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter	460 10 10,63 7,29 1828 50 4,87 4,87 839	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	I/h kPa kW kW I/h kPa kW kW I/h kPa type type no.	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6	460 10 10,63 7,29 1828 50 4,87 4,87 839 12	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW kW l/h kPa kW kW l/h kPa type type no. m²/h	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6	460 10 10,63 7,29 1828 50 4,87 4,87 839 12	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure	kW kW l/h kPa kW l/h kPa type type no. m²/h Pa	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50	460 10 10,63 7,29 1828 50 4,87 4,87 839 12	7,54 662 11 8,17 5,35 1405 31 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Sound power level (inlet + radiated)	kW kW l/h kPa kW kW l/h kPa type type no. m²/h Pa dB(A)	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	434 9 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0	460 10 10,63 7,29 1828 50 4,87 4,87 839 12	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C/12 °C(2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C/18 °C(3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet)	kW kW l/h kPa kW kW l/h kPa type type no. m²/h Pa dB(A) dB(A)	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	434 9 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0 56,0	460 10 10,63 7,29 1828 50 4,87 4,87 839 12	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan	kW kW l/h kPa kW kW l/h kPa type type no. m²/h Pa dB(A)	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	434 9 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0	460 10 10,63 7,29 1828 50 4,87 4,87 839 12	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power	kW kW l/h kPa kW l/h kPa kW l/h kPa dB(A) dB(A) W	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0 53 82	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6 640 37 52,0 48,0 38	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	434 9 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0 56,0 120	460 10 10,63 7,29 1828 50 4,87 4,87 839 12 1650 60 62,0 58,0 153	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0 56,0 120	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Signal 0-10V	kW kW l/h kPa kW l/h kPa kW l/h kPa dB(A) dB(A) W	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0 53	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6 640 37 52,0 48,0 38	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	434 9 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0 56,0 120	460 10 10,63 7,29 1828 50 4,87 4,87 839 12 1650 60 62,0 58,0 153	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0 56,0 120	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12
Pressure drop system side Cooling performance 7 °C / 12 °C (2) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Cooling performance 13 °C / 18 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Fan Type Fan motor Number Air flow rate High static pressure Sound power level (inlet + radiated) Sound power level (outlet) Input power Signal 0-10V Diametre hydraulic fittings	kW kW I/h kPa kW kW I/h kPa type type no. m²/h Pa dB(A) dB(A) W %	311 6 4,44 3,02 764 23 2,03 2,03 350 6	343 8 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0 53 82	364 9 5,62 3,92 967 36 2,57 2,57 443 9	522 8 4,44 3,02 764 23 2,03 2,03 350 6 640 37 52,0 48,0 38	582 10 5,18 3,51 891 31 2,37 2,37 408 8 Centrifugal Inverter 4 750 50 56,0 52,0 53 82	621 11 5,62 3,92 967 36 2,57 2,57 443 9	356 6 8,17 5,35 1405 31 3,74 3,74 644 8	434 9 9,94 6,75 1710 44 4,55 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0 56,0 120 82	460 10 10,63 7,29 1828 50 4,87 4,87 839 12 1650 60 62,0 58,0 153	7,54 662 11 8,17 5,35 1405 31 3,74 3,74 644 8	9,01 790 14 9,94 6,75 1710 44 4,55 783 11 Centrifugal Inverter 6 1500 50 60,0 56,0 120 82	8,56 838 17 10,63 7,29 1828 50 4,87 4,87 839 12

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 13 °C/18 °C;

DIMENSIONS

		VES5300I	VES5400I	VES7300I	VES7400I
Dimensions and weights					
A	mm	558	558	558	558
В	mm	217	217	217	217
C	mm	1539	1539	2222	2222
Net weight	kg	46,00	47,00	65,00	68,00
		VES53051	VES5310I	VES7305I	VES7310I
Dimensions and weights					
A	mm	558	558	558	558
В	mm	217	217	217	217
C	mm	1539	1539	2222	2222
Net weight	kg	47,00	47,00	68,00	68,00

Aermec si riserva la facoltà di apportare in qualsiasi momento tutte le modifiche ritenute necessarie per il miglioramento del prodotto con eventuale modifica dei relativi dati tecnici.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MZC

Plenum with motor-driven dampers

- Multi-zone plenum for controlling air capacity
- Available for channelles on/off and inverter fan coils

DESCRIPTION

The plenum with motor-driven dampers is designed for residential and tertiary applications. It combines optimal ambient comfort with assured energy savings.

Modern plant increasingly require overall air conditioning using channelled systems. Thanks to the electronic control of the dampers, the MZC accessory regulates the room's comfort by adjusting the air flow to meet the actual requirements.

MZC is designed for use in combination with all fan coils with asynchronous or brushless motors and is pre-set to distribute exchange air.

FEATURES

Structure

- Galvanized sheet metal structure, insulated with self-extinguishing material.
- From 2 to 6 delivery outlets, depending on the model. Each outlet is fitted with a motorised damper, with the possibility - if required by the system - to add an MZCSM accessory outlet (possibility not available for all models - see the accessory compatibility table)
- Fresh air injection flange, supplied as standard, for connecting the MZC plenum to a heat recovery unit.
- Pre-setting for the installation of an additional air probe (accessory MZCSA) to control modulating or pressure-independent valves.
- Possibility to install the plenum even on the fan coil intake, using a flange (accessory MZCA)
- Reversible electrical box (right/left)
- Water probe supplied as standard, for the fan coil.

Regulation

- MZC is equipped with a zone thermostat VMHI to define the required temperature setting.
- The status of the dampers (open/closed) is adjusted on reaching the temperature set in each room.
- Management of up to 6 motorized dampers.
- Flow control for each damper (the maximum and minimum damper opening can be set for each outlet).

- Possibility to associate the control of several dampers with the request from the same zone thermostat (VMHI or WT10).
- For installations in which the dampers and room thermostats are uniquely associated, the dampers can be modulated in relation to the room thermostat requirements.
- "Suction plenum" function enabling
- MZC can control the valves that may be installed on the fan coil associated with it (On/Off, modulating or pressure-independent types), for 2- or 4-pipe systems
- Possibility to set the control unit parameters via the supervision serial port.

ACCESSORIES

Control panels

WR10: Two-channel wireless receiver for WT10.

WT10: Wireless thermostat.

n°1 as standard

VMF Components

VMF-VOC: Air quality detection accessory.

VMHI: The VMHI panel can be used as a user interface for VMF-E0X/E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Installation accessories

MZCACV: Electrical system with relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

MZCAC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with an asynchronous motor.

MZCBC: Mandatory electrical system for connecting the MZC plenum with a fan coil fitted with a brushless motor.

MZCSM: Single module with motorized damper.

MZCA: Adapter flange for installing the Plenum even under fan coil suction.

MZCSA: Air probe for controlling modulating or pressure independent valves.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
WR10	•	•	•	•	•	•
WT10	•		•		•	•

VMF system

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
VMF-VOC	•	•	•	•	•	•
VMHI			•	•	•	•

Installation accessories

Relay interface board

Accessory			MZC	7050		
MZCACV				•		
Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCAC			•	•		•

Compulsory electrical plant

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCBC	•	•	•	•	•	•

Single module with damper

Accessory	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCSM	•	•	•	•	•

Adaptation flange

Accessory	MZC220	MZC320	MZC530	MZC830
MZCA2	•			
MZCA3		•		
MZCA5			•	
MZCA8				•

Air temperature probe

Accessory	MZC220	MZC320	MZC530	MZC830	MZC5040	MZC7050
MZCSA	•	•	•	•	•	•

COMPATIBILITY OF MZC PLENUMS WITH AERMEC FAN COILS

Plenum with motorised dampers - FCZ - PO

Model	Ver	100	101	102	150	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550
MZC220	PO,POR					•	•	•	•												
MZC320	PO,POR										•	•	•								
MZC530	PO,POR													•	•	•	•	•	•	•	•
Model	Ver	600	601	602	2 6	50	700	701	702	750	8	00	801	802	850	900	90	1 9	950	1000	1001
MZC830	PO,POR	•	•	•			•	•	•	•		•		•	•	•	•				

Plenum with motorised dampers - FCZI - P

Model	Ver	200	201	202	250	300	301	302	350	400	401	402	450	500	501	502	550	700	701	702	750	900	901	950
MZC220	P,PR	•	•	•	•																			
MZC320	P,PR					•	•	•	•															
MZC530	P,PR									•	•	•			•	•	•							
MZC830	P,PR																			•			•	•

Plenum with motorised dampers - VED 030-340

Accessory	VED030	VED040	VED130	VED140	VED230	VED240	VED330	VED340
MZC220	•	•						
MZC320			•	•				
MZC530					•	•		_
MZC830							•	•

Plenum with motorised dampers - VED 430-741

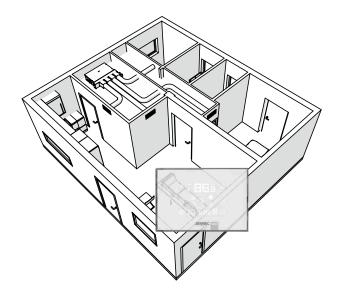
Accessory	VED430	VED440	VED530	VED540	VED630	VED640	VED730	VED740
MZC5040	•	•	•	•				
MZC7050					•	•	•	•
Accessory	VED432	VED441	VED532	VED541	VED632	VED641	VED732	VED741
MZC5040	•		•	•				
MZC7050								

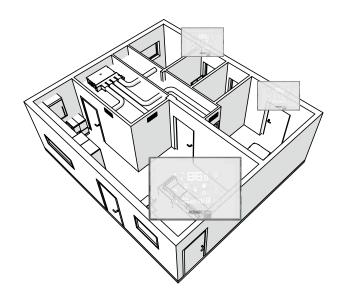
Plenum with motorised dampers - VED 0301-3401

Accessory	VED030I	VED040I	VED130I	VED140I	VED230I	VED240I	VED330I	VED340I
MZC220	•	•						
MZC320			•	•				
MZC530					•	•		_
MZC830							•	•

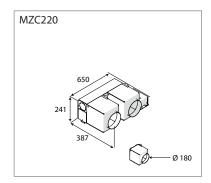
Plenum with motorised dampers - VED 5301-7411

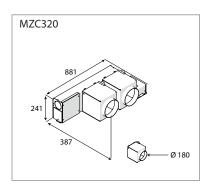
Accessory	VED530I	VED540I	VED730I	VED740I
MZC5040	•	•		
MZC7050			•	•
Accessory	VED532I	VED541I	VED732I	VED7411
Accessory MZC5040	VED532I	VED541I •	VED732I	VED741I

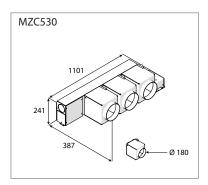

${\it Plenum\ with\ motor-driven\ dampers-VES\ 030-340}$

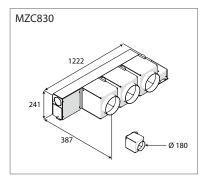

Accessory	VES030	VES040	VES130	VES140	VES230	VES240	VES330	VES340
MZC220	•	•						
MZC320			•	•				
MZC530					•	•		
MZC830							•	•

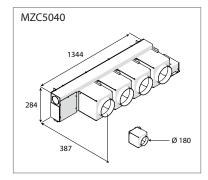
Plenum with motor-driven dampers - VES 0301-3401

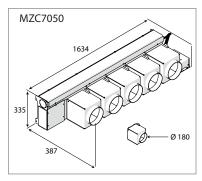

Accessory	VES030I	VES040I	VES130I	VES140I	VES230I	VES240I	VES330I	VES340I
MZC220	•	•						
MZC320			•	•				
MZC530					•	•		
MZC830							•	•


SYSTEM SOLUTIONS






DIMENSIONS



VEC

Coanda-effect fan coil for cassette installation

- Very quiet
- Total comfort in every season

DESCRIPTION

Thanks to a special air intake and flow grid, these units allow a coanda-effect air flow to be generated, parallel to the ceiling, creating optimal circulation inside the room to be air-conditioned.

They are suitable to be installed inside a suspended ceiling.

FEATURES

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

In addition to the traditional three-speed asynchronous motor for the "VECs", every unit can be supplied with a "VEC_I" Brushless-type inverter motor controlled by an inverter board.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. Units are available with a standard coil (20-50) and a larger coil (24-54). Only units with the standard coil can be combined with an additional electric or water coil with 1 row, both available as an accessory.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Fire resistance class 1 air filter.

ACCESSORY COMPULSORY

VEC_GL: Air intake and flow grid with adjustable Coanda-effect vents (white M9016 = lacquered white similar to Ral 9016).

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp),

with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

FMT10: Electronic thermostat for fan coil in to 2/4 pipe systems.

PRO503: Wall box for AER503IR and VMF-E4 thermostats.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VMF Components

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Common accessories

BV: Single row hot water heat exchanger.

RX: Armoured electric coil with safety thermostat.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VCF41 - 42 - 43 - for main coil: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

DSC: Condensate drainage device.

BC: Condensate drip.

VCF44 - 45 - for the secondary coil: The 3-way motorised valve kit for the secondary coil heat only. The kit consists of a valve with its insulating shell, actuator and relevant water fittings; it is suitable to be installed on the fan coils with right and left water connections.

PCR: Galvanised plate protection for the controls and the electrical element.

ACCESSORIES COMPATIBILITY

Accessories mandatory

Intake grid and distribution of the air

Model	Ver	20	24	30	34	40	44	50	54
VEC20GL (1)		•	•						
VEC30GL (1)				•	•				
VEC40GL (1)						•	•	•	•

(1) Mandatory accessory.

Control panels and dedicated accessories

Model	Ver	20	24	30	34	40	44	50	54
AER503IR (1)		•	•	•	•	•	•		•
FMT10		•	•	•	•	•	•	•	•
PR0503		•	•	•	•	•	•	•	•
SA5 (2)		•	•	•	•	•	•	•	•
SIT3 (3)		•	•	•	•	•	•	•	•
SIT5 (4)		•	•	•	•	•	•	•	•
SW3 (2)		•	•	•	•	•	•	•	•
SW5 (2)		•	•	•	•	•	•	•	•
TX (1)		•	•	•	•	•	•	•	•
WMT05 (1)		•	•	•	•	•	•	•	•
WMT06 (1)		•	•	•	•	•	•	•	•
WMT10 (1)		•	•			•	•	•	•

⁽¹⁾ Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

VMF Components

Model	Ver	20	24	30	34	40	44	50	54
VMF-E19 (1)		•	•	•	•	•	•	•	•
VMF-E3		•	•	•	•	•	•	•	•
VMF-E4X		•	•	•	•	•	•	•	•
VMF-IR		•	•	•	•	•	•	•	•
VMF-SW		•	•	•	•	•	•	•	•
VMF-SW1			•		•			•	•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Common accessories

Electric coil

Model	Ver	20	24	30	34	40	44	50	54
RX22 (1)		•	•						
RX32 (1)					•				
RX42 (1)						•	•		
RX52 (1)									•

⁽¹⁾ It requires a thermostat with heater management and the units without a housing also require the PCR1 or PCR2 accessory, depending on the unit. The heater is not available for sizes with a larger main battery.

Protection for controls and electric resistance

Model	Ver	20	24	30	34	40	44	50	54
PCR1V			•	•	•				•

⁽²⁾ Probe for AER503IR-TX thermostats, if fitted.

⁽³⁾ Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere. (4) Probe for AERSO3IR-TX thermostats, if fitted.

Water coil with 1 row

Model	Ver	20	24	30	34	40	44	50	54
BV122 (1)		•							
BV132 (1)				•					
BV142 (1)						•			

(1) Not available for sizes with oversized main coil.

3-way valve kit - main coil or accessory BV coil

	VEC20	VEC24	VEC30	VEC34	VEC40	VEC44	VEC50	VEC54
Main coil	VCF41 - VCF4124	VCF42 - VCF4224	VCF41 - VCF4124	VCF42 - VCF4224				
Additional coil "BV"	VCF44 - VCF4424	-						

2-way valve kit - main coil or accessory BV coil

	VEC20	VEC24	VEC30	VEC34	VEC40	VEC44	VEC50	VEC54
Main coil	VCFD1 - VCFD124	VCFD2 - VCFD224	VCFD1 - VCFD124	VCFD2 - VCFD224				
Additional coil "BV"	VCFD4 - VCFD424	-						

Valves ending with 24 ex. VCFD124, are 24V.

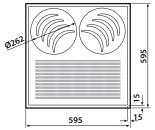
Condensate drip

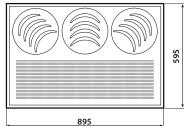
Ver	20	24	30	34	40	44	50	54
	BC5 (1)							

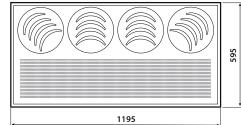
(1) For horizontal installation.

Condensate drainage

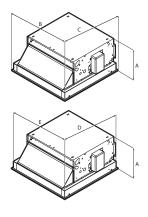
Ver	20	24	30	34	40	44	50	54
	DSC4							


PERFORMANCE SPECIFICATIONS VEC


2-pipe


	VEC20 VEC24 VEC30 VEC34 VEC40 VEC44 VEC50)		VEC54	,											
	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																								
Heating capacity kW	1,87	2,54	3,10	2,07	2,50	3,42	3,03	3,64	4,31	4,31	53,18	6,14	4,21	5,21	6,29	5,41	6,68	8,07	4,76	6,34	7,16	6,06	8,08	9,18
Water flow rate system side I/h	164	223	272	181	219	300	266	319	378	378	454	538	369	457	551	474	586	708	417	556	628	532	709	805
Pressure drop system side kPa	2	4	6	1	2	3	9	13	17	5	7	9	6	9	12	9	14	19	7	11	14	9	15	19
Heating performance 45 °C / 40 °C (2)																								
Heating capacity kW	0,95	1,26	1,54	1,20	1,40	1,70	1,50	1,81	2,14	2,15	2,57	3,05	2,09	2,59	3,12	2,69	3,30	4,01	2,37	3,15	3,56	3,02	4,02	4,54
Water flow rate system side I/h	163	217	265	206	241	292	258	311	368	370	442	525	359	445	537	463	568	690	408	542	612	519	691	781
Pressure drop system side kPa	3	5	7	2	3	4	9	13	17	5	7	9	6	9	13	10	14	20	7	12	14	17	15	19
Cooling performance 7 °C / 12 °C (3)																								
Cooling capacity kW	0,80	1,07	1,31	0,88	1,21	1,52	1,35	1,61	1,91	1,79	2,14	2,47	1,99	2,47	2,99	2,55	3,34	3,91	2,35	3,17	3,61	3,00	4,00	4,28
Sensible cooling capacity kW	0,64	0,87	1,07	0,67	0,90	1,14	1,03	1,25	1,49	1,26	1,51	1,78	1,58	1,98	2,41	1,91	2,42	2,74	1,68	2,27	2,59	2,09	2,83	3,04
Water flow rate system side I/h	138	184	225	151	208	261	232	277	329	308	368	425	342	425	514	439	574	673	404	545	621	516	688	736
Pressure drop system side kPa	3	4	6	1	2	3	6	11	13	5	6	8	6	9	12	11	17	22	7	12	15	17	27	30
Fan																								
Type type												Centri	fugal											
Fan motor type												Asynch	ronous											
Number no.		1			1			2			2			2			2			2			2	
Air flow rate m ³ /h	130	194	247	130	167	247	241	309	383	241	309	383	306	406	511	306	406	511	371	529	613	371	529	613
Input power W	19	22	25	19	22	25	25	33	44	25	33	44	30	43	57	30	43	57	34	46	67	34	46	67
Electrical wiring	V1	V2	V3	V1	V2	V3	٧1	V2	V3	V1	V2	V3	٧1	V2	V3	٧1	V2	V3	٧1	V2	V3	V1	V2	V3
Fan coil sound data (4)																								
Sound power level dB(A)	35,0	42,0	48,0	35,0	42,0	48,0	37,0	43,0	49,0	37,0	43,0	49,0	38,0	43,0	48,0	38,0	43,0	48,0	43,0	50,0	53,0	43,0	50,0	53,0
Sound pressure dB(A)	27,0	34,0	40,0	27,0	34,0	40,0	29,0	35,0	41,0	29,0	35,0	41,0	30,0	35,0	40,0	30,0	35,0	40,0	35,0	38,0	45,0	35,0	38,0	45,0
Diametre hydraulic fittings																								
Main coil Ø		1/2"			3/4"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply																								
Power supply												230V~	FOLL-											

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


GRID DIMENSIONS (MANDATORY ACCESSORY)

DIMENSIONS

Dimensions and weights of the unit with grid (maximum dimensions)

Size			20	24	30	34	40	44	50	54
Dimensions and w	eights									
A		mm	283	283	283	283	283	283	283	283
В		mm	595	595	895	895	1195	1195	1195	1195
С		mm	595	595	595	595	595	595	595	595
Empty weight		kg	16	16	21	21	25	25	25	25
Weight of the grid		kg	3,7	3,7	5,7	5,7	7,0	7,0	7,0	7,0

Dimensions of the unit with grid (dimensions for installation)

				,					,	
Size			20	24	30	34	40	44	50	54
Dimensions an	nd weights									
A		mm	283	283	283	283	283	283	283	283
D		mm	574	574	574	574	574	574	574	574
F		mm	574	574	874	874	1174	1174	1174	1174

VEC-I

Coanda-effect fan coil for cassette installation

- Very quiet
- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Total comfort: reduced variations in temperature and relative humidity in every season

DESCRIPTION

Thanks to a special air intake and flow grid, these units allow a coanda-effect air flow to be generated, parallel to the ceiling, creating optimal circulation inside the room to be air-conditioned.

They are suitable to be installed inside a suspended ceiling.

FEATURES

Ventilation group

Comprised of a dual intake centrifugal fan that is particularly silent, statically and dynamically balanced and directly coupled to the motor shaft.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

Continuous air flow rate variation is made possible by a 0-10V signal generated by Aermec adjustment and control commands or by independent regulation systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Apart from the inverter motor of the "VEC-I" models, each unit can be supplied with a single-phase asynchronous "VEC" motor.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas water connections on the left side and the manifolds have air vents. Units are available with a standard coil (20-50) and a larger coil (24-54). Only units with the standard coil can be combined with an additional electric or water coil with 1 row, both available as an accessory.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

■ The hydraulic connections can be inverted during installation.

Air filter

Fire resistance class 1 air filter.

ACCESSORY COMPULSORY

Control panels and dedicated accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

VMF Components

VMF-E19I: Thermostat for inverter unit to be fixed on the side of the fan coil, fitted as standard with an air and water probe.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-SW: Water probe (L=2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Common accessories

BV: Single row hot water heat exchanger.

RX: Armoured electric coil with safety thermostat.

VCFD: Motorized 2-way valve kit without insulating shell, can be installed on the main or secondary battery or a battery that is only warm. The kit is made up of a valve, actuator and relative hydraulic fittings. It can be installed on fan coils with connections on the right and on the left.

VCF41 - 42 - 43 - for main coil: 3-way motorised valve kit for the main coil. The kit is made up of a valve with its insulating shell, actuator and

relative hydraulic fittings. It can be installed on fan coils with both right and left connections. If the valve is combined with the BCZ5 or BCZ6 condensate drain pan, to ensure a better housing it is possible to remove the insulating shell.

DSC: Condensate drainage device.

BC: Condensate drip.

PCR: Galvanised plate protection for the controls and the electrical element

ACCESSORIES COMPATIBILITY

Accessories mandatory

Intake grid and distribution of the air

Accessory	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
VEC20GL	•						
VEC30GL		•	•				
VEC40GL					•	•	•

Control panels and dedicated accessories

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
AER503IR	•	•	•	•	•	•	•	•
PR0503	•	•	•	•	•	•	•	•
SA5	•	•	•	•	•	•	•	•
SW5	•	•	•	•	•	•	•	•
TX	•	•	•		•	•	•	•

VMF Components

Model	Ver	20	24	30	34	40	44	50	54
VMF-E19 (1)		•	•	•	•	•	•	•	•
VMF-E3		•	•	•	•		•		•
VMF-E4X		•	•	•	•	•	•	•	•
VMF-IR					•				•
VMF-SW		•	•	•	•	•	•	•	•
VMF-SW1		•	•		•				•

⁽¹⁾ Also the accessory VMF-SIT3V is mandatory if the unit exceeds 0.7 Amperes.

Common accessories

Electric coil

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
RX22	•	•						
RX32			•	•				_
RX42					•	•		
RX52							•	•

Protection for controls and electric resistance

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
PCR1V	•	•	•	•		•	•	•

Water coil with 1 row

Accessory	VEC20I	VEC30I	VEC40I	VEC50I
BV122	•			
BV132		•		
BV142			•	

3-way valve kit - main coil or accessory BV coil

	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
Main coil	VCF41 - VCF4124	VCF42 - VCF4224	VCF41 - VCF4124	VCF42 - VCF4224				
Additional coil "BV"	VCF44 - VCF4424	-	VCF44 - VCF4224	-	VCF44 - VCF4224	-	VCF44 - VCF4224	-

2-way valve kit - main coil or accessory BV coil

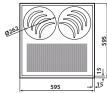
	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
Main coil	VCFD1 - VCFD124	VCFD2 - VCFD224	VCFD1 - VCFD124	VCFD2 - VCFD224				
Additional coil	VCFD2 - VCFD424	-	VCFD4 - VCFD424	-	VCFD4 - VCFD424	-	VCFD4 - VCFD424	-

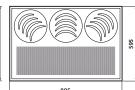
Valves ending with 24 ex. VCFD124, are 24V.

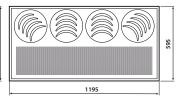
Condensate drip

Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
BC5	•	•	•	•	•	•	•	•

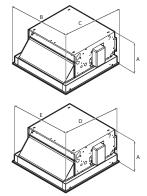
Condensate drainage


Accessory	VEC20I	VEC24I	VEC30I	VEC34I	VEC40I	VEC44I	VEC50I	VEC54I
DSC4						•		


PERFORMANCE SPECIFICATIONS VEC


		VEC20I			VEC24	I	VEC30I		VEC34I		VEC40I		VEC44I		VEC50I		VEC54I								
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	1,87	2,54	3,10	2,07	2,50	3,42	3,03	3,64	4,31	4,31	53,18	6,14	4,21	5,21	6,29	5,41	6,68	8,07	4,76	6,34	7,16	6,06	8,08	9,18
Water flow rate system side	l/h	164	223	272	181	219	300	266	319	378	378	454	538	369	457	551	474	586	708	417	556	628	532	709	805
Pressure drop system side	kPa	2	4	6	1	2	3	9	13	17	5	7	9	6	9	12	9	14	19	7	11	14	9	15	19
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	0,95	1,26	1,54	1,20	1,40	1,70	1,50	1,81	2,14	2,15	2,57	3,05	2,09	2,59	3,12	2,69	3,30	4,01	2,37	3,15	3,56	3,02	4,02	4,54
Water flow rate system side	l/h	163	217	265	206	241	292	258	311	368	370	442	525	359	445	537	463	568	690	408	542	612	519	691	781
Pressure drop system side	kPa	3	5	7	2	3	4	9	13	17	5	7	9	6	9	13	10	14	20	7	12	14	17	15	19
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	0,80	1,07	1,31	0,88	1,21	1,52	1,35	1,61	1,91	1,79	2,14	2,47	1,99	2,47	2,99	2,55	3,34	3,91	2,35	3,17	3,61	3,00	4,00	4,28
Sensible cooling capacity	kW	0,64	0,87	1,07	0,67	0,90	1,14	1,03	1,25	1,49	1,26	1,51	1,78	1,58	1,98	2,41	1,91	2,42	2,74	1,68	2,27	2,59	2,09	2,83	3,04
Water flow rate system side	l/h	138	184	225	151	208	261	232	277	329	308	368	425	342	425	514	439	574	673	404	545	621	516	688	736
Pressure drop system side	kPa	3	4	6	1	2	3	6	11	13	5	6	8	6	9	12	11	17	22	7	12	15	17	27	30
Fan																									
Туре	type												Centr	ifugal											
Fan motor	type												Inve	rter											
Number	no.		1			1			2			2			2			2			2			2	
Air flow rate	m³/h	130	194	247	130	167	247	241	309	383	241	309	383	306	406	511	306	406	511	371	529	613	371	529	613
Input power	W	4	9	14	4	9	14	11	16	35	11	16	35	16	20	26	16	20	26	18	27	34	18	27	34
Signal 0-10V	%	48	70	90	48	70	90	58	66	90	58	66	90	54	72	90	54	72	90	56	78	90	56	78	90
Fan coil sound data (4)																									
Sound power level	dB(A)	35,0	42,0	48,0	35,0	42,0	48,0	37,0	43,0	49,0	37,0	43,0	49,0	38,0	43,0	48,0	38,0	43,0	48,0	43,0	50,0	53,0	43,0	50,0	53,0
Sound pressure	dB(A)	27,0	34,0	40,0	27,0	34,0	40,0	29,0	35,0	41,0	29,0	35,0	41,0	30,0	35,0	40,0	30,0	35,0	40,0	35,0	38,0	45,0	35,0	38,0	45,0
Diametre hydraulic fittings																									
Main coil	Ø		1/2"			3/4"			1/2"			3/4"			3/4"			3/4"			3/4"			3/4"	
Power supply																									
Power supply		230V~50Hz																							

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45°C/40°C; EUROVENT
 (3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


GRID DIMENSIONS (MANDATORY ACCESSORY)

DIMENSIONS

All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Dimensions and weights of the unit with grid (maximum dimensions)

Size			20	24	30	34	40	44	50	54
Dimensions and we	eights									
A		mm	283	283	283	283	283	283	283	283
В		mm	595	595	895	895	1195	1195	1195	1195
C		mm	595	595	595	595	595	595	595	595
Empty weight		kg	16	16	21	21	25	25	25	25
Weight of the grid		kg	3,7	3,7	5,7	5,7	7,0	7,0	7,0	7,0

Dimensions of the unit with grid (dimensions for installation)

Size			20	24	30	34	40	44	50	54
Dimensions an	d weights									
A		mm	283	283	283	283	283	283	283	283
D		mm	574	574	574	574	574	574	574	574
E		mm	574	574	874	874	1174	1174	1174	1174

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCL

Cassette Type Fan Coil Unit

- Standard internal three-way valve
- Version with 2-way valve for variable water flow rate systems
- Version without valves

DESCRIPTION

4-way cassettes that can be installed in any type of 2- or 4-pipe system with any heat generator, even at low temperatures. Thanks to the selection of versions and configurations, it's easy to choose the best solution for every need.

FEATURES

Intake grid and distribution of the air

The recovery and air diffusion grille has an elegant design. In plastic, RAL 9010.

The dimensions of the first nine sizes respect the 600x600 mm modularity of false ceilings, whereas the larger sizes measuring 840x840 mm are designed for quiet operation and optimum performance.

Load-bearing structure

Models with a 600x600 mm module have a reinforced load-bearing structure with side panels in galvanised steel sheet, thermally insulated with internal polystyrene foam elements.

The structure of models with a 840x840 mm module is made entirely of galvanised steel sheet, thermally insulated with polyethylene foam on the inside and with an anti-condensate felt coating.

Ventilation group

Formed of a particularly quiet axial-centrifugal fan, statically and dynamically balanced.

The single-phase electric motor offers three or four speeds (depending on the size), is mounted on anti-vibration supports, and has a permanently enabled condenser.

Heat exchanger coil

Heat exchanger with shaped profile to increase the exchange surface, and easily accessible drain valves.

There are models with a single coil for 2-pipe systems, with the possibility to add an electric heater too, and models with two coils for 4-pipe systems

There is the possibility to combine outside air with the inlet ambient air, and to distribute it in separate rooms.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

There is the possibility to combine outside air with the inlet ambient air, and to distribute it in separate rooms.

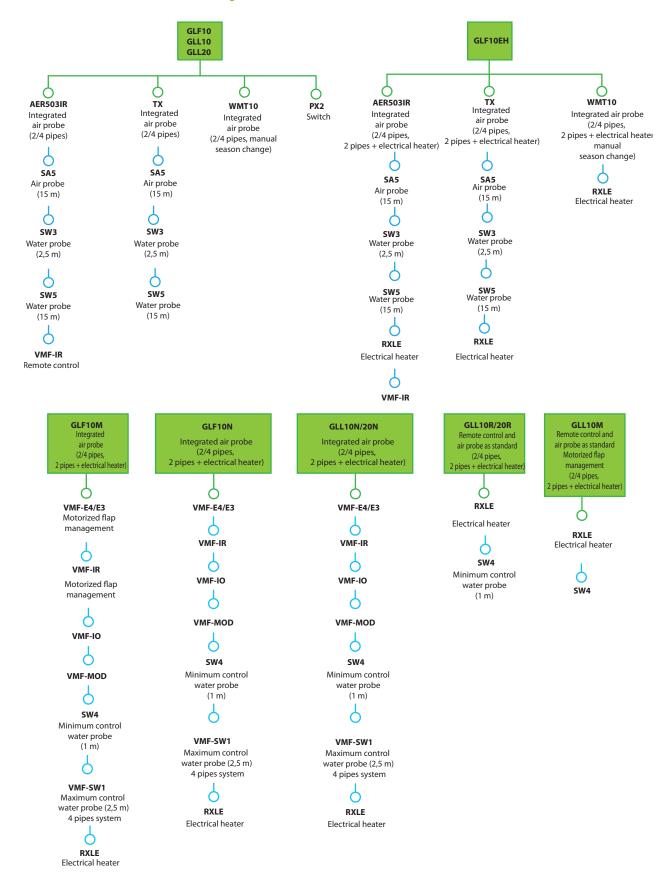
Condensate drip

Condensation drip tray in one piece, with V0 self-extinguishing level and overmoulding to insulation in expanded polystyrene with flame retardant additive.

Air filter

Air filter easily removed and cleaned, self-supporting structure, characterised by a high efficiency and low pressure drops, with class-V0 fire resistance (UL 94).

Versions


FCL Standard with internal 3-way valve

V2 With internal 2-way valve

VL Without internal valve

ACCESSORIES

Accessories that can be combined with the grilles

RXLE it can be installed only at the factory.

Intake grids and distribution of the air, compulsory accessory

GLF10: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated louvers. Must be combined with a wall-mounted panel. (size 840x840 mm not available).

GLF10EH: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated fins. Must be combined with a wall-mounted panel. (size 840x840 mm not available). **GLF10M:** Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLL10: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel.

GLL10M: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with an infrared receiver with an emergency operation button, and a remote control. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control.

GLL10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL10R: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with an infrared receiver with an emergency operation button, and a remote control. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL20: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel.

GLL20N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL20R: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with an infrared receiver with an emergency operation button, and a remote control. Suitable for use

with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

VMF system

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-MOD: Expansion board for the management of modulating valves.

VMF-SW1: Additional water probe (L=2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Control panels and their accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SIT5: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel. Commands the 3 fan speeds and up to 2 valves (four pipe systems); sends the thermostat's commands to the fan coil network.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW4: Water temperature probe allowing automatic season change on electronic controllers supplied with water-side change over.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualjet).

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

Electric heaters

RXLE: Electric heater for heating, can be installed on board the units. **RXLE20:** Electric heater for heating, can be installed on board the units.

Water valve kit

VCFLX4: 3-way valve kit for single-coil fan coil for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings.

VHL1: 3-way motorised valve kit with 4 connections including the actuator. 230V~50Hz power supply.

VHL124: 3-way motorised valve kit with 4 connections including the actuator. 24V power supply.

VHL20: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 230V~50Hz power sup-

VHL2024: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 24V power supply.

VHL2: 2-way motorised valve kit with 2 connections including the actuator. Power supply 230V~50Hz;

VHL22: Motorised 2-way valve kit with 2 connections, complete with actuator and the relative hydraulic couplings. Power supply 230V~50Hz; VHL2224: Motorised 2-way valve kit with 2 connections, complete

with actuator and the relative hydraulic couplings. 24V power supply. VHL224: 2-way motorised valve kit with 2 connections including the actuator. 24V power supply.

Installation accessories

FEL10: Kit n°5 electrostatically pre-charged air filter, with fire resistance class 2 (UL 900).

KFL: Delivery flange, allowing the air to be directed to an adjacent

KFL20: Delivery flange, allowing the air to be directed to an adjacent room. Up to three KFL20 can be assembled on a single unit.

KFLD: Suction flange, allows to introduce external air directly into the room without mixing.

KFLD20: Suction flange, allows to introduce external air directly into the room without mixing. Up to two KFL20D can be assembled on a single unit.

FCLMC10: Perimeter housing in painted galvanised sheet metal, 600x600 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI grilles.

FCLMC20: Perimeter housing in painted sheet metal, 840x840 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI

ACCESSORIES COMPATIBILITY

Intake grids and distribution of the air

Model	Ver	32	34	36	38	42	44	62	64
GLF10 (1)	FCL,V2,VL	•	•	•	•	•	•	•	•
GLF10EH (2)	FCL,V2,VL	•	•	•	•	•	•	•	•
GLF10M (3)	FCL,V2,VL	•	•	•	•	•	•	•	•
GLF10N (3)	FCL,V2,VL	•	•	•	•	•	•	•	•
Model	Ver	72	82	84	10	י	104	122	124
mouci	ver	12	02	04	10	2	104	122	147
GLF10 (1)	FCL,V2,VL	•	02	04	10	<u> </u>	104	122	127
		•	02	04	10	2	104	122	124
GLF10 (1)	FCL,V2,VL	•	02	04	10	2	104	122	127

- Not compatible with the VMF system and electric heaters.
 Not compatible with the VMF system, but compatible with electric heaters.
 Compatible with the VMF system and electric heaters.
- Intake grid and distribution of the air

Model	Ver	32	34	36	38	42	44	62	64
GLL10 (1)	FCL,V2,VL	•	•	•	•	•	•	•	•
GLL10M (2)	FCL,V2,VL		•				•	•	•
GLL10N (3)	FCL,V2,VL	•	•	•	•	•	•	•	•
GLL10R (2)	FCL,V2,VL	•	•	•	•	•	•	•	•
Model	Ver	72	82	84	10	2	104	122	124
GLL10 (1)	FCL,V2,VL								
GLL10M (2)	FCL,V2,VL								
GLL10N (3)	FCL,V2,VL	•							
GLL10R (2)	FCL,V2,VL	•							
GLL20 (1)	FCL,V2,VL		•	•			•		•
GLL20N (3)	FCL,V2,VL		•	•			•	•	•
GLL20R (4)	FCL,V2,VL		•				•	•	

- (1) Not compatible with the VMF system and electric heaters.
 (2) Not compatible with the VMF system, but compatible with electric heaters.

- (3) Compatibility with VMF system.(4) Not compatible with the VMF system.

VMF system

Model	Ver	32	34	36	38	42	44	62	64
VMF-E3	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-E4DX	FCL,V2,VL	•		•			•	•	
VMF-E4X	FCL,V2,VL	•	•	•	•		•	•	•
VMF-I0	FCL,V2,VL	•	•	•		•	•	•	
VMF-IR	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-MOD	FCL,V2,VL	•	•	•	•	•	•	•	•
VMF-SW1	FCL,V2,VL	•	•	•	•	•	•	•	•
Model	Ver	72	82	84	10	2	104	122	124
VMF-E3	FCL,V2,VL	•					•	•	•
VMF-E4DX	FCL,V2,VL	•	•	•			•	•	•
VMF-E4X	FCL,V2,VL	•	•	•			•	•	•
VMF-I0	FCL,V2,VL	•	•	•			•	•	•
VMF-IR	FCL,V2,VL	•	•	•			•	•	•
VMF-MOD	FCL,V2,VL	•	•	•			•	•	•

Model	Ver	7	2		82		84		102		104		122		12	4
VMF-SW1	FCL,V2,VL		•		•		•		•		•		•		•	
Control panels and dec	dicated accessories															
lodel	Ver	32	34	36	38	42	44	62	64	72	82	84	102	104	122	12
ER503IR (1)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
A5 (2)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
T3 (3)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
IT5 (4)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
W3 (2)	FCL,V2,VL	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	
W4	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
W5 (2)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
X (1)	FCL,V2,VL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
/MT10 (1) 1) Wall-mounting. If the unit intak 2) Probe for AER503IR-TX thermos 3) Cards for AER503IR-TX thermost 4) Probe for AER503IR-TX thermos	tats, if fitted. ats, if present, to be installed i		_	_		ostat, board	SIT3 and/	or SIT5 is re	equired.	•	•	•	•	•	•	
way valve kit																
Nodel	Ver	32		34		36		38		42		44		62	(54
/HL1 (1)	FCL,V2,VL			•				•				•				•
HL124 (1)	FCL,V2,VL			•				•				•				•
Nodel	Ver	7	2		82		84		102		104		122		12	4
'HL20 (1)	FCL,V2,VL										•					
HL2024 (1)	FCL,V2,VL															
) Obligatory accessory in 4-pipe s																
way valve kit																
lodel	Ver	32		34		36		38		42		44		62		54
HL2 (1)	FCL,V2,VL			•				•				•				•
HL224 (1)	FCL,V2,VL							•								
Model .	Ver		2		82		84		102		104		122		12	4
HL22 (1)	FCL,V2,VL				82		•		102		104		122		. 12	
HL2224 (1)	FCL,V2,VL						•				•	-				
1) Compulsory accessory in 4-pipe	systems with variable flow rat	e.														
/alve Kit for 4 pipe sys	tems															
/alve Kit for 4 pipe sys Model (CFLX4 (1)	Ver VL	32		34		36	38		42		44	62		64		72 •
Nodel CFLX4 (1)	Ver VL	•	rol.	34			38				44			64		
Aodel (CFLX4 (1) 1) The valve must be commanded	Ver VL	•	rol.	34			38				44			64		
Nodel (FLX4 (1) 1) The valve must be commanded Nir filters Nodel	Ver VL via command panels enabled f Ver	•		34			38	38		42	44			64		
Nodel (CFLX4 (1) 1) The valve must be commanded Air filters Andel	Ver VL Via command panels enabled f	or valve cont				•	38			42	44	•				•
Nodel (CFLX4 (1) 1) The valve must be commanded lir filters Nodel EL10	Ver VL via command panels enabled i Ver FCL,V2,VL	or valve cont		34		. 36		38	•			44		62	(54
Addel (CFLX4 (1) 1) The valve must be commanded Air filters Addel EL10 Addel	Ver VL via command panels enabled f Ver	or valve cont		34	82	. 36	38	38			104	44	122	62		54
Nodel (CFLX4 (1) I) The valve must be commanded Air filters Nodel EL10 Nodel EL10	Ver VL via command panels enabled i Ver FCL,V2,VL Ver	or valve cont	2	34		. 36		38	•			44		62	(54
Addel (CFLX4 (1) 1) The valve must be commanded Air filters Aodel EL10 Aodel EL10 Delivery flange	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL	or valve cont	2	34	82	36		38	•	•		44	122	62	12	64
Addel (CFLX4 (1) 1) The valve must be commanded Air filters Aodel EL10 Aodel EL10 Delivery flange Aodel	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL	or valve cont	2	34	82	. 36		38	•			44	122	62	12	54
Addel (CFLX4 (1) 1) The valve must be commanded Air filters Aodel EL10 Aodel EL10 Delivery flange Aodel	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL	or valve control or val	2	34	82	36		38	•	42		44	122	62	12	
Nodel (CFLX4 (1) I) The valve must be commanded Air filters Nodel EL10 Nodel EL10 Delivery flange Nodel FL FL	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL Ver FCL,V2,VL	32 · 32 · ·	2	34 .	82	36	84	38 .	102	42	104	44 .	122	62	122	64 4
Nodel (CFLX4 (1) I) The valve must be commanded Air filters Nodel EL10 Nodel EL10 Delivery flange Nodel FL FL Nodel	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL Ver FCL,V2,VL Ver FCL,V2,VL Ver	32	2	34 .	82	36		38 .	•	42		44 .	122	62	12	64 4
Iodel CFLX4 (1) The valve must be commanded lir filters Iodel EL10 Iodel EL10 Delivery flange Iodel FL Iodel FL Iodel FL	Ver VL via command panels enabled i Ver FCL,V2,VL Ver FCL,V2,VL Ver FCL,V2,VL FCL,V2,VL Ver FCL,V2,VL	32	2	34 .	82	36	84	38 .	102	42	104	44 .	122	62	12	54 •
Nodel (CFLX4 (1) I) The valve must be commanded lir filters Nodel EL10 Nodel EL10 Delivery flange Nodel FL FL FL Nodel FL	Ver VL via command panels enabled i Ver FCL,V2,VL Ver FCL,V2,VL Ver FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL	32 - 32 3	2	34 .	82	36	84	38 .	102	42	104	44 .	122	62	122	64 4
Aodel (CFLX4 (1) The valve must be commanded Air filters Aodel EL10 Aodel EL10 Delivery flange Aodel FL FL FL FL FL FFL FFL FFL FFL FFL FFL	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL Ver FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL	32 - 32 3	2	34 .	82	36	84	38 .	102	42	104	44 .	122	62	12	54
Nodel (CFLX4 (1) I) The valve must be commanded Air filters Nodel EL10 Nodel EL10 Delivery flange Nodel FL FLD FLD FLD FLD FLD FLD FLD FLD	Ver VL via command panels enabled i Ver FCL,V2,VL Ver FCL,V2,VL Ver FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL	32 - 32 3	2	34 .	82	36	84	38 .	102	42	104	44 .	122	62	12	54
Nodel (CFLX4 (1) IT he valve must be commanded lir filters Nodel EL10 Nodel EL10 Delivery flange Nodel FL FLD FLD FLD FLD FLD FLD FLD FLD FLD	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL	32	2	34	82	36	84	38 .	102	42	104	44	122	62	12	54
Iodel (FLX4 (1)) The valve must be commanded lir filters Iodel EL 10 Iodel EL 10 Iodel FL D Iodel FL FLD Iodel FL FLD	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL	32	2	34	82	36	84	38	102	42	104	44	122	62	122	4
Iodel (FLX4 (1)) The valve must be commanded lir filters Iodel EL 10 Iodel EL 10 Iodel FL D Iodel FL FLD Iodel FL FLD	Ver VL via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL	32	2	34	82	36	84	38 .	102	42	104	44	122	62	122	54
Nodel (CFLX4 (1) IT he valve must be commanded lir filters Nodel EL10 Nodel EL10 Pelivery flange Nodel FL FLD FLD FLD FLD FLD FLD FLD FLO	Ver VL Via command panels enabled for the properties of the prope	32	2	34	82	36	84	38	102	42	104	44	122	62	122	64 4 4
Nodel (CFLX4 (1) IT he valve must be commanded lir filters Nodel EL10 Nodel EL10 Pelivery flange Nodel FL FLD FLD FLD FLD FLD FLO	Ver VL Via command panels enabled f Ver FCL,V2,VL Ver FCL,V2,VL FCL,V2,VL Ver FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL FCL,V2,VL	32 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	2	34	82 82	36	84	38	102	42	104	44	122	62	12	

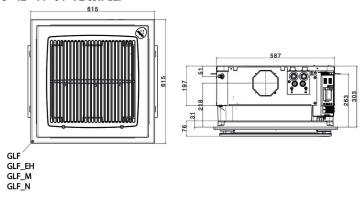
⁽¹⁾ Can only be combined with GLL/GLLI grilles

PERFORMANCE SPECIFICATIONS

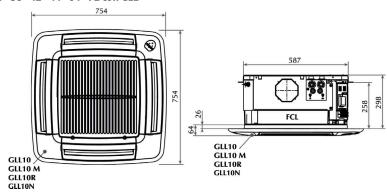
2-pipe

			FCL32	2		FCL36	,		FCL42	!		FCL62	!		FCL72	!		FCL82			FCL102	2		FCL122	2
		1	2	3	1	2	3	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																									
Heating capacity	kW	2,22	2,95	4,00	3,42	4,50	6,27	3,32	4,47	7,34	5,19	6,37	10,49	6,14	7,57	11,32	5,88	8,12	11,88	8,30	11,71	17,73	10,53	14,73	21,75
Water flow rate system side	l/h	194	258	350	300	394	549	290	391	642	454	558	918	538	662	991	514	710	1039	726	1025	1551	921	1289	1903
Pressure drop system side	kPa	4	6	10	6	10	19	6	10	24	12	17	42	14	20	42	7	13	26	6	12	25	11	21	42
Heating performance 45 °C / 40 °C (2)																									
Heating capacity	kW	1,10	1,47	1,98	1,70	2,24	3,12	1,65	2,22	3,64	2,58	3,17	5,21	3,50	3,76	5,63	2,92	4,03	5,90	4,12	5,82	8,81	5,23	7,32	10,80
Water flow rate system side	l/h	192	254	345	295	389	541	287	386	633	448	550	905	530	654	977	507	701	1025	716	1011	1530	909	1271	1877
Pressure drop system side	kPa	4	6	11	6	9	17	5	9	23	10	15	36	13	19	40	7	12	23	4	7	15	10	17	35
Cooling performance 7 °C / 12 °C (3)																									
Cooling capacity	kW	1,14	1,44	1,86	1,77	2,22	2,96	1,94	2,51	3,88	2,63	3,17	4,90	2,75	3,29	5,35	2,76	3,97	5,85	4,00	5,82	8,85	5,31	7,40	10,83
Sensible cooling capacity	kW	0,97	1,22	1,48	1,37	1,75	2,36	1,36	1,79	3,09	1,83	2,23	3,73	1,84	2,29	3,99	1,86	2,69	4,05	2,89	4,22	6,51	3,99	5,63	8,30
Water flow rate system side	l/h	200	253	327	308	387	516	337	437	679	458	551	856	484	571	938	482	695	1032	697	1012	1547	921	1292	1893
Pressure drop system side	kPa	4	7	10	6	9	15	7	11	25	12	16	36	13	18	43	7	14	28	7	13	28	10	19	38
Fan																									
Туре	type	Ce	entrifug	gal	Ce	entrifug	jal	Ce	entrifug	jal	Ce	ntrifug	jal	Ce	ntrifug	ıal	Ce	ntrifug	ıal	Ce	entrifug	ıal	C	entrifug	al
Fan motor	type	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	nchron	ous	Asy	/nchron	ous	Asy	nchrono	ous
Number	no.		1			1			1			1			1			1			1			1	
Air flow rate	m³/h	300	410	600	300	410	600	260	360	700	380	500	880	400	520	900	460	680	1100	560	830	1350	750	1100	1750
Sound power level (4)	dB(A)	35,0	38,0	46,0	35,0	38,0	46,0	35,0	38,0	53,0	41,0	47,0	61,0	44,0	49,0	60,0	39,0	43,0	50,0	40,0	45,0	54,0	44,0	50,0	60,0
Input power	W	21	31	45	21	31	45	-	32	75	26	37	83	50	58	110	45	80	150	50	80	155	55	105	175
Diametre hydraulic fittings																									
Туре	type		Gas - F	=		Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F	
Main coil	Ø		3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Water coil																									
Water content main coil	1		0,6			0,8			0,8			1,3			1,3			2,6			4,0			4,0	
Power supply																									
Power supply		23	0V~50	OHz	23	0V~50)Hz	23	0V~50)Hz	23	0V~50)Hz	23	0V~50)Hz	23	0V~50)Hz	23	30V~50)Hz	23	30V~50	Hz

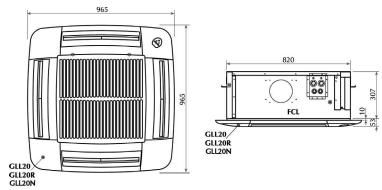
4-pipe


			FCL34			FCL38			FCL44			FCL64			FCL84			FCL104			FCL124	
-		1	2	3	1	2	3	1	2	3	1	2	4	1	2	4	1	2	4	1	2	4
		i	M	Н	÷	M	Н	÷	M	 H	i	M	 H	÷	M	H	<u>'</u>	M	<u>-</u> Т	i	M	H
Heating performance 65 °C / 55 °C (1)																						
Heating capacity	kW	1,74	1,95	2,32	1,74	1,95	2,32	1,75	2,04	2,44	2,21	2,50	3,19	4,73	5,71	7,59	5,27	6,53	8,93	6,30	8,31	11,17
Water flow rate system side	I/h	152	171	203	152	171	203	153	178	240	194	219	279	414	500	664	461	571	782	551	727	977
Pressure drop system side	kPa	6	7	10	6	7	10	6	7	10	10	10	19	6	8	12	7	10	17	9	15	25
Cooling performance 7 °C / 12 °C (2)																						
Cooling capacity	kW	1,14	1,44	1,86	1,63	2,05	2,73	1,79	2,31	2,95	2,43	2,93	4,51	2,76	3,97	5,85	3,45	4,84	7,05	4,52	6,11	8,63
Sensible cooling capacity	kW	0,97	1,22	1,48	1,28	1,63	2,20	1,25	1,65	2,13	1,69	2,06	3,43	1,86	2,69	4,05	2,43	3,45	5,15	3,32	4,57	6,60
Water flow rate system side	l/h	200	253	327	284	358	476	314	396	626	424	510	793	482	695	1032	602	845	1238	786	1068	1513
Pressure drop system side	kPa	4	7	10	5	8	13	6	10	15	11	16	35	6	12	25	7	13	26	12	22	38
Fan																						
Туре	type	C	entrifug	al	C	entrifug	al	G	entrifug	al	C	entrifug	al	G	entrifug	al	(entrifug	al	0	entrifug	al
Fan motor	type	As	ynchron	ous	Asy	nchron	ous	Asy	/nchron	ous	Asy	ynchron	ous	Asy	/nchron	ous	As	ynchron	ous	Asy	ynchron	ous
Number	no.		1			1			1			1			1			1			1	
Air flow rate	m³/h	300	410	600	300	410	600	260	360	530	380	500	880	460	680	1100	560	830	1350	750	1100	1750
Sound power level (3)	dB(A)	35,0	38,0	46,0	35,0	38,0	46,0	35,0	39,0	46,0	41,0	47,0	61,0	39,0	43,0	50,0	40,0	45,0	54,0	46,0	50,0	60,0
Input power	W	21	31	45	21	31	45	22	32	47	32	45	101	45	80	150	50	80	155	55	105	175
Diametre hydraulic fittings																						
Туре	type		Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F			Gas - F	
Main coil	Ø		3/4"			3/4"			3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø		1/2"			1/2"			1/2"			1/2"			1/2"			1/2"			1/2"	
Water coil																						
Water content main coil	1		0,8			0,8			0,8			1,1			2,6			2,6			2,6	
Water content the secondary coil	1		0,2			0,2			0,2			0,2			1,4			1,4			1,4	
Power supply																						
Power supply		2:	30V~50	Hz	23	30V~50	Hz	23	80V~50	Hz	23	30V~50	Hz	23	80V~50	Hz	2:	30V~50	Hz	23	30V~50	Hz

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(3) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS


Dimensions FCL 32 - 34 - 36 - 38 - 42 - 44 - 64 - 72 con GLF

Dimensions FCL 32 - 34 - 36 - 38 - 42 - 44 - 64 - 72 con GLL

Dimensions FCL 82 - 84 - 102- 104 - 122 - 124 con GLL

Size			102	104	122	124	32	34	36	38	42	44	62	64	72	82	84
Dimensions and weights																	
	FCL	kg	36	36	36	36	20	21	20	21	21	21	22	22	22	35	36
Empty weight	V2	kg	36	36	36	36	20	21	20	21	20	21	21	22	22	35	36
	٧L	kg	35	35	35	35	20	20	20	20	20	20	22	22	22	34	35

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCLI

Cassette Type Fan Coil Unit

- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Total comfort: reduced variations in temperature and relative humidity
- · Standard internal three-way valve
- Version with 2-way valve for variable water flow rate systems
- Version without valves

DESCRIPTION

4-way cassettes that can be installed in any type of 2- or 4-pipe system with any heat generator, even at low temperatures. Thanks to the selection of versions and configurations, it's easy to choose the best solution for every need.

FEATURES

Intake grid and distribution of the air

The recovery and air diffusion grille has an elegant design. In plastic, RAL 9010. The dimensions of the first 5 sizes comply with the 600x600 mm modularity of false ceilings, whereas the larger sizes measuring 840x840 mm are designed for quiet operation and optimum performance of these large models.

Load-bearing structure

Models with a 600x600 mm module have a reinforced load-bearing structure with side panels in galvanised steel sheet, thermally insulated with internal polystyrene foam elements.

The structure of models with a 840x840 mm module is made entirely of galvanised steel sheet, thermally insulated with polyethylene foam on the inside and with an anti-condensate felt coating.

Ventilation group

Formed of a particularly quiet axial-centrifugal fan, statically and dynamically balanced.

The Brushless electric motor with 0-100% continuous speed variation, which allows precise adaptation to the real demands of the internal environment without temperature fluctuations.

The air flow can be continuously changed through a 1-10 V signal, coming from adjustment and control commands Aermec or from independent adjustment systems.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Heat exchanger coil

Heat exchanger with shaped profile to increase the exchange surface, and easily accessible drain valves.

There are models with a single coil for 2-pipe systems, with the possibility to add an electric heater too, and models with two coils for 4-pipe systems.

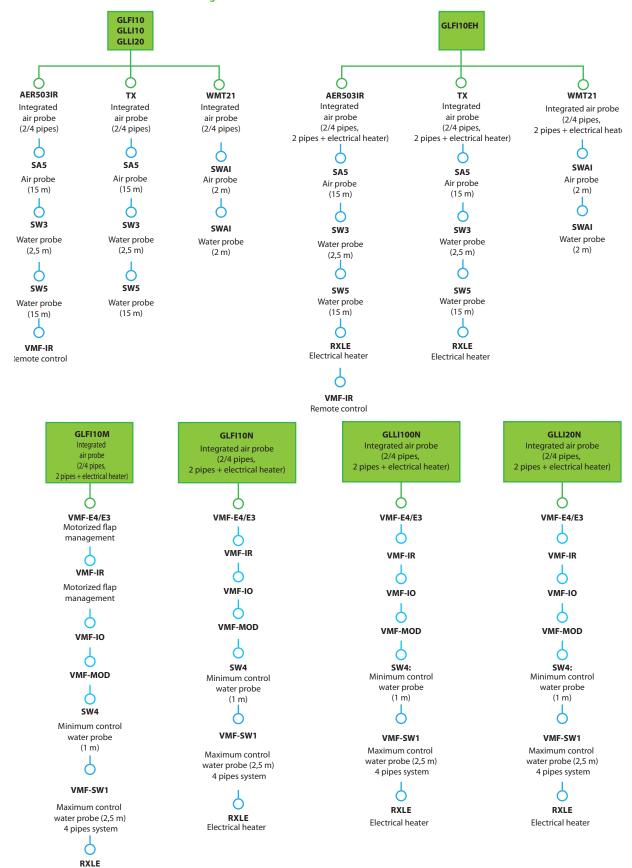
There is the possibility to combine outside air with the inlet ambient air, and to distribute it in separate rooms.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Condensate drip

Condensation drip tray in one piece, with V0 self-extinguishing level and overmoulding to insulation in expanded polystyrene with flame retardant additive.

Air filter


Air filter easily removed and cleaned, self-supporting structure, characterised by a high efficiency and low pressure drops, with class-V0 fire resistance (UL 94).

Versions

FCLI Standard **V2** With internal 2-way valve **VL** Without internal valve

ACCESSORIES

Accessories that can be combined with the grilles

RXLE it can be installed only at the factory.

Electrical heater

Intake grids and distribution of the air, compulsory accessory

GLF110: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated louvers. Must be combined with a wall-mounted panel. (size 840x840 mm not available).

GLF110EH: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated fins. Must be combined with a wall-mounted panel. (size 840x840 mm not available). **GLF110M:** Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF110N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLL1100: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel. GLLI100EH: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits with manually orientated fins. Must be combined with a wall-mounted panel. (size 840x840 mm not available). GLL1100N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X panel as well, and suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL120: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. Must be combined with a wall-mounted panel.

GLL120N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

VMF system

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-MOD: Expansion board for the management of modulating valves.

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Control panels and their accessories

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW3: Water probe (L = 2.5 m) for controlling the minimum and maximum and to allow automatic seasonal switching for electronic thermostats fitted with water side changeover.

SW4: Water temperature probe allowing automatic season change on electronic controllers supplied with water-side change over.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

SWAI: External air or water temperature probe.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

WMT21: Electronic thermostat for inverter fancoils.

Electric heaters

RXLE: Electric heater for heating, can be installed on board the units. **RXLE20:** Electric heater for heating, can be installed on board the units.

Water valve kit

VCFLX4: 3-way valve kit for single-coil fan coil for 4-pipe systems. With totally separate "heating" and "cooling" circuits. This kit consists of two 3-way insulated valves and four connections, complete with electrothermal actuators, insulating shells for the valves, and the relative hydraulic couplings.

VHL1: 3-way motorised valve kit with 4 connections including the actuator. 230V~50Hz power supply.

VHL124: 3-way motorised valve kit with 4 connections including the actuator. 24V power supply.

VHL20: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 230V~50Hz power supply.

VHL2024: Motorised 3-way valve kit with 4 connections, complete with actuator and the relative hydraulic couplings. 24V power supply.

VHL2: 2-way motorised valve kit with 2 connections including the actuator. Power supply 230V~50Hz;

VHL22: Motorised 2-way valve kit with 2 connections, complete with actuator and the relative hydraulic couplings. Power supply 230V~50Hz;

VHL224: Motorised 2-way valve kit with 2 connections, complete with actuator and the relative hydraulic couplings. 24V power supply. **VHL224:** 2-way motorised valve kit with 2 connections including the

VHL224: 2-way motorised valve kit with 2 connections including the actuator. 24V power supply.

Installation accessories

FEL10: Kit n°5 electrostatically pre-charged air filter, with fire resistance class 2 (UL 900).

KFL: Delivery flange, allowing the air to be directed to an adjacent room.

KFL20: Delivery flange, allowing the air to be directed to an adjacent room. Up to three KFL20 can be assembled on a single unit.

KFLD: Suction flange, allows to introduce external air directly into the room without mixing.

KFLD20: Suction flange, allows to introduce external air directly into the room without mixing. Up to two KFL20D can be assembled on a single unit.

FCLMC10: Perimeter housing in painted galvanised sheet metal, 600x600 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI grilles.

FCLMC20: Perimeter housing in painted sheet metal, 840x840 mm, used when the fan coil is installed outside the false ceiling. It has an aesthetic and protective purpose only, so the technical characteristics of the fan coil remain unaltered. Can only be combined with GLL/GLLI

FCLMC20IK: Installation kit for the inverter controller. Mandatory for units with FCLMC20.

ACCESSORIES COMPATIBILITY

Intake grids and distribution of the air

Model	Ver	32	34	42	44	62	64	82	122	124
GLFI10 (1)	FCLI,V2,VL	•	•	•	•	•	•			
GLFI10EH (2)	FCLI,V2,VL		•	•	•	•	•			
GLFI10M (3)	FCLI,V2,VL	•	•	•	•	•	•			
GLFI10N (3)	FCLI,V2,VL	•					•			

- Not compatible with the VMF system and electric heaters.
 Not compatible with the VMF system, but compatible with electric heaters.
- (3) Compatible with the VMF system and electric heaters.

Intake grid and distribution of the air

Model	Ver	32	34	42	44	62	64	82	122	124
GLLI100 (1)	FCLI,V2,VL	•	•	•	•	•	•			
GLLI100EH (2)	FCLI,V2,VL	•	•	•	•	•	•			
GLLI100N (3)	FCLI,V2,VL									
GLLI20 (1)	FCLI,V2,VL							•	•	•
GLLI20N (4)	FCLI,V2,VL								•	•

- Not compatible with the VMF system and electric heaters.
 Not compatible with the VMF system, but compatible with electric heaters.
 Compatible with the VMF system and electric heaters.
 Compatible with VMF system.

VMF system

Model	Ver	32	34	42	44	62	64	82	122	124
VMF-E3	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-E4DX	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-E4X	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-IO	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-IR	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-MOD	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-SW	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
VMF-SW1	FCLI,V2,VL	•	•	•		•		•		

Control panels and dedicated accessories

Model	Ver	32	34	42	44	62	64	82	122	124
AER503IR (1)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SA5 (2)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SW3 (2)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SW4	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SW5 (2)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
SWAI (3)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
TX (1)	FCLI,V2,VL	•	•	•	•	•	•	•	•	•
WMT21	FCLI,V2,VL	•	•	•	•			•	•	•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.
- (2) Probe for AER503IR-TX thermostats, if fitted.(3) Probe for thermostat WMT21.

3 way valve kit

Model	Ver	32	34	42	44	62	64	82	122	124
VHL1 (1)	VL		•		•		•			
VHL124 (1)	VL		•		•		•			
VHL20 (1)	VL									•
VHL2024 (1)	VL									•

(1) Obligatory accessory in 4-pipe systems.

2 way valve kit

Model	Ver	32	34	42	44	62	64	82	122	124
VHL2 (1)	VL		•		•		•			_
VHL22 (1)	VL									•
VHL2224 (1)	VL									•
VHL224 (1)	VL		•		•		•			

(1) Compulsory accessory in 4-pipe systems with variable flow rate.

Model	Ver	32	34	42	44	62	64	82	122	124
VCFLX4 (1)	VL	•		•		•				
(1) The valve must be commanded	d via command panels enabled fo	r valve control.								
Air filters										
Model	Ver	32	34	42	44	62	64	82	122	124
FEL10	FCLI,V2,VL	•	•	•	•	•	•			
Delivery and suction to Model	flange Ver	32	34	42	44	62	64	82	122	124
								82	122	124
KFL	FCLI,V2,VL	•	•	•	•	•	•			
KFL20	FCLI,V2,VL							•	•	•
KFLD	FCLI,V2,VL	•	•	•	•	•	•			
KFLD20	FCLI,V2,VL							•	•	•
Perimeter case										
Model	Ver	32	34	42	44	62	64	82	122	124
FCLMC10 (1)	FCLI,V2,VL	•	•	•	•	•	•			
FCLMC20 (1)	FCLI,V2,VL							•	•	•
FCLMC20IK (2)	FCLI,V2,VL									

⁽¹⁾ Can only be combined with GLL/GLLI grilles (2) Mandatory for units with FCLMC20.

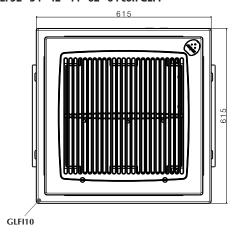
PERFORMANCE SPECIFICATIONS

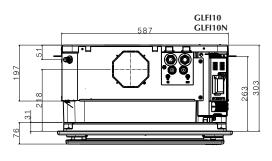
2-pipe

z-pipe	_															
			FCLI32			FCLI42			FCLI62			FCL182			FCLI122	
		1	2	3	1	2	4	1	2	4	1	2	4	1	2	4
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																
Heating capacity	kW	2,22	2,95	4,00	3,32	4,47	7,34	5,19	6,37	10,49	5,88	8,12	11,88	10,53	14,73	21,75
	I/h	194	258	350	290	391	642	454	558	918	514	710	1039	921	1289	1903
Pressure drop system side	kPa	4	6	10	6	10	24	12	17	42	7	13	26	11	21	42
Heating performance 45 °C / 40 °C (2)																
Heating capacity	kW	1,10	1,47	1,98	1,67	2,21	3,64	2,58	3,21	5,21	2,94	4,05	5,90	5,28	7,37	10,80
Water flow rate system side	l/h	192	254	345	287	386	633	448	550	905	507	701	1025	909	1271	1877
Pressure drop system side	kPa	4	6	11	5	9	21	10	17	41	7	13	23	12	21	41
Cooling performance 7 °C / 12 °C (3)																
Cooling capacity	kW	1,15	1,46	1,88	1,95	2,52	3,90	2,65	3,19	4,92	2,79	4,04	5,97	5,34	7,47	10,87
Sensible cooling capacity	kW	0,98	1,24	1,50	1,37	1,80	3,11	1,85	2,25	3,75	1,89	2,76	4,17	4,02	5,70	8,34
Water flow rate system side	l/h	200	253	327	337	437	679	458	551	856	482	695	1032	921	1292	1893
Pressure drop system side	kPa	4	4	13	7	11	25	12	16	36	7	12	28	10	19	38
Fan																
Type t	type		Centrifugal			Centrifugal			Centrifugal			Centrifugal			Centrifugal	
Fan motor t	type		Inverter			Inverter			Inverter			Inverter			Inverter	
Number	no.		1			1			1			1			1	
Air flow rate r	n³/h	300	410	600	260	360	700	380	500	880	460	680	1100	750	1100	1750
Input power	W	10	13	18	12	16	55	14	20	61	10	14	33	16	33	135
Signal 0-10V	%	42	62	90	34	46	90	40	52	90	38	54	90	38	54	90
Cassettes sound data (4)																
Sound power level (5)	IB(A)	35,0	38,0	46,0	35,0	38,0	53,0	41,0	47,0	61,0	39,0	43,0	50,0	44,0	50,0	60,0
Sound pressure (6)	IB(A)	26,0	29,0	37,0	26,0	30,0	44,0	32,0	38,0	52,0	30,0	34,0	41,0	35,0	41,0	51,0
Diametre hydraulic fittings								-								
Main coil	Ø		3/4"			3/4"			3/4"			3/4"			3/4"	
Secondary coil	Ø		-			-			-			-			-	
Power supply																
Power supply			230V~50Hz			230V~50Hz	!		230V~50Hz	!		230V~50Hz	!		230V~50Hz	!

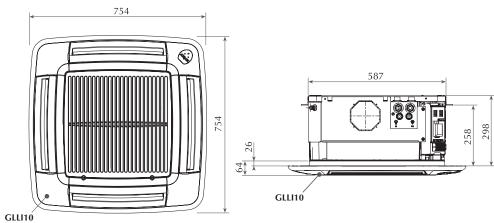
4-pipe

			FCLI34			FCL144			FCLI64			FCLI124	
		1	2	3	1	2	3	1	2	4	1	2	4
		L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 65 °C / 55 °C (1)													
Heating capacity	kW	1,70	1,97	2,32	1,70	2,02	2,74	2,05	2,76	3,14	6,46	8,30	11,10
Water flow rate system side	l/h	152	171	203	153	178	240	194	219	279	551	727	977
Pressure drop system side	kPa	5	7	9	6	7	12	9	11	19	10	15	25
Cooling performance 7 °C / 12 °C (2)													
Cooling capacity	kW	1,15	1,46	1,88	1,80	2,32	3,59	2,29	2,76	4,25	4,55	6,19	8,67
Sensible cooling capacity	kW	0,98	1,24	1,50	1,26	1,66	2,87	1,59	1,93	3,22	3,35	4,64	6,64
Water flow rate system side	l/h	200	253	327	314	396	626	424	510	793	786	1068	1513
Pressure drop system side	kPa	4	7	10	6	10	23	16	23	50	10	20	38
Fan													
Туре	type						Centr	rifugal					
Fan motor	type						Inve	erter					
Number	no.		1			1			1			1	
Air flow rate	m³/h	300	410	600	260	360	700	380	500	880	750	1100	1750
Input power	W	10	13	18	12	16	55	14	20	61	16	33	135
Signal 0-10V	%	42	62	90	34	46	90	40	52	90	38	58	90
Cassettes sound data (3)													
Sound power level (4)	dB(A)	35,0	38,0	46,0	35,0	39,0	53,0	41,0	47,0	61,0	44,0	52,0	60,0
Sound pressure (5)	dB(A)	26,0	29,0	37,0	26,0	30,0	44,0	32,0	38,0	52,0	35,0	41,0	51,0
Diametre hydraulic fittings													
Main coil	Ø						3,	/4"					
Secondary coil	Ø						1,	/2"					
Power supply													
Power supply							230V-	~50Hz					

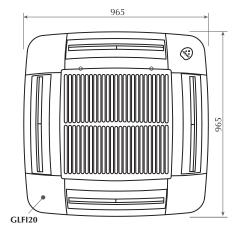

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45°C/40°C; EUROVENT
(3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) For the cassettes, Aermec determines the value of the sound power on the basis of measurements carried out in accordance with the standard UNI EN 16583:15, in observance of the EUROVENT certification and the level of sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.
(5) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.
(6) Sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.

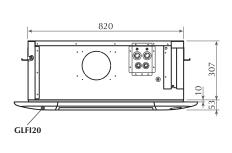

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 65 °C/55 °C; EUROVENT
(2) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(3) For the cassettes, Aermec determines the value of the sound power on the basis of measurements carried out in accordance with the standard UNI EN 16583:15, in observance of the EUROVENT certification and the level of sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

⁽⁵⁾ Sound pressure (weighed A) measured in an environment with volume V=100m3, reverberation time t=0.5s direction factor Q=2; distance r=2.5m.


DIMENSIONS

Dimensions FCLI 32 - 34 - 42 - 44 - 62 - 64 con GLFI





Dimensions FCLI 32 - 34 - 42 - 44 - 62 - 64 con GLLI

Dimensions FCLI 82 - 122 - 124 con GLLI

Size			122	124	32	34	42	44	62	64	82
Dimensions and weights											
	FCLI	kg	36	36	21	21	22	21	22	23	35
Empty weight	V2	kg	36	36	21	21	21	21	22	23	35
	VL	kg	35	35	20	21	20	21	22	22	34

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

FCW

Fan coils wall-mount installation

- · Versions with internal 2 or 3-way valve
- Compact dimensions

DESCRIPTION

Fan coil model for wall-mount installations, whose elegance and reduced dimensions make it aesthetically pleasing; this terminal is thus suitable for applications in residential or light commercial sectors.

To respond to the various system requirements, the product is configurable and available with or without (2- or 3-way) valve, as well as with or without control board, which ensures compatibility with various system requirements. Fan coils without control board must be necessarily combined with an external control device.

VERSIONS

2V Internal 2-way valve and microprocessor control
2VN Internal 2-way valve without microprocessor control
3V Internal 3-way valve and microprocessor control
3VN Internal 3-way valve without microprocessor control
VL Without internal valve but with microprocessor control
VLN Without internal valve and microprocessor control

FEATURES

Case

Aesthetically styled with flat panel:

Microprocessor control

- Air flow louvered louvers with horizontal adjustment facility
- Colors pure white pantone GRIS 1C RAL 9010.

Ventilation group

Consisting of a tangential fan, especially quiet and directly coupled to the motor shaft.

Three-speed cross flow fan.

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Air filter

Fan coils are fitted with air filters easy to remove and clean.

Control

The versions with microprocessor control have:

- Timer for programming switch-off or switch-on (TLW2 and PFW2)
- Program for operation in automatic, cooling, heating, ventilation and air ionising mode (TLW2 and PFW2)
- Night time Well-being Program (TLW2)
- Automatic season change (TLW2 and PFW2)
- Automatic re-start after power cut.

ACCESSORIES

For models with control board installed

FCW_2V, 3V, VL it is mandatory to select among the user interfaces designed for the FCW series (TLW2 or PFW2)

PFW2: Wired panel to control all the functions of the unit. It is supplied separately and can control only one unit. The panel must be installed on the wall and connected to the fan coil with the supplied cable, 7.5 meters long.

TLW2: Infrared remote control with liquid crystal display for controlling all unit functions. The remote control is delivered separately from the fan coil; with a single remote control it is possible to control more than one fan coil. The remote control is equipped with a support that allows you to hang it on the wall, from which it can be operated without having to be removed.

TLW2 PFW2

For models without control board installed

FCW_2VN, 3VN, VLN a user interface must be mounted outside the fan coil, using either a visible or a recessed wall-mount installation.

To make the selection please refer to the "control panels" or "VMF system shett" where you will find comprehensive information on this topic.

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E19: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

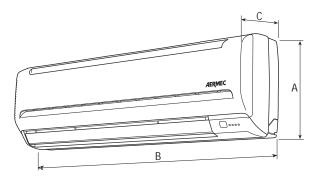
ACCESSORIES COMPATIBILITY

VMF system

Control panels and dedicated accessories

Model	Ver	22	32	42	52
PFW2	2V,3V,VL	•	•	•	•
TLW2 (1)	2V,3V,VL	•	•	•	•

(1) Accessory is required for operating the fan coil as an alternative to the wired remote control panel PFW2. mandatory accessory for versions with controller FCW_2V, FCW_3V, FCW_VL.


PERFORMANCE SPECIFICATIONS

2-pipe

			FCW22V	L		FCW32V			FCW42V	L		FCW52VI	L		FCW222	1		FCW223	V
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)											•			•			•		
Heating capacity	kW	2,85	3,66	4,29	3,73	4,51	5,24	6,44	7,84	8,56	8,20	13,06	15,28	2,35	3,02	4,03	2,35	3,02	4,03
Water flow rate system side	I/h	250	321	377	328	396	460	565	688	751	718	1145	1339	206	265	354	206	265	354
Pressure drop system side	kPa	4	6	9	9	12	16	16	22	26	10	23	30	9	14	24	9	14	24
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,42	1,82	2,14	1,85	2,24	2,61	3,21	3,90	4,26	4,10	6,50	7,60	1,17	1,50	2,00	1,17	1,50	2,00
Water flow rate system side	l/h	246	316	371	322	390	453	556	677	739	712	1129	1320	203	261	348	203	261	348
Pressure drop system side	kPa	4	6	8	9	12	16	15	22	25	10	22	29	9	14	24	9	14	24
Cooling performance 7 °C / 12 °C (3)																			
Cooling capacity	kW	1,37	1,74	2,05	1,78	2,15	2,50	3,07	3,74	4,08	4,40	6,50	7,45	1,10	1,45	1,90	1,10	1,45	1,90
Sensible cooling capacity	kW	1,16	1,47	1,73	1,51	1,82	2,04	2,59	3,10	3,47	3,30	5,05	5,80	0,92	1,20	1,55	0,92	1,20	1,55
Water flow rate system side	I/h	236	299	353	306	370	430	528	643	702	755	1115	1278	189	249	327	189	249	327
Pressure drop system side	kPa	5	7	9	8	11	15	15	21	26	12	24	30	9	14	23	9	14	23
Fan																			
Туре	type		Tangentia	al		Tangentia			Tangentia	al		Tangentia	l		Tangentia	1	1	angentia	al
Fan motor	type		ynchrono			synchrono			ynchrono			ynchrono			ynchrono			ynchrono	
Number	no.		1		1	1			1			1	-		1			1	
Air flow rate	m³/h	280	340	389	330	400	446	476	602	684	592	945	1179	270	330	380	270	330	380
Input power	W	23	24	27	22	23	27	31	41	48	38	55	75	23	24	27	23	24	27
Fan coil sound data (4)	**																		
Sound power level	dB(A)	42,0	48,0	53,0	42,0	48,0	53,0	44,0	49,0	54,0	44,0	54,0	60,0	42,0	48,0	53,0	42,0	48,0	53,0
Sound pressure	dB(A)	34,0	39,5	44,5	34,0	39,5	44,5	35,5	40,5	45,5	35,5	45,5	51,5	34,0	39,5	44,5	34,0	39,5	44,5
Diametre hydraulic fittings	ub(//)	3 .,0	37/3	,5	3 .,0	37/3	,5	33/3	.0,5	.5/5	33/3	.5/5	3.,3	3.,0	37/3	, 5	3 .,0	37/3	,5
Main coil	Ø		1/2"			1/2"			1/2"			3/4"			1/2"			1/2"	
Power supply	-										1	-, .							
Power supply		2	30V~50H	Hz	2	30V~50H	z	2	30V~50H	-lz	2	30V~50H	lz	2	30V~50H	łz	2	30V~50H	Hz
			FCW322	v		FCW323\			FCW422	v		FCW423\	,		FCW522	,		FCW523	v
																			¥
											_			_			_		3
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3 H
Heating performance 70 °C / 60 °C (1)											_			_			_		3 H
	kW	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	3 H	1 L	2 M	Н
Heating performance 70 °C / 60 °C (1) Heating capacity Water flow rate system side	kW I/h	1 L	2 M	3 H 5,03	1 L	2 M	3 H 5,03	1 L	2 M	3 H 7,97	1 L	2 M	3 H 7,97	1 L	2 M	3 H	1 L	2 M	H 14,0
Heating capacity Water flow rate system side	l/h	1 L 3,25 286	2 M 4,36 383	3 H 5,03 442	1 L 3,25 286	2 M 4,36 383	3 H 5,03 442	1 L 6,29 552	2 M 7,23 635	3 H 7,97 699	1 L 6,29 552	2 M 7,23 635	3 H 7,97 699	1 L 8,04 704	2 M 11,80 1034	3 H 14,00 1227	1 L 8,04 704	2 M 11,80 1034	14,00 1227
Heating capacity Water flow rate system side Pressure drop system side		1 L	2 M	3 H 5,03	1 L	2 M	3 H 5,03	1 L	2 M	3 H 7,97	1 L	2 M	3 H 7,97	1 L	2 M	3 H	1 L	2 M	14,00 1227
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2)	I/h kPa	1 L 3,25 286 13	2 M 4,36 383 22	3 H 5,03 442 29	1 L 3,25 286 13	2 M 4,36 383 22	3 H 5,03 442 29	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 8,04 704 10	2 M 11,80 1034 21	3 H 14,00 1227 28	1 L 8,04 704 10	2 M 11,80 1034 21	14,00 1227 28
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity	I/h kPa kW	1 L 3,25 286 13	2 M 4,36 383 22 2,17	3 H 5,03 442 29	3,25 286 13	2 M 4,36 383 22 2,17	3 H 5,03 442 29	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 8,04 704 10	2 M 11,80 1034 21	3 H 14,00 1227 28	1 L 8,04 704 10	2 M 11,80 1034 21	H 14,00 1227 28 7,00
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side	I/h kPa kW I/h	1 L 3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377	3 H 5,03 442 29 2,50 434	1 L 3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377	3 H 5,03 442 29 2,50 434	1 L 6,29 552 21 3,13 543	2 M 7,23 635 27 3,60 624	3 H 7,97 699 32 3,96 688	1 L 6,29 552 21 3,13 543	2 M 7,23 635 27 3,60 624	3 H 7,97 699 32 3,96 688	1 L 8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025	3 H 14,00 1227 28 7,00 1216	1 L 8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025	H 14,00 1227 28 7,00 1216
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side	I/h kPa kW	1 L 3,25 286 13	2 M 4,36 383 22 2,17	3 H 5,03 442 29	3,25 286 13	2 M 4,36 383 22 2,17	3 H 5,03 442 29	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 6,29 552 21	2 M 7,23 635 27	3 H 7,97 699 32	1 L 8,04 704 10	2 M 11,80 1034 21	3 H 14,00 1227 28	1 L 8,04 704 10	2 M 11,80 1034 21	H 14,00 1227 28 7,00 1216
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3)	I/h kPa kW I/h kPa	1 L 3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	3,25 286 13 1,62 281	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025 22	3 H 14,00 1227 28 7,00 1216 30	8,04 704 10 4,00 695	2 M 11,80 1034 21 5,90 1025 22	H 14,00 1227 28 7,00 1216 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity	I/h kPa kW I/h kPa	3,25 286 13 1,62 281 13	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	3,25 286 13 1,62 281 13	2 M 4,36 383 22 2,17 377 22	3 H 5,03 442 29 2,50 434 29	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	1 L 6,29 552 21 3,13 543 20	2 M 7,23 635 27 3,60 624 26	3 H 7,97 699 32 3,96 688 31	1 L 8,04 704 10 4,00 695 11	2 M 11,80 1034 21 5,90 1025 22	3 H 14,00 1227 28 7,00 1216 30	8,04 704 10 4,00 695 11	2 M 11,80 1034 21 5,90 1025 22	H 14,00 1227 28 7,00 1216 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C(2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C(3) Cooling capacity Sensible cooling capacity	I/h kPa kW I/h kPa kW kW	3,25 286 13 1,62 281 13 1,55 1,28	2 M 4,36 383 22 2,17 377 22 2,08 1,68	3 H 5,03 442 29 2,50 434 29 2,40 1,97	1 L 3,25 286 13 1,62 281 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68	3 H 5,03 442 29 2,50 434 29 2,40 1,97	1 L 6,29 552 21 3,13 543 20 3,00 2,01	2 M 7,23 635 27 3,60 624 26 3,45 2,50	3 H 7,97 699 32 3,96 688 31 3,80 2,85	1 L 6,29 552 21 3,13 543 20 3,00 2,01	2 M 7,23 635 27 3,60 624 26 3,45 2,50	3 H 7,97 699 32 3,96 688 31 3,80 2,85	8,04 704 10 4,00 695 11 4,00 2,85	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30	1 L 8,04 704 10 4,00 695 11 4,00 2,85	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50	14,00 1227 28 7,00 1216 30 7,00 5,30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side	I/h kPa kW I/h kPa kW I/h kPa	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030	14,00 1227 28 7,000 1216 30 7,000 5,300 1201
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side	I/h kPa kW I/h kPa kW kW	3,25 286 13 1,62 281 13 1,55 1,28	2 M 4,36 383 22 2,17 377 22 2,08 1,68	3 H 5,03 442 29 2,50 434 29 2,40 1,97	1 L 3,25 286 13 1,62 281 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68	3 H 5,03 442 29 2,50 434 29 2,40 1,97	1 L 6,29 552 21 3,13 543 20 3,00 2,01	2 M 7,23 635 27 3,60 624 26 3,45 2,50	3 H 7,97 699 32 3,96 688 31 3,80 2,85	1 L 6,29 552 21 3,13 543 20 3,00 2,01	2 M 7,23 635 27 3,60 624 26 3,45 2,50	3 H 7,97 699 32 3,96 688 31 3,80 2,85	8,04 704 10 4,00 695 11 4,00 2,85	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30	1 L 8,04 704 10 4,00 695 11 4,00 2,85	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50	14,00 1227 28 7,000 1216 30 7,000 5,300 1201
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C/40 °C(2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C/12 °C(3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan	I/h kPa kW I/h kPa kW I/h kPa kW I/h kPa	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 3,25 286 13 1,62 281 13 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	1 L 8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	H 14,00 1222 28 7,000 1216 30 7,000 120 120 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type	I/h kPa kW I/h kPa kW kW I/h kPa type	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	3,25 286 13 1,62 281 13 1,55 1,28 267	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23	H 14,000 1227 28 7,000 1216 30 7,000 5,300 1201 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor	I/h kPa kW I/h kPa kW kW I/h kPa type type	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	3,25 286 13 1,62 281 13 1,55 1,28 267	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	6,29 552 21 3,13 543 20 3,00 2,01 516 21	7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	H 14,000 1227 28 7,000 12166 30 7,000 5,300 12011 30 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number	I/h kPa kW I/h kPa kW I/h kPa type type no.	1 L S S S S S S S S S S S S S S S S S S	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 all	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 Tangentia	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 Tangentia	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	H 14,010 1227 28 7,000 1216 30 7,000 1201 30 30 30 30 30 30 30 30 30 30 30 30 30
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 16angentia 1 390	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1 390	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 13agentia 1 859	3 H 14,00 1227 28 7,00 1216 30 7,00 1210 30 1201 30 1082	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 23 23 23 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	H 14,000 1227 28 7,000 1216 30 7,000 1201 30 1201 30 1082 1082
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power	I/h kPa kW I/h kPa kW I/h kPa type type no.	1 L S S S S S S S S S S S S S S S S S S	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 all	3,25 286 13 1,62 281 13 1,55 1,28 267 13	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 Tangentia	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	6,29 552 21 3,13 543 20 3,00 2,01 516 21	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 Tangentia	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 6,00 4,50 1030 23	H 14,00 1222 28 7,000 1216 30 7,000 7,000 1200 30 1200 30 1200 30 1000 1000 10
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (4)	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 3,25 286 13 1,62 281 13 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 24 Information 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	1 L 3,25 286 13 1,62 281 13 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2 Tangentia 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 I	3,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 Tangentia 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 1201 30 1201 30 1082 75	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 4,50 1030 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	H 14,0 122 28 7,00 121 30 7,00 30 30 120 30 108 75
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (4) Sound power level	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 3,25 286 13 1,62 281 13 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 Iangentia 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 I us 53,0	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 I us 540 48	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 13agentia 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 1210 30 1201 30 1082 75 60,0	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 22 6,00 4,50 1030 23 23 23 23 23 555 55	14,0 122 28 7,00 121 30 7,00 5,33 120 30 108 75
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (4) Sound power level Sound pressure	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 3,25 286 13 1,62 281 13 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 24 Information 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	1 L 3,25 286 13 1,62 281 13 13 1,55 1,28 267 13 320 22	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2 Tangentia 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 1 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 I	3,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 Tangentia 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 1201 30 1201 30 1082 75	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 4,50 1030 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	14,0 122 28 7,00 121 30 7,00 5,33 120 30 108 75
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (4) Sound power level Sound pressure Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W dB(A)	1 L 3,25 286 13 1,62 281 13 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 1angentia 390 23 48,0 39,5	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 21 Tangentia 390 23 48,0 39,5	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 I us 440 27	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 I us 540 48	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 13angentia 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 1210 30 1201 30 1082 75 60,0	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 23 23 23 24 25 25 25 25 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	14,00 1222 28 7,00 1211 30 7,00 5,30 1200 30 108.2 75
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (4) Sound power level Sound pressure Diametre hydraulic fittings Main coil	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W	1 L 3,25 286 13 1,62 281 13 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 Iangentia 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 440 27	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 2Tangentia 1 390 23	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 I us 440 27	1 L 6,29 552 21 3,13 543 20 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 As 370 31	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 I us 540 48	8,04 704 10 4,00 695 11 4,00 2,85 686 11	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 13agentia 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 1210 30 1201 30 1082 75 60,0	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As	2 M 11,80 1034 21 5,90 1025 22 22 22 6,00 4,50 1030 23 23 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	14,0 122 28 7,00 121 30 7,00 5,33 120 30 108 75
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (2) Heating capacity Water flow rate system side Pressure drop system side Cooling performance 7 °C / 12 °C (3) Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Pressure drop system side Fan Type Fan motor Number Air flow rate Input power Fan coil sound data (4) Sound power level Sound pressure Diametre hydraulic fittings	kW I/h kPa kW I/h kPa kW I/h kPa type type no. m³/h W dB(A)	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0 34,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 1angentia 390 23 48,0 39,5	3 H 5,03 H 29 2,50 434 29 2,40 1,97 413 29 440 27 53,0 44,5	1 L 3,25 286 13 1,62 281 13 1,55 1,28 267 13 320 22 42,0 34,0	2 M 4,36 383 22 2,17 377 22 2,08 1,68 358 22 21 Tangentia 390 23 48,0 39,5	3 H 5,03 442 29 2,50 434 29 2,40 1,97 413 29 1 1 us 440 27	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 370 31 44,0 35,5	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 540 48	1 L 6,29 552 21 3,13 543 20 3,00 2,01 516 21 370 31 44,0 35,5	2 M 7,23 635 27 3,60 624 26 3,45 2,50 593 27 Iangentia 470 41 49,0 40,5	3 H 7,97 699 32 3,96 688 31 3,80 2,85 654 32 I us 540 48,55	8,04 704 10 4,00 695 11 4,00 2,85 686 11 As 44,0 35,5	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 13angentia 1 859 55	3 H 14,00 1227 28 7,00 1216 30 7,00 5,30 1201 30 1082 75 60,0 51,5	8,04 704 10 4,00 695 11 4,00 2,85 686 11 1 As 33,8	2 M 11,80 1034 21 5,90 1025 22 22 6,00 4,50 1030 23 23 23 23 24 25 25 25 25 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	H 14,00 1227 28 7,000 1216 30 7,000 1201 30 1082 75 60,0 51,5

⁽¹⁾ Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
(3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
(4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.

DIMENSIONS

		FCW22VL	FCW32VL	FCW42VL	FCW52VL	FCW222V	FCW223V
Dimensions and weights						*	
	mm	298	305	360	365	298	298
В	mm	880	990	1170	1450	880	880
C	mm	205	210	220	230	205	205
Empty weight	kg	9	10	19	28	9	9
		FCW322V	FCW323V	FCW422V	FCW423V	FCW522V	FCW523V
Dimensions and weights							
A	mm	305	305	360	360	365	365
В	mm	990	990	1170	1170	1450	1450
C	mm	210	210	220	220	230	230
Empty weight	ka	10	10	19	19	28	28

FCWI

Fan coils wall-mount installation

- Versions with internal 2 or 3-way valve
- Electric saving equal to 50% with respect to a fan coil with 3-speed motor
- Total comfort: reduced temperature and humidity oscillations
- Fully silent operation

DESCRIPTION

Fan coil model for wall-mount installations, whose elegance and reduced dimensions make it aesthetically pleasing; this terminal is thus suitable for applications in residential or light commercial sectors.

The product is configurable and available with or without (2- or 3-way) valve which ensures compatibility with various system requirements.

VERSIONS

2V Internal 2-way valve and microprocessor control

3V Internal 3-way valve and microprocessor control

VL Without internal valve but with microproccessor control

FEATURES

Case

Aesthetically styled with flat panel:

- Air flow louvered louvers with horizontal adjustment facility
- Motorised deflector louvers that can be activated by remote control TLW3 for vertical orientation of the outlet air with steps fixed positions and continuous oscillation
- Colors pure white pantone GRIS 1C RAL 9010.

Ventilation group

Consisting of a tangential fan, especially quiet and directly coupled to the motor shaft.

Brushless motor with continuous speed variation 0-100%.

Inverter motor allows precise adaptation to the real indoor environment requirements without temperature oscillations.

This lowers noise and generates a better response to heat loads and a higher stability in the desired temperature inside the room.

The high efficiency even with low speed, makes it possible to reduce power consumption (more than 50% less than fan coils with traditional motors).

Heat exchanger coil

With copper pipes and aluminium louvers, the main coil has female gas hydraulic connections and is fitted with air vents.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Air filter

Fan coils are fitted with air filters easy to remove and clean.

Control

The versions with microprocessor control have:

- Timer for programming switch-off or switch-on (TLW3/ PFW3)
- Program for operation in automatic, cooling, heating, ventilation and air ionising mode (TLW3/ PFW3)
- Night time Well-being Program (TLW3/ PFW3)
- Automatic season change (TLW3/ PFW3)
- Automatic re-start after power cut.
- Possibility of using a contact on the board to switch off the unit (window contact) or change the set point (presence contact) via microswitch.
- Controllable via RS485 port with Modbus RTU communication protocol.

ACCESSORIES

For models with control board installed

FCWI_2V, 3V, VL it is mandatory to select among the user interfaces designed for the FCWI series (TLW3 o PFW3)

PFW3: This accessory is essential for fan coil operation (as an alternative to TLW3). The PFW3 wired panel is supplied separately from the fan coil. It is used to set the main device operating parameters, and is essential for setting the Modbus address of the unit (handy only if you want to command the unit via the RS-485 port).

TLW3: Mandatory accessory. Infrared remote control with liquid crystal display for controlling all unit functions. The remote control is delivered separately from the fan coil; with a single remote control it is possible to control more than one fan coil. The remote control is equipped with a support that allows you to hang it on the wall, from which it can be operated without having to be removed.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

ACCESSORIES COMPATIBILITY

Control panels and dedicated accessories

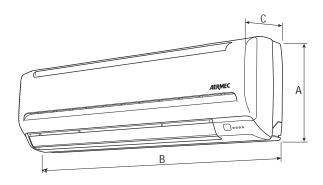
Model	Ver	22	32	42	52
PFW3 (1)	2V,3V,VL	•	•	•	•
TLW3 (1)	2V,3V,VL	•	•	•	•
(1) Mandatory accessory.					
Model	Ver	22	32	42	52
VMF-485LINK	2V,3V,VL	•	•	•	•

PERFORMANCE SPECIFICATIONS

			411110011			. 4111110 011												411110000	
			CWI22V			CWI32V			CWI42V			CWI52V			CWI222		F	CW1223	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	2,85	3,66	4,29	3,73	4,51	5,24	6,44	7,84	8,56	8,20	13,06	15,28	2,35	3,02	4,03	2,35	3,02	4,03
Water flow rate system side	I/h	250	321	377	328	396	460	565	688	751	718	1145	1339	206	265	354	206	265	354
Pressure drop system side	kPa	4	6	9	9	12	16	16	22	26	10	23	30	9	14	24	9	14	24
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,42	1,82	2,14	1,85	2,24	2,61	3,21	3,90	4,26	4,10	6,50	7,60	1,17	1,50	2,00	1,17	1,50	2,00
Water flow rate system side	l/h	246	316	371	322	390	453	556	677	739	712	1129	1320	203	261	348	203	261	348
Pressure drop system side	kPa	4	6	8	9	12	16	15	22	25	10	22	29	9	14	24	9	14	24
Cooling performance 7 °C / 12 °C (3)																			
Cooling capacity	kW	1,37	1,74	2,05	1,78	2,15	2,50	3,07	3,74	4,08	4,40	6,50	7,45	1,10	1,45	1,90	1,10	1,45	1,90
Sensible cooling capacity	kW	1,16	1,47	1,73	1,51	1,82	2,04	2,59	3,10	3,47	3,30	5,05	5,80	0,92	1,20	1,55	0,92	1,20	1,55
Water flow rate system side	l/h	236	299	353	306	370	430	528	643	702	755	1115	1278	189	249	327	189	249	327
Pressure drop system side	kPa	5	7	9	8	11	15	15	21	26	12	24	30	9	14	23	9	14	23
Fan																			
Туре	type									Tang	ential								
Fan motor	type									Inve	erter								
Number	no.		1			1			1			1			1			1	
Air flow rate	m³/h	280	340	389	330	400	446	476	602	684	592	945	1179	270	330	380	270	330	380
Input power	W	13	17	22	14	18	22	24	29	33	22	36	55	13	17	22	13	17	22
Fan coil sound data (4)																			
Sound power level	dB(A)	42,0	48,0	53,0	42,0	48,0	53,0	44,0	49,0	54,0	44,0	54,0	60,0	42,0	48,0	53,0	42,0	48,0	53,0
Sound pressure	dB(A)	34,0	39,5	44,5	34,0	39,5	44,5	35,5	40,5	45,5	35,5	45,5	51,5	34,0	39,5	44,5	34,0	39,5	44,5
Diametre hydraulic fittings																			
Main coil Section 1	Ø		1/2"			1/2"			1/2"			3/4"			1/2"			1/2"	
Power supply																			
Power supply										230V-	~50Hz								

		ı	CW1322	V	F	CWI323	V	F	CW1422	V	F	FCWI423	V	FCWI522V				CWI523	V
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н	L	М	Н
Heating performance 70 °C / 60 °C (1)																			
Heating capacity	kW	3,25	4,36	5,03	3,25	4,36	5,03	6,29	7,23	7,97	6,29	7,23	7,97	8,04	11,80	14,00	8,04	11,80	14,00
Water flow rate system side	I/h	286	383	442	286	383	442	552	635	699	552	635	699	704	1034	1227	704	1034	1227
Pressure drop system side	kPa	13	22	29	13	22	29	21	27	32	21	27	32	10	21	28	10	21	28
Heating performance 45 °C / 40 °C (2)																			
Heating capacity	kW	1,62	2,17	2,50	1,62	2,17	2,50	3,13	3,60	3,96	3,13	3,60	3,96	4,00	5,90	7,00	4,00	5,90	7,00
Water flow rate system side	l/h	281	377	434	281	377	434	543	624	688	543	624	688	695	1025	1216	695	1025	1216
Pressure drop system side	kPa	13	22	29	13	22	29	20	26	31	20	26	31	11	22	30	11	22	30
Cooling performance 7 °C / 12 °C (3)																			
Cooling capacity	kW	1,55	2,08	2,40	1,55	2,08	2,40	3,00	3,45	3,80	3,00	3,45	3,80	4,00	6,00	7,00	4,00	6,00	7,00
Sensible cooling capacity	kW	1,28	1,68	1,97	1,28	1,68	1,97	2,01	2,50	2,85	2,01	2,50	2,85	2,85	4,50	5,30	2,85	4,50	5,30
Water flow rate system side	l/h	267	358	413	267	358	413	516	593	654	516	593	654	686	1030	1201	686	1030	1201
Pressure drop system side	kPa	13	22	29	13	22	29	21	27	32	21	27	32	11	23	30	11	23	30
Fan																			
Туре	type									Tang	ential								
Fan motor	type									Inve	erter								
Number	no.		1			1			1			1			1			1	
Air flow rate	m³/h	320	390	440	320	390	440	370	470	540	370	470	540	535	859	1082	535	859	1082
Input power	W	14	18	22	14	18	22	24	29	33	24	29	33	22	36	55	22	36	55
Fan coil sound data (4)																			
Sound power level	dB(A)	42,0	48,0	53,0	42,0	48,0	53,0	44,0	49,0	54,0	44,0	49,0	54,0	44,0	54,0	60,0	44,0	54,0	60,0
Sound pressure	dB(A)	34,0	39,5	44,5	34,0	39,5	44,5	35,5	40,5	45,5	35,5	40,5	45,5	35,5	45,5	51,5	35,5	45,5	51,5
Diametre hydraulic fittings																			
Main coil	Ø		1/2"			1/2"			1/2"			1/2"			3/4"			3/4"	
Power supply																			
Power supply										230V	~50Hz								

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C
 (2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C/40 °C; EUROVENT
 (3) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT
 (4) Aermec determines the sound power value on the basis of measurements taken in accordance with standard UNI EN 16583:15, respecting the Eurovent certification.


210

10

mm

kg

DIMENSIONS

		FCWI22VL	FCWI32VL	FCWI42VL	FCWI52VL	FCWI222V	FCWI223V
Dimensions and weights							
A	mm	298	305	360	365	298	298
В	mm	880	990	1170	1450	880	880
C	mm	205	210	220	230	205	205
Empty weight	kg	9	10	19	28	9	9
		FCWI322V	FCWI323V	FCWI422V	FCWI423V	FCWI522V	FCWI523V
Dimensions and weights							
A	mm	305	305	360	360	365	365
В	mm	990	990	1170	1170	1450	1450

210

10

Aermec si riserva la facoltà di apportare in qualsiasi momento tutte le modifiche ritenute necessarie per il miglioramento del prodotto con eventuale modifica dei relativi dati tecnici.

www.aermec.com

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

220

19

220

19

230

28

Empty weight

230

28

UFB

Handling units Floating floor installation

- Low electrical consumption
- Fully silent operation
- Easy maintenance.

DESCRIPTION

Air handling terminal for installations in floating floor, also called floating or raised floor. Is a unit consisting of a fan unit with brushless inverter motor, enclosed in a metal structure with mixing chamber equipped with motor-driven damper, filter and electronic card. The use of these units is expected within a floating floor, often used in offices or equipment rooms for data centre and similar. In these systems there is often an air handling unit that cools the environment by entering the treated air in the underfloor and the buster units combine to improve the distribution in the rooms and, depending on the version, perform localized after-treatment. Using the two ambient air temperature sensors (return air) and the underfloor air temperature sensors, the electronic regulation through the positioning of the motor-driven damper, performs a mix to reach the temperature setpoint set with the local user interface (type VMF-E4) or by the supervision system.

VERSIONS

UFB20: booster unit for the distribution of the UTA treated air, the mix with room air for the room temperature control.

UFB20W: booster unit for UTA treated air distribution, the mix with the ambient air and any post-treatment using a water coil (heating, cooling, dehumidification) for the control of the room temperature.

UFB20HE: booster unit for UTA treated air distribution, the mix with the ambient air and any post-treatment using electric heating coil (only in heating) for the control of the room temperature.

FEATURES

- Unit is easy to install, as completely compatible with squares 600x600 mm used in these applications. Using the normal support systems of such floating floors allow to fully replace a square, obtaining a perfect joint, in line with the rest of the floor, with no "step".
- Centrifugal fan with Brushless inverter with continuous speed variation, 0-100%, which allows the exact adjustment to the requests of the internal environment without temperature fluctuations. Also allows an electric savings and better acoustic comfort.
- Compact dimensions, thickness 129 mm
- For a better air quality, the UFB are equipped with electro-statically pre-loaded filters.

ACCESSORIES ONLY AVAILABLE FOR UFB20W

USC4UFB: Condensate drainage device for use when natural run-off is not possible.

VCF-U: Kit consisting of motor-driven 3-way valve with insulating shell, insulated copper couplings and pipes. Versions with 230V~50Hz power supply.

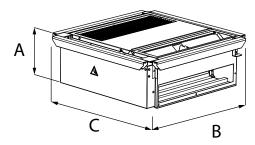
VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: Wall-mounted user interface. Grey front panel PANTONE 425C (METAL).

VMF-E4X: Wall-mounted user interface. Light grey front panel PAN-TONE COOL GRAY 1C.

For more information about the VMF system, refer to the specific documentation available on the site www.aermec.com

TECHNICAL DATA


2-pipe

		UFB20W	
	1	2	3
	L	M	Н
kW	1,91	2,53	2,96
l/h	167	222	260
kPa	3	4	6
kW	1,13	1,51	1,77
l/h	144	210	258
kPa		5	6
kW	0,84	1,22	1,50
kW	0,67	1,00	1,24
l/h	144	210	258
kPa	3	5	6
type		Centrifugal	
type		Inverter	
no.		1	
m³/h	140	220	290
W	5	8	12
	V1	V2	V3
Ø		1/2″	
	<u> </u>	230V~50Hz	
	kW I/h kPa kW I/h kPa kW type type no. m²/h W	L L L L L L L L L L	1

- (1) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C (2) Room air 20 °C d.b.; Water (in) 50 °C; Water flow rate as in cooling mode (3) Room air temperature 27°C d.b./19°C w.b.; Water (in/out) 7 °C/12 °C; EUROVENT

- P-P-							
			UFB20EH			UFB20	
		1	2	3	1	2	3
		L	М	Н	L	M	Н
Fan							
Туре	type		Centrifugal			Centrifugal	
Fan motor	type		-			-	
Number	no.		1			1	
Air flow rate	m³/h	140	220	290	140	220	290
Input power	W	5	8	12	5	8	12
Electrical wiring		V1	V2	V3	V1	V2	V3
Diametre hydraulic fittings							
Main coil	Ø		1/2"			1/2"	
Electric heater							
Input power	W		500			-	
Maximum current	A		0,20			-	
Power supply							
Power supply			230V~50Hz			230V~50Hz	

DIMENSIONS AND WEIGHTS

		UFB20W	
Dimensions and we	eights		
A	mm	219	
В	mm	571	
C	mm	572	
Empty weight	kg	17	

		UFB20HE	UFB20
Dimensions and we	eights		
A	mm	219	219
В	mm	571	571
C	mm	572	572
Empty weight	kg	17	17

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

EHT

Active chilled beams

Primary air flow rate for single unit 17,0 ÷ 947,0 m³/h Nominal width 600 mm

- Easy installation, thanks to the integrated valves.
- Extremely high induction ratios.
- High primary air flow rate at required low useful static pressure.
- Double water-side heat exchanger with low pressure drops.
- 4-pipe unit that can be installed in both 2-pipe and 4-pipe systems.

DESCRIPTION

The EHT series is the new generation of active chilled beams developed by Aermec in partnership with Aachen**University** (Germany). These terminals are particularly easy to install because their dimensions are compatible with modular 600 x 600 mm suspended ceilings and they are already fitted with hydronic control components (each terminal has two 2-way valves, one for the hot circuit and one for the cold circuit, and actuators).

The ease of installation is also linked to other factors, such as:

- possibility of front or side hydraulic connection,
- primary air connection on both sides,
- possibility of adjacent installations,
- reduced terminal height.

The innovative nozzle geometry was developed and optimised with the help of CFD analyses and verified with accurate aeraulic tests in the Aermec and Aachen University laboratories.

The result of the research was a terminal with a high specific Watt per metre power, which reduces the number of terminals and thus lower costs and space requirements.

Aeraulic optimisation results in low pressure drops leading to reduced ventilation consumption and noise.

The use of two inclined heat exchangers maximises the exchange area and halves the hydraulic pressure drops, thereby providing maximum system efficiency.

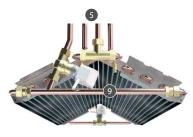
Simple access to all components makes maintenance and cleaning quick and easy.

A system of this type is able to limit operating costs thanks to its high en-ergy efficiency, which also safeguards the environment. This is one of Aer-mec's foremost goals, as it skilfully develops its products combining maxi-mum practicality with the minimum environmental impact.

Chilled Beams are terminals that work in cooling mode with medium temperature water, so that the chillers feeding them can work at maximum efficiency. Room humidity is controlled by Primary Air Handling Units, this way mould and bacterial growth is prevented from forming because there is no condensation in the rooms.

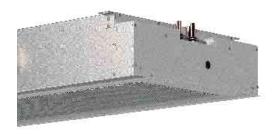
APPLICATION

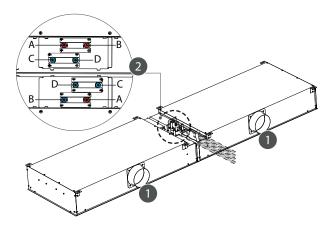
Chilled beams are suitable for ventilation, cooling and heating of rooms up to 4 m high. They can be installed in open space offices, airports, train stations and hospital wards and always ensure that the air is exchanged properly and evenly distributed by optimising the temperature throughout.


ADVANTAGES OF THE EHT ACTIVE CHILLED BEAMS RANGE

- Quiet operation, thanks to the innovative design of the nozzles and the lack of moving parts;
- Energy savings;
- Optimum environmental comfort because of the perfect air distribution;
- Excellent hygiene standards: the primary air is dehumidified during the initial treatment phase, so there is no condensate at all on the chilled beam, eliminating the root cause of mould proliferation caused by stagnating condensate;
- Optimum access to components: the components are accessed from below, just by opening the suction grille;
- Continuous service, thanks to the head positioning of two adjacent units:
- No maintenance: filtering is handled by the air treatment unit.

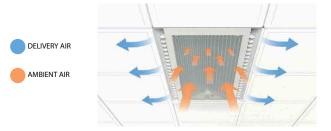
MAIN COMPONENTS


- 1. Plenum
- 2. Primary air inlet
- 3. Suspension brackets
- 4. Nozzles
- 5. Hydraulic connections
- **6.** Coils
- 7. Deflectors
- 8. Grille
- 9. Control component



Hydraulic connections and control components on the hydronic side (two 2-way valves and actuators inside the terminal).

HYDRAULIC CONNECTIONS


Hydraulic connections can be done on the side or front.

- A. Outlet
- **B.** Inlet
- C. Outlet
- D. Inlet
- 1. Primary air inlet
- 2. Hydraulic connections

AIR FLOW RATE

When the ambient air enters the exchange coils, it heats up or cools down depending on the operating season.

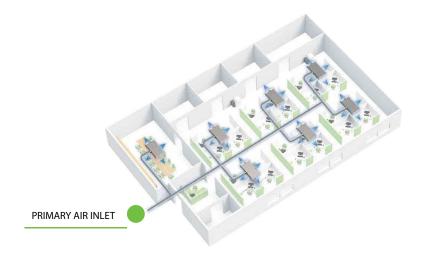
OPERATION

EHT chilled beams have been developed with the aim of obtaining high performance while still ensuring the highest degree of comfort in the occupied area.

This is achieved through the coanda effect and the inductive effect.

Coanda effect:

It keeps the air flow on the ceiling until it reaches residual speeds and temperatures that do not trigger critical situations, such as cold air currents.



Coanda effect.

Inductive effect:

Primary fresh air is filtered and treated by a dedicated plant and sent by the fans therein to the chilled beam plenums. The suitable overpressure that is maintained in the plenums pushes the primary air through the nozzles which, due to the particular geometry of their profile, inject it into the environment. The high speed of the air coming out of the noz-

zles forms low-pressure areas around them, which draw in ambient air and force it through the heat exchange coils.

CONFIGURATOR

By suitably combining the numerous options available, it is possible to configure each model in such a way as to meet the most specific system requirements.

Field	Description
1,2,3	EHT
4	Nominal width
6	600 mm
5,6	Nominal length
09	900 mm
12	1200 mm
15	1500 mm
18	1800 mm
21	2100 mm
24	2400 mm
27	2700 mm
30	3000 mm
7	Delivery range
0	XS air flow rate
1	S air flow rate
2	M air flow rate
3	L air flow rate
4	XL air flow rate

ACCESSORIES

 $\mathbf{MCR} :$ Electronic control board to control the active chilled beams of the EHT family.

MCR-HP: The MCR-HP accessory is a humidity probe that can ensure the correct operation of chilled beams.

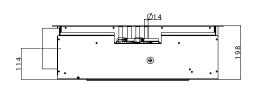
MZCSA: Air probe for controlling modulating or pressure independent

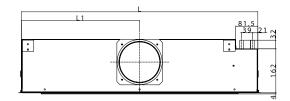
Accessories available for all versions.

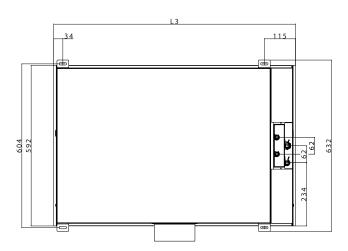
GENERAL TECHNICAL DATA

				(Cooling pe	rformance	S			Heatir	ng perform	nances	
Size	Q_p	Δp_a	Δθ,ς	$Q_{wN,c}$	$\Delta p_{w.c}$	$\Delta \theta_{w.c}$	P	$P_{w.c}$	$\Delta\theta_{,h}$	$Q_{wN,h}$	$\Delta p_{w.h}$	$\Delta \theta_{w.h}$	$P=P_{w.h}$
	M³/h	Pa	K	L/h	KPa	K	W	W	K	L/h	KPa	K	W
EHT 6090	17	50	9	141	1,2	2	383	325	30	69	0,9	4,1	328
EHT 6090	24	100	9	155	1,4	2,2	478	396	30	69	0,9	4,7	372
EHT 6090	29	150	9	155	1,4	2,4	535	436	31	69	0,9	5	398
EHT 6091	34	50	9	141	1,2	2,4	511	395	31	69	0,9	5,2	406
EHT 6091	47	100	9	151	1,4	2,7	630	470	31	69	0,9	5,6	455
EHT 6091 EHT 6092	58 67	150 50	9	155 141	1,4 1,2	2,9 2,7	724 673	526 445	31	69 69	0,9	6,1 4,9	492 380
EHT 6092	95	100	9	155	1,4	3	865	541	31	69	0,9	5,4	430
EHT 6092	116	150	8	155	1,4	3,3	989	594	31	69	0,9	5,8	463
EHT 6093	84	50	9	151	1,4	2,7	755	469	31	69	0,9	5,3	417
EHT 6093	118	100	8	141	1,2	3,3	945	543	31	69	0,9	6,1	473
EHT 6093	145	150	8	155	1,4	3,4	1111	617	31	69	0,9	6,5	510
EHT 6094	135	50	9	151	1,4	2,8	950	490	31	69	0,9	5,8	463
EHT 6094	190	100	8	151	1,4	3,3	1223	576	31	69	0,9	6,5	524
EHT 6094	232	150	8	151	1,4	3,6	1426	635	32	69	0,9	7	565
EHT 6120	24	50	9	137	1,6	2,6	500	418	31	73	1,1	5,7	482
EHT 6120	34	100	9	144	1,8	3	616	500	31	73	1,1	6,6	549
EHT 6120	42	150	8	144	1,8	3,3	697	554	32	73	1,1	7	593
EHT 6121	49	50	8	130	1,4	3,3	668	501	32	73	1,1	7,3	605
EHT 6121	68	100	8	144	1,8	3,6	833	601	32	73	1,1	8,4	686
EHT 6121	83	150	8	141	1,7	4	938	655	32	73	1,1	8,8	738
EHT 6122	97	50	8	137	1,6	3,6	902	571	31	73	1,1	6,9	566
EHT 6122	137	100	8	141	1,7	4,1	1144	677	32	73	1,1	7,6	642
EHT 6122 EHT 6123	167 121	150 50	8 8	141 144	1,7 1,8	4,5 3,6	1306 1011	737 599	32 32	73 73	1,1 1,1	8,1 7,4	691 622
EHT 6123	171	100	8	144	1,8	4,2	1285	702	32	73	1,1	8,5	710
EHT 6123	208	150	8	144	1,8	4,6	1472	763	33	73	1,1	9,1	764
EHT 6124	194	50	8	126	1,4	4,1	1256	595	32	73	1,1	8,1	691
EHT 6124	273	100	8	141	1,7	4,4	1652	722	33	73	1,1	9,4	790
EHT 6124	334	150	8	141	1,7	4,8	1926	788	33	73	1,1	10,2	854
EHT 6124	32	50	8	144	2,3	3,1	625	516	31	80	1,4	6,9	646
EHT 6150	45	100	8	144	2,3	3,6	762	609	32	80	1,4	7,9	735
EHT 6150	54	150	8	141	2,2	4	839	655	32	80	1,4	8,4	787
EHT 6151	63	50	8	144	2,3	3,7	830	615	32	80	1,4	8,7	804
EHT 6151	89	100	8	144	2,3	4,3	1024	721	33	80	1,4	10,1	920
EHT 6151	109	150	8	144	2,3	4,7	1158	787	33	80	1,4	10,6	992
EHT 6152	127	50	8	137	2,1	4,3	1117	684	32	80	1,4	8,2	755
EHT 6152	178	100	8	144	2,3	4,8	1415	808	33	80	1,4	9,5	861
EHT 6152	218	150	7	141	2,2	5,3	1614	871	33	80	1,4	10,2	931
EHT 6153	158	50	8	144	2,3	4,3	1255	717	32	80	1,4	8,9	831
EHT 6153	223	100	8	144	2,3	5	1590	830	33	80	1,4	10,2	951
EHT 6153	272 254	150 50	- 7 8	144	2,3	5,4	1829	902 741	33	80	1,4	10,9	932
EHT 6154 EHT 6154	357	100	7	141 141	2,2	4,5 5,2	1606 2071	855	34	80	1,4 1,4	10,2 11,3	1062
EHT 6154	436	150	7	144	2,3	5,6	2416	930	34	80	1,4	12,7	1158
EHT 6180	39	50	8	141	2,7	3,6	725	592	32	84	1,6	8,3	811
EHT 6180	55	100	8	141	2,7	4,2	880	693	33	84	1,6	9,5	927
EHT 6180	67	150	8	141	2,7	4,6	982	754	33	84	1,6	10,5	1005
EHT 6181	78	50	8	141	2,7	4,3	972	706	33	84	1,6	10,5	1020
EHT 6181	110	100	8	141	2,7	5	1192	817	34	84	1,6	12,1	1171
EHT 6181	135	150	7	141	2,7	5,4	1352	892	35	84	1,6	13,3	1275
EHT 6182	157	50	8	137	2,6	4,9	1320	785	33	84	1,6	9,9	957
EHT 6182	220	100	7	141	2,7	5,6	1653	903	34	84	1,6	11,3	1094
EHT 6182	269	150	7	141	2,7	6	1899	982	34	84	1,6	12,2	1185
EHT 6183	195	50	8	141	2,7	5	1475	811	34	84	1,6	11,1	1061
EHT 6183	275	100	7	141	2,7	5,7	1874	937	34	84	1,6	12,8	1219
EHT 6183	336	150	7	141	2,7	6,2	2149	1004	35	84	1,6	13,7	1319
EHT 6184	313	50	7	141	2,7	5,2	1905	838	34	84	1,6	12,2	1185
EHT 6184	441	100	7	141	2,7	5,9	2468	965	35	84	1,6	14,1	1366
EHT 6184	538	150	7	141	2,7	6,4	2866	1033	36	84	1,6	15,2	1482
EHT 6210	47	50 100	9	231 231	8,7	2,9	939	779 917	33	87 87	1,8	9,9	994
EHT 6210 EHT 6210	66 80	150	8	231	8,7 9	3,4	1142 1278	1005	34	87 87	1,8 1,8	11,4	1138 1226
EHT 6210	93	50	8	234	8,7	3,7	12/8	930	34	87	1,8	12,1 12,6	1252
EHT 6211	131	100	8	227	8,4	4,1	1533	1087	35	87	1,8	14,5	1443
EHT 6211	160	150	8	234	9	4,1	1744	1199	36	87	1,8	15,9	1573
EHT 6212	186	50	8	234	9	3,9	1688	1054	34	87	1,8	11,9	1171
EHT 6212	262	100	8	227	8,4	4,6	2112	1219	35	87	1,8	13,6	1347
LIII UZ IZ	202	100		441	∪,⊤	Τ,∪	2112	1417	J.J	07	1,0	13,0	137/

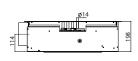
				(Cooling pe	rformance			Heatii	ng perform	nances		
Size	Q _p	Δp _a	Δθ,	Q _{wN.c}	Δp _{w.c}	Δθ _{w.c}	Р	P _{w.c}	Δθ,	$Q_{wN,h}$	$\Delta p_{w,h}$	$\Delta\theta_{w,h}$	P=P _{w.h}
	M³/h	Pa	K	L/h	KPa	K	W	W	K	L/h	KPa	K	W
EHT 6212	320	150	8	231	8,7	5	2418	1328	35	87	1,8	14,6	1460
EHT 6213	233	50	8	234	9	4	1889	1095	34	87	1,8	12,8	1295
EHT 6213	327	100	8	231	8,7	4,7	2378	1264	35	87	1,8	14,7	1491
EHT 6213	400	150	7	234	9	5,1	2741	1378	36	87	1,8	16,4	1631
EHT 6214	373	50	8	231	8,7	4,2	2400	1129	35	87	1,8	14,6	1461
EHT 6214	524	100	8	223	8,2	5	3072	1287	36	87	1,8	17	1690
EHT 6214	640	150	7	231	8,7	5,3	3600	1419	37	87	1,8	18,3	1839
EHT 6240	54	50	8	231	10,1	3,2	1046	862	34	91	2,1	11,4	1176
EHT 6240	76	100	8	227	9,8	3,8	1265	1006	35	91	2,1	13,1	1350
EHT 6240	93	150	8	234	10,4	4,1	1428	1111	35	91	2,1	13,9	1461
EHT 6241	108	50	8	234	10,4	3,8	1407	1039	35	91	2,1	14,5	1493
EHT 6241	152	100	8	231	10,1	4,5	1719	1201	36	91	2,1	16,7	1726
EHT 6241	186	150	8	231	10,1	4,9	1944	1310	37	91	2,1	18,3	1887
EHT 6242	216	50	8	223	9,5	4,4	1886	1150	35	91	2,1	13	1382
EHT 6242	304	100	8	231	10,1	5	2381	1345	36	91	2,1	15,6	1608
EHT 6242	371	150	7	234	10,4	5,4	2728	1464	36	91	2,1	16,8	1746
EHT 6243	270	50	8	195	7,2	5	2042	1122	35	91	2,1	14,7	1544
EHT 6243	379	100	7	234	10,4	5,1	2685	1394	36	91	2,1	16,9	1782
EHT 6243	463	150	7	231	10,1	5,6	3076	1498	37	91	2,1	18,8	1955
EHT 6244	432	50	8	205	8	5	2657	1185	36	91	2,1	16,8	1746
EHT 6244	608	100	7	234	10,4	5,3	3510	1438	38	91	2,1	19,5	2029
EHT 6244	742	150	7	231	10,1	5,8	4071	1543	39	91	2,1	21	2211
EHT 6270	61	50	8	231	11,5	3,5	1147	939	35	91	2,3	13,1	1368
EHT 6270	86	100	8	231	11,5	4,1	1392	1099	36	91	2,3	15	1576
EHT 6270	106	150	8	231	11,5	4,5	1566	1205	36	91	2,3	16,7	1729
EHT 6271	123	50	8	231	11,5	4,2	1545	1126	36	91	2,3	16,6	1751
EHT 6271	173	100	8	227	11,1	4,9	1889	1300	38	91	2,3	19,2	2031
EHT 6271	211	150	7	231	11,5	5,3	2134	1415	39	91	2,3	21,1	2224
EHT 6272	246	50	8	231	11,5	4,7	2100	1262	36	91	2,3	15,6	1633
EHT 6272	346	100	7	227	11,1	5,5	2617	1438	37	91	2,3	18	1889
EHT 6272	422	150	7	220	10,4	6	2979	1541	38	91	2,3	19,3	2054
EHT 6273	307	50	8	227	11,1	4,9	2338	1292	37	91	2,3	17,7	1829
EHT 6273	432	100	7	231	11,5	5,6	2962	1490	38	91	2,3	20,3	2123
EHT 6273	527	150	7	231	11,5	6	3414	1618	39	91	2,3	21,7	2308
EHT 6274	492	50	7	223	10,8	5,1	3009	1333	38	91	2,3	19,3	2056
EHT 6274	692	100	7	227	11,1	5,8	3893	1535	40	91	2,3	23,4	2428
EHT 6274	845	150	7	231	11,5	6,2	4545	1666	41	91	2,3	25,2	2654
EHT 6300	69	50	8	231	12,9	3,8	1255	1020	35	95	2,6	14,4	1567
EHT 6300	97	100	8	227	12,5	4,5	1508	1177	36	95	2,6	16,5	1808
EHT 6300	118	150	8	223	12,1	4,9	1681	1279	37	95	2,6	18,3	1978
EHT 6301	138	50	8	223	12,1	4,6	1672	1202	37	95	2,6	18,3	2009
EHT 6301	194	100	7	227	12,5	5,3	2048	1387	39	95	2,6	21,1	2335
EHT 6301	237	150	7	227	12,5	5,7	2317	1509	40	95	2,6	23,2	2562
EHT 6302	276	50	7	227	12,5	5,1	2287	1347	37	95	2,6	17,2	1871
EHT 6302	388	100	7	231	12,9	5,8	2873	1551	38	95	2,6	19,8	2169
EHT 6302	473	150	7	227	12,5	6,3	3271	1659	39	98	2,7	21,3	2362
EHT 6303	344	50	7	231	12,9	5,2	2567	1395	38	95	2,6	19,4	2099
EHT 6303	484	100	7	227	12,9	6	3234	1585	39	95	2,6	22,4	2443
EHT 6303	591	150	7	231	12,3	6,4	3733	1719	40	98	2,7	23,8	2660
EHT 6304	551	50	7	231	12,9	5,4	3314	1437	39	98	2,7	21,3	2363
EHT 6304	775	100	7	227	12,9	6,2	4272	1631	41	95	2,7	25,8	2801
EHT 6304	947	150	7							95			
ЕП 1 0304	94/	130		231	12,9	6,6	4995	1768	42	90	2,6	27,7	3067


Key


	Reference values in cooling		Reference values in heating
Θr	Reference room air temperature 26 °C		Reference room air temperature 22 °C
Θw	Average temperature of the water		Average temperature of the water
Θw_1	Water inlet temperature 16 °C		Water inlet temperature 50 °C
Θw_2	Water Outlet Temperature		Water Outlet Temperature
Θр	Primary air temperature 16 °C		Primary air temperature 22 °C
ΛΩ.	Difference between the reference room air temperature and the average	Δθ,	Difference between the reference room air temperature and the average
Δθ,ς	temperature of the water entering the coil $\Delta\Theta = \Theta_r - \Theta_{w1}$	Δ0 _{,h}	temperature of the water entering the coil $\Delta\Theta = \Theta_r - \Theta_{w1}$
Q_p	Primary air flow rate	Q_p	Primary air flow rate
Δp_a	Pressure drop - air side	Δp_a	Pressure drop - air side
$Q_{wN,c}$	Nominal water flow rate	$Q_{wN,h}$	Nominal water flow rate
$\Delta p_{w,c}$	Water side pressure drop	$\Delta p_{w,h}$	Water side pressure drop
$\Delta\theta_{w,c}$	Water side temperature difference	$\Delta\theta_{w,h}$	Water side temperature difference
Р	Total cooling capacity	Р	Total heating capacity


	Reference values in cooling		Reference values in heating
P	Water side cooling capacity	P	Water side heating capacity

DIMENSIONS AND WEIGHTS


EHT6090 ÷ EHT6214





EHT6240 ÷ EHT6304

		FIIT coop	FUT coos	FUT (000	FUT (000	FUT cood	FUT case	FUT 4434	FUT 4433	FUT (422	FUT 4434
Dimensions and weights		EHT 6090	EHT 6091	EHT 6092	EHT 6093	EHT 6094	EHT 6120	EHT 6121	EHT 6122	EHT 6123	EHT 6124
Width	mm	592	592	592	592	592	592	592	592	592	592
Nominal length	mm	900	900	900	900	900	1200	1200	1200	1200	1200
	mm	872	872	872	872	872	1172	1172	1172	1172	1172
L1	mm	436	436	436	436	436	586	586	586	586	586
L2	mm	-	-	-	-	-	-	-	-	-	-
L3	mm	892	892	892	892	892	1192	1192	1192	1192	1192
L4	mm	-	-	-	-	-	-	-	-	-	-
Net weight	kg	26,00	26,00	26,00	26,00	26,00	35,00	35,00	35,00	35,00	35,00
Gross weight	kg	31	31	31	31	31	41	41	41	41	41
		EHT 6150	EHT 6151	EHT 6152	EHT 6153	EHT 6154	EHT 6180	EHT 6181	EHT 6182	EHT 6183	EHT 6184
Dimensions and weights		2111 0130	2111 0131	2111 0132	2111 0133	2111 0131	2111 0100	2111 0101	2111 0102	2111 0103	2111 0101
Width	mm	592	592	592	592	592	592	592	592	592	592
Nominal length	mm	1500	1500	1500	1500	1500	1800	1800	1800	1800	1800
	mm	1472	1472	1472	1472	1472	1772	1772	1772	1772	1772
L1	mm	736	736	736	736	736	886	886	886	886	886
L2	mm	-	-	-	-	-	-	-	-	-	-
L3	mm	1492	1492	1492	1492	1492	1792	1792	1792	1792	1792
L4	mm	-	-	-	-	-	-	-	-	-	-
Net weight	kg	43,00	43,00	43,00	43,00	43,00	52,00	52,00	52,00	52,00	52,00
Gross weight	kg	52	52	52	52	52	62	62	62	62	62
		EHT 6210	EHT 6211	EHT 6212	EHT 6213	EHT 6214	EHT 6240	EHT 6241	EHT 6242	EHT 6243	EHT 6244
Dimensions and weights											
Width	mm	592	592	592	592	592	592	592	592	592	592
Nominal length	mm	2100	2100	2100	2100	2100	2400	2400	2400	2400	2400
L	mm	2072	2072	2072	2072	2072	2372	2372	2372	2372	2372
L1	mm	1036	1036	1036	1036	1036	711	711	711	711	711
L2	mm	-	-	-	-	-	711	711	711	711	711
L3	mm	2092	2092	2092	2092	2092	2392	2392	2392	2392	2392
<u>L4</u>	mm	-	-	-	-	-	1196	1196	1196	1196	1196
Net weight	kg	61,00	61,00	61,00	61,00	61,00	69,00	69,00	69,00	69,00	69,00
Gross weight	kg	72	72	72	72	72	83	83	83	83	83
		EHT 6270	EHT 6271	EHT 6272	EHT 6273	EHT 6274	EHT 6300	EHT 6301	EHT 6302	EHT 6303	EHT 6304
Dimensions and weights											
Width	mm	592	592	592	592	592	592	592	592	592	592
Nominal length	mm	2700	2700	2700	2700	2700	3000	3000	3000	3000	3000
L	mm	2672	2672	2672	2672	2672	2972	2972	2972	2972	2972
L1	mm	881	881	881	881	881	886	886	886	886	886
L2	mm	881	881	881	881	881	886	886	886	886	886
L3	mm	2692	2692	2692	2692	2692	2992	2992	2992	2992	2992
L4	mm	1346	1346	1346	1346	1346	1496	1496	1496	1496	1496
Net weight	kg	78,00	78,00	78,00	78,00	78,00	87,00	87,00	87,00	87,00	87,00
Gross weight	kg	93	93	93	93	93	103	103	103	103	103

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italy Tel. 0442633111 - Telefax 044293577 www.aermec.com

Control panels

Range of control panels for fan coils

 Wide range of panels for the simple, complete control of all the fan coil functions.

T-TOUCH AND T-TOUCH-I

Characteristics and equipment supplied as standard

- Installation on the fan coil.
- Air and water probes supplied as standard.
- RS485 serial port for connection with the VMF network (MASTER).
- Connection with VMF-E4X user interface.
- Control of the 3 speeds of the asynchronous motors.
- 0-10 V and/or PWM output for brushless motors.
- Two triac outputs for control of valves and/or accessories.
- MS input (micro switch).
- Inverter fault input.
- $\boldsymbol{--}$ Visualisation of the speeds and the temperature set-point.
- NFC chip.
- Compatible with the ThermApp application (Android systems).

ThermApp

With the electronic thermostat T-TOUCH-I and **ThermApp** the operating mode and hourly weekly programming can be set by simply resting the smart device on the fan coil. Furthermore, numerous additional information like the alarms list, the closest Sat, etc., can be accessed with the graphic interface of the app.

Available for Android operating systems.

Compatibility with the hydronic terminals

Thermostat	Unit	Range
T-TOUCH	FCZ	AS - U - UA - DS
T-TOUCH-I	FCZI	AS - U

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with 3-way valve		
with Cold Plasma purifier		
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier	— r — supplied as standard supplied as st	
with heater	· supplied as standard	supplied as standard
with 2-way valve and heater		
with 3-way valve and heater	-	
cooling only, with heater for heating		
cooling only, with heater for heating and		
3-way valve		
4-pipe systems		
with 2-way valve	cumplied as standard	cumplied as standard
with 3-way valve	supplied as standard supplied as stand	

AER503IR

Characteristics and equipment supplied as standard

- Flush installation (503-502 module box, or plasterboard boxes).
- Management of fan coils with asynchronous and brushless motor.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Control of 1 modulating valve 0-10.
- Temperature and ventilation control.
- Internal air probe.
- Compatibility with VMF-IR.
- Overall dimensions (mm): H=86 W=125 D=46.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil and INVERTER fancoil, without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with 3-way valve		
with Cold Plasma purifier		
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		
with heater		
with 2-way valve and heater	SA5	SW5
with 3-way valve and heater		
cooling only, with heater for heating		
cooling only, with heater for heating and		
3-way valve		
with 2-way valve and radiant panel (heat-		
ing)		
radiant panel only (heating)		
4-pipe systems		
with 2-way valve	SA5	SW5
with 3-way valve	נאנ	2412

TX

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Management of fan coils with asynchronous and brushless motor.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal air probe

210

Management of fins and external contact.

Overall dimensions (mm): H=148 - W=70 - D=27.5.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil and INVERTER fancoil, without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with 3-way valve		
with Cold Plasma purifier		
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		SW3/SW5
with heater		
with 2-way valve and heater	SA5	
with 3-way valve and heater	383	
cooling only, with heater for heating		
cooling only, with heater for heating and		
3-way valve		
with 2-way valve and radiant panel (heat-		
ing)		
radiant panel only (heating)	-	
with twin delivery (Dualjet)		
4-pipe systems		
with 2-way valve	SA5	SW3/SW5
with 3-way valve	כאכ	3003/3003

PXAI

www.aermec.com

Characteristics and equipment supplied as standard

- Installation on the fan coil.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal water probe (2.5m) and air probe (2.3m).
- Management of fins and external contact.
- Overall dimensions (mm): H=148 W=70 D=27.5.

Compatibility with the hydronic terminals

Compatible with all fancoil of the series FCZ-P, FCZI-P.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve	_	
with 3-way valve	_	
with Cold Plasma purifier		supplied as standard
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		
with heater	supplied as stalidard	supplied as stalldard
with 2-way valve and heater	_	
with 3-way valve and heater		
cooling only, with heater for heating	_	
cooling only, with heater for heating and	Ī	
3-way valve		
4-pipe systems		
with 2-way valve	- cumplied as standard	cumplied as standard
with 3-way valve	supplied as stalldard	supplied as standard

TXB AND TXBI

Characteristics and equipment supplied as standard

- Installation on the fan coil.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal air probe.
- Water probe (supplied) for controlling the minimum or maximum depending on the system, with the possibility to fit an external air probe (SAS).

Compatibility with the hydronic terminals

TXB

Compatible with all fancoil of the series FCZ.

TXBI

Compatible with all fancoil of the series FCZI.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		•
with 2-way valve	_	
with 3-way valve		
with Cold Plasma purifier	_	
with 2-way valve and Cold Plasma purifier		
with 3-way valve and Cold Plasma purifier		
with heater		
with 2-way valve and heater		
with 3-way valve and heater	- supplied as standard	supplied as standard
cooling only, with heater for heating	_	
cooling only, with heater for heating and	Ī	
3-way valve		
with 2-way valve and radiant panel (heat-	-	
ing)		
radiant panel only (heating)	-	
with twin delivery (Dualjet)		
4-pipe systems		
with 2-way valve	- cumplied as standard	cumplied ac etandard
with 3-way valve	- supplied as standard	supplied as standard

WMT05

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Manual season changeover.
- Temperature and ventilation control (3 speeds).
- Internal air probe.
- Overall dimensions (mm): H=75 W=127 D=25.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil without on board controls.

Compatibility with 2 pipe systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories	internal	-

WMT06

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Manual season changeover.
- Thermostat control of 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal air probe.
- Overall dimensions (mm): H=75 W=127 D=25.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories	internal	
with 2-way valve	internal	-
4-pipe systems		
with 2-way valve	internal	-

WMT10

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Manual season changeover.
- Control of up to 2 On/Off valves.
- Temperature and ventilation control (3 speeds).
- Internal air probe.

— Overall dimensions (mm): H=75 - W=127 - D=25.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with heater	internal	-
with 2-way valve and heater		
cooling only, with heater for heating		
4-pipe systems		
with 2-way valve	internal	-

FMT10

Characteristics and equipment supplied as standard

- Wall-mount installation.
- Automatic / manual season changeover.
- Control of up to 2 On/Off valves, or 1 valve and 1 heater.
- Temperature and ventilation control (3 speeds).
- Air probe (supplied) to be installed on the fan coil intake.
- Overall dimensions (mm): H=80 W=118 D=40.

Compatibility with the hydronic terminals

Compatible with all ON/OFF fancoil and INVERTER fancoil, without on board controls.

Compatibility with 2 and 4 pipes systems

2-pipe systems	Air temperature probe	Water temperature probe
without accessories		
with 2-way valve		
with heater	supplied as standard	-
with 2-way valve and heater		
cooling only, with heater for heating		
4-pipe systems		
with 2-way valve	supplied as standard	-

VMF

Multi Flow Variable Systems

- Components for plant management:
- Air conditioning
- Heating
- Hot domestic water (HDW)

DESCRIPTION

Hydronic system management and control unit for air conditioning, heating and domestic hot water production.

The VMF system ensures the complete control of every single component of a hydronic system, both local and centralised, through communication between the various system components, managing the performance without neglecting the end user's request for comfort at any time, but reaching it as efficiently as possible, with consequent energy savings

Summing up the advantages of a such an innovative control with the flexibility of a hydronic system, you achieve a more effective and efficient alternative to variable refrigerant volume (VRF) systems.

The VMF system can manage different areas, each of which has one of the following types of terminals:

- Fancoil;
- Radiant only (heating only);
- Fancoil + Radiant;
- MZC Zone;
- MZC Zone + Radiant.

FEATURES

The VMF system is extremely flexible, to the extent that it offers various control and management steps, also expandable at different times:

- 1. Control of a single zone;
- Control of a Master/Slave zone (one MASTER fancoil and up to 5 SLAVE fancoils):
- Control of a network consisting of several independent zones (one MASTER fancoil and up to 5 SLAVE fancoils for each zone, or another er of the types of terminals provided);
- Control of several zones, plus heat pump management (if compatible with the VMF system);
- 5. Control of several zones, of heat pumps and management of the domestic hot water:
- Control of several zones, heat pumps, domestic hot water production and additional pumps (up to a maximum of 12 using 3 additional VMF-CRP modules);

7. Control of several zones, heat pumps, domestic hot water production, additional pumps and management of up to 3 heat recovery units (with the possibility to manage up to 3 VMF-VOC probes) and/or a boiler;

CONTROL PANELS

The VMF system can pilot and manage a different number of areas, depending on the panel used:

- VMF-E6 / E5: maximum 64 zones (so a maximum of 64 Master Fancoil, each of which will pilot 5 Slave, for a total of 384 Fancoil);
- VMF-RCC: maximum 10 zones (then a maximum of 10 Master Fancoil, each of which will pilot 5 Slave, for a total of 50 Fancoil).

In addition to the centralised control provided by the VMF-E6/E5/RCC panel, the MASTER system terminal must be equipped with a local control interface; this interface can be mounted on board the terminal itself or on a wall panel.

Via panel VMF-E6/E5/RCC it is possible to control several functions:

- Identify the various zones by giving each of them a name that characterises it:
- Control and set the ON-OFF function and the temperature setting of each zone;
- Set and manage the heat pump temperature;
- Schedule time slots.

Simple installation of the fancoil network thanks to the SELF-DETECTION function of the MASTER fancoils.

SYSTEM COMPONENTS

Command interfaces

VMF-E2D: Machine user interface to be combined with VMF-E19 accessory, dedicated to the DUALJET range. It has 2 selector switches, one for temperature and the other for speed control.

VMF-E2H: User interface on the machine, to be combined with the VMF-E19 accessory, dedicated to the HL series. It has 2 selector switches, one for temperature and the other for speed control.

VMF-E2Z: User interface on the fan coil, with two selectors, one for temperature and the other for speed control; to be combined with accessories VMF-E0,VMF-E19, VMF-E19I.

VMF-E3: Wall mounted user interface, to be combined with accessories VMF-E19, VMF-E19I, VMF-E0X with grids GLF_N/M and GLL_N, can be controlled with VMF-IR control.

VMF-E4DX: A wall-mounted user interface to be combined with VMF-E19, VMF-E19I, VMF-E24 ed VMF-E24I accessories. Featuring an innovative, extremely slim and cost-effective design, it allows running functions via a capacitive touchscreen keyboard with LCD display. You can choose to adjust the environment temperature with a panel-mounted sensor probe (standard), or with the VMF-E19/E19I probe, or through mediated reading. It also enables the activation of an air purifier (Cold Plasma/ UV lamp) and a heating element. Light grey front panel PANTONE 425C (METAL).

VMF-E4X: A wall-mounted user interface to be combined with VMF-E19, VMF-E19I, VMF-E24 ed VMF-E24I accessories. Featuring an innovative, extremely slim and cost-effective design, it allows running functions via a capacitive touchscreen keyboard with LCD display. You can choose to adjust the environment temperature with a panel-mounted sensor probe (standard), or with the VMF-E19/E19I probe, or through mediated reading. It also enables the activation of an air purifier (Cold Plasma/ UV lamp) and a heating element. Light grey front panel PANTONE COOL GRAY 1C.

VMF-E5: Black recessed panel with backlit graphic LCD display and capacitive keyboard, it allows the centralised command/control of a complete hydronic system consisting of Fan coils: up to 64 fan coil zones consisting of 1 master + up to 5 slaves; Chiller/heat pump (accessory required for RS 485 interface), pumps: up to 12 configurable zone pumps; boiler: boiler hook-up management for hot water production; heat recovery units: up to 3 hook-ups per programmable recovery units based on time periods and/or by measuring air quality with the VMF-VOC accessory; domestic water module: complete management of the domestic hot water production through the control of: diverter valve/pump, integrated heating element, storage tank temperature sensor, anti-legionella circuit system. The panel is available in both white (VMF-E5B) and black (VMF-E5N).

VMF-E6: White flush-mounting panel with 4.3 inch colour touchscreen. For the centralised command/control of a complete hydronic/aeraulic system consisting of: fan coils (up to 64 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (up to 4), MZC accessories (up to 5) for the management of radiant panels (using a suitable number of VMF-REB accessories, up to 64 radiant panels associated with the fan coil zones and up to 32 radiant panels associated with the zones served by MZC), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/Os, control of heat recovery units and VOC probes (up to 4).

VMF-IR: User interface compatible with the AER503IR, VMF-E3 thermostat and with all the grids of cassettes equipped with the infrared receiver compatible with the VMF system.

VMF-RCC: Flush-mounting panel for the centralised command/control of a complete hydronic system consisting of: fan coils (up to 10 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (if you want to manage up to 4 outdoor units, the MULTICONTROL accessory must be provided), MZC accessories (up to 3) for the management of radiant panels using a suitable number of VMF-REB 1/VMF-REB 2/VMF-REB 3 accessories, (up to 28 zones total), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/O, control of heat recovery units and VOC probes (up to 3).

VMF-VOC: Air quality detection accessory.

VMHI: The VMHI panel can be used as a user interface for VMF-E0X/E19/E19I thermostats, GLFxN/M or GLLxN grids, or as an interface for the MZC system. What determines the function to be performed by the user interface is determined by its correct parametrisation and by following the electrical connections between interface and thermostat or interface and plenum.

Thermostats

VMF-EOX: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, allows for the creation of a single fan coil area (1 master + maximum

5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features: In systems with two pipes and a heating element - the latter can be activated as a complete replacement - allowing you to warm the environment exclusively with this accessory - Dualjet features are available in standard software and can be set via dip switch. The thermostat is protected by a fuse.

VMF-E19: Thermostat, accessory to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, it allows for the creation of a single fan coil area (1 master + maximum 5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features: 1. In systems with two pipes and a heating element, the latter can be activated as a complete replacement, allowing you to warm the environment exclusively with this accessory. 2. Dualjet features are available in standard software and can be set via dip switch. 3. Economy contact/presence sensor. 4. Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory). 5. Serial RS485, ModBus RTU protocol, for centralised control. 6. Possibility of inserting expansion boards for future developments. The VMF-E19 accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump. 7. Compatibility with the VMF-IO accessory. Compatibility with VMF-LON expansion board. The thermostat is protected by a fuse.

VMF-E19I: Thermostat to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, this thermostat allows for the creation of a single fan coil area (1 master + maximum 5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features:In systems with two pipes and a heating element - the latter can be activated as a complete replacement - allowing you to warm the environment exclusively with this accessory - Dualjet features are available in standard software and can be set via dip switch - Economy contact/ presence sensor - Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory) - Serial RS485, ModBus RTU protocol, for centralised control - Possibility of inserting expansion boards for future developments. The VMF-E19 accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump - Compatibility with the VMF-IO accessory - Compatibility with VMF-LON expansion board. The thermostat is protected by a fuse.

VMF-E19Y: Thermostat, accessory to be secured to the side of the fan coil, fitted as standard with an air probe and a water probe, it controls systems with 2 pipes, 4 pipes, 2 pipes + Cold Plasma, 2 pipes + UV lamps, 2 pipes + Heating element. Equipped with an external contact to be used as a remote ON-OFF at low voltage. By means of 2-wire serial communication, it allows for the creation of a single fan coil area (1 master + maximum 5 slaves). Compared to the previous model, thanks to a different dip switch configuration, it allows implementing new features: 1. In systems with two pipes and a heating element, the latter can be activated as a complete replacement, allowing you to warm the environment exclusively with this accessory. 2. Dualjet features are available in standard software and can be set via dip switch. 3. Economy contact/presence sensor. 4. Additional water sensor for overall control in 4-pipe systems (with VMF-SW1 accessory). 5. Serial RS485, ModBus RTU protocol, for centralised control. 6. Possibility of inserting expansion boards for future developments. The VMF-E19 accessory must be therefore used in masters in the presence of multiple zones, or for communication with the chiller/heat pump. 7. Compatibility with the VMF-IO accessory. Compatibility with VMF-LON expansion board. The thermostat is protected by a fuse.

VMF-FMD: The VMF-FMD panel is a flush-mounted thermostat that, when used in stand-alone mode or within a centralised supervisory system (BMS), can manage plant requirements where an actuator (a

heating furniture valve, radiant system head, zone valve, zone circulator) is to be controlled as a function of room temperature.

VMF-IO: Manage the unit exclusively from a centralized VMF control panel without area control panel.

VMF-LON: Expansion allowing the thermostat to interface with BMS systems that use the LON protocol.

VMF-YCC: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YCCH: Electric on/off completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

VMF-YICC: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with options P and X).

VMF-YICCH: Electric inverter completion unit for the VMF-E19Y accessory (mandatory for the unit with option H).

Intake grids and distribution of the air, compulsory accessory

GLF10M: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLF110M: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm adapts perfectly to standard false ceilings without overlapping parts. It is equipped with an infrared receiver with an emergency operation button, a thermostat card which also requires the installation of the VMF-E4 panel or the VMF-IR remote control. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be orientated with the remote control. (size 840x840 not available).

GLF110N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4 or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated. (size 800x800 mm not available).

GLL10N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL20N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL1100N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 600x600 mm; adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X panel as well, and suitable for use with the RXLE heater. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

GLL120N: Recovery and air supply grille in plastic, RAL 9010 colour, measuring 840x840 mm, adapts perfectly to standard false ceilings without overlapping parts. Fitted with a thermostat board that necessarily requires the installation of the VMF-E4X or VMF-IR panel as

well. Intake is in the central part, where the easily removable air filter is housed. Delivery is via the perimeter slits that can be manually orientated.

Probes

VMF-SW: Water probe (L = 2.5m) used if required in place of the standard unit supplied with the VMF-E0X, VMF-E19 and VMF-E19I thermostats for mounting it upstream of the valve

VMF-SW1: Additional water probe (L = 2.5m) to be used if required for 4-pipe systems with the VMF-E19 and VMF-E19I thermostats for maximum control in the cold range

Modules

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

VMF-REB: Only available for VMF-E6, manages the heads of the radiant panels (each module can manage up to 8), one pump and up to 3 thermostats through digital input.

VMF-REB 1: Only available for VMF-RCC, manages the heads of 10 radiant panels associated with fancoil and up to 10 thermostats through digital input

VMF-REB 2: Only available for VMF-RCC, manages the heads of 10 radiant panels associated with MZC and up to 10 thermostats through digital input

VMF-REB 3: Only available for VMF-RCC, manages the heads of 8 radiant panels associated with MZC and up to 10 thermostats through digital input

VMF-SIT3: Interface boards that allow connecting thermostats VMF-EOX to a fan coil with a high-power motor (for selection, see all the thermostat and fan coil documentation); if a VMF-E19 thermostat is used, this accessory will be replaced by the normal SIT3

VMF-SIT3V: Relay interface board. Mandatory accessory on units where motor absorption exceeds 0.7 A. The relay interface board is supplied with a 2A fuse to protect the fan coil. If the fan coil absorbs more than 2A and up to 4A, the fuse inside must be replaced with a 4A fuse supplied.

Electrical panels for DHW (Domestic hot water management for other suppliers' storage tanks, not available for VMF-E6)

VMF-ACS3KM: Electrical panel for the complete command/control of a hot water storage tank (3-way control valve, integrated single phase 3kW resistor command, anti-legionella function and temperature sensor)

VMF-ACS3KTN: Electrical panel for the complete command/control of a hot water storage tank (3-way control valve, integrated three-phase 3kW resistor command, anti-legionella function and temperature sensor)

VMF-ACS6KTN: Electrical panel for the complete command/control of a hot water storage tank (3-way control valve, integrated three-phase 6kW resistor command, anti-legionella function and temperature sensor)

VMF-ACS8KTN: Electrical panel for the complete command/control of a hot water storage tank (3-way control valve, integrated three-phase 8kW resistor command, anti-legionella function and temperature sensor).

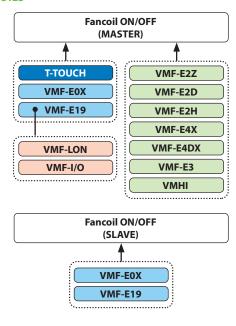
Heat storage tank with integrated domestic hot water management (no need to be combined with a VMF-ACS accessory)

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation.

Control systems

AERCONNECT: Web server allowing local and remote supervision of the VMF-E6 system (by appropriately configuring the DNS service sup-

plied with the purchase of the accessory) via web pages; allows simultaneous access for up to 8 users


VMF-485EXP: This accessory, specifically mounted in the VMF-E5/RCC panel, adds an RS485 serial communication port to external supervision (BMS, Aerweb or Aermec supervision systems). Not available for VMF-F6.

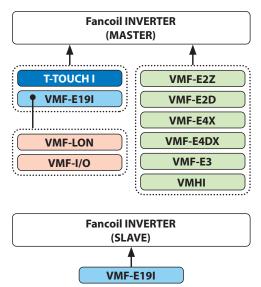
VMF-MONITORING: PC software to monitor and control the operation of one or several VMF controlled systems. Through the VMF-E5/RCC expansion board, the VMF-485EXP panel provides the RS485 serial communication port used by the VMF-MONITORING application for controlling the hydronic system. The maximum number of controllable systems, each with VMF-E5 and VMF-485EXP expansion, is 10 (not available for VMF-E6).

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

COMPATIBILITY OF VMF COMPONENTS WITH ON/OFF FAN COILS

Type of component:


Thermostat board
Thermostat board + Command interface
Expansion board
Command interfaces

Note:

- Each fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;
- The E19 thermostat board can manage just one expansion board, selected from those available;
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:

Command interfaces	Compatible ranges or models		
	FCZ (AS-AF-U-UA-UF)		
VMF-E2Z	FCZ-D (DS)		
	FCZ-H		
VMF-E2D	Omnia UL (S)		
VMF-E2H	Onmia HL (S-SM)		
	FCZ (AS-AF-U-UA-UF)		
	FCZ-D (DS)		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FCZ-H		
VMF-E4X (E4DX) / VMF-E3	Omnia UL (S)		
	Omnia radiant		
	FCW		
	FCZ (AS-AF-U-UA-UF-DS)		
T-TOUCH	FCZ-D (DS)		
	FCZ-H		
	FCZ (AS-AF-U-UA-UF)		
	FCZ-D (DS)		
VMHI	FCZ-H		
VIVIHI	Omnia UL (S)		
	Omnia radiant		
	FCW		

COMPATIBILITY OF VMF COMPONENTS WITH INVERTER FAN COILS

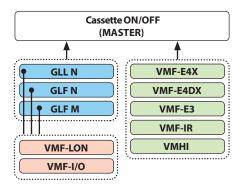
Type of component:

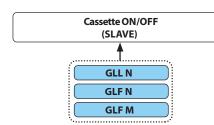
Thermostat board

Thermostat board + Command interface

Expansion board

Command interfaces


Note:


- Each fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;
- The E19I thermostat board can manage just one expansion board, selected from those available;
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:

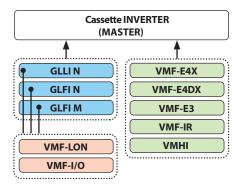
Command interfaces	Compatible ranges or models
VME E27	FCZI (AS-AF-U-UF)
VMF-E2Z	FCZI-H
VMF-E2D	Omnia ULI (S)

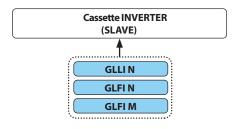
Command interfaces	Compatible ranges or models
	FCZI (AS-AF-U-UF)
	FCZI-D (DS)
VMF-E4X (E4DX) / VMF-E3	Omnia ULI (S)
	Omnia radiant plus
	FCWI
T-TOUCH-I	FCZI (AS-AF-U-UF)
	FCZI (AS-AF-U-UF)
	FCZI-D (DS)
VMHI	Omnia ULI (S)
	Omnia radiant plus
	FCWI

COMPATIBILITY OF VMF COMPONENTS WITH ON/OFF CASSETTES

Type of component:

Delivery suction grille with thermostat board


Command interfaces

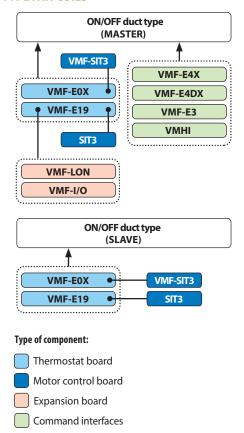

Note:

- Each Cassette (Master or Slave) must have a delivery recovery grille (fitted with a VMF thermostat board) selected from those that are compatible;
- The delivery recovery grilles can manage just one expansion board, selected from those available;
- Each Master Cassette must have just ONE command interface, selected from those that are compatible:

Command interfaces	Compatible ranges or models
\\MF E4V (E4DV) /\\MF E3	FCL
VMF-E4X (E4DX) / VMF-E3	VEC
VMF-IR	FCL
VIVIE-IK	VEC
VMHI	FCL
VIVIHI	VEC

COMPATIBILITY OF VMF COMPONENTS WITH INVERTER CASSETTES

Type of component:

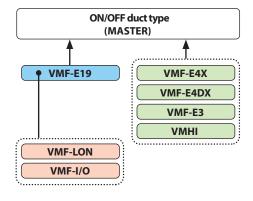

- Delivery suction grille with thermostat board
- Expansion board
- Command interfaces

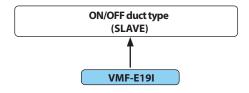
Note:

- Each Cassette (Master or Slave) must have a delivery recovery grille (fitted with a VMF thermostat board) selected from those that are compatible;
- The delivery recovery grilles can manage just one expansion board, selected from those available;
- Each Master Cassette must have just ONE command interface, selected from those that are compatible:

Command interfaces	Compatible ranges or models
VMF F4V (F4DV) /VMF F2	FCLI
VMF-E4X (E4DX) / VMF-E3	VEC-I
VAAE ID	FCLI
VMF-IR	VEC-I
NAME II	FCLI
VMHI	VEC-I

COMPATIBILITY OF VMF COMPONENTS WITH ON/OFF DUCT TYPE FAN COILS



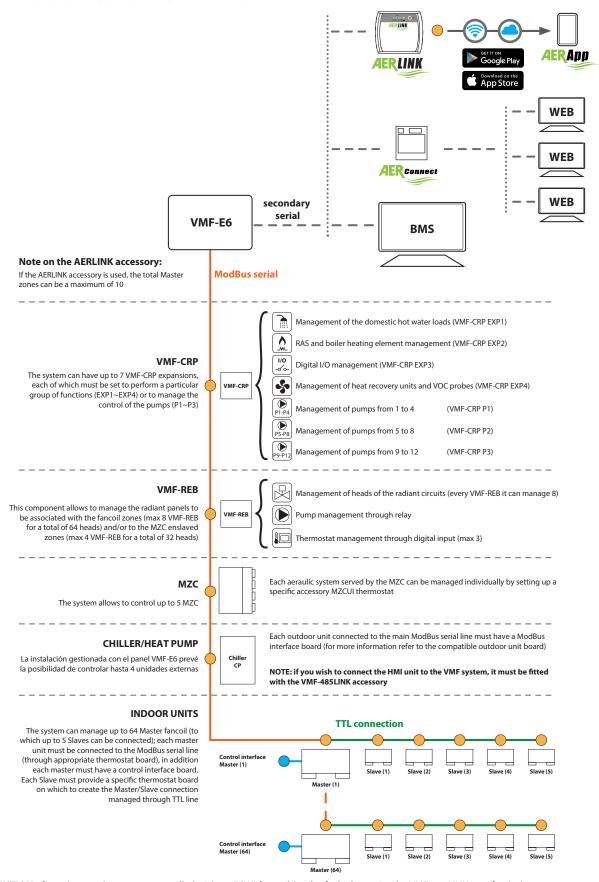

Note:

- Each duct type fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;
- The VMF-E19 thermostat board can manage just one expansion board, selected from those available;
- Depending on the size of the duct type fan coil, a motor control board (VMF-SIT3 or SIT3) may be needed;
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:

Command interfaces	Compatible ranges or models
	VED
	VES
VME EAV (EADV) /VME EX	FCZ PO
VMF-E4X (E4DX) / VMF-E3	FCY
	Omnia UL (P - PAF)
	FCZ-H (P-PO)
	VED
	VES
VMHI	FCZ PO
VIVITI	FCY
	Omnia UL (P - PAF)
	FCZ-H (P-PO)

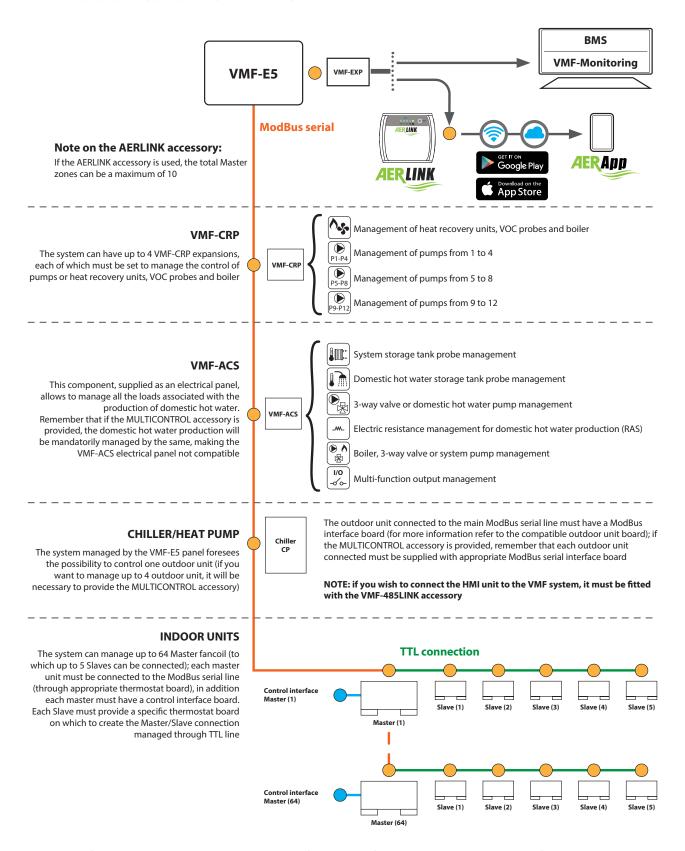
COMPATIBILITY OF VMF COMPONENTS WITH INVERTER DUCT TYPE FAN COILS

Type of component:

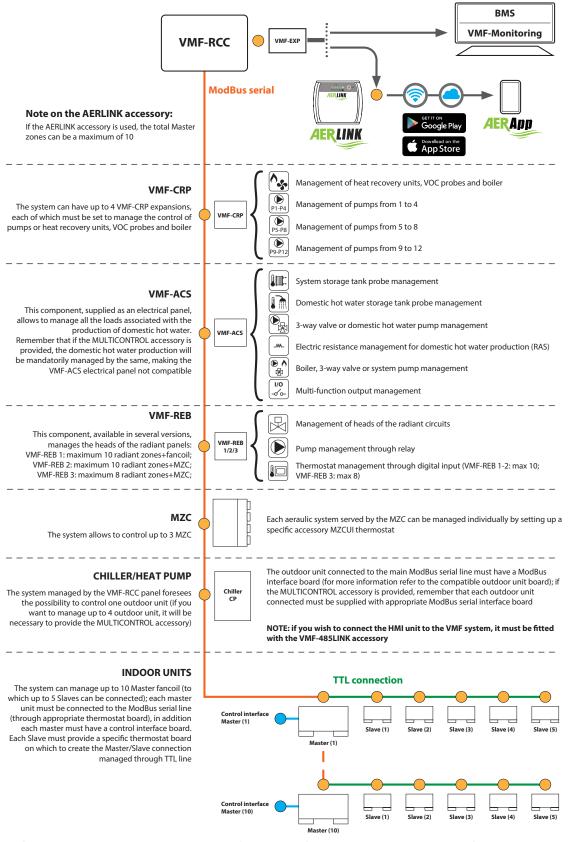

- Thermostat board
- Expansion board
- Command interfaces

Note:

- Each duct type fan coil (Master or Slave) may have just one thermostat board, selected from those that are compatible;
- The VMF-E19I thermostat board can manage just one expansion board, selected from those available;
- Each Master fan coil must have just ONE command interface, selected from those that are compatible:


Command interfaces	Compatible ranges or models
	VED I
VMF-E4X (E4DX) / VMF-E3	VES I
	FCZI P
VIVIF-E4X (E4DX) / VIVIF-E3	FCYI
	Omnia UL (P - PAF)
	FCZI-H (P-PO)
	VED I
	VES I
\/A111	FCZI P
VMHI	FCYI
	Omnia UL (P - PAF)
	FCZI-H (P-PO)

EXAMPLE OF SYSTEM COMPONENTS WITH VMF-E6


ATTENTION: if one (or more) areas are controlled with an FCWI fan coil (each of which require the VMF-485LINK interface), these areas cannot have a Slave unit.

EXAMPLE OF SYSTEM COMPONENTS WITH VMF-E5

ATTENTION: if one (or more) areas are controlled with an FCWI fan coil (each of which require the VMF-485LINK interface), these areas cannot have a Slave unit.

EXAMPLE OF SYSTEM COMPONENTS WITH VMF-RCC

ATTENTION: if one (or more) areas are controlled with an FCWI fan coil (each of which require the VMF-485LINK interface), these areas cannot have a Slave unit.

www.aermec.com

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.

Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

HEAT RECOVERY UNIT

Objective air quality and energy saving: Aermec offers a large range of air-air heat recovery units for industrial and commercial systems and for Controlled Mechanical Ventilation Systems for residential.

The heat recovery units, provided with appropriate accessories (heat exchange coils, heat pump refrigerant circuit, etc.), actively participate in the air treatment providing an important contribution to the air conditioning of the spaces served.

The catalogued range of nominal available air flow rates is from 100 to around 16.100 m³/h.

HEAT RECO	VERY UNITS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
REPURO	With cross-flow exchanger	100-650			224
TRS	Heat recovery unit with enthalpy exchanger	250-1300			230
RPLI	Counter-current flow heat recovery unit with inverter motor	200-3900			232
RTD	Thermodynamic recovery unit with integrated heat pump	1100-3200			237
RPF	High performance heat recovery unit with cross-current recuperator	790-4250			241
URX-CF	With cross-flow exchanger and refrigerant circuit	750-3300			245
URHE-CF	High efficiency version with cross-flow exchanger and refrigerant circuit	1000-3300			249
ERSR	High-efficiency heat recovery with rotary recovery unit	1100-16100			253

REPURO

Duct-type residential 2-way ventilation unit with heat recovery

- Compact dimensions
- High efficiency, reaching 90%+ (UNI EN 308)
- Cold Plasma purifier

DESCRIPTION

REPURO it's an innovative counter-current heat recovery system that ensures the right air renewal in closed areas.

Thanks to the use of high-efficiency heat exchangers, REPURO allows fresh air to be delivered at a temperature close to that of the room itself, thereby cutting the energy costs that would be incurred with a traditional air renewal system or mechanical ventilation alone.

VERSIONS

Standard

R With electric heater

Installation:

- Ceiling or wall: (100 170)Floor or wall: (250 650)
- **FFATURES**
- Hexagonal heat recovery unit with a wider heat exchange surface;
- Free-standing sheet metal panels with internal insulation;
- Standard G4 filter on the fresh air;
- Standard G2 filter on the exhaust air;
- The filters can be removed for cleaning or replacement;
- The unit has in-built protection against frost formation with temperatures > -10°C;
- High efficiency, reaching 90%+ (UNI EN 308);
- Free cooling in the intermediate seasons, thanks to the automatic bypass function (not available for sizes 100 - 170);
- "No frost" bypass (RePuro 450-550-650), with PLSNF accessory;
- Air purification guaranteed by the Cold Plasma purifier: this is able
 to reduce pollutants, decomposing their molecules using electrical
 charges, causing the water molecules in the air to split into positive
 and negative ions. These ions neutralise the molecules in the gaseous pollutants, obtaining products normally present in clean air. The
 device is able to eliminate 90% of the bacteria. The result is clean,
 ionised air, free of foul odours;
- Nominal flow rate regulation from 0 to 100%;
- Centrifugal fans, directly coupled with the EC high-efficiency brushless electric motors with variable speed (ERP2015);

- Microprocessor control card that interfaces with the VMF system;
- Unit control by means of a wired panel (supplied as standard) with an innovative, extremely thin design. The functions are controlled via the capacitive touch keypad with an LCD display. Electric heater activation in the RePuro_R versions. Light grey front panel PANTONE COOL GRAY 1C;
- The 6-metre wired cable is provided as standard;
- Easy mounting on the wall (with the plate (provided), or on the flo or (with the AVM accessory);
- Can adapt to an existing system;
- Compact dimensions;
- Silent operation;
- Filter change warning;
- Installation requires a condensate discharge system.

ACCESSORIES

VCH: 3-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings. It can be installed on fan coils with both right and left connections.

VCHD: 2-way motorised valve kit. The kit consists of a valve, an actuator and the relative pipe fittings.

BC: Condensate drip.

AVM: Anti-vibration supports.

SSR: Wall mounting kit

FF7: Filter with F7 efficiency class for the fresh air.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

KSAE: External air sensor.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

Plenum with multi-way flange

PLS350: Vacuum delivery plenum with sound-absorbent covering and multi-way flange.

PLS350E: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater is housed inside.

PLS350L: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp is housed inside.

PLS350LE: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and an electric heater are housed inside.

PLS350W: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLS350WE: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS350WL: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS350WLE: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well.

PLS650: Vacuum delivery plenum with sound-absorbent covering and multi-way flange.

PLS650E: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater is housed inside.

PLS650L: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp is housed inside.

PLS650LE: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and an electric heater are housed inside.

PLS650W: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLS650WE: Delivery plenum with sound-absorbent covering and multi-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS650WL: Delivery plenum with sound-absorbent covering and multi-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLS650WLE: Delivery plenum with sound-absorbent covering and multi-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well.

Plenum with 1-way flange

PLSM350: Vacuum delivery plenum with sound-absorbent covering and 1-way flange.

PLSM350E: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater is housed inside.

PLSM350L: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp is housed inside.

PLSM350LE: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and an electric heater are housed inside

PLSM350W: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLSM350WE: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLSM350WL: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well.

PLSM350WLE: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well.

PLSM650: Vacuum delivery plenum with sound-absorbent covering and 1-way flange.

PLSM650E: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater is housed inside.

PLSM650L: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp is housed inside.

PLSM650LE: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and an electric heater are housed inside

PLSM650W: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray is housed inside; it is mandatory to fit the water valve as well.

PLSM650WE: Delivery plenum with sound-absorbent covering and 1-way flange. An electric heater and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well

PLSM650WL: Delivery plenum with sound-absorbent covering and 1-way flange. A germicidal lamp and a water coil with condensate collection tray are housed inside; it is mandatory to fit the water valve as well

PLSM650WLE: Delivery plenum with sound-absorbent covering and 1-way flange. A water coil with condensate collection tray, a germicidal lamp, and an electric heater are housed inside; it is mandatory to fit the water valve as well.

VMF system

VMF-E5B: White recessed panel with backlit graphic LCD display and capacitive keypad for centralised command/control of a complete hydronic system.

VMF-E5N: Black recessed panel with backlit graphic LCD display and capacitive keypad for centralised command/control of a complete hydronic system.

VMF-VOC: Air quality detection accessory.

ACCESSORIES COMPATIBILITY

Model	Ver	100	170	250	350	450	550	650	
BMConverter	.,R	•	•	•	•	•	•	•	
KSAE	.,R	•	•	•	•	•	•	•	
VMF-CRP	R							•	

Plenum with multi-way flange

Model	Ver	100	170	250	350	450	550	650
PLS350		•						
PLS350E		•						
PLS350L		•						
DICAFOLE		•	•	•	•			
PLS350LE	R	•	•	•				
PLS350W (1)		•						
PLS350WE (1)		•						
PLS350WL (1)		•						
PLS350WLE (1)		•						
PLS650	.,R					•	•	•
PLS650E	.,R					•	•	•
PLS650L	.,R					•	•	•
PLS650LE	.,R					•	•	•
PLS650W (1)	.,R					•	•	•
PLS650WE (1)	.,R					•	•	•
PLS650WL (1)	.,R					•	•	•
PLS650WLE (1)	.,R					•		

⁽¹⁾ It is mandatory to also provide for the water valve.

Water valves

3 way valve kit

,							
Ver	100	170	250	350	450	550	650
.,R	VCH						
2 way valve kit							
Ver	100	170	250	350	450	550	650
R	VCHD						

Installation accessories

Condensate drip

Model	Ver	100	170	250	350	450	550	650
BC10 (1)	.,R	•	•	•	•	•	•	•
BC20 (2)	.,R							

Anti-vibration support feet

Ver	100	170	250	350	450	550	650
.,R	-	-	AVM	AVM	AVM	AVM	AVM

The accessory cannot be fitted on the configurations indicated with -

Wall mounting kit

	Ver	100	170	250	350	450	550	650
ľ	.,R	-	-	SSR	SSR	SSR	SSR	SSR

The accessory cannot be fitted on the configurations indicated with -

External air sensor

Ver	100	170	250	350	450	550	650
.,R	BMConverter						

⁽¹⁾ For vertical installation.
(2) For horizontal installation.

Accessories

Plenum with multi-way flange

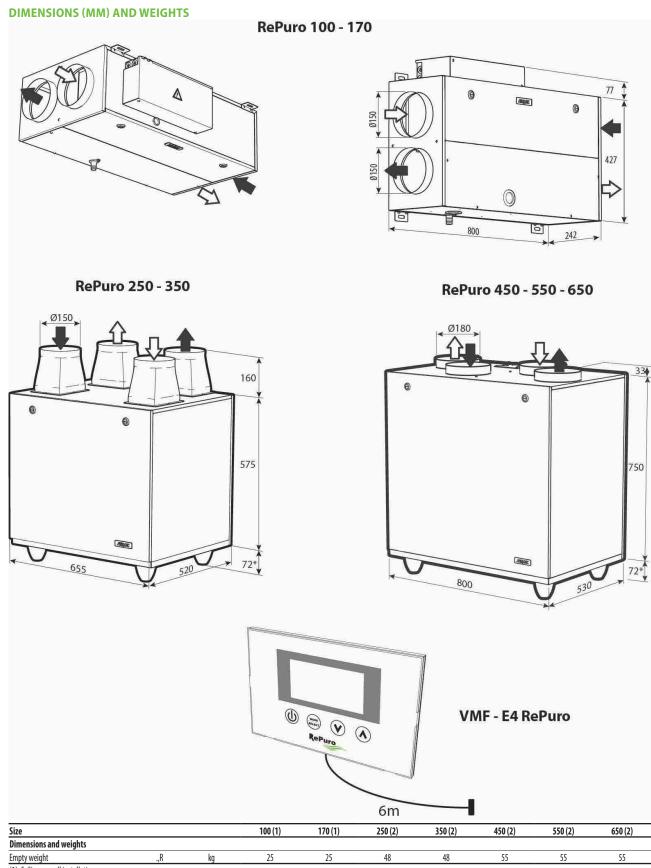
Model	Ver	100	170	250	350	450	550	650
PLS350		•						
PLS350E		•						
PLS350L		•						
PLS350LE		•	•	•	•			
LUSSOULE	R	•	•	•				
PLS350W (1)		•						
PLS350WE (1)		•						
PLS350WL (1)		•						
PLS350WLE (1)		•						
PLS650	.,R					•	•	•
PLS650E	.,R					•	•	
PLS650L	.,R					•	•	•
PLS650LE	.,R					•	•	•
PLS650W (1)	.,R					•	•	
PLS650WE (1)	.,R					•	•	•
PLS650WL (1)	.,R					•	•	•
PLS650WLE (1)	.,R					•	•	•

⁽¹⁾ It is mandatory to also provide for the water valve.

Plenum with 1-way flange

Model	Ver	100	170	250	350	450	550	650
PLSM350	.,R	•	•	•	•			
PLSM350E	.,R	•	•	•	•			
PLSM350L	.,R	•	•	•	•			
PLSM350LE	.,R	•	•	•	•			
PLSM350W (1)	.,R	•	•	•	•			
PLSM350WE (1)	.,R	•	•	•	•			
PLSM350WL (1)	.,R	•	•	•	•			
PLSM350WLE (1)	.,R	•	•	•	•			
PLSM650	.,R					•	•	•
PLSM650E	.,R					•	•	•
PLSM650L	.,R					•	•	•
PLSM650LE	.,R					•	•	•
PLSM650W (1)	.,R					•	•	•
PLSM650WE (1)	.,R					•	•	•
PLSM650WL (1)	.,R					•	•	•
PLSM650WLE (1)	.,R							

⁽¹⁾ It is mandatory to also provide for the water valve; if you intend to use the system with post heating battery, or in any case in all those cases in which the air temperature in the channels could cause condensation on the external surfaces of the pipes, it is mandatory to adequately isolate the components of the system.


VMF system

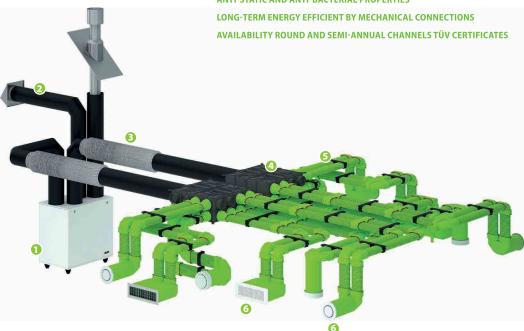
Model	Ver	100	170	250	350	450	550	650
VMF-E5B	.,R	•	•	•	•	•	•	•
VMF-E5N	.,R	•	•	•	•	•	•	•
VMF-VOC	R	•	•	•		•	•	•

PERFORMANCE SPECIFICATIONS

Size		100 (1)	170 (1)	250 (2)	350 (2)	450 (2)	550 (2)	650 (2)
Heat recovery unit								
Power supply					230V ~ 50Hz			
Summer recovery (3)								
Recovery efficiency	%	90	85	86	82	83	81	78
Recovered heating power	W	180	289	430	573	750	887	1015
Winter recovery (4)								
Recovery efficiency	%	94	91	91	89	90	88	87
Recovered heating power	W	957	1573	2329	3171	4118	4940	5734
General data								
SEC	kWh/(m²a)	-36	-38	-37	-40	-40	-40	-40
CLASS					Α			
Total input power	W	45	65	160	180	220	280	360
Heat recovery unit performance								
Nominal air flow rate	m³/h	100	170	250	350	450	550	650
High static pressure	Pa	85	20	195	133	100	120	70

⁽¹⁾ Celling or wall installation
(2) Floor or wall installation
(3) Exhaust air temperature 26°C D.B., 50% R.H; Fresh air temperature 32°C D.B., 50% R.H.
(4) Exhaust air temperature 20°C D.B., 50% R.H; Fresh air temperature -10°C D.B., 80% R.H.

⁽¹⁾ Ceiling or wall installation (2) Floor or wall installation


PuroDistribution

A complete range for air distribution which, combined with the innovative RePuro heat recovery and air purification units, provides designers, installers and users with an efficient, practical installation solution that guarantees optimum comfort throughout the lifecycle of the system.

EASY "PLUG & PLAY" INSTALLATION

LOW DUCT HEIGHT FOR IN-WALL AND SCREED-FLOOR APPLICATION

ANTI-STATIC AND ANTI-BACTERIAL PROPERTIES

The picture is intended purely as an example of a system with semi-rigid, semi-oval, antibacterial ducts. This example consists of:

www.aermec.com

- RePuro heat recovery units
- Duct with fresh/exhaust air intake
- Interconnection between RePuro and the distribution box 3
- Hydronic box
- Air distribution with semi-rigid, semi-oval, antibacterial ducts
- Terminals with designer intakes or grilles

In addition to point 5, the Aermec range also includes a further 2 air distribution systems:

- Air distribution with semi-rigid, round ducts
- Air distribution with rigid, rectangular ducts

For more information about all the types and solutions available, refer to the "AerDistribution" selection program and the technical documentation, both available at www.aermec.com

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

229

TRS

Heat recovery unit with enthalpy exchanger

- Compact dimensions
- Fans coupled to brushless Ec motors with low energy consumption
- Easy installation
- Horizontal installation

DESCRIPTION

The TRS heat recoveries, for horizontal inside installation allow the combination of maximum comfort with a safe energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

TRSintends to solve these problems using a static heat recovery unit that saves most of the energy that would otherwise be lost.

The unit adopts high-efficiency heat recovery with countercurrent flows which consists of flat sheets of special paper that allow you to recover both sensible and latent heat (humidity). Therefore, no condensate drip tray or the relative drain pipe is required.

The high static pressures available allow ducts to be mounted, thereby allowing the extraction or input of air across multiple environments simultaneously.

They can be integrated in the direct expansion and hydronic systems both in heating and cooling mode.

FEATURES

- Very compact units that can only be installed horizontally, which require simple maintenance of the heat exchanger and filters both removable from the side.
- Free-cooling in mid-season thanks to the automatic by-pass function;

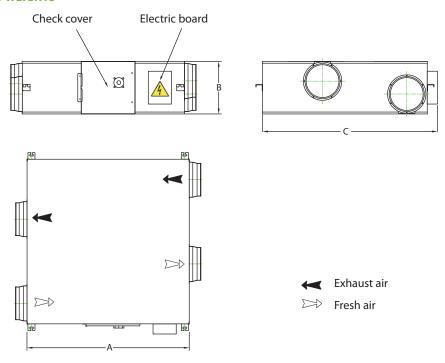
- Centrifugal fans with Brushless EC motor, with the possibility to adjust the speed on 10 different levels through the obligatory accessory TRSPTS, touch screen control panel. In the absence of this accessory it will only be possible, by acting on the remote on-off contact, to operate the fans always at maximum speed;
- Built-in electrical panel with electronic board for the control of ventilation and free-cooling functions;
- Hexagonal-shaped enthalpy recovery unit to increase the exchange surface:
- Self-supporting panels in galvanized sheet with insulation, both internal and external. Access via the side door;
- ISO 16890 ePM₂₅ 95% efficiency class filter with synthetic cleanable media and COARSE 50% pre-filter on fresh air, COARSE 50% filter on return air intake;
- Pressure switch with integrated dirty filter signal;
- Connections to funnels with plastic fittings;
- Silent operation;
- The installation does not require a condensate drain system.

ACCESSORIES

The following accessories are available for complete control of the TRS recovery units:

TRSPTS: Control panel with Touch Screen. Mandatory accessory.

TRSUSW: Wall CO2 probe. **TRSUSW:** Wall humidity probe.


ACCESSORIES COMPATIBILITY

Accessory	TRS251	TRS351	TRS501	TRS651	TRS801	TRS1001	TRS1301
TRSPTS	•	•	•	•	•	•	•
TRSQSW	•	•	•	•	•	•	•
TRSUSW	•	•		•	•	•	•

PERFORMANCE SPECIFICATIONS

		TRS251	TRS351	TRS501	TRS651	TRS801	TRS1001	TRS1301
Fans (1)								
Nominal air flow rate	m³/h	250	350	500	650	800	1000	1300
Nominal useful head	Pa	90	140	110	100	140	140	140
Maximum input power	A	0,5	0,6	0,6	1,2	1,4	2,1	2,7
Туре	type				EC			
Speed number	no.	10	10	10	10	10	10	10
SFP int.	W/(m ³ /s)	812,00	670,00	547,00	846,00	865,00	881,00	873,00
Maximum input power	kW	0,08	0,13	0,15	0,23	0,32	0,39	0,50
Sound data (2)								
Sound pressure level (1 m)	dB(A)	34,0	37,0	39,0	40,0	42,0	43,0	44,0
Heating performances (3)								
Winter thermal efficiency	%	73,0	74,0	76,0	74,0	76,0	76,0	74,2
Enthalpy winter efficiency	%	65,0	65,0	67,0	65,0	65,0	62,0	59,0
Cooling performances (4)								
Summer thermal efficiency	%	73,0	74,0	76,0	74,0	76,0	76,0	74,0
Summer enthalpy efficiency	%	62,0	62,0	63,0	60,0	63,0	60,0	58,0
Heat recovery unit								
Dry heating efficiency (5)	%	73,0	74,0	76,0	74,0	76,0	76,0	74,0
Power supply					230V~50Hz - 60Hz			

DIMENSIONS AND WEIGHTS

		TRS251	TRS351	TRS501	TRS651	TRS801	TRS1001	TRS1301
Dimensions and weights								
A	mm	599	804	904	884	1134	1216	1216
В	mm	814	814	894	1186	1186	1199	1199
C	mm	100	100	107	85	85	85	85
Empty weight	kg	30	37	43	65	71	83	83

All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ Performances referring to clean filters
(2) Sound pressure level assessed at 1 m from suction / discharge ports and the inspection side at nominal conditions in free field.
(3) Recovery air 20 °C 50%; External air 5 °C 80%.
(4) Recovery air 26 °C 50%; External air 3 °C 50%.
(5) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.

RPLI

Counter-current flow heat recovery unit with inverter motor

- Compact dimensions
- · EC fan Plug-fan
- Versions with water coil or electric for the post-heating
- Horizontal installation

DESCRIPTION

The RPLI heat recoveries, for horizontal inside installation allow the combination of maximum comfort with a safe energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

The unit is equipped with a counter-current heat recovery unit and allows an effective heat exchange between the expulsion air flow and fresh air that is pre-heated or pre-cooled, depending on the season, thus saving the energy that would otherwise be lost with the expelled exhaust air.

They can be integrated in the direct expansion and hydronic systems both in heating and cooling mode.

VERSIONS

Horizontal installation:

RPLI (L o P): L low, P high, useful static pressure RPLI_E: With electric heating coil.

RPLI_W: With water coil:Cooled / hot

Also to be used with cooled water:

- For sizes 030-100 in flow orientation 1 (°);
- Sizes 070-100 with flow orientation 2 (X), in this configuration, the coil is not available for sizes 030-050;

The following can only be used with hot water:

Sizes 140-400 with any type of flow configuration (° and X).

FEATURES

- Plug-fan radial fan with EC motors;
- Aluminium plate counter-current flow heat recovery unit with heating efficiency in compliance with the European regulation 1253, housing in condensate collection basin;
- Ventilation by-pass of the external air flow equipped with internal damper, with free cooling and even anti-freeze function;
- Synthetic filter class M5 according to EN779 placed on the expelled air intake;
- Synthetic filter class F7 according to EN779 placed on the external air inlet;

- Filters fouling pressure switches assembled;
- Self-supporting sandwich panels in galvanised sheet metal with injected polyurethane insulation density 45 kg/m³ and a thickness of 25 mm. The polyurethane is in compliance with the standard UL 94 class HBF and the panel with the standard NF P 512: 1986 in class M1;
- Condensate collection basin in galvanised steel;
- Easy accessible fans, from bottom for the sizes 030-100, from the side for the sizes 140-400;
- Accessible filters, from the top and from the bottom for the sizes 030-100, from the side for the sizes 140-400;
- The fan can be controlled with a 0-10 Vdc controller, RVC or RVCL accessory.

ACCESSORIES

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

Regulation

HRC: Electrical panel (IP56) to be installed outside the heat recovery unit. It is formed of a plastic electric box 300x380x120. It houses an electronic board for controlling the loads, 3 NCT temperature probes (6m long), a 4-pole serial cable + shield for connecting the control card to the user interface of the system, and an interface panel. Via the configuration of 8 dip switches, the electronic board in the kit can control: an electric heater for pre-warming the air taken in from the room; up to 2 electric heaters (with cascade management) for the post-treatment of the fresh air delivered back into the room; a component for air purification (e.g. UV lamp, Plasmacluster, etc.). Furthermore, the management of the RS485 serial is available as standard so the units can be added to a network supervised by the Modbus communication protocol.

RVC: Speed regulator supplied in n°2 pieces.

Additional modules

M4F: External module equipped with pre-filters class G4 (according to EN779) to be placed on the external air inlet.

MBF: External module with water cooling coil and condensate collection basin (only for sizes 140-400).

MBF_X: External module with water cooling coil and condensate collection basin (only for sizes 140X-400X).

MBP: Module with post-heating water coil.

 $\mbox{\bf MBE:}$ Module with electric coil $\mbox{\ \ }$ (anti-freeze and/or post-heating function).

MSU: Module equipped with silencer baffles. The accessory is supplied in n°1 piece.

FGC: Circular flanges. The accessory is supplied in n°1 piece.

Adjustment accessories

TWWV050: 3-way valve (the valve body only - does not include the pipe kit for connection to the heat recovery unit or external module with coil) PN16 KVS 1.0 DN15.

TWWV100: 3-way valve (the valve body only - does not include the pipe kit for connection to the heat recovery unit or external module with coil) PN16 KVS 2.5 DN15.

TWWV400: 3-way valve (the valve body only - does not include the pipe kit for connection to the heat recovery unit or external module with coil) PN16 KVS 6.3 DN20.

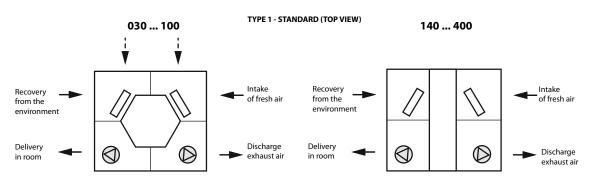
TF100: DN15 threaded couplings with shank and flat-seal idle nut for heat recovery unit / external module with coil.

TF400: DN20 threaded couplings with shank and flat-seal idle nut for heat recovery unit / external module with coil.

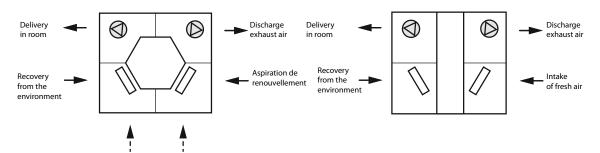
TWWVA: Actuator for 3-way valve 24V, for receiving ON-OFF or modulating commands (0-10V), for correct operation provide the VMF-MOD accessory.

FCDA: Servomotor for free cooling damper.

VMF-MOD: Expansion board for the management of modulating valves.


CONFIGURATOR

CONTIGOR	
Field	Description
1,2,3,4	RPLI
5,6,7	Size 030, 050, 070, 100, 140, 200, 300, 400
8	Version
L	Low useful static pressure
P	High useful static pressure
9	Installation
0	Horizontal
10	Flow orientation
0	Type 1
X	Type 2
11	Exchanger
0	No internal coil
E	Post-heating electric internal coil
W	Water coil (1)


⁽¹⁾ Can also be used with chilled water: with sizes 030-100 in flow orientation 1 (°), 070-100 in flow orientation 2 (X): the coil is not available for sizes 030-050 with flow orientation 2 (X). Sizes 140-400 can only

be used with hot water.

AVAILABLE ORIENTATION

TYPE 2 - TO BE REQUESTED DURING ORDER (TOP VIEW)

ACCESSORIES COMPATIBILITY

ACCESSORIES COMP	Ver	030	050	070	100 14	0 200	300	400
MConverter	L,P	•	•	•		• 200	•	•
	,							
egulation								
egulation and control	panel (outside the he	at recovery						
Ver	030	050	070	100	140	200	300	400
L,P	HRC	HRC	HRC	HRC	HRC	HRC	HRC	HRC
Speed regulator								
Ver	030	050	070	100	140	200	300	400
L	RVC40	RVCL	RVCL	RVC40	RVCL	RVC40	RVC40	RVC40
P	RVC40	RVC40	RVC40	RVC40	RVC40	RVC40	RVC40	RVC40
Additional modules								
External module equipp	ed with pre-filters							
Ver	030	050	070	100	140	200	300	400
L,P	M4F03	M4F05	M4F07	M4F10	M4F14	M4F20	M4F30	M4F40
External module with w								
Ver	030	050	070	100	140	200	300	400
L,P	-	-	-	-	MBF14	MBF20	MBF30	MBF40
he accessory cannot be fitted on the								
Ver	030	050	070	100	140	200	300	400
L,P	-	-	-	-	MBF14X	MBF20X	MBF30X	MBF40X
he accessory cannot be fitted on the	configurations indicated with -							
3 way valve kit								
Accessory	MBF14	MBF14X	MBF20	MBF20X	MBF30	MBF30X	MBF40	MBF40X
TWWV020	•	•	•	•				
TWWV400					•	•	•	•
Threaded coupling								
Accessory	MBF14	MBF14X	MBF20	MBF20X	MBF30	MBF30X	MBF40	MBF40X
TF100	•		•	•				
TF400					•	•	•	•
Actuator for valves								
_	MBF14	MBF14X	MBF20	MBF20X	MBF30	MBF30X	MBF40	MBF40X
Accessory TWWVA	• •	•	•	•	• MDI 30	•	•	•
Module with post-heati	ng water coil.							
Ver	030	050	070	100	140	200	300	400
L,P	MBP03	MBP05	MBP07	MBP10	MBP14	MBP20	MBP30	MBP40
Module with electric coi								
Ver	030	050	070	100	140	200	300	400
L,P	MBE03	MBE05	MBE07	MBE10	MBE14	MBE20	MBE30	MBE40
Module equipped with s	ilencer haffles							
Ver	030	050	070	100	140	200	300	400
L,P	MSU03	MSU05	MSU07	MSU10	MSU14	MSU20	MSU30	MSU40
Lji	MOOOO	MISOUS	MISOUT	1113010	MOOTT	1113020	MSOSO	MIDOTO
Circular flanges								
Ver	030	050	070	100	140	200	300	400
L,P	FGC030	FGC050	FGC070	FGC100	FGC140	FGC200	FGC300	FGC400
_								
Accessories								
3 way valve kit								
Ver	030	050	070	100	140	200	300	400
L,P	TWWV050	TWWV050	TWWV100	TWWV100	TWWV400	TWWV400	TWWV400	TWWV40
			<u> </u>					
Threaded coupling								
Ver	030	050	070	100	140	200	300	400
L,P	TF100	TF100	TF100	TF100	TF400	TF400	TF400	TF400
Actuator for 3-way valve	ac .							
· · · · · · · · · · · · · · · · · · ·	030	050	070	100	140	200	300	400
			0.70	nnn		700	500	400
Ver L,P	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA	TWWVA

Free cooling damper actuator

Ver	030	050	070	100	140	200	300	400
L,P	FCDA							

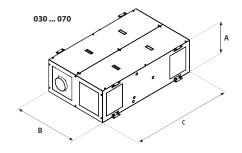
${\it Expansion board for managing the modulating valves}$

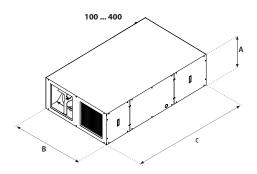
									_
Ver	030	050	070	100	140	200	300	400	
L,P	VMF-MOD								

PERFORMANCE SPECIFICATIONS

RPLI - L

Size		030	050	070	100	140	200	300	400
Heat recovery unit									
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	400V 3~50Hz
Unit type					UVNR (non-residen	tial ventilation uni	t)		
Heat recovery system type	Type/n°				Static at counte	r-current flow / 1			
Heat capacity recovered (EN308) (1)	kW	1,6	2,4	3,6	4,8	7,1	10,0	14,9	19,7
Dry heating efficiency (2)	%	81,1	78,1	76,8	75,3	76,0	76,3	75,5	75,6
Information in compliance with Annex V of regulatio	n EU no. 1253/2014								
Nominal air flow rate supply / recovery	m³/s	0,08	0,13	0,19	0,26	0,39	0,54	0,82	1,08
Nominal air flow rate supply / recovery	m³/h	300	450	700	950	1400	1950	2950	3900
Minimum air flow rate	m³/h	200	250	400	550	800	1150	1750	2350
Fans (3)									
Commissioning	type				Analogue signal o	of EC fan (0-10Vdc)			
Туре	type				I	:(
Number	no.	2	2	2	2	4	2	2	2
Supplied electrical power consumption	kW	0,07	0,09	0,14	0,21	0,33	0,45	0,47	0,73
Recovered electrical power consumption	kW	0,06	0,09	0,14	0,20	0,31	0,41	0,44	0,69
Total input electric power	kW	0,13	0,17	0,28	0,41	0,64	0,86	0,91	1,42
SFP int.	W/(m ³ /s)	820,00	953,00	907,00	1120,00	1132,00	1103,00	748,00	928,00
SFP int. lim. 2018	W/(m ³ /s)	1329	1234	1185	1131	1132	1118	1053	1015
Filters face velocity	m/s	0,8	1,2	1,0	1,4	2,2	2,2	1,9	2,5
Nominal external pressure Δp (3)	Pa	100	100	110	110	110	110	110	110
Useful static supply pressure	Pa	323	401	191	143	112	110	132	196
Useful static recovery pressure	Pa	328	416	198	161	154	149	164	242
Supplied internal pressure drop Δps int.	Pa	115	228	189	293	268	270	245	290
Recovered internal pressure drop Δps int.	Pa	110	213	182	274	228	230	213	244
Fans static efficiency (4)	%	35.8%	57.0%	57.0%	59.7%	57.0%	49.2%	67.2%	66.9%
Internal leakage (5)	%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%
External leakage	%	<3%	<3%	<3%	<3%	<3%	<3%	<3%	<3%
Air filter									
Expelled air filter	Type/n°				М	5/1			
Delivery air filter	Type/n°				F	'/1			
Delivery filter energy classification					On re	quest			
Recovery filter energy classification					On ro	quest			


⁽¹⁾ Expelled air: Tdb=25°C; Twb<-14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters.
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa


RPLI - P

Size		030	050	070	100	140	200	300	400
Heat recovery unit									
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	400V 3~50Hz	400V 3~50Hz
Unit type					UVNR (non-resider	itial ventilation uni	t)		
Heat recovery system type	Type/n°				Static at counte	r-current flow / 1			
Heat capacity recovered (EN308) (1)	kW	1,6	2,4	3,6	4,8	7,1	10,0	14,9	19,7
Dry heating efficiency (2)	%	81,1	78,1	76,8	75,3	76,0	76,3	75,5	75,6
Information in compliance with Annex V of regulation	on EU no. 1253/2014								
Nominal air flow rate supply / recovery	m ³ /s	0,08	0,13	0,19	0,26	0,39	0,54	0,82	1,08
Nominal air flow rate supply / recovery	m³/h	300	450	700	950	1400	1950	2950	3900
Minimum air flow rate	m³/h	200	250	400	550	800	1150	1750	2300
Fans (3)									
Commissioning	type				Analogue signal	of EC fan (0-10Vdc)			
Туре	type					EC			
Number	no.	2	2	2	2	2	4	4	2
Supplied electrical power consumption	kW	0,04	0,08	0,11	0,22	0,35	0,41	0,55	0,87
Recovered electrical power consumption	kW	0,04	0,08	0,11	0,21	0,33	0,38	0,50	0,82
Total input electric power	kW	0,09	0,16	0,23	0,42	0,68	0,79	1,04	1,69
SFP int.	W/(m ³ /s)	543,00	903,00	694,00	1116,00	1095,00	918,00	770,00	999,00
SFP int. lim. 2018	W/(m ³ /s)	1329	1234	1185	1131	1132	1118	1053	1015
Filters face velocity	m/s	0,8	1,2	1,0	1,4	2,2	2,2	1,9	2,5
Nominal external pressure Δp (3)	Pa	100	100	125	125	145	145	150	150
Useful static supply pressure	Pa	506	338	279	638	412	469	462	303
Useful static recovery pressure	Pa	511	353	285	656	452	509	493	349
Supplied internal pressure drop Δps int.	Pa	115	228	189	293	268	270	245	290
Recovered internal pressure drop Δps int.	Pa	110	213	182	274	228	230	213	244
Fans static efficiency (4)	%	61,7	61,7	61,7	57,2	57,2	61,8	66,9	62,7
Internal leakage (5)	%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%	3.9%
External leakage	%	<3%	<3%	<3%	<3%	<3%	<3%	<3%	<3%
Air filter									
Expelled air filter	Type/n°				М	5/1			
Delivery air filter	Type/n°				F	7/1			
Delivery filter energy classification					On re	equest			
Recovery filter energy classification					On re	quest			

(1) Expelled air: Tdb=25°C; Twb<-14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters.
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa

DIMENSIONS AND WEIGHTS

Size		030	050	070	100	140	200	300	400
Dimensions and weights									
A	mm	400	400	435	435	460	460	600	600
В	mm	800	800	945	945	1100	1600	1700	2050
C	mm	1300	1300	1600	1600	1800	1800	2350	2350
Empty weight	kg	95	93	125	123	160	210	287	340

 $\label{lem:continuous} Aermec \ reserves \ the \ right \ to \ make \ any \ modifications \ deemed \ necessary.$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

Thermodynamic recovery unit with integrated heat pump

Air flow rate 1100 - 3200 m³/h

- Compact dimensions
- Compressor with inverter
- EC fan Plug-fan
- · Fixed point adjustment in delivery
- Horizontal installation

DESCRIPTION

Is an air replacement, filtration and treatment unit equipped with high efficiency thermodynamic recovery performed by an integrated cooling circuit.

The inverter compressor allows a high energy saving at the same time as maintaining the set delivery temperature.

The unit can be integrated in the direct expansion and hydronic systems both in heating and cooling mode.

FEATURES

Versions

Horizontal installation:

- RTD: Standard unit with constant flow-rate control.
- RTD_Q: Units with flow modulation according to the concentration of CO₂
- RTD_W: Unit with internal hot/cold water coil complete with threeway valve, modulating servo-control and anti-freeze thermostat.

Main components

- Cooling circuit **BLDC inverter compressor.**
- Plug fans with EC inverter motor.
- Safety valve.
- Lower sandwich panels in galvanised sheet metal with injected polyurethane insulation; upper and side panel in galvanised sheet metal internally lined with insulating mat
- Synthetic filter class Coarse 85% according to EN16890 on the outside air inlet complete with fouling detection pressure switch.

— Condensate collection tank in aluminium alloy with side discharge.

Regulation

- Power and control electrical panel on the machine.
- Programmable controller able to manage all the advanced functions present on the unit (with fixed point adjustment in delivery; cooling, heating, automatic, free cooling functions; compressor, fans and eventual water coil modulation).
- Remote panel (mandatory accessory)) in graphic display version or Touch version.

ACCESSORIES

www.aermec.com

CPVR: Recovery fan constant air flow rate control (accessory supplied separately; the function is enabled on the controller).

PRGD1: Control panel for wall or flush-mount installation with graphic display. Maximum installation distance of 10m.

PRGDX: Touch screen control panel for wall or flush-mount installation complete with black and white frame. Maximum installation distance of 150m.

MRE: Single-stage anti-freeze electric heater module 2 kW to be installed on the external air intake (required for outdoor air temperatures below -5° C)

MF: Coarse 85% efficiency filters module (EN16890) to be positioned in recovery (side extraction) complete with filter clogging pressure switch.

■ The remote controller is required for unit operation, it is possible to select between PRGD1 and PRGDX.

237

ACCESSORIES COMPATIBILITY

Recovery fan constant air flow rate control and xontrol panel

Model	Ver	11	14	17	21	26	32
CPVR (1)	.,Q,QW,W	•	•	•	•	•	•
PRGD1 (2)	.,Q,QW,W	•	•	•	•	•	•
PRGDX	"Q,QW,W						•

Anti-freeze electric heater module

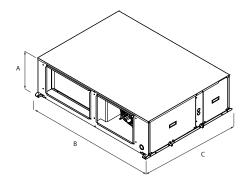
Model	Ver	11	14	17	21	26	32
MRE2M	.,Q,QW,W	•	•				
MRE3M	.,Q,QW,W			•			
MRE3T	.,Q,QW,W				•		
MREST	.,Q,QW,W					•	•

Coarse 85% efficiency filters module (EN16890)

Model	Ver	11	14	17	21	26	32
MF5R1	.,Q,QW,W	•	•				
MF5R2	.,Q,QW,W			•	•		
MF5R3	.,Q,QW,W					•	•
MF7M1	.,Q,QW,W	•	•				
MF7M2	.,Q,QW,W			•	•		
MF7M3	.,Q,QW,W					•	•

CONFIGURATOR

COMMISSION	ANTON
Field	Description
1,2,3	RTD
4,5	Size 11, 14, 17, 21, 26, 32
6	Ventilation control type
0	Constant flow (standard unit)
Q	Control via air quality probe
7	Internal hot/cold water coil
0	No coil (standard unit)
W	Internal water coil


⁽¹⁾ Accessory supplied separately.
(2) The remote controller is required for unit operation, it is possible to select between PRGD1 and PRGDX.

PERFORMANCE SPECIFICATIONS

		RTD11	RTD14	RTD17	RTD21	RTD26	RTD32
Air flow rates				'			
Nominal air flow rate	m³/h	1100	1400	1700	2100	2600	3200
Minimum air flow rate	m³/h	950	1200	1450	1800	2200	2700
Maximum air flow rate	m³/h	1200	1550	1850	2300	2850	3500
Delivery fan							
Туре	type	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan
Fan motor	type	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors
Number	no.	1	1	1	1	1	1
Nominal useful head	Pa	150	150	150	150	150	150
Maximum useful head	Pa	510	580	520	360	570	380
Cooling input power	kW	0,19	0,20	0,23	0,32	0,43	0,62
Heating input power	kW	0,18	0,18	0,22	0,30	0,39	0,56
Expulsion fan		·					
Туре	type	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan	Plug-fan
Fan motor	type	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors	EC Inverter motors
Number	no.	1	1	1	1	1	1
Nominal useful head	Pa	150	150	150	150	150	150
Maximum useful head	Pa	530	600	520	370	590	400
Cooling input power	kW	0,17	0,16	0,19	0,27	0,33	0,46
Heating input power	kW	0,18	0,18	0,22	0,31	0,39	0,54
Performance in cooling mode at maximum comp	ressor speed (1)	,	,		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Cooling capacity	kW	6,70	8,00	8,80	11,20	14,10	16,30
Sensible cooling capacity	kW	5,70	6,80	7,80	9,80	12,10	13,80
Compressors absorbed power	kW	1,80	2,20	2,30	3,20	4,00	4,50
Total input power EN14511 2017	kW	2,09	2,43	2,58	3,55	4,48	5,15
EER EN14511:2017	W/W	3,20	3,30	3,42	3,16	3,14	3,16
EER	W/W	3,11	3,15	3,24	2,96	2,95	2,92
Performance in heating mode at maximum comp	ressor speed						
Heating capacity	kW	7,70	9,30	10,60	13,80	16,90	20,00
Compressors absorbed power	kW	1,60	2,00	2,20	2,90	3,30	4,10
COP refrigerant circuit	W/W	4,83	4,64	4,82	4,74	5,12	4,87
COP EN14511:2017 (2)	W/W	4,07	4,13	4,26	4,20	4,45	4,18
COP	W/W	3,94	3,92	4,02	3,91	4,15	3,84
Total input power EN14511 2017	kW	1,90	2,20	2,50	3,30	3,80	4,80
Total input power	kW	2,00	2,40	2,60	3,50	4,10	5,20
Compressor							
Туре	type	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC	Twin-rotary BLDC
Compressor regulation	Туре	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter
Number	no.	1	1	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A	R410A	R410A
Electric data							
Input power at full load	kW	4,30	4,50	4,50	5,30	6,10	6,10
Input current at full load	A	14,40	13,80	13,80	17,90	16,90	16,90
			· · · · · · · · · · · · · · · · · · ·			•	
Power supply							

⁽¹⁾ Cooling mode: aire temperature 35° C Tbs / 24° CTbh; ambient air 27° CTbs / 19° CTbh. (2) Heating mode: aire temperature 7° CTbs / 6° CTbh; ambient air 20° CTbs / 15° CTbh.

DIMENSIONS

Size			11	14	17	21	26	32
Dimensions and weights								
A	.,Q,QW,W	mm	430	430	530	530	630	630
В	.,Q,QW,W	mm	1508	1508	1508	1508	1508	1508
C	.,Q,QW,W	mm	1100	1100	1100	1100	1100	1100
		kg	133	135	148	160	179	179
F	Q	kg	135	137	150	162	181	181
Empty weight	QW	kg	135	142	161	172	197	197
	W	kg	140	142	159	170	195	195
Weight Constitution		kg	133	135	148	160	179	179
Weight functioning	Q,QW,W	kg	-	-	-	-	-	-

RPF

High performance heat recovery unit with cross-current recuperator

Air flow rate 790 - 4250 m³/h

- Cross-current heat recovery with performances superior than 90%
- Plug fans coupled with ec brushless motors for energy costs reduction

DESCRIPTION

Heat recovery units RPF have been designed for commercial applications and permits to combine an excellent ambient comfort with a sure energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

The units RPF thanks to the cross-current heat recuperator permit to save more than 90% of energy which otherwise would be lost with expelled stuffy air.

RPF could be integrated with traditional systems realized with fan coils, chillers, and could work both in winter and in summer. This series is indicated for both horizontal and vertical installation.

CONFIGURATIONS

O Horizontal right supply

P Horizontal left supply

 ${f V}$ Vertical right supply

Z Vertical left supply

Each of the different configurations could be further customized thanks to the choice of the accessories.

For further information, please refer to the technical documentation on the website.

STRUCTURE

The structure is formed by aluminium profiles with thermic cut, connected by nylon angles charged with glassfibre.

The sealing panels, of 50 mm thickness, are of the sandwich type in pre-painted plate RAL 9002 (external) and galvanized sheet iron (internal) insulated with polyurethane with density 45 kg/m³. The expandent of the polyurethane foam is based on water permitting to reach GWP=0 (Global Warming Potential).

The casing is in fire reaction class M1 according to the French regulation NF P 92-512:1986. Removable panels are also foreseen to access to internal components, equipped with safety locks, condensate drain and internal modulating rolling shutter of motorized and controlled bypass for free-cooling.

Fans

Fans of supply and extract of plug-fan-type with synchronous motor with electronic control permanent magnetos (EC). The impellers are oriented in such a way to grant an optimal air flow which goes through the internal components, with the minimum noise.

Air filter

Air filtration with a filter with G4 efficiency (according to EN779) with low pressure drops on extracted air flow and a compact filter and with efficiency F7 (according to EN779) having a large filtrating surface made of glass microfibre paper, inserted in the intake flow.

The two typologies of filters are positioned upstream of the components to be protected, in order to grant low pressure drops, having a large surface available. The filtrating cells are fixed on a proper bearing frame to avoid any by-pass of non-treated air.

Their extractability is guaranteed from a proper side opening (standard), superior or inferior (optional) [with reference to the horizontal version].

Heat recovery unit

Static high efficiency cross-current heat recovery unit with high efficiency and aluminium plate.

The heat recovery unit guarantees the non-contamination of air flows, because the plates are properly sealed. Its performance is not inferior to 90% (EN308) in function to the external conditions: Air of intake: -10°C/90% - Air of extract 20°C/50% and equal capacities between supply and extract.

It is included also the function of automatic defrosting made easy by the internal modulating rolling shutter and from the possible modulation with intake flow.

REGULATION

Costituted by power electric panel and programmable controller with integrated graphic display. Everything is internally fitted in the unit in an accessible position. The function of regulation are:

— Ventilation control (manual control of the standard fans speed);

- Thermo-regulation completed with all electric/electronic components (modality of regulation in standard extract);
- Integrated logics of energy savings: modulating free-cooling / free-heating, anti-freeze, night cooling, air quality control, dynamic set point, speed economy of ventilation, ranges of time;
- Complete interfaceability with BMS systems.

FUNCTIONALITY AND TECHNOLOGICAL ADVANTAGES

The elimination from closed rooms of the polluting elements, produced mainly from people and the simultaneous external air input, are at the basis of the concept of controlled mechanical ventilation (VMC) of the internal rooms.

The purpose of ventilation is to raise the standard of internal air quality with consequent positive effects for health and productivity of the occupiers. The change of air has positive effects also on the good maintenance of the building.

For the building to be requalified, the Controlled Mechanical Ventilation is almost a mandatory choice in order to reach high energy standards, which are imposed by the current legislation.

Very high ventilation efficiency

Since the ventilation represents one of the major factor of energy consumption, particular attention has been given to the study and to the creation of the ventilation system.

Fans of the plug-fan type with EC brushless motors have been used both in supply and in extraction; they permit high performances and reduced consumptions. Furthermore, compared with the traditional centrifugal fans, they don't have belts or pulleys with consequent easiness of capacity regulation, compactness, versatility, and an easy maintenance.

A particular adaptative logic permits to adjust the effective air capacity required from the system with more consequent advatages in terms of reduction of consumptions.

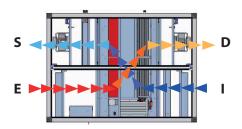
Maximum efficiencies

In this context RPF is proposed as the high efficient and performing solution for double flow ventilation systems with heat recovery.

The key-concept on which is based the RPF proposal are:

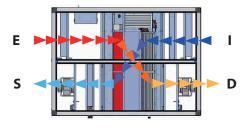
- Very high efficiency heat recovery attested by EUROVENT certification and maintenance of the complete separation of intake and discharge air flow;
- Reduced ventilation energy consumptions, thanks to a detailed dimensioning of the components in order to have low total values of SFP (Specific Fan Power or rather energy consumption for m³/h of total processed capacity);
- High efficiency filtration and low pressure drops;
- Advanced electronic management for the energy saving and of controlling of internal pollutants functions VOC (Volatile Organic Compounds);
- Compactness of dimensions and logic of installation "plug and play".

Air quality in room

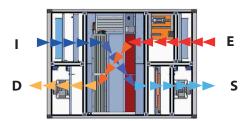

Particular attention has been given naturally also to the quality of air in the room, standard assigned to filters with efficiency G4 on extracted air flow and on compact filter with efficiency F7 included on intake air flow

Naturally all these technological advantages are controlled by a thermoregulation of last generation, able to manage the different working procedures; assuring the maximum energy saving in every usage condition by using a proper software.

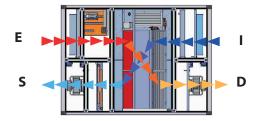
BASIC CONFIGURATION


RPF O Horizontal configuration

Right supply (seen from above)


RPF P Horizontal configuration

Left supply (seen from above)


RPF V Vertical configuration

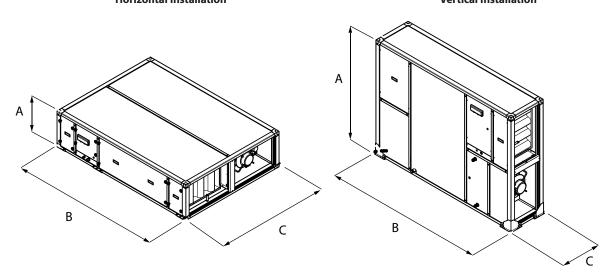
Right supply (seen from the accessible side)

RPF Z Vertical configuration

Left supply (seen from the accessible side)

Discharge Intake Supply

PERFORMANCE SPECIFICATIONS


		RPF008	RPF010	RPF013	RPF020	RPF031	RPF042
Heat recovery unit							
Power supply			230V	~50Hz		400V 3	~50Hz
Unit type				UVNR (non-residen	tial ventilation unit)		
Heat recovery system type	Type/n°			Static at counter	r-current flow / 1		
Heat capacity recovered (EN308) (1)	kW	4,2	5,4	7,0	10,7	16,6	22,8
Dry heating efficiency (2)	%	80,0	79,9	80,0	79,9	79,9	83,8
Information in compliance with Annex V of r	egulation EU no. 1253/20	014					
Nominal air flow rate supply / recovery	m³/s	0,22	0,28	0,36	0,56	0,86	1,18
Nominal air flow rate supply / recovery	m³/h	790	1000	1300	2000	3100	4250
Minimum air flow rate	m³/h	200	200	400	1000	1000	1300
Maximum air flow rate	m³/h	980	1260	1530	2350	3700	4600
Fans (3)							
Commissioning	type			Analogue signal o	of EC fan (0-10Vdc)		
Туре	type				:(
Number	no.	2	2	2	2	2	2
Supplied electrical power consumption	kW	0,16	0,24	0,33	0,60	0,79	1,30
Recovered electrical power consumption	kW	0,15	0,23	0,33	0,56	0,76	1,20
Total input electric power	kW	0,31	0,47	0,66	1,16	1,55	2,50
Maximum input power	kW	0,60	1,24	1,26	1,66	5,26	5,26
Maximum input power	A	4,6	7,5	7,5	9,3	11,1	11,1
SFP int.	W/(m ³ /s)	625,00	667,00	743,00	1142,00	919,00	1211,00
SFP int. lim. 2018	W/(m ³ /s)	1127	1118	1109	1227	1031	1253
Filters face velocity	m/s	1,8	2,0	1,8	2,2	2,2	2,1
Nominal external pressure Δp (3)	Pa	200	250	250	250	250	225
Useful static supply pressure	Pa	191	218	169	134	215	143
Useful static recovery pressure	Pa	196	233	175	152	255	184
Supplied internal pressure drop Δps int.	Pa	174	198	219	319	304	372
Recovered internal pressure drop Δps int.	Pa	176	189	227	355	293	379
ans static efficiency (4)	%	61,7	57,2	57,2	61,8	66,9	62,7
nternal leakage (5)	%	0,3	0,3	0,3	0,1	0,3	0,2
External leakage	%	<3	<3	<3	<3	<3	<3
Air filter							
Delivery filter energy classification					В		
Recovery filter energy classification				On re	quest		

⁽¹⁾ Expelled air: Tdb=25°C; Twb<14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa

DIMENSIONS

RPF 008 - 031 Horizontal Installation

RPF 008 - 042 Vertical Installation

Size			800	010	013	020	031	042
Dimensions and weights								
Α	0,P	mm	450	450	524	560	700	-
A	V,Z	mm	1054	1258	1374	1694	1948	1550
D	0,P	mm	1915	1915	2174	2334	2654	-
D	V,Z	O,P mm 1915 1915 2174 2334 V,Z mm 1915 1915 2174 2334	2654	2974				
<u> </u>	0,P	mm	1054	1258	1374	1694	1948	-
•	V,Z	mm	450	450	524	560	700	1130
F	0,P	kg	194	220	264	328	452	-
Empty weight	V,Z	kg	194	220	264	328	452	585

[■] The weights are standard configuration units without accessories.

URX-CF

Heat recovery unit with refrigerant circuit

Air flow rate 750 - 3300 m³/h

 Heat pump cooling circuit with high yield and low noise scroll compressors.

DESCRIPTION

The URX-CF series is the mono-bloc solution designed for the installation requirements typical for public spaces like bars, restaurants, offices, meeting rooms.

The URX-CF units combine in one mono-bloc unit, besides the fan, filter, and heat recovery sections, a heat pump refrigerant circuit with scroll compressors of high output and low noise.

The supply air is heated or cooled, based on the season, through the heat pump refrigerant circuit located within the unit and charged with refrigerant R410A.

This allows for a complete machine, with autonomous operation during every season and able to provide both the required air renewal for rooms and an efficient heat recovery.

The careful design of the machine combines very compact dimensions, which permit easy installation in false ceilings, with an excellent accessibility for maintaining all the internal components.

FEATURES

Panels

Self-supporting sandwich panel 20 mm thick in galvanised steel for internal and external surfaces with injected polyurethane insulation (density 40 kg/m³).

Heat recovery

Cross flow plate heat exchanger in aluminium with outputs over 50% in winter conditions.

Air filters

Class G4, located before the heat recovery both in the supply and return air flow.

Fans

Double inlet forward curved blades with direct drive motor. Single phase 230V-50Hz single speed motor. The air flow is controlled, within +/- 15% of the nominal, through an electronic speed controller supplied as standard.

Refrigerant circuit

Heat pump complete with high efficiency low noise scroll compressors, 4 way refrigerant cycle reversing valve, evaporator coil, condenser coil, liquid receiver, liquid separator, double thermostatic expansion valve, liquid sight glass (only for models 150, 210, 330), filter drier, high/low pressure pressostats.

Accessibility

From below for the heat recovery, the filters, the condensate drain tray and the fans.

Regulation

The unit is provided with an electrical panel complete with power and control section (included the control for the 3 way valve for the supplementary hot water coil and associated actuators), ensuring the control of all the refrigerant circuit functions.

Included are:

- NTC return air temperature sensor;
- External air temperature sensor;
- Dampers and actuators in the free-cooling version;
- Pressure switch in the supply air filter;
- Card RS485

Supplied loose is a remote mounted control terminal for automatic control of the unit and an outlet to power and control a light to conform with the current regulation for smoking zones.

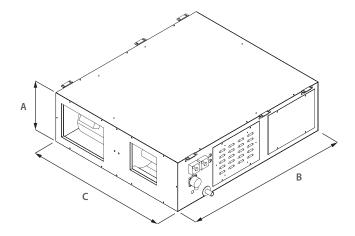
ACCESSORIES COMPATIBILITY

Circular flanges

Accessory	URX07CF	URX10CF		URX15CF	URX21CF
FGC07	•				
GC10		•			
·GC15				•	
GC21					•
Hot water coil module					
Accessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
MBC07	•				
ABC10		•			
MBC15			•		
ABC21				•	
MBC33					•
ree-cooling module					
ccessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
CE07	•				
CE10		•			
CE15			•		
CE21				•	
CE33					•
Module with electric co	oil				
Accessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
ABX07	•				
MBX10		•			
ABX15			•		
MBX21				•	
MBX33					•
Module equipped with	silencer baffles				
Accessory	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
SUF07	•				
UF10		•			
SUF15			•		
UF21				•	
UF33					•

PERFORMANCE SPECIFICATIONS

		URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Heat recovery unit						
Power supply		230V~50Hz	230V~50Hz	400V~ 3N 50Hz	400V~ 3N 50Hz	400V~ 3N 50Hz
Cooling performances (1)						
Total cooling capacity (heat recovery + refrigerant circuit)	kW	6,1	7,3	10,2	15,0	23,0
Cooling capacity available	kW	1,4	1,7	2,2	3,4	5,1
Cooling capacity recovered	kW	0,9	1,3	2,0	2,8	4,2
Summer thermal efficiency	%	46,2	51,2	53,2	53,6	53,6
Total input power	kW	2,60	2,80	3,80	5,00	6,90
Heating performances (2)						
Heating capacity total (heat recovery + refrigerant	kW	8,8	10,8	15,8	22,8	33,3
circuit)		0,0	10,0	13,0	22,0	33,3
Heating capacity available	kW	2,4	2,3	3,0	4,8	5,2
Recovered heating power	kW	2,9	4,3	7,1	10,1	14,3
Winter thermal efficiency	%	46,2	51,2	53,2	53,6	53,6
Total input power	kW	2,00	2,00	3,30	4,00	5,50
Compressor						
Туре	type	Scroll	Scroll	Scroll	Scroll	Scroll
Compressor regulation	Туре	0n-0ff	On-Off	0n-0ff	On-Off	0n-0ff
Number	no.	1	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A	R410A
Refrigerant charge (3)	kg	2,4	2,9	3,0	3,7	4,5
Delivery fan						
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	1	1	1
Nominal air flow rate	m³/h	750	1000	1500	2100	3300
Minimum air flow rate	m³/h	640	850	1275	1785	2800
High static pressure	Pa	278	233	239	166	289
Total fan input power	kW	0,37	0,42	0,51	0,62	1,25
Total fan input current	A	2,4	2,4	3,6	3,6	6,6
Recovery fan						
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	1	1	1
Nominal air flow rate	m³/h	750	1000	1500	2100	3300
Minimum air flow rate	m³/h	640	850	1275	1785	2800
High static pressure	Pa	248	218	233	163	273
Total fan input power	kW	0,37	0,42	0,51	0,62	1,25
Total fan input current	A	2,4	2,4	3,6	3,6	6,6


⁽¹⁾ Recovery air 26 °C 50%; External air 34 °C 50%.
(2) Recovery air 20 °C 50%; External air 5 °C 80%.
(3) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

		URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Hot water coil (accessory)						
Row	no.	2	2	2	2	2
Pressure drop - air side	Pa	11	18	23	42	78
Heating operations 70 °C / 60 °C (1)						
Heating capacity	kW	5,00	6,00	8,70	10,30	16,80
Water flow rate	I/h	442	523	763	902	1475
Pressure drop	kPa	16	22	9	12	31
Heating operations 45 °C / 40 °C (2)						
Heating capacity	kW	1,90	2,20	3,40	3,70	7,50
Water flow rate	l/h	336	382	584	638	1306
Pressure drop	kPa	11	14	6	7	28

⁽¹⁾ Water temperature (in/out) 70°C / 60°C; Compressor operating. (2) Water temperature (in/out) 45°C / 40°C; Compressor operating.

	'	URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Electric heating coil - (accessory)						
Power supply				400V 3 ~ 50Hz		
Stages	no.	1	1	1	1	1
Heating capacity	kW	3,00	4,50	6,00	9,00	12,00
Input current	A	4,6	6,8	11,4	17,2	26,0
Pressure drop - air side	Pa	10	10	10	10	10

DIMENSIONS

		URX07CF	URX10CF	URX15CF	URX21CF	URX33CF
Dimensions and weights						
A	mm	450	450	550	550	600
В	mm	1300	1300	1500	1500	1600
C	mm	1500	1500	1800	1800	1800
Empty weight	kg	205	218	272	298	328

[■] The weights are standard configuration units without accessories.

URHE-CF

Heat recovery unit with refrigerant circuit

Air flow rate 1000 - 3300 m³/h

- Heat pump cooling circuit with high yield and low noise scroll compressors.
- High efficiency

DESCRIPTION

The units of the series URHE-CF are a highly efficient solution for satisfying the requirements of thermohygrometric wellness and air changes in air conditioning systems that are used in civil and service sector environments such as offices, bars, restaurants, etc.

The URHE-CF units are perfectly efficient machines in that they use a high performance plate cross flow heat recovery unit together with a heat pump refrigerant circuit operating with the R410A. refrigerant.

The use of the high performance cross flow heat recovery unit allows you to substantially reduce the start-up period of the refrigerant circuit during the year, thereby minimizing electrical energy consumption.

The unit's small size makes it easy to install also in false ceilings, maintaining excellent accessibility for the upkeep of all its internal components.

The numerous accessories that are available upon request, like for example the compact high efficiency filters, the water coils or the silencers, complete the functions of the machine that is generally combined with an air conditioning system.

FEATURES

Panels

Structure made of aluminium profiles with fibreglass reinforced nylon corners.

Sandwich panels, 25 mm thick, in galvanised sheet metal for the inner surface, pre-painted for the external surface with injected polyure-thane insulation (density 42 kg/m³).

Heat recovery

Aluminium cross flow plates optimised to guarantee elevated performance.

Air filters

Class G4, 80% gravimetric efficiency, according to EN 779, thickness 48 mm, located before the heat recovery both in the supply and return air flow.

Fan

Centrifugal fans with forward-curved blades with high pressure head motor directly attached. The air flow rate is kept constant by means of an electronic control device.

Refrigerant circuit

Heat pump with R410A refrigerant, equipped with high performance, quiet rotary or scroll compressors (depending on the size), 4-way cycle inversion valves, evaporator coil, condenser coil, liquid receiver, thermostatic valve, liquid indicator, filter-drier, high pressure switch, low pressure switch, safety valve, bypass valve (for smaller sizes).

Regulation

The unit is provided with an electrical panel complete with power and control section (included the control for the 3 way valve for the supplementary hot water coil and associated actuators), ensuring the control of all the refrigerant circuit functions.

Included are:

- NTC return air temperature sensor;
- External air temperature sensor;
- Dampers and actuators in the free-cooling version;
- Pressure switch in the supply air filter;
- Card RS485

Supplied loose is a remote mounted control terminal for automatic control of the unit and an outlet to power and control a light to conform with the current regulation for smoking zones.

ACCESSORIES COMPATIBILITY

Hot water coil module

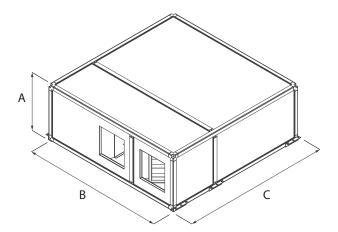
ccessory				
<u> </u>	URHE10CF	URHE15CF	URHE25CF	URHE33CF
BCX1	•			
IBCX2		•		
BCX3			•	
BCX4				•
lodule with electric coil				
ccessory	URHE10CF	URHE15CF	URHE25CF	URHE33CF
IBCH1	•	•	•	Oliliessei
MBCH2	·		· · · · · · · · · · · · · · · · · · ·	•
				<u> </u>
7 compact high efficienc		UNIU	70.00	UDUEDOCE
ccessory	URHE15CF	UKHI	E25CF	URHE33CF
CT1	•			
(T2			•	
CT3				•
lodule equipped with sil				
ccessory	URHE10CF	URHE15CF	URHE25CF	URHE33CF
ISS1	•	•	•	
ISS2				•
ree-cooling module				
ccessory	URHE10CF	URHE15CF	URHE25CF	URHE33CF
GE1	•	•	•	•
ase for floor installation	URHE10CF	URHE15CF	URHE25CF	URHE33CF
ccessory			UKHEZOCE	UKHESSCF
T1	•	•	•	
				•
IT3	n of the additional modules.			
ाउ Base for floor installation	n of the additional modules. URHE10CF	URHE15CF	URHE25CF	• URHE33CF
IT3 Base for floor installation ccessory		URHE15CF •		
rase for floor installation ccessory M1	URHE10CF •		URHE25CF	URHE33CF
ase for floor installation ccessory M1 oof for outdoor installa	URHE10CF • tion.		URHE25CF •	URHE33CF •
ase for floor installation ccessory IM1 coof for outdoor installat ccessory	URHE10CF •		URHE25CF	URHE33CF
rase for floor installation ccessory M1 coof for outdoor installat ccessory E1	URHE10CF • tion. URHE10CF	URHE15CF	URHE25CF • URHE25CF	URHE33CF •
ase for floor installation ccessory IM1 coof for outdoor installat ccessory PE1 PE2	URHE10CF • tion. URHE10CF	URHE15CF	URHE25CF •	URHE33CF •
Rase for floor installation ccessory IM1 Coof for outdoor installat ccessory PE1 PE2 PE3	URHE10CF • tion. URHE10CF •	URHE15CF	URHE25CF • URHE25CF	URHE33CF • URHE33CF
Rase for floor installation ccessory IM1 Roof for outdoor installat ccessory PE1 PE2 PE3 Roof for outdoor installat	URHE10CF tion. URHE10CF · tion of the additional modules.	• URHE15CF •	URHE25CF • URHE25CF •	URHE33CF • URHE33CF
Rase for floor installation ccessory IM1 Roof for outdoor installat ccessory PE1 PE2 PE3 Roof for outdoor installat ccessory	URHE10CF • tion. URHE10CF •	URHE15CF	URHE25CF • URHE25CF	URHE33CF • URHE33CF
ase for floor installation ccessory M1 coof for outdoor installation ccessory PE1 PE2 PE3 ccessory ccessory PM1	URHE10CF tion. URHE10CF · tion of the additional modules.	• URHE15CF •	URHE25CF • URHE25CF •	URHE33CF URHE33CF URHE33CF
Rase for floor installation ccessory IM1 Roof for outdoor installation ccessory PE1 PE2 PE3 Roof for outdoor installation ccessory PM1 PM2	URHE10CF tion. URHE10CF · tion of the additional modules.	• URHE15CF •	URHE25CF • URHE25CF •	URHE33CF • URHE33CF
Rase for floor installation ccessory IM1 Roof for outdoor installation ccessory PE1 PE2 PE3 Roof for outdoor installation ccessory PM1 PM2 Cit free-cooling.	URHE10CF . URHE10CF . tion of the additional modules. URHE10CF .	URHE15CF • URHE15CF •	URHE25CF URHE25CF URHE25CF •	URHE33CF URHE33CF URHE33CF
ase for floor installation ccessory M1 coof for outdoor installation ccessory PE1 PE2 PE3 coof for outdoor installation ccessory PM1 PM2 Cit free-cooling. ccessory	URHE10CF . URHE10CF . tion of the additional modules. URHE10CF . URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF • URHE25CF •	URHE33CF URHE33CF URHE33CF
ATTS Base for floor installation (accessory) ADD (ADD (ADD (ADD (ADD (ADD (ADD (ADD	URHE10CF . URHE10CF . tion of the additional modules. URHE10CF .	URHE15CF • URHE15CF •	URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF
ATTS Base for floor installation (accessory) ADD (ADD (ADD (ADD (ADD (ADD (ADD (ADD	URHE10CF . URHE10CF . tion of the additional modules. URHE10CF . URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF •	URHE33CF URHE33CF URHE33CF
accessory Roof for outdoor installar Accessory PE1 PE2 PE3	URHE10CF . URHE10CF . tion of the additional modules. URHE10CF . URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF
ATTS Base for floor installation (accessory) ADD FOR OUTDOOR INSTALLATION CALLED TO SEE THE COLOR OF THE C	URHE10CF . URHE10CF . tion of the additional modules. URHE10CF . URHE10CF	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF
Rase for floor installation accessory IM1 Roof for outdoor installation accessory PE1 PE2 PE3 Roof for outdoor installation accessory PM1 PM2 Cott free-cooling. accessory CH1 CH2	URHE10CF . URHE10CF . tion of the additional modules. URHE10CF . URHE10CF .	URHE15CF URHE15CF URHE15CF	URHE25CF URHE25CF URHE25CF URHE25CF URHE25CF	URHE33CF URHE33CF URHE33CF URHE33CF

PERFORMANCE SPECIFICATIONS

		URHE10CF	URHE15CF	URHE25CF	URHE33CF
Heat recovery unit					
Power supply		230V~50Hz	230V~50Hz	400V~ 3N 50Hz	400V~ 3N 50Hz
Cooling performances (1)					
Total cooling capacity (heat recovery + refrigerant circuit)	kW	6,6	8,7	13,8	19,8
Cooling capacity available	kW	1,8	3,1	3,3	5,4
Cooling capacity recovered	kW	2,2	3,2	4,5	5,8
Summer thermal efficiency	%	82,0	80,0	68,0	65,0
Total input power	kW	2,60	2,90	5,10	6,50
Heating performances (2)					
Heating capacity total (heat recovery + refrigerant	kW	10,9	14,2	24,8	33,1
circuit)			·		33,1
Heating capacity available	kW	2,8	2,9	3,9	7,0
Recovered heating power	kW	3,6	10,0	15,3	19,6
Winter thermal efficiency	%	82,0	80,0	73,0	71,0
Total input power	kW	2,20	2,40	4,20	4,90
Compressor					
Number	no.	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A
Delivery fan					
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	11	1
Nominal air flow rate	m³/h	1000	1500	2500	3300
Minimum air flow rate	m³/h	800	1100	2000	2500
High static pressure	Pa	320	245	140	220
Total fan input power	kW	0,42	0,46	1,10	1,10
Total fan input current	A	3,1	3,1	5,3	5,3
Recovery fan					
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Number	no.	1	1	1	1
Nominal air flow rate	m³/h	1000	1500	2500	3300
Minimum air flow rate	m³/h	800	1100	2000	2500
High static pressure	Pa	320	245	140	220
Total fan input power	kW	0,42	0,46	1,10	1,10
Total fan input current	A	3,1	3,1	5,3	5,3

⁽¹⁾ Recovery air 26 °C 50%; External air 34 °C 50%. (2) Recovery air 20 °C 50%; External air 5 °C 80%.

Technical data MBCH - Hot water coil (accessory)


	,	URHE10CF	URHE15CF	URHE25CF	URHE33CF
Hot water coil (accessory)					
Row	no.	2	2	2	2
Pressure drop - air side	Pa	7	18	37	37
Heating operations 70 °C / 60 °C (1)					
Heating capacity	kW	7,70	10,30	15,60	19,70
Water flow rate	l/h	673	906	1363	1725
Pressure drop	kPa	11	8	18	32
Heating operations 45 °C / 40 °C (2)					
Heating capacity	kW	2,60	4,00	6,50	7,60
Water flow rate	l/h	446	700	1118	1311
Pressure drop	kPa	3	6	14	22

⁽¹⁾ Water temperature (in/out) 70°C / 60°C; Compressor operating. (2) Water temperature (in/out) 45°C / 40°C; Compressor operating.

Technical data MBCX - Electric heating coil - (accessory)

		URHE10CF	URHE15CF	URHE25CF	URHE33CF
Electric heating coil - (accessory)					
Power supply			400V/3	/50Hz	
Stages	no.	1	1	1	1
Heating capacity	kW	5,00	7,50	12,50	10,00
Input current	A	7,6	11,4	19,0	25,1
Pressure drop - air side	Pa	10	10	10	10

DIMENSIONS

		URHE10CF	URHE15CF	URHE25CF	URHE33CF
Dimensions and weights					
A	mm	580	580	580	580
В	mm	1640	1640	1640	1970
C	mm	1500	1500	1990	2310
Empty weight	kg	300	310	373	410

[■] The weights are standard configuration units without accessories.

ERSR

High-efficiency heat recovery with rotary recovery unit

Air flow rate 1000 - 30000 m³/h

- · Technology high efficiency
- Mechanically controlled ventilation
- Recovery of up to 80% of the energy of the expelled air
- Air purification

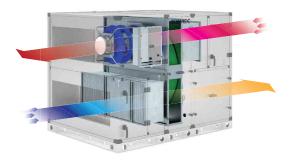
DESCRIPTION

The ERSR heat recovery units for indoor and outdoor installation are designed for commercial applications and are able to combine maximum environmental comfort with definite energy saving.

It is more and more necessary in modern systems to create a forced ventilation, but also involves the expulsion of climate-controlled air, thus determining a higher energy consumption.

But ERSR units are equipped with a rotary heat recovery unit (upon request, also hygroscopic rotary) that enables you to save more than 80% of the energy that would otherwise be lost with the expelled stale air. These units can be integrated with fan coils and chillers, and can operate both in winter and summer.

VERSIONS


H With a hygroscopic rotary recovery **T** With a sensitive rotary recovery

STRUCTURE

 Rotary heat recovery unit (with the option in hygroscopic material), high-efficiency and low pressure drops.

- Soft air bag F7 filters (flow and recovery) equipped with a standard differential pressure switch, which can be extracted from either side facilitate their periodic cleaning.
- Fans (intake and flow), Plug fan with back curved blades with a directly coupled, electronically controlled motor for sizes 07-17 and with an inverter for sizes 21-24.
- Support frame and sandwich panels, 50 mm thick, in galvanised sheet steel for internal surfaces and pre-painted externally, and with mineral wool insulation (density 40 kg/m³). Base in galvanised sheet steel continuous profiles. Sizes 07 to 09 are monoblocs whilst the other sizes are divided into sections. The unit can be inspected from both sides.
- The unit is equipped with a power electric control board on the machine and adjustment purposely designed to reduce energy consumption. Equipped with a communication serial port on RS485 with MODBUS Master/Slave protocol.

FEATURES

Air expelled

Air recovery from the room

Outdoor fresh air

Air introduced into the room

Quality of the air

Nowadays, the quality of air inside rooms is fundamental. The mechanically controlled ventilation system is not only indispensable from an energetic point of view, but also for the comfort of the rooms.

ACCESSORIES

CAP: Intake waterproof cover. **BDL:** Delivery waterproof cover. **TDP:** Roof for outdoor installation. VRC: Condensate drip tray.

VVR: Variable speed recovery unit.

KDP: Dehumidification and post-heating management kit.

RBC: 3-way valve hot water coil module. RBF: 3-way valve cold water coil module. Harmful elements and smells in the air are eliminated by the efficient filtration system with bag filters (F7), which are easily extracted and regenerated.

High-efficiency air circulation thanks to plug-fans with electronically controlled motors or inverters, depending on

Freecooling: free comfort

During in-between seasons, outdoor climatic conditions can be more pleasant than those indoors. In such situations, the ERSRs stop the recovery unit enabling the intake of fresh outdoor air to air-condition indoor rooms at zero cost.

High-efficiency recovery unit (80% of the energy of the expelled air)

Air heat recovery both in summer and winter, thanks to the rotary recovery unit (hygroscopic version also available). Air introduced into the room is always optimised, thanks to the heat exchange between the air recovery and outdoor fresh air.

State of the art electronic control

Naturally, all these technological advantages are controlled by state of the art heat regulation, thus ensuring maximum energy savings in every condition of use.

RBE: Electric coil module.

RBP: 3-way valve cold water and post-heating coil module.

17

RSR17

21

RSR21

24

RSR24

MSS: Module equipped with silencer baffles.

FRR: Rectangular flange.

15

RSR15

GAR: Rectangular anti-vibration joint.

HSR: Fresh air intake damper with servocontrol.

RSR: Recirculation damper module. **HG4:** Flat filters efficiency G4.

ACCESSORIES COMPATIBILITY

Regulation

Rectangular	flange.
-------------	---------

Ver	07	09	12	15	17	21	24
H,T	FRR09	FRR09	FRR12	FRR15	FRR17	FRR21	FRR24
nsate drain trav.							
nsate drain tray.	07	00	13	15	17	21	24
nsate drain tray. Ver	07	09	12	15	17	21	24

Additional modules

Rectangular anti-vibration joint. Ver

Н,Т	GAR07	GAR09	GAR12	GAR15	GAR17	GAR21	GAR24
Recirculation damper mod	lule.						
Ver	07	09	12	15	17	21	24

12

RSR12

09

The accessory cannot be fitted on the configurations indicated with -

Flat filters efficiency G4.

ΗТ

Ver	07	09	12	15	17	21	24
Н,Т	HG407	HG409	HG412	HG415	HG417	HG421	HG424

Fresh air intake damper with servocontrol.

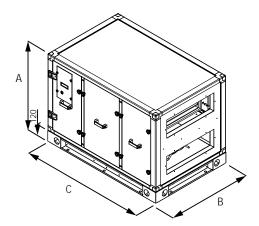
Ver	07	09	12	15	17	21	24
Н,Т	HSR07	HRS09	HRS12	HRS15	HRS17	HRS21	HRS24

Roof protection for basic unit in the case of outdoor installation.

07

Ver	07	09	12	15	17	21	24
H,T	TDP07	TDP09	TDP12	TDP15	TDP17	TDP21	TDP24

Delivery waterproof co	ver.						
Ver	07	09	12	15	17	21	24
H,T	BDL07	BDL09	BDL12	BDL15	BDL17	BDL21	BDL24


Accessories

Air quality probe (VO	C)	١.
-----------------------	----	----

Ver	07	09		12	15	17		21	24
Н,Т	QP	QP		QP	QP	QP		QP	QP
/ariable speed recovery unit.		·							•
Ver Ver	07	09		12	15	17		21	24
H,T	VVR07	VVRO	9	VVR12	VVR15	VVR17		VR21	VVR24
·				******	VIIIS	******	•	VII.2.1	******
Dehumidification and post-he				12	15	17		21	24
Ver H,T	MDP	09 KDP		KDP	T5 KDP	17 KDP		Z1 KDP	Z4 KDP
n,ı	KUP	KUP		KUP	KUP	KUP KUP		KUP	KUP
Intake waterproof cover.									
Ver	07	09		12	15	17		21	24
Н,Т	CAP07	CAPO	9	CAP12	CAP15	CAP17	C	AP21	CAP24
3-way valve hot water coil mo	dule.								
Ver	07	09		12	15	17		21	24
H,T	RBC07	RBCO	9	RBC12	RBC15	RBC17	R	BC21	RBC24
PERFORMANCE SPECIFICA	ATIONS								
Size	ATTONS		07	09	12	15	17	21	24
Heat recovery unit			<u> </u>			.,,	.,		
Power supply						400V 3N ~ 50Hz			
Jnit type					UVNR (U	nit ventilation not resid	lential)		
Heat recovery system type		Type/n°							
Heat capacity recovered (EN308) (1)		kW	5,8	10,3	19,4	31,4	41,3	64,3	85,0
Ory heating efficiency (2)		%	79,0	78,9	78,3	78,8	78,9	78,5	78,7
nformation in compliance with Annex V of	regulation EU no	o. 1253/2014							
Nominal air flow rate supply / recovery		m³/s	0,31	0,54	1,03	1,65	2,17	3,39	4,47
Nominal air flow rate supply / recovery		m³/h	1100	1950	3700	5950	7800	12200	16100
Minimum air flow rate		m³/h	-	-	-	-	-	-	-
ans (3)									
Commissioning		type			A	nalog signal of EC fan			
Гуре		type				Plug-fan			
		no.	1	1	1	1	1	1	1
Supplied electrical power consumption		kW	0,27	0,48	0,85	1,31	1,90	2,20	2,80
Recovered electrical power consumption		kW	0,27	0,48	0,86	1,30	1,90	2,20	2,80
Total input electric power		kW	0,84	2,04	6,10	8,78	10,20	22,37	30,37
SFP int.		W/(m³/s)	1061,00	994,00	927,00	733,00	669,00	778,00	759,00
SFP int. lim. 2018		W/(m ³ /s)	1141	1106	1033	942	887	886	887
ilters face velocity		m/s	1,8	1,9	1,8	1,8	1,8	1,6	1,7
Nominal external pressure Δp (3)		Pa	100	100	100	100	100	100	100
Jseful static supply pressure		Pa	360	520	1000	1100	900	1440	1500
Jseful static recovery pressure		Pa	360	520	1000	1100	900	1440	1500
Supplied internal pressure drop Δps int.		Pa	269	262	276	222	216	240	241
Recovered internal pressure drop Δps int.		Pa	272	265	280	225	219	243	244
ans static efficiency (4)		%	64,5	65,5	62,8	64,1	67,2	64,7	65,8
nternal leakage (5)		%	<3	<3	<3	<3	<3	<3	<3
External leakage		%	0,2	0,2	0,1	0,1	0,1	0,1	0,1
Air filter									
Expelled air filter		Type/n°							
Delivery air filter		Type/n°							
Delivery filter energy classification		··				D			
Recovery filter energy classification						D			

⁽¹⁾ Expelled air: Tdb=25°C; Twb<14°C. Fresh air: Tdb=5°C.
(2) Relation between the inlet air heating gain and the expulsion air heating loss, both relating to the outside temperature, measured in dry reference conditions, with balanced mass flow and an internal/external air heating difference of 20K, excluding the heating gain generated by the fan motors and the internal leakage.
(3) Performances referring to clean filters
(4) According to regulation EU 327/2011
(5) External leakage test performed at +400 Pa and -400 Pa; internal leakage test performed at 250 Pa

DIMENSIONS AND WEIGHTS

Size		07	09	12	15	17	21	24
Dimensions and weights								
A	mm	965	1285	1445	1765	2085	2405	2725
В	mm	895	1005	1375	1695	1855	2335	2665
C	mm	1375	1535	2045	2365	2365	3005	3005
Empty weight	kg	240	340	570	820	1010	1610	1980

AIR CONDITIONING

The air handling units customized according to different needs of the installer to carry the best comfort and the best quality in civil commercial and industrial.

	AIR HANDL	ING UNITS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	Compact air handli	ng units				
new	TVS	Air flow rate 800÷5200 m³/h	800-5200	4,40-27,80	5,20-32,70	
	TUN	Air flow rate 900÷4000 m³/h	900-4000	4,16-29,40	5,07-56,10	
	TS	Air flow rate 810÷4225 m³/h	810-4225	4,39-24,93	8,89-52,44	275
	TDA	Air flow rate 800÷3500 m³/h	800-3500	4,90-22,30	2,50-45,40	279
	TA	Air flow rate 800÷5000 m³/h	800-5000	4,2-39,6	3,9-72,8	
	TN	Air flow rate 3000÷23000 m³/h	3000-23000	12,6-127,8		
	Modular air handlir	ng units				
	NCD	Air handling units	1134-79475			293
	SPL 025-130		4000-13000			296
	SPL 160-250		16000-25000			300
	Packaged ROOF-TO	OP units				
	RTX N1-N8	For medium crowding applications		12,70-49,95	13,50-50,79	304
	RTX 09-16	For medium crowding applications		50-135	49-141	309
	RTX 17-23	For medium crowding applications			152-310	
	RTY 01-10	For high crowding applications		30,2-133,6	29,3-137,9	320

TVS

Air handling unit

- · Centrifugal fan with EC motor
- · Horizontal and vertical installation
- Available units with heat exchanger with 4-6 rows
- Large range of available static pressure
- Ductable unit

DESCRIPTION

TVS it is a thermoventilation unit designed to guarantee high heads in small to medium-sized rooms with nominal air flow rates from 800 to 5200 m³/h. As standard, it is suitable for 2-pipe systems, however the availability (as an accessory) of the secondary water coil, which can be installed inside the unit downstream of the main coil, makes it also suitable for 4-pipe systems.

The unit is suitable for both horizontal installation in suspended ceilings and vertical installation on walls for greater versatility in use.

FEATURES

Structure

The supporting structure is made of galvanised steel sheet panels of suitable thickness. The panels are internally insulated with M1 fire reaction class insulation according to French standard NFP 92-501.

The bottom panels, which can be inspected, are of the sandwich type made of galvanised steel sheet with 15 mm thick polyurethane insulation (density 45 kg/m³).

The particular formulation of the polyurethane foam provides the sandwich panels with reaction to fire class M1 according to NFP standard 92-501. The polyurethane foam was developed with precise specifications to achieve the exceptional value of GWP = 0 (Global Warming Potential), not contributing to the greenhouse effect.

The presence of sandwich type panels on the bottom of the machine enables to significantly reduce the noise outside the unit in typical horizontal suspended ceiling installations.

The unit is supplied with specific brackets for attaching it to the wall.

Heat exchanger coil

Coil made with copper pipes and aluminium louvers blocked by the mechanical expansion of the pipes.

The main coil can be 4 or 6-row.

The secondary coil, available as an accessory, is 2-row.

Hydraulic connections

The hydraulic connections are on the right and are made with female threaded connections, however male-male threaded sleeves, with air release valves, are supplied to facilitate hydraulic connections.

The side of the hydraulic connections can be reversed on site by turning the coil.

The definition of "RH connections side" or "LH connections side" refers to the position of the coil connections in relation to the air flow direction (convection: air flow from behind a hypothetical operator inserted in the flow).

Condensate drip

The galvanised steel condensate drip tray is thermally insulated and has a double drain on the right and left. The unused condensate drain must be sealed.

Ventilation group

The ventilation unit consists of double intake centrifugal fans with blades facing forwards.

The electric motor, directly coupled to the impeller, is of the EC type. The use of the EC motor allows significant energy savings when compared to traditional AC motors and a continuous control of the rotation speed, simplifying air flow rate calibration operations on site.

Except for the first two sizes, Sensorless fans with integrated flow control are installed, without the need for additional accessories.

Air filtration

Air filtration is provided, as standard, by 48 mm thick corrugated synthetic filters with Coarse 55% efficiency according to EN ISO 16890 (G4 according to EN 779) positioned in the intake.

The filters are easily accessible for servicing and cleaning. Extraction is carried out by pulling them out from below by removing the respective panel.

Electrical wiring

On the side of the hydraulic connections there is an electric box, with IP55 protection rating, for connecting power and the 0-10V control signal or a potentiometer of the ventilation unit.

In the case of reversing the side of the hydraulic connections, there is no need to reverse the position of the electrical connections.

VENTILATION EFFICIENCY

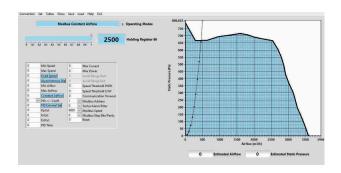
All fans in the range TVS use an EC motor that, operating without slip losses, consumes less energy than conventional AC motors.

This applies to all speeds, i.e. also to partial load operation. The EC motor therefore uses less energy than the AC motor under all operating conditions and has a significantly higher level of efficiency of the drive system (motor and control).

In addition, continuous speed control via the 0-10V signal allows the air flow rate to be varied, and the static pressure can be adapted to the system's pressure drop, making unit start-up particularly easy.

Fans in sizes from TVS204 to TVS526 use an innovative "driver" that provides advanced functions that go far beyond simple speed control via the 0-10V signal (factory setting) and monitoring of operating limits to enable safe operation.

In fact, advanced operating modes can be activated through the use of free PC software, an RS485 interface cable and a commercially available USB to RS485 converter.


Particularly innovative is the operating mode with constant flow rate control. The air flow rate can be varied via an analogue 0-10V signal or the desired value can be set via the dedicated software.

Sensorless constant flow rate

Sensorless constant flow rate control is performed without the use of pressure probes.

The driver determines the operating point by measuring the rotational speed and input power of the fan and then adjusts the rotational speed to maintain the set value of the air flow rate within a predetermined range.

This control system can compensate for a change in system pressure loss or a change in unit pressure loss due to e.g. filter fouling.

CONFIGURATOR

40111140	
Field	Description
1,2,3	TVS
4,5	Size 08, 15, 20, 27, 34, 40, 52
6	Version (1)
4	4-row main coil with right hydraulic connections
6	6-row main coil with right hydraulic connections

(1) The side of the hydraulic connections can be reversed on site

ACCESSORIES

BS2x: 2 row water coil: 2-row water coil for 4-pipe system, located internally, downstream of the main coil. The threaded sleeves for the hydraulic connections and the air vent valve are supplied.

F7x: filter with ePM1 50% efficiency: Filter with ePM1 50% efficiency according to EN ISO 16890 (F7 according to EN 779) to be placed inside the unit in place of the standard filter.

F7x: filter with ePM1 80% efficiency: Filter with ePM1 80% efficiency according to EN ISO 16890 (F9 according to EN 779) to be placed inside the unit in place of the standard filter.

SMBEx: Electric coil module with double safety thermostat (manual and automatic) to be installed on the unit's flow side. Not compatible for vertical installation.

SMF7x: Filter module with ePM1 50% efficiency according to EN ISO 16890 (F7 according to EN 779) to be positioned at the unit's flow or intake in order to carry out a two-stage filtration. Filter extraction from below.

SMF9x: Filter module with ePM1 80% efficiency according to EN ISO 16890 (F9 according to EN 779) to be positioned at the unit's flow or intake in order to carry out a two-stage filtration. Filter extraction from below.

SM25x: Mixing chamber module complete with two galvanised steel calibration dampers to be positioned at the intake of the unit. The damper pins are equipped with an easily removable hand control.

SMLFx: Module consisting of state-of-the-art devices with UV germicidal lamp with photocatalytic effect for active disinfection. To be placed at the discharge of the unit. The complete elimination of germs,

bacteria and viruses cannot be achieved by using SMLFx modules alone, but a reduction in microbial load means less exposure to infection.

FAIx: Filter holder flange to allow intake in a direction perpendicular to the air flow through the unit. The use of the flange does not allow the installation of other accessories or the ducting of the unit to the intake. **SERx:** Galvanised steel damper to be installed on the intake or flow side of the unit. The damper pin is equipped with an easily removable hand control.

GRAx: Natural anodised aluminium intake grid with fixed louvers inclined at 45°. To be installed at the intake of the unit via the supplied flange.

GRMx: Natural anodised aluminium flow grille with two rows of adjustable louvers. To be installed on the unit's flow side via the flange supplied.

V2Vx for main and secondary coil: 2-way valve for main and secondary coil.

V3Vx for main and secondary coil: 3-way valve for main and secondary coil

AV24F - 24V / ON-OFF actuator for main and secondary coil: 24V / ON-OFF actuator for main and secondary coil.

AV24FM - 24V / ON-OFF - 0-10V actuator for main and secondary coil: Actuator with 24V power supply for ON-OFF or modulating 0-10V control of 2-way and 3-way main and secondary coil valves.

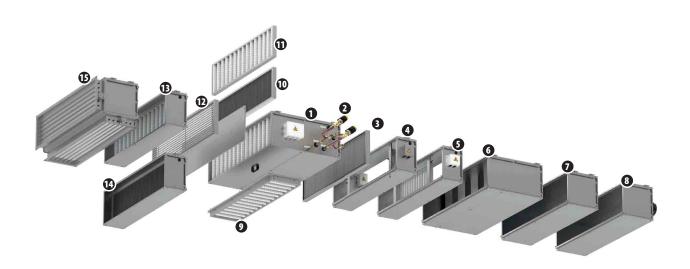
AV24M - 24V / 0-10V actuator for main and secondary coil: Actuator with 24V power supply for modulating 0-10V control of 2-way and 3-way main and secondary coil valves.

GT2x - 2-way valve tube assembly for main coil: Hose assembly and hydraulic fittings for connecting the 2-way valve to the main coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT2Px - **2-way valve hose assembly for secondary coil:** Hose assembly and hydraulic fittings for connecting the 2-way valve to the secondary coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT3x - 3-way valve hose assembly for main coil: Hose assembly and hydraulic fittings for connecting the 3-way valve to the main coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

GT3Px - **3-way valve hose assembly for secondary coil:** Hose assembly and hydraulic fittings for connecting the 3-way valve to the


secondary coil. The hose assembly allows the coil to be operated in countercurrent in the case of the right-hand side connections (standard configuration) and in direct current operation in the case of the left-hand side connections (modification to be carried out on site).

PVV: Potentiometer for fan speed control. The +10V signal is available directly on the electrical connection box located outside the unit.

SMSSx - **Silencer baffles module:** Module consisting of rock wool silencing baffles covered with polyethylene film and protective mesh to prevent flaking. To be installed on the flow and/or intake side of the unit

SPCx: Closed plenum to be positioned at the flow or intake of the unit. Depending on the opening of the flow/intake hole, the accessory allows flow/intake in both longitudinal and perpendicular directions to the air flow through the unit.

SPMx: Plenum with circular flows to be positioned at the flow and/or intake of the unit. The multi-diameter (200mm, 180mm, 150mm) circular plastic couplings allow the connection of circular ducts. Flow/intake is allowed in the longitudinal direction of the air flow through the unit.

Key	:	6	SMSS	12	GRA
1	TVS	7	SPC	13	SMF9
2	Valvola (V3V, AV24,GT3, GT3P)	8	SPM	14	SMF7
3	GRM	9	FAI	15	SM2S
4	SMLF	10	F7		
5	SMBE	11	F9		

ACCESSORIES COMPATIBILITY

Control

Potentiometer for fan speed control

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
PVV		•	•		•			•			•			•

Water valves

2 way valve kit

	TVS084	TVS154	TVS204	TVS274	TVS344	TVS404	TVS524
Main coil							
2 way valve	V2V2	V2V3	V2V4	V2V5	V2V5	V2V6	V2V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT21	GT21	GT22	GT23	GT23	GT24	GT24
Secondary coil							
2 way valve	V2V1	V2V1	V2V4	V2V4	V2V4	V2V5	V2V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT2P1	GT2P1	GT2P2	GT2P2	GT2P2	GT2P3	GT2P3
	TVS086	TVS156	TVS206	TVS276	TVS346	TVS406	TVS526
Main coil							
2 way valve	V2V2	V2V3	V2V4	V2V5	V2V5	V2V6	V2V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT21	GT21	GT22	GT23	GT23	GT24	GT24
Secondary coil							
2 way valve	V2V1	V2V1	V2V4	V2V4	V2V4	V2V5	V2V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT2P1	GT2P1	GT2P2	GT2P2	GT2P2	GT2P3	GT2P3

Tabella 3 way valve kit

	TVS084	TVS154	TVS204	TVS274	TVS344	TVS404	TVS524
Main coil		•	•	•	•	•	•
Three-way valve	V3V2	V3V3	V3V4	V3V5	V3V5	V3V6	V3V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT31	GT31	GT32	GT33	GT33	GT34	GT34
Secondary coil							
Three-way valve	V3V1	V3V1	V3V4	V3V4	V3V4	V3V5	V3V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT3P1	GT3P1	GT3P2	GT3P2	GT3P2	GT3P3	GT3P3

	TVS086	TVS156	TVS206	TVS276	TVS346	TVS406	TVS526
Main coil							
Three-way valve	V3V3	V3V3	V3V4	V3V5	V3V5	V3V6	V3V6
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT31	GT31	GT32	GT33	GT33	GT34	GT34
Secondary coil							
Three-way valve	V3V1	V3V1	V3V4	V3V4	V3V4	V3V5	V3V5
Actuator	AV24F/AV24M	AV24F/AV24M	AV24FM	AV24FM	AV24FM	AV24FM	AV24FM
Pipe assembly	GT3P1	GT3P1	GT3P2	GT3P2	GT3P2	GT3P3	GT3P3

Heating only additional coil

2 row water coil

Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
BS21	•	•												
BS22			•	•										
BS23					•	•								
BS24							•	•	•	•				
BS25											•	•	•	•

Electric coil module

2-stage electric coil module

z stage cice	con mo	uuic												
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
SMBE1 (1)	•	•												
SMBE2 (1)			•	•										
SMBE3 (1)					•	•								
SMBE4 (1)							•	•	•	•				
SMBE5 (1)											•	•		•

⁽¹⁾ Module not compatible for vertical installation.

Installation accessories

SER5

Filter modul		50% eff	iciency											
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS52
MF71	•	•												
ΛF72			•	•										
MF73					•	•								
MF74							•	•	•	•				
MF75											•	•	•	•
ilter modul	e with ePM1	80% eff	iciency											
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
MF91	•	•												
MF92			•	•										
MF93														
MF94										•				
MF95														
ilencer baff	les module													
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
VISS1	•	•	TVJIJT	173130	1177207	143200	1177277	173270	TYJJTT	1175540	173707	1175700	1173724	1 7 3 3
MSS2			•	•										
MSS3			•	•	•									
MSS4					•	•	•	•	•					
MSS5							•	•	•	•	•	•	•	
												•	-	•
	tic device m		T1/6::	W1 / P		W1/4	T1/6	T1/6	THEFT	THE	T1/2:-	m	w	
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
MLF1	•	•												
MLF2			•	•										
MLF3					•	•								
MLF4							•	•	•	•				
MLF5											•	•	•	•
Aixing chan	ber module	comple	te with tu	o calib	ration dar	npers								
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
M2S1	•	•												
M2S2			•	•										
M2S3					•	•								
SM2S4							•	•	•	•				
M2S5											•	•	•	•
losed plenu	ım													
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
PC1	•	•												
PC2														
PC3					•	•								
PC4														
PC5											•	•	•	
	circular del		TUCATA	TUCATA	TUCOOA	TUCOOC	TUCATA	TUCATA	TUCOAA	TUGO 46	TUCADA	TUCADA	TUCEDA	TUCE
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
PM1	•	•												
PM2			•	•										
PM3					•	•								
PM4							•	•	•	•				
PM5											•	•	•	•
abella Filte														
ccessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS5
Al1	•	•												
AI2			•	•										
Al3					•	•								
A14							•	•	•	•				
AI5											•	•	•	•
ialvanised s	teel dampe													
	TVS084	TVS086	TVS1	54	TVS156	TVS204	TVS206	TVS274	TVS276	TVS3	44	TVS346	TVS524	TVS52
ccessory														
ER1	•	•												
ER1														
ER1 ER2						•	•							
Accessory EER1 EER2 EER3 EER4						•		•	•	•		•		

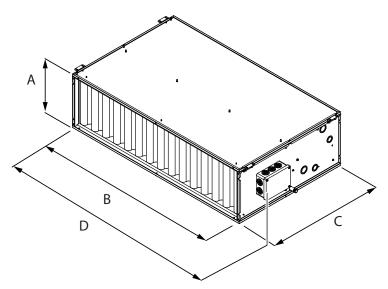
F95

Alluminium	Intake grid	ls												
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
GRA1	•	•												
GRA2			•	•				-			-			-
GRA3					•	•								
GRA4							•	•	•		-			
GRA5											•	•	•	•
Alluminium	delivery gr	ille												
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
GRM1	•	•												
GRM2														
GRM3					•	•								
GRM4							•	•	•	•				
GRM5														
Filter with e	PM1 50% e	fficiency TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
F71	1 1 3 0 0 4	•	1177174	1171110	1173204	1 1 3 2 0 0	173274	11/32/0	1 1 3 3 4 4	173340	1173404	1 1 3400	1173324	1 1 3 3 2 0
F72	<u> </u>	•												
F73			•	•		•								
F74														
F75														
173													-	
Filter with e	PM1 80% e	fficiency												
Accessory	TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
F91	•	•												
F92			•	•										
F93					•	•								
F94							•	•	•	•				
FOF														

4-ROW COIL UNIT PERFORMANCE DATA

Units designed to operate with all recirculating air or maximum 10% of external air.

		TVS084	TVS154	TVS204	TVS274	TVS344	TVS404	TVS524
Performance in heating mode 70 °C / 60)°C - Main coil 2-	pipe system (1)						
Heating capacity	kW	10,50	18,80	25,10	31,90	41,40	54,20	66,40
Water flow rate	I/h	901	1615	2157	2738	3557	4659	5705
Pressure drop	kPa	26	25	37	23	41	38	55
Performance in heating mode 45 °C / 40)°C - Main coil fo	r 2-pipe systems (2)						
Heating capacity	kW	5,20	9,30	12,40	15,80	20,50	26,80	32,70
Water flow rate	l/h	896	1600	2139	2718	3525	4610	5640
Pressure drop	kPa	28	27	40	24	44	40	58
Heating performance 65 °C/55 °C - Seco	ndary coil 4-pip	e system (3)						
Heating capacity	kW	4,40	8,10	14,40	18,40	23,60	28,30	32,90
Water flow rate	I/h	380	697	1235	1579	2031	2433	2828
Pressure drop	kPa	6	26	18	20	32	19	25
Cooling performances 7 °C / 12 °C - Mair	ı coil 2 pipe syste	em (4)						
Cooling capacity	kW	4,40	7,70	10,90	13,20	17,90	23,20	27,80
Sensible cooling capacity	kW	3,30	6,00	8,20	10,40	13,60	17,10	20,70
Water flow rate	I/h	753	1322	1870	2266	3078	3979	4766
Pressure drop	kPa	22	20	33	20	36	34	46
Fan								
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Fan motor	type	EC	EC	EC	EC	EC	EC	EC
Number	no.	1	2	1	1	2	2	2
Nominal air flow rate	m³/h	800	1500	2000	2600	3400	4000	5200
Nominal useful head	Pa	150	150	200	200	200	200	200
Maximum useful head (2-pipes) (5)	Pa	213	242	351	361	380	403	414
Maximum useful head (4-pipes) (5)	Pa	194	217	321	337	342	377	375
Input power (2-pipes) (6)	W	199	358	545	825	826	998	1494
Input power (4 pipes) (6)	W	207	377	574	859	896	1044	1608
Sound data (7)								
Sound power level (inlet + radiated)	dB(A)	66,0	68,0	77,0	77,0	78,0	80,0	80,0
Sound power level (outlet)	dB(A)	66,0	68,0	74,0	76,0	74,0	77,0	78,0
Diametre hydraulic fittings								
Main coil	Ø	3/4"F	3/4"F	1″F	1″F	1″F	1″F	1″F
Secondary coil	Ø	1/2"F	1/2"F	3/4"F	3/4"F	3/4"F	3/4"F	3/4"F
Condensate discharge diameter	mm	1/2" M	1/2" M	1/2" M	1/2"M	1/2" M	1/2"M	1/2" M
Power supply								
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz
Air filter								
Туре	type	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)
Electric coil		-						-
Electric coil capacity	kW	1,5 + 1,5	2,5 + 2,5	4+4	6+6	6+6	7,5 + 7,5	7,5 + 7,5
Stages	no.	2	2	2	2	2	2	2
Power supply		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz
(1) De en einterne 2000 de Weten	(:/ +) 70 °C / C0							


⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 70°C / 60°C
(2) Room air temperature 20°C d.b.; Water (in/out) 45°C / 40°C
(3) Room air temperature 20°C d.b.; Water (in/out) 65°C / 55°C
(4) Room air 27°C b.s. 47% U.R.; Water (in/out) 7°C/12°C
(5) Maximum high static pressure at nominal air flow rate, in heating mode
(6) Input power at nominal air flow rate, at nominal high static pressure, in heating mode
(7) Sound data in 2-pipe configuration, at nominal air flow rate, at nominal high static pressure, in heating mode

6-ROW COIL UNIT PERFORMANCE DATA

		TVS086	TVS156	TVS206	TVS276	TVS346	TVS406	TVS526
Performance in heating mode 70 °C/6	0°C - Main coil 2-							
Heating capacity	kW	11,50	20,60	27,40	35,10	45,40	58,30	72,00
Water flow rate	l/h	986	1774	2359	3017	3900	5009	6189
Pressure drop	kPa	40	27	30	23	42	31	45
Performance in heating mode 45 °C/4	0°C - Main coil fo	r 2-pipe systems (2)						
Heating capacity	kW	5,70	10,20	13,60	17,30	22,50	28,90	35,80
Water flow rate	l/h	978	1762	2342	2985	3876	4980	6166
Pressure drop	kPa	42	29	32	25	44	33	48
Heating performance 65 °C/55 °C - Sec	ondary coil 4-pip	e system (3)						
Heating capacity	kW	4,40	8,10	14,40	18,40	23,60	28,30	32,90
Water flow rate	l/h	380	697	1235	1579	2031	2433	2828
Pressure drop	kPa	6	26	18	20	32	19	25
Cooling performances 7 °C / 12 °C - Mai	n coil 2 pipe syste	em (4)						
Cooling capacity	kW	5,30	9,00	12,30	15,40	20,70	25,90	31,60
Sensible cooling capacity	kW	3,80	6,70	9,00	11,60	15,00	18,70	22,90
Water flow rate	l/h	912	1538	2104	2649	3554	4443	5427
Pressure drop	kPa	39	24	28	23	41	30	42
Fan								
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Fan motor	type	EC	EC	EC	EC	EC	EC	EC
Number	no.	1	2	1	1	2	2	2
Nominal air flow rate	m³/h	800	1500	2000	2600	3400	4000	5200
Nominal useful head	Pa	150	150	200	200	200	200	200
Maximum useful head (2-pipes) (5)	Pa	204	230	338	351	364	392	397
Maximum useful head (4-pipes) (5)	Pa	185	205	308	327	326	366	358
Input power (2-pipes) (6)	W	203	368	557	839	856	1016	1544
Input power (4 pipes) (6)	W	211	387	588	873	932	1064	1658
Sound data (7)								
Sound power level (inlet + radiated)	dB(A)	67,0	69,0	78,0	77,0	78,0	81,0	80,0
Sound power level (outlet)	dB(A)	67,0	69,0	74,0	77,0	74,0	78,0	79,0
Diametre hydraulic fittings								
Main coil	Ø	3/4"F	3/4"F	1″F	1″F	1″F	1″F	1"F
Secondary coil	Ø	1/2"F	1/2"F	3/4"F	3/4"F	3/4"F	3/4"F	3/4"F
Condensate discharge diameter	mm	1/2" M	1/2" M	1/2" M	1/2"M	1/2"M	1/2"M	1/2"M
Power supply								
Power supply		230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz	230V~50Hz
Air filter								
Туре	type	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)	Coarse 55% (G4)
Electric coil								
Electric coil capacity	kW	1,5 + 1,5	2,5 + 2,5	4+4	6+6	6+6	7,5 + 7,5	7,5 + 7,5
Stages	no.	2	2	2	2	2	2	2
Power supply		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz

⁽¹⁾ Room air temperature 20°C d.b.; Water (in/out) 70 °C / 60 °C
(2) Room air temperature 20 °C d.b.; Water (in/out) 45 °C / 40 °C
(3) Room air temperature 20 °C d.b.; Water (in/out) 65 °C / 55 °C
(4) Room air 27 °C b.s.47% U.R.; Water (in/out) 7 °C/12 °C
(5) Maximum high static pressure at nominal air flow rate, in heating mode
(6) Input power at nominal air flow rate, at nominal high static pressure, in heating mode
(7) Sound data in 2-pipe configuration, at nominal air flow rate, at nominal high static pressure, in heating mode

DIMENSIONS

Unit for horizontal installation

		TVS084	TVS086	TVS154	TVS156	TVS204	TVS206	TVS274	TVS276	TVS344	TVS346	TVS404	TVS406	TVS524	TVS526
Dimensions and weigh	ghts														
A	mm	300	300	300	300	390	390	390	390	390	390	390	390	390	390
В	mm	700	700	1000	1000	1000	1000	1400	1400	1400	1400	2000	2000	2000	2000
C	mm	700	700	700	700	850	850	850	850	850	850	850	850	850	850
D	mm	770	770	1070	1070	1070	1070	1470	1470	1470	1470	2070	2070	2070	2070
Net weight	kg	27,00	28,00	42,00	44,00	56,00	59,00	79,00	83,00	89,00	94,00	119,00	125,00	120,00	126,00

TUN

Air handling unit

- Very quiet
- Available units with heat exchanger with 4-6 rows
- Ductable units

DESCRIPTION

The air-conditioning units of the TUN series are intended for civil, commercial and hotel systems in small to medium sized environments. They are distinguished by their compactness (a necessary requisite for false ceiling applications) and low noise. The wide range of accessories meets various system requirements.

STRUCTURE

Case

Structure made with 1.5 mm thick hot-dip galvanized sheet metal insulated internally with class V0 insulation. The unit is predisposed for connection with any delivery or intake channels.

Specific mounts help with the task of fixing the unit to the wall either horizontally or vertically.

Ventilation group

Double suction centrifugal fans with forward blades and directly coupled motor. The single-phase 230V\(\overline{M}\)50Hz motor offers multiple speeds, three of which can be selected using a command.

Heat exchanger coil

The 4, 6 row coils, which can be fed with hot or refrigerated water, are made of copper tubing with aluminium fins blocked by the mechanical expansion of the tubes.

They are equipped with threaded sleeves for the plumbing connections and the air breather valve. The coils can be rotated at the work site. Also available, 2-row post-heating coils made of copper tubing with aluminium fins blocked by mechanical expansion of the tubes.

Condensate drip

Insulated internal condensation collection tub made of 1 mm thick hot-dip galvanised sheet metal.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric

heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

WMT05: Electronic thermostat with thermostated ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adjustment provided.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/adjustment provided.

M25: Galvanised steel mixing chamber with two dampers for air calibration. Louver pitch 50 mm, the galvanised steel adjustment knob (diameter 8 mm) can be motorised.

M3S: Galvanised steel mixing chamber with three air calibration dampers and galvanised steel plates. Must necessarily be paired with the VRF accessory.

FTF: Soft bag filters. Section in galvanised steel sheet metal with F6 soft bag filters. Must necessarily be paired in the powered units.

B2R: Hot water coil with 2 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil.

PBE: Section with post heating coil composed of armoured heaters equipped with a double safety thermostat.

SSL: Module with seven galvanised steel sheet metal silencers and seven stone wool silencers covered by polyethylene film to prevent chipping.

S2Z: Galvanised steel opposed louvers dampers for mixing outside air with recirculating air.

VRF: Recovery fan unit equipped with electronic variable speed control. The unit is contained in a galvanised steel sheet metal section equipped with flat filters, efficiency level G4 (EN779).

SAS: Air calibration damper with galvanised sheet metal louvers to be positioned for intake. Louver pitch 50 mm; the galvanised steel adjustment knob can be motorised.

GMD: Air delivery grill with louvers that can be positioned for the delivery of air in the room to be treated. May be installed directly on the device by removing the flanges or installed on the wall.

GAP: Intake grille with louvers at a fixed 45° angle. May be installed directly on the device by removing the flanges or installed on the wall. **FPI:** ISO COARSE 50% filter flange for intake at base.

FPF: Filter ISO COARSE 50%.

ACCESSORIES COMPATIBILITY

Control panels

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
AER503IR	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SA5	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SIT3	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SW5	•	•	•	•	•	•	•	•	•	•	•	•	•	•
WMT05	•		•	•	•	•	•	•	•	•	•	•	•	•
WMT10	•		•											•

With WMT05 and WMT10 control panels: when paired with units TUN154-156-254-256-404-404P-406-406P use of the SIT3 accessory is mandatory and the 2A fuse must be replaced by a 4A fuse.

2 way valve kit

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
VCT102	•	•	•	•										
VCT202						•	•							
VCT402									•	•				
VCT402P											•	•	•	•

3 way valve kit

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
VCT103	•	•	•	•										
VCT203					•	•	•	•						
VCT403									•	•				
VCTAN3P														

Actuator VCTK 230V

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
VCTK	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Actuator 24V

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
VCTKM	•	•		•	•	•	•	•	•	•			•	•

2-damper mixing chamber

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
M2S1	•	•	•	•										
M2S2					•	•								
M2S3							•	•						
M2S4											•		•	
M2S5												•		•

3-damper mixing chamber

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
M3S1	•	•	•	•										
M3S2														
M3S3							•	•						
M3S4											•		•	
M3S5												•		•

		C		-	
Soft	naa	to It	or c	OCT	nn
JUIL	vuu	1116	ei 3	etu	UII

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
FTF1		•	•	•										
FTF2					•	•								
FTF3								•						
FTF4									•	•	•	-	•	
FTF5												•		•

2 row water coil

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
B2R11	•	•	•	•										
B2R21						•								
B2R31							•	•						
B2R41					-									
B2R51														•

Section with post-heating coil

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
PBE2	•	•	•	•										
PBE24M	•	•	•	•										
PBE24T	•	•	•	•										
PBE3					•	•								
PBE34M					•	•								
PBE36T					•	•								
PBE4							•	•						
PBE44M							•	•						
PBE46T							•	•						
PBE5									•	•				
PBE6											•		•	
PBE7												•		•

Silencer baffles module

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
SSL1	•	•	•	•										
SSL2					•	•								
SSL3														
SSL4									•	•	•		•	
SSL5												•		•

2 zone damper (70-30%)

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
S2Z1	•	•	•	•										
S2Z2					•	•								
S2Z3							•							
S2Z4									•	•	•		•	
S2Z5												•		•

Recovery fan section with ISO COARSE 50% filter

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
VRF1	•	•	•	•										
VRF3					•	•								
VRF4														
VRF5														
VRF6											•		•	
VRF7												•		•

Plenum with multiple circular deliveries

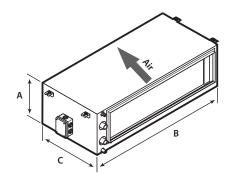
Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
PMM1	•	•	•	•										
PMM2					•	•								
PMM3														
PMM4									•	•			•	
PMM5														

Delivery plenum

Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
TPMC1	•	•	•	•										
TPMC2					•	•								
TPMC3							•							
TPMC4									•	•	•		•	
TPMC5												•		•

Closed	deliver	ı plenum

Accessory	TUN104P	TUN106	TUN106P	TUN154	TUN15	5 TUN20	4 TUN	206 T	UN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
PMC1	•	•	•											
PMC2														
PMC3						•		•						
PMC4														
PMC5												•		
Suction damper														
Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
SAS1	•	•												
SAS2				-								·		
SAS3														
SAS3							<u> </u>							
									•	•	•		•	
SASS												•		•
Outlet grille with adju Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
GMD1	1011104	10111041	•	•	10111174	1011100	1011204	1011200	1011234	1011230	1011404	10114045	1011400	1011900
GMD2	•		•	•										
					•	•								
GMD3							•	•						
GMD4									•	•	•		•	
GMD5												•		•
Intake grids														
Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
					TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory GAP1							TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory GAP1 GAP2 GAP3									TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory GAP1 GAP2												TUN404P		TUN406
Accessory GAP1 GAP2 GAP3 GAP4 GAP5														TUN4061
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange														
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory	TUN104	TUN104P	TUN106	TUN106P	•	•	•	•	•	•	•	•	•	•
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	•	•	•	•	•	•	•	•
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111 FP112 FP113	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	· TUN204	TUN206	TUN254	•	TUN404	•	TUN406	•
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FPI11 FPI12 FPI13 FPI14	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	· TUN204	TUN206	•	TUN256	•	TUN404P	•	TUN406
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111 FP112 FP113 FP114 FP115	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	· TUN204	TUN206	TUN254	TUN256	TUN404	•	TUN406	•
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111 FP112 FP113 FP114 FF115 FFilter ISO COARSE 809	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111 FP112 FP113 FP114 FF115 Friter ISO COARSE 809 Accessory	TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	· TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111 FP112 FP113 FP114 FP115 Filter ISO COARSE 809 Accessory	TUN104 . TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111 FP112 FP113 FP114 FF115 Filter ISO COARSE 809 Accessory FFF1 FFF2	TUN104 . TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406
Accessory GAP1 GAP2 GAP3 GAP4 GAP5 Filter flange Accessory FP111 FP112 FP113 FP114 FF115 Filter ISO COARSE 809 Accessory	TUN104 . TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406


PERFORMANCE SPECIFICATIONS

		TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206
Cooling performance 7 °C / 12 °C (1)									
Cooling capacity	kW	4,16	4,16	5,60	5,60	9,30	11,10	12,50	14,10
Sensible cooling capacity	kW	3,30	3,30	4,00	4,00	6,60	7,60	8,70	9,80
Latent cooling capacity	kW	0,86	0,86	1,60	1,60	2,70	3,50	3,80	4,30
Water flow rate system side	I/h	715	715	963	963	1599	1910	2141	2420
Pressure drop system side	kPa	3	3	9	9	16	34	33	20
Heating performance 70 °C / 60 °C (2)									
Heating capacity	kW	10,20	10,20	11,30	11,30	19,00	21,10	24,90	27,50
Water flow rate system side	l/h	880	880	975	975	1663	1849	2183	2410
Pressure drop system side	kPa	3	3	6	6	13	24	25	15
Heating performance 45 °C / 40 °C (3)									
Heating capacity	kW	5,07	5,07	5,62	5,62	9,45	10,50	12,39	13,68
Electric heating coil - (accessory)									
Heating capacity	kW	4,00	6,00	4,00	6,00	8,00	8,00	10,00	10,00
Stages	no.	2	2	2	2	2	2	2	2
Power supply		400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz
Fan									
Туре	type	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Fan motor	type	Asynchronous	Asynchronous	Asynchronous	Asynchronous	Asynchronous	Asynchronous	Asynchronous	Asynchronous
Number	no.	1	2	1	2	2	2	1	1
Air flow rate	m³/h	900	900	900	900	1500	1500	2000	2000
High static pressure	Pa	110	330	110	330	150	150	170	170
Diametre hydraulic fittings									
Main coil	Ø	1"	1″	1"	1″	1"	1″	1"	1"
Secondary coil	Ø	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"
Condensate discharge diameter	mm	20,5	20,5	20,5	20,5	20,5	20,5	20,5	20,5
,		TUN254	TIIA	1256	TUN404	TUN404P	TIIA	1406	TUN406P
Cooling performance 7 °C / 12 °C (1)		1011234	101	1230	1011404	10114041	101	1400	10114001
Cooling capacity	kW	16,50	18	,50	23,30	26,40	26	,60	29,40
Sensible cooling capacity	kW	11,40		,70	16,30	18,20		,50	20,10
Latent cooling capacity	kW	5,10		80	7,00	8,20		10	9,30
Water flow rate system side	I/h	2832		84	4002	4536		72	5051
Pressure drop system side	kPa	33		10	60	37		6	28
				.0				0	20
Heating performance 70 °C / 60 °C (2)						31			
Heating performance 70 °C / 60 °C (2) Heating capacity	kW	32 30	35	40			52	20	56 10
Heating capacity	kW I/h	32,30 2831		,40	46,70	51,10		,20	56,10 4909
Heating capacity Water flow rate system side	l/h	2831	31	01	46,70 4089	51,10 4475	45	73	4909
Heating capacity Water flow rate system side Pressure drop system side			31		46,70	51,10	45	,	
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3)	I/h kPa	2831 24	31	01	46,70 4089 46	51,10 4475 41	45		4909 20
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity	l/h	2831	31	01	46,70 4089	51,10 4475	45	73	4909
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory)	I/h kPa kW	2831 24 16,07	31 1 17	01 4 ,61	46,70 4089 46 23,23	51,10 4475 41 25,42	45 2 25	.773 .88 .997	4909 20 27,91
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity	I/h kPa kW	2831 24 16,07	31 1 17	01 4 ,61	46,70 4089 46 23,23	51,10 4475 41 25,42	45 2 25 20	.773 .78 .97 .00	4909 20 27,91 20,00
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages	I/h kPa kW	2831 24 16,07 12,00 2	31 1 17	,00 2	46,70 4089 46 23,23 20,00 2	51,10 4475 41 25,42 20,00 2	25 20	.73 .8 .97 .00 2	20 27,91 20,00 2
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply	I/h kPa kW	2831 24 16,07	31 1 17	01 4 ,61	46,70 4089 46 23,23	51,10 4475 41 25,42	25 20	.773 .78 .97 .00	4909 20 27,91 20,00
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan	I/h kPa kW kW no.	2831 24 16,07 12,00 2 400V~3 50Hz	31 17 17 12 400V~	01 4 ,61 ,00 2 -3 50Hz	46,70 4089 46 23,23 20,00 2 400V~3 50Hz	51,10 4475 41 25,42 20,00 2 400V~3 50Hz	25 20 20 400V~	,00 2 3 50Hz	4909 20 27,91 20,00 2 400V~3 50Hz
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type	I/h kPa kW kW no.	2831 24 16,07 12,00 2 400V~3 50Hz	31 17 12 400V~	01 4 ,61 ,00 2 -3 50Hz	46,70 4089 46 23,23 20,00 2 400V~3 50Hz	51,10 4475 41 25,42 20,00 2 400V~3 50Hz	25 25 20 400V~	73 8 .97 .00 2 3 50Hz	4909 20 27,91 20,00 2 400V~3 50Hz
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type Fan motor	l/h kPa kW kW no.	2831 24 16,07 12,00 2 400V~3 50Hz Centrifugal	31 17 12 400V~ Centr Asynch	01 4 ,61 ,00 2 -3 50Hz	46,70 4089 46 23,23 20,00 2 400V~3 50Hz Centrifugal Asynchronous	51,10 4475 41 25,42 20,00 2 400V~3 50Hz Centrifugal Asynchronous	45 25 20 400V~ Centr Asynch	73 8 8 ,97 ,00 2 3 50Hz ifugal ironous	4909 20 27,91 20,00 2 400V~3 50Hz Centrifugal Asynchronous
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type Fan motor Number	kW kW no.	2831 24 16,07 12,00 2 400V~3 50Hz Centrifugal Asynchronous 1	31 17 12 400V~ Centr Asynch	01 4 ,61 ,00 2 -3 50Hz ifugal ironous	46,70 4089 46 23,23 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2	51,10 4475 41 25,42 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2	45 25 20 400V~ Centr Asynch	73 8 8	4909 20 27,91 20,00 2 400V~3 50Hz Centrifugal Asynchronous
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type Fan motor Number Air flow rate	kW kW no. type type no. m³/h	2831 24 16,07 12,00 2 400V~3 50Hz Centrifugal Asynchronous 1 2500	31 17 12 400V~ Centr Asynct	01 44 ,61 ,00 2 -3 50Hz ifugal aronous 1	46,70 4089 46 23,23 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000	51,10 4475 41 25,42 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000	45 25 20 400V~ Centr Asynch	73 8 8	4909 20 27,91 20,00 2 400V~350Hz Centrifugal Asynchronous 2 4000
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type Fan motor Number Air flow rate High static pressure	kW kW no.	2831 24 16,07 12,00 2 400V~3 50Hz Centrifugal Asynchronous 1	31 17 12 400V~ Centr Asynct	01 4 ,61 ,00 2 -3 50Hz ifugal ironous	46,70 4089 46 23,23 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2	51,10 4475 41 25,42 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2	45 25 20 400V~ Centr Asynch	73 8 8	4909 20 27,91 20,00 2 400V~3 50Hz Centrifugal Asynchronous
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type Fan motor Number Air flow rate High static pressure Diametre hydraulic fittings	kW kW no. type type no. m³/h Pa	2831 24 16,07 12,00 2 400V~3 50Hz Centrifugal Asynchronous 1 2500 150	31 17 12 400V~ Centr Asynct	01 44 ,61 ,00 2 2-3 50Hz ifugal aronous 1	46,70 4089 46 23,23 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 120	51,10 4475 41 25,42 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 220	45 25 20 400V~ Centr Asynch	73 8 8	4909 20 27,91 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 220
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type Fan motor Number Air flow rate High static pressure Diametre hydraulic fittings Main coil	kW kW no. type type no. m³/h Pa	2831 24 16,07 12,00 2 400V~3 50Hz Centrifugal Asynchronous 1 2500 150	31 17 12 400V~ Centr Asynct	01 4 ,61 ,00 2 -3 50Hz ifugal nronous 1 1000 550	46,70 4089 46 23,23 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 120	51,10 4475 41 25,42 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 220	45 25 20 400V~ Centr Asynch	73 8 8	4909 20 27,91 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 220
Heating capacity Water flow rate system side Pressure drop system side Heating performance 45 °C / 40 °C (3) Heating capacity Electric heating coil - (accessory) Heating capacity Stages Power supply Fan Type Fan motor Number Air flow rate High static pressure Diametre hydraulic fittings	kW kW no. type type no. m³/h Pa	2831 24 16,07 12,00 2 400V~3 50Hz Centrifugal Asynchronous 1 2500 150	31 17 12 400V~ Centr Asynct 25 1.	01 44 ,61 ,00 2 2-3 50Hz ifugal aronous 1	46,70 4089 46 23,23 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 120	51,10 4475 41 25,42 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 220	45 25 20 400V~ Centr Asynch 1:	73 8 8	4909 20 27,91 20,00 2 400V~3 50Hz Centrifugal Asynchronous 2 4000 220

(1) Room air temperature 27 °Cd.b./19 °C w.b.; Water (in/out) 7 °C/12 °C;
(2) Room air temperature 10 °Cd.b.; Water (in/out) 70 °C/60 °C
(3) Room air temperature 10 °Cd.b.; Water (in/out) 45 °C/40 °C;

Unit designed to operate with all recirculating air or maximum 10% of external air.

DIMENSIONS

-		TUN104	TUN104P	TUN106	TUN106P	TUN154	TUN156	TUN204	TUN206	TUN254	TUN256	TUN404	TUN404P	TUN406	TUN406P
Dimensions and weights															
A	mm	300	300	300	300	300	300	390	390	390	390	390	390	390	390
В	mm	700	700	700	700	1050	1050	1050	1050	1475	1475	1475	2100	1475	2100
C	mm	700	700	700	700	700	700	850	850	850	850	850	1000	850	1000
D	mm	82	82	82	82	82	82	82	82	82	82	82	82	82	82
Net weight	kg	33,00	37,00	35,00	38,00	47,00	49,00	59,00	61,00	88,00	92,00	88,00	108,00	92,00	108,00

TS

Air handling unit

- Very quiet
- Available units with heat exchanger with 3-4-6 rows
- Ductable units

DESCRIPTION

The air-conditioning units of the TS series are intended for civil, commercial and hotel systems in small to medium sized environments. They are distinguished by their compactness (a necessary requisite for false ceiling applications) and low noise. The wide range of accessories meets various system requirements.

STRUCTURE

Case

Structure made of Galvanized steel 10/10 sheet steel and internally covered with sheets of polyethylene and polyester to obtain improved thermal and acoustic insulation.

Ventilation group

Statically and dynamically balanced centrifugal fans:

- Three-speed electrical motor with running capacitor permanently activated and internal thermal protection
- Transmission system relay card for each speed (excluding the models TS13 and TS16)
- Useful static pressure available for any canalisation

Heat exchanger coil

3, 4 or 6 row coils, powered with hot or cold water and made of copper piping with aluminium louvered fins blocked by mechanical expansion of the pipes. The threaded sleeves for the hydraulic connections and the air bleeding valve are supplied. The coils can be rotated on site.

The coil is not suitable for use in corrosive atmosphere or in environments where aluminium may be subject to corrosion.

Condensate drip

Condensate drip tray in stainless steel AISI 304 with insulation.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp),

with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

FMT10: Electronic thermostat for fan coil in to 2/4 pipe systems.

PXAE: Electronic thermostat with thermostated or continuous ventilation.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

TX: Wall-mounting thermostat for controlling either brushless fan coils or those with asynchronous motors for 2/4 pipe. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices, radiant plate or FCZ-D twin delivery (Dualiet).

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

TSBA: 2-row coil for post-heating, contained in a delivery installation plenum.

TSFA: Air filter class Coarse 50%

TSGA: Horizontal suction grille with fixed louvers to produce suction from below together with the TSPA accessory.

TSMX: Section that mixes the recirculating air and the external air. Calibration of the mix via the damper, motorisation is possible.

VCT: These are 3-way ball valves made of bronze, with female/female connections Ø 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adjustment provided.

TSFM: Delivery flange with rectangular section.

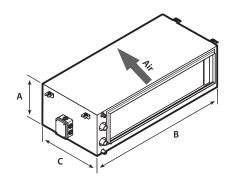
VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/adjustment provided.

ACCESSORIES COMPATIBILITY

Control panels

Model	13	16	23	34	36	43	46	53	56	63	74	76
AER503IR (1)	•	•	•	•	•	•	•	•	•	•	•	•
FMT10	•	•	•	•	•	•	•	•	•	•	•	•
PXAE	•	•	•	•	•	•	•	•	•	•	•	•
SA5 (2)	•	•	•	•	•	•	•	•	•	•	•	•
SW5 (2)	•	•	•	•	•	•	•	•	•	•	•	•
TX (1)	•	•	•	•	•	•	•	•	•	•	•	•
WMT05 (1)	•	•	•	•	•	•	•	•	•	•	•	•
WMT06 (1)	•	•	•	•	•	•	•	•	•	•	•	•
WMT10 (1)			•	•						•		

WM105 (1)											
WMT06 (1)		•	•	•	•		•	•	•		•
VMT10 (1)		•		•			•	•			
1) Wall-mounting	g. If the unit intake	e exceeds 0.7A, or se	everal units need to	be managed with	a single thermosta	t, board SIT3 and/or	r SIT5 is required.				
2) Probe for AER5	03IR-TX thermost	e exceeds 0.7A, or se ats, if fitted.			3	,					
?-row coil fo	or post-hear	tina									
13	16	23	34	36	43	46	53	56	63	74	76
TSBA10	TSBA10	TSBA20/30	TSBA20/30	TSBA20/30	TSBA40	TSBA40	TSBA50	TSBA50	TSBA60/70	TSBA60/70	TSBA60/70
13DA IU	130410	130820/30	130A20/30	130A20/30	130840	130840	טכאטכו	IJDAJU	130A00/70	130400/70	130400/70
Air filter											
13	16	23	34	36	43	46	53	56	63	74	76
TSFA10	TSFA10	TSFA20/30	TSFA20/30	TSFA20/30	TSFA40	TSFA40	TSFA50	TSFA50	TSFA60/70	TSFA60/70	TSFA60/70
IJFATU	IDINIU	13[HZU/30	13FAZU/30	13[HZU/3U	131440	131440	IDFADU	IJFAJU	13/400/70	137400/70	13[400/70
ntake grids	;										
13	16	23	34	36	43	46	53	56	63	74	76
TSGA10	TSGA10	TSGA20/40	TSGA20/40	TSGA20/40	TSGA20/40	TSGA20/40	TSGA50/70	TSGA50/70	TSGA50/70	TSGA50/70	TSGA50/70
UNDCI	UNDCI	13UA20/40	130A20/40	130A20/40	130/20/40	130/20/40	130/30/70	130A30/70	13000770	1300,70	130070770
Section that	t mixes										
13	16	23	34	36	43	46	53	56	63	74	76
TSMX10	TSMX10	TSMX20/30	TSMX20/30	TSMX20/30	TSMX40	TSMX40	TSMX50	TSMX50	TSMX60/70	TSMX60/70	TSMX60/70
13IVIA 1U	I DINIV IO	13/0/A20/30	13/0/20/30	13/9/AZU/30	13/0/40	13/01/40	I DIVINOU	ISWINSU	131/1/00//0	13/00//0	131/100//(
Plenum witl	h suction										
		23	34	36	43		53	56	63	74	76
	1/			30	43	46	23		03	/4	
13 TCD4.10	16 TCDA10			TCD4 20 /20	TCDA 40	TCDA 40	TCDACO	TCDATO	TCDA C0 /70	TCDA CO /70	TCD4 (0/70
TSPA10	16 TSPA10	TSPA20/30	TSPA20/30	TSPA20/30	TSPA40	TSPA40	TSPA50	TSPA50	TSPA60/70	TSPA60/70	TSPA60/70
TSPA10	TSPA10			TSPA20/30	TSPA40	TSPA40	TSPA50	TSPA50	TSPA60/70	TSPA60/70	TSPA60/70
TSPA10 Delivery ple	TSPA10	TSPA20/30	TSPA20/30								
TSPA10 Delivery ple 13	TSPA10 enum 16	TSPA20/30 23	TSPA20/30 34	36	43	46	53	56	63	74	76
TSPA10 Delivery ple	TSPA10	TSPA20/30	TSPA20/30								76
TSPA10 Delivery ple 13 TSPM10	TSPA10 P. Num 16 TSPM10	TSPA20/30 23	TSPA20/30 34	36	43	46	53	56	63	74	76
TSPA10 Delivery ple 13 TSPM10 Delivery flai	TSPA10 PROUTS 16 TSPM10 TGE	TSPA20/30 23 TSPM20/30	TSPA20/30 34 TSPM20/30	36 TSPM20/30	43 TSPM40	46 TSPM40	53 TSPM50	56 TSPM50	63 TSPM60/70	74 TSPM60/70	76 TSPM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13	TSPA10 Pnum 16 TSPM10 nge 16	TSPA20/30 23 TSPM20/30	TSPA20/30 34 TSPM20/30	36 TSPM20/30	43 TSPM40	46 TSPM40 46	53 TSPM50	56 TSPM50	63 TSPM60/70	74 TSPM60/70	76 TSPM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flai	TSPA10 PROUTS 16 TSPM10 TGE	TSPA20/30 23 TSPM20/30	TSPA20/30 34 TSPM20/30	36 TSPM20/30	43 TSPM40	46 TSPM40	53 TSPM50	56 TSPM50	63 TSPM60/70	74 TSPM60/70	76 TSPM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10	TSPA10 PRIMM 16 TSPM10 ROBE 16 TSFM10	TSPA20/30 23 TSPM20/30	TSPA20/30 34 TSPM20/30	36 TSPM20/30	43 TSPM40	46 TSPM40 46	53 TSPM50	56 TSPM50	63 TSPM60/70	74 TSPM60/70	76 TSPM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve	TSPA10 PRIMM 16 TSPM10 ROBE 16 TSFM10 Kit	TSPA20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30	36 TSPM20/30 36 TSFM20/30	43 TSPM40 43 TSFM40	46 TSPM40 46 TSFM40	53 TSPM50 53 TSFM50	56 TSPM50 56 TSFM50	63 TSPM60/70 63 TSFM60/70	74 TSPM60/70 74 TSFM60/70	76 TSPM60/70 76 TSFM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flai 13 TSFM10 2 way valve 13	TSPA10 enum 16 TSPM10 nge 16 TSFM10 kit 16	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30 34	36 TSPM20/30 36 TSFM20/30	43 TSPM40 43 TSFM40	46 TSPM40 46 TSFM40	53 TSPM50 53 TSFM50	56 TSPM50 56 TSFM50	63 TSPM60/70 63 TSFM60/70	74 TSPM60/70 74 TSFM60/70	76 TSPM60/70 76 TSFM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve	TSPA10 PRIMM 16 TSPM10 ROBE 16 TSFM10 Kit	TSPA20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30	36 TSPM20/30 36 TSFM20/30	43 TSPM40 43 TSFM40	46 TSPM40 46 TSFM40	53 TSPM50 53 TSFM50	56 TSPM50 56 TSFM50	63 TSPM60/70 63 TSFM60/70	74 TSPM60/70 74 TSFM60/70	76 TSPM60/70 76 TSFM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102	TSPA10 2 num 16 TSPM10 nge 16 TSFM10 kit 16 VCT102	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30 34	36 TSPM20/30 36 TSFM20/30	43 TSPM40 43 TSFM40	46 TSPM40 46 TSFM40	53 TSPM50 53 TSFM50	56 TSPM50 56 TSFM50	63 TSPM60/70 63 TSFM60/70	74 TSPM60/70 74 TSFM60/70	76 TSPM60/70 76 TSFM60/70
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 3 way valve	TSPA10 P. M.	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30 34 VCT102	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402	63 TSPM60/70 63 TSFM60/70 63 VCT402	74 TSPM60/70 74 TSFM60/70 74 VCT402P	76 TSPM60/70 76 TSFM60/70 76 VCT402P
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 B way valve 13	TSPA10 P. M.	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30 34 VCT102	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402	63 TSPM60/70 63 TSFM60/70 63 VCT402	74 TSPM60/70 74 TSFM60/70 74 VCT402P	76 TSPM60/70 76 TSFM60/70 76 VCT402P
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 3 way valve	TSPA10 P. M.	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30 34 VCT102	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402	63 TSPM60/70 63 TSFM60/70 63 VCT402	74 TSPM60/70 74 TSFM60/70 74 VCT402P	76 TSPM60/70 76 TSFM60/70 76 VCT402P
TSPA10 Delivery ple 13 TSPM10 Delivery flai 13 TSFM10 2 way valve 13 VCT102 3 way valve 13 VCT103	TSPA10 16 TSPM10 16 TSPM10 Mage 16 TSFM10 kit 16 VCT102 kit 16 VCT103	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30	TSPA20/30 34 TSPM20/30 34 TSFM20/30 34 VCT102	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402	63 TSPM60/70 63 TSFM60/70 63 VCT402	74 TSPM60/70 74 TSFM60/70 74 VCT402P	76 TSPM60/70 76 TSFM60/70 76 VCT402P
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 B way valve 13 VCT103 Actuator VC	16 TSPM10 16 TSPM10 16 TSPM10 16 TSFM10 kit 16 VCT102 kit 16 VCT102	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30 23 VCT102 23 VCT102	34 TSPM20/30 34 TSFM20/30 34 VCT102	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402 56 VCT403	63 TSPM60/70 63 TSFM60/70 63 VCT402 63 VCT403	74 TSPM60/70 74 TSFM60/70 74 VCT402P 74 VCT402P	76 TSPM60/70 76 TSFM60/70 76 VCT402P 76 VCT403P
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 3 way valve 13 VCT103 Actuator VC 13	TSPA10 Inum 16 TSPM10 Inge 16 TSFM10 kit 16 VCT102 kit 16 VCT103 TK 230V 16	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30 23 VCT102 23 VCT102	34 TSPM20/30 34 TSFM20/30 34 VCT102 34 VCT103	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202 46 VCT203	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402 56 VCT403	63 TSPM60/70 63 TSFM60/70 63 VCT402	74 TSPM60/70 74 TSFM60/70 74 VCT402P 74 VCT403P	76 TSPM60/70 76 TSFM60/70 76 VCT402P 76 VCT403P
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 B way valve 13 VCT103 Actuator VC	16 TSPM10 16 TSPM10 16 TSPM10 16 TSFM10 kit 16 VCT102 kit 16 VCT102	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30 23 VCT102 23 VCT102	34 TSPM20/30 34 TSFM20/30 34 VCT102	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402 56 VCT403	63 TSPM60/70 63 TSFM60/70 63 VCT402 63 VCT403	74 TSPM60/70 74 TSFM60/70 74 VCT402P 74 VCT402P	76 TSPM60/70 76 TSFM60/70 76 VCT402P 76 VCT403P
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 B way valve 13 VCT103 Actuator VC 13 VCTK	TSPA10 Inum 16 TSPM10 Inge 16 TSFM10 kit 16 VCT102 kit 16 VCT103 TK 230V 16 VCTK	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30 23 VCT102 23 VCT102	34 TSPM20/30 34 TSFM20/30 34 VCT102 34 VCT103	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202 46 VCT203	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402 56 VCT403	63 TSPM60/70 63 TSFM60/70 63 VCT402	74 TSPM60/70 74 TSFM60/70 74 VCT402P 74 VCT403P	76 TSPM60/70 76 TSFM60/70 76 VCT402P 76 VCT403P
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 3 way valve 13 VCT103 Actuator VC 13 VCTK	TSPA10 Inum 16 TSPM10 Inge 16 TSFM10 kit 16 VCT102 kit 16 VCT103 TTK 230V 16 VCTK	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30 23 VCT102 23 VCT103	34 TSPM20/30 34 TSFM20/30 34 VCT102 34 VCT103	36 TSPM20/30 36 TSFM20/30 36 VCT102 36 VCT103	43 TSPM40 43 TSFM40 43 VCT202 43 VCT203	46 TSPM40 46 TSFM40 46 VCT202 46 VCT203	53 TSPM50 53 TSFM50 53 VCT202 53 VCT203	56 TSPM50 56 TSFM50 56 VCT402 56 VCT403	63 TSPM60/70 63 TSFM60/70 63 VCT402 63 VCT403	74 TSPM60/70 74 TSFM60/70 74 VCT402P 74 VCT403P 74 VCTK	76 TSPM60/70 76 TSFM60/70 76 VCT402P 76 VCT403P 76 VCTK
TSPA10 Delivery ple 13 TSPM10 Delivery flat 13 TSFM10 2 way valve 13 VCT102 B way valve 13 VCT103 Actuator VC 13 VCTK	TSPA10 Inum 16 TSPM10 Inge 16 TSFM10 kit 16 VCT102 kit 16 VCT103 TK 230V 16 VCTK	23 TSPM20/30 23 TSPM20/30 23 TSFM20/30 23 VCT102 23 VCT102	34 TSPM20/30 34 TSFM20/30 34 VCT102 34 VCT103	36 TSPM20/30 36 TSFM20/30 36 VCT102	43 TSPM40 43 TSFM40 43 VCT202	46 TSPM40 46 TSFM40 46 VCT202 46 VCT203	53 TSPM50 53 TSFM50 53 VCT202	56 TSPM50 56 TSFM50 56 VCT402 56 VCT403	63 TSPM60/70 63 TSFM60/70 63 VCT402	74 TSPM60/70 74 TSFM60/70 74 VCT402P 74 VCT403P	76 TSPM60/70 76 TSFM60/70 76 VCT402P 76 VCT403P


PERFORMANCE SPECIFICATIONS

2-pipe

2-ріре			TS13			TS16			TS23			TS34			TS36			TS43	
		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
		Ĺ	M	H	i	M	 H	i	M	 H	i	M	H	Ĺ	M	H	Ĺ	M	H
Cooling performance 7 °C / 12 °C (1)											_						_		
Cooling capacity	kW	4,39	4,65	4,85	4,44	5,21	5,81	7,18	7,65	7,98	8,59	9,20	9,61	9,40	10,08	10,52	7,14	9,35	11,11
Sensible cooling capacity	kW	3,39	3,60	3,75	3,41	3,99	4,45	5,82	6,20	6,46	6,80	7,28	7,61	7,43	7,96	8,31	5,75	7,54	8,96
Water flow rate system side	l/h	754	800	835	764	896	999	1235	1315	1372	1478	1583	1653	1617	1733	1809	1227	1608	1912
Pressure drop system side	kPa	17	19	21	6	7	9	20	23	24	20	22	24	13	15	16	10	17	23
Heating performance 70 °C / 60 °C (2)																			
Heating capacity	kW	8,89	9,43	9,83	9,75	11,34	12,61	14,14	15,04	15,67	17,71	18,92	19,76	19,36	20,71	21,60	14,24	18,33	21,67
Water flow rate system side	I/h	780	827	862	856	995	1106	1240	1319	1375	1553	1660	1733	1698	1816	1894	1249	1068	1900
Pressure drop system side	kPa	10	12	13	5	7	8	10	12	12	17	19	21	11	13	14	8	13	18
Fan																			
Air flow rate	m³/h	810	877	930	656	803	930	1316	1432	1518	1376	1507	1600	1376	1510	1601	1170	1631	2050
High static pressure	Pa	68	80	90	27	41	55	77	91	102	62	75	85	33	40	45	37	72	114
Input power	kW	0,1	0,1	0,2	0,1	0,1	0,2	0,2	0,3	0,3	0,2	0,3	0,3	0,2	0,3	0,3	0,3	0,3	0,4
Туре	type	-,							- , -		rifugal	.,.	-,-		- , -	.,.		-,,-	
Fan motor	type									On	-0ff								
Number	no.		1			1			2			2			2			2	
Diametre hydraulic fittings																			
Туре	type									G	as								
Main coil	Ø		3/4"			1″			3/4"			3/4"			1″			3/4"	
Power supply																			
Power supply										230V	~50Hz								
																		=4=4	
			T\$46			T553		1	T\$56		l	T\$63			TS74			1576	
		1	TS46	3	1	TS53		1	TS56	3	1	TS63	3	1	TS74	3	1	TS76	3
		1	2	3 H	1	2	3 H	1	2	3 H	1	2	3 H	1	2	3 H	1	2	3 H
Cooling performance 7 °C / 12 °C (1)		-		3 H	1 L		3 H	1 L		3 H	1 L		3 H	1 L		3 H	1 L		3 H
Cooling performance 7 °C / 12 °C (1)	kW	L	2 M	Н	L	2 M	Н	L	2 M	Н	Ĺ	2 M	Н	L	2 M	Н	L	2 M	Н
Cooling capacity	kW	L 8,57	2 M	H 13,44	L 8,05	2 M	H 13,86	9,50	2 M	H 16,47	L 8,11	2 M	H 16,62	L 17,47	2 M	H 21,92	L 19,79	2 M 23,38	H 24,93
Cooling capacity Sensible cooling capacity	kW	8,57 6,90	2 M 11,27 9,06	H 13,44 10,81	8,05 5,68	2 M 11,06 7,80	H 13,86 9,77	9,50 6,73	2 M 13,13 9,31	H 16,47 11,68	8,11 6,40	2 M 12,84 10,12	H 16,62 13,11	17,47 14,20	2 M 20,65 16,78	H 21,92 17,82	19,79 16,04	2 M 23,38 18,95	H 24,93 20,21
Cooling capacity Sensible cooling capacity Water flow rate system side	kW I/h	L 8,57	2 M 11,27 9,06 1938	H 13,44 10,81 2311	8,05 5,68 1385	2 M 11,06 7,80 1902	H 13,86 9,77 2384	9,50 6,73 1633	2 M	H 16,47 11,68 2833	L 8,11	2 M 12,84 10,12 2208	H 16,62 13,11 2858	17,47 14,20 3006	2 M 20,65 16,78 3551	H 21,92 17,82 3771	19,79 16,04 3405	2 M 23,38 18,95 4022	H 24,93 20,21 4289
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side	kW	8,57 6,90 1474	2 M 11,27 9,06	H 13,44 10,81	8,05 5,68	2 M 11,06 7,80	H 13,86 9,77	9,50 6,73	2 M 13,13 9,31 2260	H 16,47 11,68	8,11 6,40 1395	2 M 12,84 10,12	H 16,62 13,11	17,47 14,20	2 M 20,65 16,78	H 21,92 17,82	19,79 16,04	2 M 23,38 18,95	H 24,93 20,21
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2)	kW I/h kPa	8,57 6,90 1474 8	2 M 11,27 9,06 1938 13	H 13,44 10,81 2311 17	8,05 5,68 1385 12	2 M 11,06 7,80 1902 21	H 13,86 9,77 2384 32	9,50 6,73 1633 10	2 M 13,13 9,31 2260 18	H 16,47 11,68 2833 27	8,11 6,40 1395 7	2 M 12,84 10,12 2208 16	H 16,62 13,11 2858 26	17,47 14,20 3006 19	2 M 20,65 16,78 3551 25	H 21,92 17,82 3771 28	19,79 16,04 3405 17	2 M 23,38 18,95 4022 23	H 24,93 20,21 4289 26
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity	kW I/h	8,57 6,90 1474	2 M 11,27 9,06 1938	H 13,44 10,81 2311	8,05 5,68 1385	2 M 11,06 7,80 1902	H 13,86 9,77 2384	9,50 6,73 1633	2 M 13,13 9,31 2260	H 16,47 11,68 2833	8,11 6,40 1395	2 M 12,84 10,12 2208	H 16,62 13,11 2858	17,47 14,20 3006	2 M 20,65 16,78 3551	H 21,92 17,82 3771	19,79 16,04 3405	2 M 23,38 18,95 4022	H 24,93 20,21 4289
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side	kW I/h kPa kW	8,57 6,90 1474 8	2 M 11,27 9,06 1938 13 23,45 2056	H 13,44 10,81 2311 17 27,83	8,05 5,68 1385 12	2 M 11,06 7,80 1902 21 20,82 1826	H 13,86 9,77 2384 32 25,89 2270	9,50 6,73 1633 10	2 M 13,13 9,31 2260 18	H 16,47 11,68 2833 27 32,90 2886	8,11 6,40 1395 7	2 M 12,84 10,12 2208 16 27,78 2436	H 16,62 13,11 2858 26 35,61 3123	17,47 14,20 3006 19 37,33 3274	2 M 20,65 16,78 3551 25 43,80 3841	H 21,92 17,82 3771 28 46,45 4073	19,79 16,04 3405 17 42,00 3683	2 M 23,38 18,95 4022 23 49,25 4319	H 24,93 20,21 4289 26 52,44 4599
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity	kW I/h kPa kW I/h	8,57 6,90 1474 8 18,17 1593	2 M 11,27 9,06 1938 13	H 13,44 10,81 2311 17 27,83 2440	8,05 5,68 1385 12 15,55 1364	2 M 11,06 7,80 1902 21	H 13,86 9,77 2384 32 25,89	9,50 6,73 1633 10 19,63 1722	2 M 13,13 9,31 2260 18 26,43 2321	H 16,47 11,68 2833 27 32,90	8,11 6,40 1395 7 18,32 1607	2 M 12,84 10,12 2208 16	H 16,62 13,11 2858 26 35,61	17,47 14,20 3006 19	2 M 20,65 16,78 3551 25 43,80	H 21,92 17,82 3771 28 46,45	19,79 16,04 3405 17	2 M 23,38 18,95 4022 23 49,25	H 24,93 20,21 4289 26 52,44
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side	kW I/h kPa kW I/h kPa	8,57 6,90 1474 8 18,17 1593 6	2 M 11,27 9,06 1938 13 23,45 2056	H 13,44 10,81 2311 17 27,83 2440 14	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15	H 13,86 9,77 2384 32 25,89 2270 22	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321	H 16,47 11,68 2833 27 32,90 2886 22	8,11 6,40 1395 7 18,32 1607 6	2 M 12,84 10,12 2208 16 27,78 2436 13	H 16,62 13,11 2858 26 35,61 3123 21	17,47 14,20 3006 19 37,33 3274 16	2 M 20,65 16,78 3551 25 43,80 3841 22	H 21,92 17,82 3771 28 46,45 4073 24	19,79 16,04 3405 17 42,00 3683 15	2 M 23,38 18,95 4022 23 49,25 4319 20	H 24,93 20,21 4289 26 52,44 4599 22
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate	kW I/h kPa kW I/h kPa	8,57 6,90 1474 8 18,17 1593 6	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15	H 13,86 9,77 2384 32 25,89 2270 22	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15	H 16,47 11,68 2833 27 32,90 2886 22 2391	8,11 6,40 1395 7 18,32 1607	2 M 12,84 10,12 2208 16 27,78 2436 13	H 16,62 13,11 2858 26 35,61 3123 21	17,47 14,20 3006 19 37,33 3274 16	2 M 20,65 16,78 3551 25 43,80 3841 22	H 21,92 17,82 3771 28 46,45 4073 24	19,79 16,04 3405 17 42,00 3683 15	2 M 23,38 18,95 4022 23 49,25 4319 20	H 24,93 20,21 4289 26 52,44 4599 22
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure	kW I/h kPa kW I/h kPa m³/h Pa	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38	H 16,47 11,68 2833 27 32,90 2886 22 2391 69	8,11 6,40 1395 7 18,32 1607 6	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power	kW I/h kPa kW I/h kPa m³/h Pa kW	8,57 6,90 1474 8 18,17 1593 6	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15	H 13,86 9,77 2384 32 25,89 2270 22	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15	H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5	8,11 6,40 1395 7 18,32 1607 6	2 M 12,84 10,12 2208 16 27,78 2436 13	H 16,62 13,11 2858 26 35,61 3123 21	17,47 14,20 3006 19 37,33 3274 16	2 M 20,65 16,78 3551 25 43,80 3841 22	H 21,92 17,82 3771 28 46,45 4073 24	19,79 16,04 3405 17 42,00 3683 15	2 M 23,38 18,95 4022 23 49,25 4319 20	H 24,93 20,21 4289 26 52,44 4599 22
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power Type	kW I/h kPa kW I/h kPa m³/h Pa kW type	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38	H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5 Centri	8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 ifugal	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power Type Fan motor	kW I/h kPa kW I/h kPa m³/h Pa kW type type	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5 Centri	8,11 6,40 1395 7 18,32 1607 6	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power Type Fan motor Number	kW I/h kPa kW I/h kPa m³/h Pa kW type	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38	H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5 Centri	8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 ifugal	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power Type Fan motor Number Diametre hydraulic fittings	kW I/h kPa kW I/h kPa m³/h Pa kW type type no.	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	H 16,47 111,68 2833 27 32,90 2886 22 2391 69 0,5 Centro On	8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 1fugal	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power Type Fan motor Number Diametre hydraulic fittings Type	kW I/h kPa kW I/h kPa m³/h Pa kW type type no.	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	H 16,47 111,68 2833 27 32,90 2886 22 2391 69 0,5 Centro On	8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 ifugal	2 M 12,84 10,12 2208 16 227,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119 41	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power Type Fan motor Number Diametre hydraulic fittings Type Main coil	kW I/h kPa kW I/h kPa m³/h Pa kW type type no.	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	H 16,47 111,68 2833 27 32,90 2886 22 2391 69 0,5 Centro On	8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 1fugal	2 M 12,84 10,12 2208 16 27,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119	23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75
Cooling capacity Sensible cooling capacity Water flow rate system side Pressure drop system side Heating performance 70 °C / 60 °C (2) Heating capacity Water flow rate system side Pressure drop system side Fan Air flow rate High static pressure Input power Type Fan motor Number Diametre hydraulic fittings Type	kW I/h kPa kW I/h kPa m³/h Pa kW type type no.	8,57 6,90 1474 8 18,17 1593 6 1173 24	2 M 11,27 9,06 1938 13 23,45 2056 10 1642 48 0,3	H 13,44 10,81 2311 17 27,83 2440 14 2076 76	8,05 5,68 1385 12 15,55 1364 9	2 M 11,06 7,80 1902 21 20,82 1826 15 1775 57 0,4	H 13,86 9,77 2384 32 25,89 2270 22 2387 104	9,50 6,73 1633 10 19,63 1722 9	2 M 13,13 9,31 2260 18 26,43 2321 15 1777 38 0,4	H 16,47 11,68 2833 27 32,90 2886 22 2391 69 0,5 Centro	8,11 6,40 1395 7 18,32 1607 6 1493 20 0,3 1fugal	2 M 12,84 10,12 2208 16 227,78 2436 13 2570 61 0,4	H 16,62 13,11 2858 26 35,61 3123 21 3599 120	17,47 14,20 3006 19 37,33 3274 16 3117 63	2 M 20,65 16,78 3551 25 43,80 3841 22 3869 97 0,8	H 21,92 17,82 3771 28 46,45 4073 24 4200 115	19,79 16,04 3405 17 42,00 3683 15 3119	2 M 23,38 18,95 4022 23 49,25 4319 20 3869 63 0,8	H 24,93 20,21 4289 26 52,44 4599 22 4225 75

(1) Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; (2) Room air temperature 20 °C d.b.; Water (in/out) 70 °C/60 °C; Unit designed to operate with all recirculating air or maximum 10% of external air.

DIMENSIONS

Size		13	16	23	34	36	43	46	53	56	63	74	76
Dimensions and weights													
A	mm	295	295	295	295	295	325	325	325	325	375	375	375
В	mm	645	645	1000	1000	1000	1100	1100	1345	1345	1345	1345	1345
(mm	520	520	520	520	520	600	600	600	600	600	600	600
Empty weight	kg	25	27	35	38	42	42	46	48	52	56	61	67

TDA

Air handling units

Air flow rate 800 ÷ 3500 m³/h

- Horizontal or vertical installation
- Version with 3-4 row water-type coil
- Version with 2-row direct expansion coil
- Version with extractor

DESCRIPTION

The conditioning units in the TDA range have been designed for small and medium sized rooms in civil, commercial and hotel type systems.

The units are designed to guarantee high head levels and are suitable for both vertical and horizontal installation, to ensure greater versatility of use. The outstanding aesthetic finish of the product makes it perfect for installation in box rooms, bathrooms, suspended ceilings or in the room itself.

The wide range of sizes and accessories available means it's easy to choose the best model for the specific requirements.

Structure

Structure with hot galvanised steel sandwich panels, 15mm thick, with interposed polyurethane foam (density 40kg/m3). The delivery and suction panels are equipped with flanges for the collets to any air channels and can be moved to create different air flow configurations. The horizontal or vertical fixing to the walls of the unit is made possible by the appropriate brackets.

New centrifugal fans

New centrifugal fans with high head levels, double suction, forward blades and directly coupled motor. The single-phase 230V-50Hz motor is multi-speed (of which three speeds can be selected).

Condensated collection basin

Condensated collection basin in galvanised steel, suitable for both vertical and horizontal installation.

Coils with 3-4 rows

Coils with 3-4 rows, that can be fed with hot or refrigerated water. Made of copper pipes with aluminium finning held in place by the mechanical expansion of the pipes. They are equipped with threaded sleeves for the plumbing connections and the air breather valve. The coils can be rotated on site.

A 2-row, direct expansion coil **is also available.** It is made of copper pipes with aluminium finning held in place by the mechanical expansion of the pipes.

ACCESSORIES

FAF filter G4 on intake: Contained in the special housing, it is made of synthetic fibre and pleated geometry; the U-shaped frame is in galvanised sheet metal with two galvanised wire support nets

SM Mixing chamber with G4 filter and dampers: Galvanised steel housing complete with two air adjustment dampers with opposed fins in galvanised steel. The housing comes complete with a synthetic fibre filter (efficiency class G4, in accordance with standard EN779).

SR Intake damper: Consisting of a frame with galvanised steel ribbed fins. The fins are moved by nylon toothed wheels.

GM Delivery grille: Grille with double row of adjustable fins to introduce air into the room.

GA Suction grille: With tilted fins fixed at 45°; can be installed directly on the device (by removing the flange) or on the wall.

CMA: Outer casing for grille

BP One-row water-type post-heating coil applied outside the unit: Contained in a special, thermally-insulated housing, it is installed on the air delivery flange only and consists of a 1-row turbo-type coil.

BR Electric post-heating coil applied outside the unit: The machines can be fitted with the electric coil accessory of suitable capacity. It is installed downstream of the finned coil only.

VCT 2-way or 3-way valve: These are 2-way and 3-way ball valves made of bronze, with female/female connections that can be servo-activated via servo commands. The VCT valves do not have fittings and pipes for water connections, which are the installer's responsibility. These can be commanded via control panels (accessories) which are enabled for the valve control function. Consult the control panel characteristics before selecting a panel.

VCTA Two or three-way valve actuator: The VCT series valves can be combined with one of the two actuators, VCTA230 on/off 230V or 24V modulating VCTA24M. The actuator must be selected according to the type of system/adjustment provided.

PM Delivery plenum with circular start-up: Sandwich panel in hot galvanised steel, with interposed polyurethane foam (40kg/m3). The panel is 15mm thick. It is installed in place of the delivery panel with rectangular flange, using the same 4 self-threading screws.

CONTROL PANELS

PX: with selector only

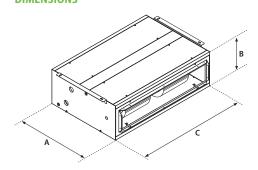
WMT05 Electromechanical thermostat WMT10 control panel

ACCESSORIES COMPATIBILITY

Size	09	15	21	28	37
FAF	FAF1	FAF2	FAF3	FAF4	FAF4
SM	SM1	SM2	SM3	SM4	SM5
SR	SR1	SR2	SR3	SR4	SR4
GM	GM5	GM6	GM7	GM8	GM8
GA	GA5	GA6	GA7	GA8	GA8
CMA	CMA5	CMA6	CMA7	CMA8	CMA8
BP	BP1	BP2	BP3	BP4	BP5
BR	BR1	BR2	BR3	BR4	BR5
VCT (2 way)	VCT102	VCT202	VCT402	VCT402P	VCT402P
VCT (3 way)	VCT103	VCT203	VCT403	VCT403P	VCT403P
VCTA230	•	•	•	•	•
VCTA24M	•	•	•	•	•
PM	PM1	PM2	PM3	PM4	PM4
PX		•	•	•	•(2)
WMT05	•	•(1)	•(1)	•(1)	•(2)
WMT10		•(1)	•(1)	•(1)	•(2)

(1) Envision the use of SIT3 and the replacement of the 2A fuse with one 4A fuse (2) Envisions return relay, one per speed

TECHNICAL DATA


CONFIGURATOR

Field	Description
	TDA
	Size
	09, 15, 21, 28, 37
	Version
3	3-row water coil
4	4-row water coil
E	2-row direct expansion coil
Х	Extractor (without coil)

Size			9	15	21	28	37
Nominal air flow rate		m³/h	800	1400	2000	2700	3500
Nothina an now rate		I/s	222	389	556	750	972
Useful static pressure (1)		Pa	277	330	227	150	240
Cooling capacity with 3-row coil (2)	total	kW	4,90	7,40	11,10	14,70	17,90
cooling capacity with 3-10w con (2)	sensible	kW	3,50	5,60	8,20	10,90	13,70
Cooling capacity with 4-row coil (2)	total	kW	6,10	9,70	13,10	18,40	22,30
cooling capacity with 4-10w coil (2)	sensible	kW	4,30	6,90	9,40	12,50	15,20
Cooling capacity with R-407C coil (3)	total	kW	5,10	7,50	10,70	14,10	16,70
cooling capacity with K-407C coil (5)	sensible	kW	3,50	5,20	7,40	9,90	12,40
Heating capacity with 3-row coil (4)		kW	10,40	16,60	24,20	32,10	41,20
Heating capacity with 4-row coil (4)		kW	12,10	19,90	27,30	36,80	45,40
Heating coil capacity for 4-pipe systems (4)		kW	5,20	8,80	12,60	16,40	20,90
Heating capacity with 3-row coil (5)		KW	5,10	8,10	11,90	15,70	20,10
Heating capacity with 4-row coil (5)		KW	6,00	9,80	13,40	18,20	22,30
Heating capacity with coil for 4-pipe systems (5)		KW	2,50	4,30	6,00	7,80	10,00
Electric coil capacity		KW	4	6	8	10	12
Electric coil power supply			230/1	400V/3	400V/3	400V/3	400V/3
Fnas		n°	1	2	2	1	2
Motors			1	2	2	1	2
Total fan input power		kW	0,357	0,713	0,736	0,874	1,771
Fan input current		Α	1,6	3,1	3,2	3,8	7,7
Fan power supply					230V~/50Hz		
Filter efficiency (6)			G4	G4	G4	G4	G4
Sound power level (7)		dB(A)	62	63	70	72	73
Connections							
Water battery collectors		Ø mm	1″	1″	1″	1″	1″
Direct expansion liquid coil pipes		Ø mm	10	10	12	16	16
Direct expansion gas coil pipes		Ø mm	18	22	22	28	28
Condensate discharge		Ø mm	3/8"	3/8"	1/2"	1/2"	1/2"

Unit designed to operate with all recirculating air or maximum 10% of external air (1) At nominal flow rate with 3-row coil (2) Incoming air temperature 27°C d.b. 19°C w.b.; water temperature (In-Out) 7°C-12°C (3) Incoming air temperature 27°C d.b. 19°C w.b.; average evap. temp. 7°C (4) Incoming air temperature 20°C; water temperature (In-Out) 70°C-60°C (5) Incoming air temperature 20°C; water temperature (In-Out) 45°C-40°C (6) In accordance with standard EN 779 (7) In accordance with standard UNI EN ISO 9614

DIMENSIONS

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Size			9	15	21	28	37
Dimensions and wei	ghts						
Height	В	mm	300	320	320	380	380
Width	(mm	920	1000	1400	1400	1400
Lenght	A	mm	630	670	670	790	790
Net weight *		kg	42	53,00	71,00	88,00	91,00

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

^(*) with 4-row coil

TA

Air handling unit

- Horizontal or vertical, configurations
- Available units with heat exchanger with 4-6 rows
- Version with 4 row expansion coil using R410A
- Version with extractor

DESCRIPTION

The air-conditioning units of the TA series are intended for civil, commercial and hotel systems in small to medium sized environments. They are distinguished by their compactness (a necessary requisite for false ceiling applications) and low noise. The wide range of accessories meets various system requirements.

FEATURES

Structure

Made of galvanised steel sandwich panels with polyurethane insulation (density 45 kg/m³), 15 mm thick. The intake and delivery panels are fitted with flanges for the connection to any possible air channels or accessories.

The unit is supplied with specific brackets for attaching it to the wall.

Air filtration

Filtration of the air entrusted to class G4 filters in compliance with EN779 (thickness 50mm) as per standard positioned at intake.

Ventilation group

Fans double intake centrifugal with forward blades and directly coupled motor. The 230V-50Hz single-phase motor has many speeds, of which three can be selected via the control panel.

Heat exchanger coil

4 or 6 row coils, powered with hot or cold water and made of copper piping with aluminium louvered fins blocked by mechanical expansion of the pipes. The threaded sleeves for the hydraulic connections and the air bleeding valve are supplied. The coils can be rotated on site. The possibility to rotate the coils on site is envisioned.

Also available are coils with 4 rows with direct expansion operating with R410A fluid and post-heating coils with 2 rows realised in copper piping with aluminium louvers blocked via mechanical expansion of the pipes.

Condensate drip

Condensate drip tray interior isolated in aluminium alloy.

ACCESSORIES

AER503IR: Flush-mounting thermostat with backlit display, capacitive keypad and infrared receiver, for controlling both brushless fan coils and those with an asynchronous motor. In 2-pipe systems, the thermostat can control standard fan coils or those equipped with an electric heater, with air purifying devices (Cold Plasma and germicidal lamp), with radiant plate or with FCZ-D twin delivery (Dualjet). In addition, it can control systems with radiant panels or mixed (fan coil and radiant floor) systems. Being equipped with an infrared receiver, it can, in turn, be controlled by the VMF-IR remote control.

SA5: air probe kit (L = 15 m) with probe-locking cable grommet.

SIT3: Thermostat Interface Card allowing the creation of a network of fan coils (max. 10) commanded by a central control panel (selector or thermostat). Commands the 3 fan speeds and must be installed on each fan coil within the network; receives the commands from the selector or the SIT5 card. In case you decide to install Aermec thermostats and current absorbed by the unit exceeds 0.7 A, you're obliged to include SIT3 accessory.

SW5: water probe kit (L = 15m) with probe-holder connection point, fixing clip and probe-holder from heat exchanger.

WMT05: Electronic thermostat with thermostated ventilation.

WMT06: Electronic thermostat with continuous ventilation.

WMT10: Electronic thermostat, white, with thermostated or continuous ventilation.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCT: These are 3-way ball valves made of bronze, with female/female connections \emptyset 1/2". That can be servo-activated via servo commands. The valves do not have fittings and pipes for water connections, which are the installer's responsibility.

VCTK: The VCT series valves can be combined with the actuators On-Off 230V. The actuator must be selected according to the type of system/adjustment provided.

VCTKM: The VCT series valves can be combined with the actuators 24V modulating. The actuator must be selected according to the type of system/adjustment provided.

M2S: Galvanised steel mixing chamber with two dampers for air calibration. Louver pitch 50 mm, the galvanised steel adjustment knob (diameter 8 mm) can be motorised.

M3S: Galvanised steel mixing chamber with three air calibration dampers and galvanised steel plates. Must necessarily be paired with the VRF accessory.

FTF: Soft bag filters. Section in galvanised steel sheet metal with F6 soft bag filters. Must necessarily be paired in the powered units.

B2R: Hot water coil with 2 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil.

PBE: Section with post heating coil composed of armoured heaters equipped with a double safety thermostat.

SSL: Module with seven galvanised steel sheet metal silencers and seven stone wool silencers covered by polyethylene film to prevent chipping.

S2Z: Galvanised steel opposed louvers dampers for mixing outside air with recirculating air.

VRF: Recovery fan unit equipped with electronic variable speed control. The unit is contained in a galvanised steel sheet metal section equipped with flat filters, efficiency level G4 (EN779).

SAS: Air calibration damper with galvanised sheet metal louvers to be positioned for intake. Louver pitch 50 mm; the galvanised steel adjustment knob can be motorised.

GMD: Air delivery grill with louvers that can be positioned for the delivery of air in the room to be treated. May be installed directly on the device by removing the flanges or installed on the wall.

GAP: Intake grille with louvers at a fixed 45° angle. May be installed directly on the device by removing the flanges or installed on the wall. FPI: ISO COARSE 50% filter flange for intake at base.

PMM: Plenum with circular multiple delivery, thickness 1.5 mm. The plenum is equipped with multi-diameter circular connections (200 mm, 180 mm, 150 mm) made of plastic to permit the connection of circular conduits.

PMC: Closed delivery plenum in 1.5 mm thick hot-dip galvanised sheet metal. The plenum allows for flow to be rotated by 90°. Opening the delivery outlet is the installer's responsibility.

ACCESSORIES COMPATIBILITY

Control panels

Model	Ver	09	11	15	19	24	33	40	50
AER503IR (1)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
SA5 (2)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
SIT3 (3)	H4,H6,HE,V4,V6,X	•	•	•	•		•		•
SW5 (2)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
WMT05 (1)	H4,H6,HE,V4,V6,X		•	•	•				•
WMT06 (1)	H4,H6,HE,V4,V6,X	•	•	•	•	•	•	•	•
WMT10 (1)	H4,H6,HE,V4,V6,X	•	•	•	•		•		•

- (1) Wall-mounting. If the unit intake exceeds 0.7A, or several units need to be managed with a single thermostat, board SIT3 and/or SIT5 is required.

H4.H6.HE.V4.V6.X

(2) Probe for AERSO3IR-TX thermostats, if fitted.
(3) Cards for AERSO3IR-TX thermostats, if present, to be installed if the unit absorption exceeds 0,7 Ampere.

Ver	09	11	15	19	24	33	40	50
H4,H6,V4,V6	VCT102	VCT102	VCT202	VCT202	VCT202	VCT402	VCT402P	VCT402P
3 way valve kit								
Ver	09	11	15	19	24	33	40	50
H4,H6,V4,V6	VCT103	VCT103	VCT203	VCT403, VCT403P	VCT403, VCT403P	-	-	-
he accessory cannot be fitted on the conf	igurations indicated with	-						
Actuator VCTK 230V								
Ver	09	11	15	19	24	33	40	50
H4,H6,V4,V6	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK	VCTK
Actuator 24V								
Ver	09	11	15	19	24	33	40	50
H4,H6,V4,V6	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM	VCTKM
?-damper mixing chambei	•							
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	M2S1	M2S1	M2S2	M2S3	M2S4	M2S4	M2S5	M2S5
3-damper mixing chambei	r							
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	M3S1 (1)	M3S1 (1)	M3S2 (1)	M3S3 (1)	M3S4 (1)	M3S4 (1)	M3S5 (1)	M3S5 (1)
1) It must necessarily be combined with	the VRF accessory.							
Closed delivery plenum								
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	PMC1	PMC1	PMC2	PMC3	PMC4	PMC4	PMC5	PMC5
oft bag filter section								
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	FTF1 (1)	FTF1 (1)	FTF2 (1)	FTF3 (1)	FTF4 (1)	FTF4 (1)	FTF5 (1)	FTF5 (1)
1) It must necessarily be combined in the	e enhanced units.							
?-row coil								
Ver	09	11	15	19	24	33	40	50

B2R3

B2R4

B2R4

B2R5

B2R5

B2R2

B2R1

B2R1

ММ								
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	PMM1	PMM1	PMM2	PMM3	PMM4	PMM4	PMM5	PMM5
O COARSE 50% filter flan	ge for intake at	base.						
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	FPI1	FPI1	FPI2	FP13	FPI4	FPI4	FPI5	FPI5
ection with post-heating	coil							
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	PBE1	PBE2	PBE3	PBE4	PBE5	PBE6	PBE7	PBE8
ilencer baffles module								
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	SSL1	SSL1	SSL2	SSL3	SSL4	SSL4	SSL5	SSL5
zone damper								
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	S2Z1	S2Z1	S2Z2	S2Z3	S2Z4	S2Z4	S2Z5	S2Z5
eturn ventilating section	with a G4 filter							
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	VRF1	VRF2	VRF3	VRF4	VRF5	VRF6	VRF7	VRF8
uction damper								
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	SAS1	SAS1	SAS2	SAS3	SAS3	SAS3	SAS5	SAS5
Outlet grille with adjustab	le louvers							
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	GMD1	GMD1	GMD2	GMD3	GMD4	GMD4	GMD5	GMD5
ntake grids								
Ver	09	11	15	19	24	33	40	50
H4,H6,HE,V4,V6,X	GAP1	GAP1	GAP2	GAP3	GAP4	GAP4	GAP5	GAP5

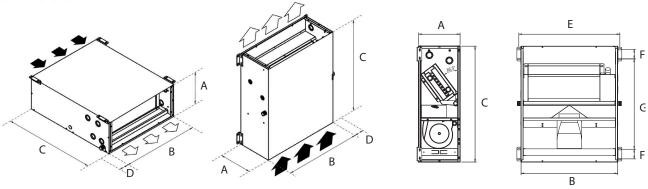
4-ROW COIL UNIT PERFORMANCE DATA

Units designed to operate with all recirculating air or maximum 10% of external air.

Versions H/V

		TA09H4	TA09V4	TA11H4	TA11V4	TA15H4	TA15V4	TA19H4	TA19V4	TA24H4	TA24V4	TA33H4	TA33V4	TA40H4	TA40V4	TA50H4	TA50V4
Cooling performances 7 °C / 12 °C - 2 pipe s	ystem (1)														-		
Cooling capacity	kW	4,20	4,20	5,70	5,70	8,70	8,70	12,40	12,40	17,30	17,30	21,70	21,70	27,20	27,20	33,50	33,50
Sensible cooling capacity	kW	3,50	3,50	4,20	4,20	6,20	6,20	8,30	8,30	11,20	11,20	14,30	14,30	18,00	18,00	20,90	20,90
Water flow rate	l/h	722	722	980	980	1496	1496	2132	2132	2975	2975	3732	3732	4678	4678	5761	5761
Pressure drop	kPa	6	6	6	6	7	7	12	12	16	16	23	23	11	11	31	31
Heating performance 70 °C / 60 °C - 2 pipe s	system																
Heating capacity	kW	10,40	10,40	13,30	13,30	19,10	19,10	24,70	24,70	34,10	34,10	41,90	41,90	52,80	52,80	58,30	58,30
Water flow rate	l/h	894	894	1139	1139	1642	1642	2124	2124	2932	2932	3603	3603	4538	4538	5013	5013
Pressure drop	kPa	5	5	8	8	7	7	10	10	13	13	19	19	10	10	22	22
2-rows-heating coil with hot water - (acces	sory) (2)																
Heating capacity	kW	3,90	3,90	8,50	8,50	12,70	12,70	16,00	16,00	21,70	21,70	26,70	26,70	34,80	34,80	40,00	40,00
Water flow rate	l/h	333	333	731	731	1092	1092	1371	1371	1866	1866	2291	2291	2988	2988	3439	3439
Pressure drop	kPa	8	8	11	11	13	13	14	14	18	18	26	26	18	18	23	23
Electric heating coil - (accessory)																	
Heating capacity	kW	4,00	4,00	6,00	6,00	8,00	8,00	10,00	10,00	12,00	12,00	16,00	16,00	20,00	20,00	24,00	24,00
Stages	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Power supply									400V~	3 50Hz							
Fan																	
Туре	type								Centr	ifugal							
Number	no.	1	1	2	2	2	2	1	1	1	1	2	2	2	2	2	2
Air flow rate	m³/h	800	800	1100	1100	1500	1500	1900	1900	2400	2400	3300	3300	4000	4000	5000	5000
High static pressure	Pa	145	145	290	290	176	176	240	240	211	211	245	245	248	248	153	153
Input power	kW	0.	25	0.	31	0.	38	0.	61	0.	83	0.8	81	0.	98	1.	.28
Air filter																	
Туре	type								G4	/ F6							
Sound data																	
Sound power level	dB(A)	62,0	62,0	66,0	66,0	67,0	67,0	72,0	72,0	74,0	74,0	75,0	75,0	76,0	76,0	79,0	79,0
Power supply																	
Power supply									230V	~50Hz							

⁽¹⁾ Room air 27 °C b.s.47% U.R.; Water (in/out) 7 °C/12 °C (2) Water temperature (in/out) 70 °C / 60 °C.


6-ROW COIL UNIT PERFORMANCE DATA

Versions H/V

		TA09H6	TA09V6	TA11H6	TA11V6	TA15H6	TA15V6	TA19H6	TA19V6	TA24H6	TA24V6	TA33H6	TA33V6	TA40H6	TA40V6	TA50H6	TA50V6
Cooling performances 7 °C/12 °C-2	pipe syst	tem (1)															
Cooling capacity	kW	5,10	5,10	6,70	6,70	11,70	11,70	15,50	15,50	20,60	20,60	26,30	26,30	33,50	33,50	39,60	39,60
Sensible cooling capacity	kW	3,40	3,40	4,70	4,70	7,50	7,50	9,80	9,80	12,80	12,80	16,60	16,60	20,90	20,90	25,00	25,00
Water flow rate	l/h	868	868	1152	1152	2012	2012	2666	2666	3543	3543	4523	4523	5761	5761	6810	6810
Pressure drop	kPa	4	4	6	6	15	15	29	29	27	27	41	41	31	31	42	42
Heating performance 70 °C / 60 °C - 2	2 pipe sys	tem															
Heating capacity	kW	11,40	11,40	14,80	14,80	21,40	21,40	27,40	27,40	35,60	35,60	46,60	46,60	58,30	58,30	72,80	72,80
Water flow rate	l/h	976	976	1273	1273	1838	1838	2356	2356	3058	3058	4005	4005	5013	5013	6260	6260
Pressure drop	kPa	4	4	7	7	16	16	23	23	21	21	34	34	22	22	30	30
2-rows-heating coil with hot water -	(accesso	ry) (2)															
Heating capacity	kW	3,90	3,90	8,50	8,50	12,70	12,70	16,00	16,00	21,70	21,70	26,70	26,70	34,80	34,80	40,00	40,00
Water flow rate	l/h	333	333	731	731	1092	1092	1371	1371	1866	1866	2291	2291	2988	2988	3439	3439
Pressure drop	kPa	8	8	11	11	13	13	14	14	18	18	26	26	18	18	23	23
Electric heating coil - (accessory)																	
Heating capacity	kW	4,00	4,00	6,00	6,00	8,00	8,00	10,00	10,00	12,00	12,00	16,00	16,00	20,00	20,00	24,00	24,00
Stages	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Power supply									400V~	3 50Hz							
Fan																	
	type								Centr	ifugal							
Number	no.	1	1	2	2	2	2	1	1	1	1	2	2	2	2	2	2
Air flow rate	m³/h	800	800	1100	1100	1500	1500	1900	1900	2400	2400	3300	3300	4000	4000	5000	5000
High static pressure	Pa	131	131	265	265	158	158	224	224	199	199	224	224	234	234	131	131
Input power	kW	0.	25	0.	31	0.	38	0.	61	0.	83	0.	81	0.	98	1.	.28
Air filter																	
Туре	type								G4	/ F6							
Sound data																	
Sound power level	dB(A)	62,0	62,0	66,0	66,0	67,0	67,0	72,0	72,0	74,0	74,0	75,0	75,0	76,0	76,0	79,0	79,0
Power supply																	
Power supply									230V	~50Hz							

⁽¹⁾ Room air 27 °C b.s.47% U.R.; Water (in/out) 7 °C/12 °C (2) Water temperature (in/out) 70°C / 60°C.

DIMENSIONS

Unit for horizontal installation

Unit H

		TA09H4	TA09H6	TA11H4	TA11H6	TA15H4	TA15H6	TA19H4	TA19H6	TA24H4	TA24H6	TA33H4	TA33H6	TA40H4	TA40H6	TA50H4	TA50H6
Dimensions and weigh	ts																
A	mm	300	300	300	300	300	300	390	390	390	390	390	390	390	390	390	390
В	mm	700	700	700	700	1050	1050	1050	1050	1475	1475	1475	1475	2100	2100	2100	2100
C	mm	700	700	700	700	700	700	850	850	850	850	850	850	1000	1000	1000	1000
D	mm	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82
E	mm	732	732	732	732	732	732	1082	1082	1507	1507	1507	1507	2131	2131	2131	2131
F	mm	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
G	mm	655	655	655	655	655	655	905	905	905	905	905	905	905	905	905	905
Weights																	
With 4-row water coil	kg	28	28	33	33	45	45	60	60	78	78	86	86	135	135	140	140
With 6-row water coil	kg	30	30	35	35	47	47	62	62	81	81	89	89	139	139	144	144

Unit for vertical installation

Unit V

		TA09V4	TA09V6	TA11V4	TA11V6	TA11VE	TA15V4	TA15V6	TA19V4	TA19V6	TA24V4	TA24V6	TA33V4	TA33V6	TA40V4	TA40V6	TA50V4	TA50V6
Dimensions and weigh	ts																	
A	mm	300	300	300	300	300	300	300	390	390	390	390	390	390	390	390	390	390
В	mm	700	700	700	700	700	1050	1050	1050	1050	1475	1475	1475	1475	2100	2100	2100	2100
C	mm	700	700	700	700	700	700	700	850	850	850	850	850	850	1000	1000	1000	1000
D	mm	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82
E	mm	732	732	732	732	732	732	732	1082	1082	1507	1507	1507	1507	2131	2131	2131	2131
F	mm	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
G	mm	655	655	655	655	655	655	655	905	905	905	905	905	905	905	905	905	905
Weights																		
With 4-row water coil	kg	28	28	33	33	33	45	45	60	60	78	78	86	86	135	135	140	140
With 6-row water coil	kg	30	30	35	35	35	47	47	62	62	81	81	89	89	139	139	144	144

TN

Air handling unit

- Maximum installation flexibility
- EC fan Plug-fan
- Wide choice of accessories.
- Large range of capacities and static pressures.
- Versions available with water coil or with direct expansion.

DESCRIPTION

The TN range offers an alternative to the air treatment unit for flow rates from 2300 to 23000m³/h when the only treatment required is filtering, cooling and/or heating. Designed for domestic, commercial, industrial or hotel systems in small or medium sized contexts.

The units can be installed horizontally or vertically for greater flexibility of use

All the units are always supplied and shipped in the vertical configuration. The customer is responsible for any possible modification from vertical to horizontal.

TN series are characterised by their compact size, low noise levels, and the wide choice of accessories.

The units are available with a plug fan unit with EC motor, or with a transmission centrifugal fan unit with AC motor (the latter comes in both the standard version and the boosted high head version).

FEATURES

Structure

The structure is made of aluminium profiles with sandwich cover paneling made of galvanised steel on the inside and pre-coated RAL 9003 galvanised steel on the outside with polyurethane insulation (density 40 kg/m^3) with 25 mm thickness.

Both the panels of the base unit as well as the panels of the plenum have pre-shearing that render them compatible with the insertion of the accessories.

The fixing of the paneling using a panel block profile ensures a perfect seal between the panel and the frame and makes it extremely easy to mount and remove the panels. The 3-way corner joint is made of glass-fibre reinforced nylon.

The condensate drip tray, in galvanised steel, has a threaded drain connection on both sides and can be used whether the unit is installed horizontally or vertically.

Water heat exchanger coils

With copper pipes. Aluminium fins blocked via the mechanical expansion of the pipes. With 4 or 6 rows for the main one (heating or cooling) and 2,3 or 4 rows for the secondary one (heating only).

Evaporative heat exchanger coils

An alternative to the main water coil.

Suitable for R410A refrigerant. With copper pipes. Aluminium fins blocked via the mechanical expansion of the pipes. With 4 or 6 rows and both RH and LH versions.

Electric heating coil

Electric heating coil with finned, armoured elements. With twin safety thermostat (automatic and manual reset). Includes the implementation contactors (commanded with 24Volt AC voltage).

Can be used both for summer post-heating and winter heating. The coil has two asymmetric levels (1/3, 2/3 of the total power) so it can be commanded at up to 3 levels.

Air filter

The air is filtered through synthetic 50mm filters with an efficiency level of Coarse 55% (as per the ISO 16890 standard) on the intake points.

The filters are housed on guides in the main coil section, and can be easily removed for cleaning and maintenance; just remove the panel on the side of the water connections and then take out the filters.

With the FT7MxT accessory, filtering takes place via compact filters with an EPM1 55% efficiency level (as per the ISO 16890 standard).

VENTILATION GROUP

The configurator allows you to choose between two different types of fan unit, to meet every possible system request.

Ventilation group with inverter EC fan plug fun

Fan

The fans are of the plug-fan type with reversed blades for excellent performance with single intake.

Motor

The electric motors with extremely high efficiency, directly coupled to the fans, have an external EC rotor with integrated electronic control. They can be controlled continuously by a 0-10V signal. IP55 Protection rating. The motors can be powered with 380-480V / 3ph / 50-60Hz (the range is however reduced to the power supply required by the ByyExT

or ByyExTZ electric battery accessory, if required immediately or if installed at a later date).

A standard control option via the ModBus protocol.

Fan unit with transmission

Fan

The fans are of the double suction centrifugal variety with high performance forward blades.

Motor

ACCESSORIES

PLxT: Plenum composed of pre-sheared panels that can be opened on 3 sides, it can be mounted as an inlet or as an outlet; it is compatible with the accessories GAXT, GMxT, SAXT and TPPLxT. It includes mounting brackets and feet (for horizontal and vertical configurations).

FT7MxT: Compact filters with filtering degree ePM1 55% (according to ISO 16890), composed of a plenum that can be opened on two sides, which can be positioned on the outlet of the machine; it is compatible with the accessories GMxT, SAxT and TPPxT. It includes fixing plates and feet (for horizontal and vertical configurations).

B2RxT: Hot water coil with 2 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil, and made of copper piping and aluminium finning blocked by the mechanical expansion of the pipes.

B3RxT: Hot water coil with 3 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil, and made of copper piping and aluminium finning blocked by the mechanical expansion of the pipes.

BR4xT: Hot water coil with 4 rows for lines with 4 tubes. Positioned internally at the base of the equipment, downstream from the main coil, and made of copper piping and aluminium finning blocked by the mechanical expansion of the pipes.

SAxT: Air calibration damper with galvanised steel louvers. Louvers pitch 50mm; galvanised steel adjusting pin: can be installed on the equipment base or the plenum.

GMxT: Outlet grille with double row of louvers that can be adjusted when emitting air into the room. Can be installed on the plenum.

GAXT: Suction grille with louvers fixed at an angle of 45°; Can be installed directly on the equipment base or on the plenum accessories.

TPVSxT: Protective roof for Vertical installation with top outlet. Composed of a pre-coated metal sheet, fastened to the side of the unit. To be installled on the unit base. The accessory is not compatible with units equipped with EC plug fans.

TPVFxT: Protective roof for Vertical installation with front delivery. Composed of pre-coated diamond sheet, fastened to the side of the unit. To be installed on: PLxT, FT7MxT and vertical unit base with front outlet.

TPLxT: Protective roof for horizontal installation with Front outlet. Composed of pre-coated diamond sheet, fastened to the side of the unit. To be installed on unit base.

The single-speed (4-pole) electric motors are of the three-phase asynchronous type, with a closed construction and external ventilation, caged rotor and B3 configuration with horizontal shaft, complying with the IEC, CEI and UNEL standards. IP55 protection rating. They are powered at 400V-3ph-50Hz (standard) or 460V-3ph-60Hz (units with "Z" power supply).

Transmission

The pulleys (supplied with a Taperlock-type conical shrink disk) are statically and dynamically balanced, with a variable diameter for improved fan calibration. The transmission belts may be of the SPA or SPB type.

TPPLxT: Protective roof for the plenum, for horizontal installation with front delivery. Made of pre-painted diamond sheet metal fixed to the sides of the unit (to be installed on PLxT and FT7MxT, from size 3 to size 8).

TPFTLxT: Protective roof for the bag filters, for line installation with front delivery. Made of pre-painted diamond sheet metal fixed to the sides of the unit (to be installed on FT7MxT, on sizes 1 and 2).

P50MBT: Corner support feet for both the horizontal and vertical version. Made of galvanised sheet: they can be fixed directly to the unit with the screws supplied. The accessory has 4 corner feet and 2 side feet

P50ACT: Lateral support feet for the horizontal version. Made of galvanised sheet: they come with the accessories unit together with the bolts and screws.

ByyExT: Electric coil 400V/3ph/50Hz. Can be positioned inside the standard device, downstream from the main coil. Consists of a sheet metal frame, heating elements (armoured and finned), command contactors (24V AC) and two thermostats (one with automatic reset and the other manual). The electrical heating power (yy in kW) is divided over two sets of heaters 1/3+2/3 that can be controlled up to max. 3 levels. WARNING: To avoid the risk of overheating, make sure the fan is working at the correct flow rate when the coil is activated, and that there is a minimum post-ventilation time when the coil is deactivated.

BYYExTZ: Electric coil 460V/3ph/60Hz. Can be positioned inside the standard device, downstream from the main coil. Consists of a sheet metal frame, heating elements (armoured and finned), command contactors (24V AC) and two thermostats (one with automatic reset and the other manual). The electrical heating power (yy in kW) is divided over two sets of heaters 1/3+2/3 that can be controlled up to max. 3 levels. WARNING: To avoid the risk of overheating, make sure the fan is working at the correct flow rate when the coil is activated, and that there is a minimum post-ventilation time when the coil is deactivated.

CPxT: Adjustment module with sensor for volumetric flow rate (accessory for TNxxE version only).

CPxTP: Adjustment module with sensor for differential pressure (accessory for TNxxE version only).

CPxTV: Speed regulatory (accessory only for TNxxE versions).

ACCESSORIES COMPATIBILITY

ACCESSORIES C	OMPATIBILITY						
Plenum							
1	2	3	4 DI 4T (1)	5	6	7	8 DIOT (1)
PL1T (1)	PL2T (1)	PL3T (1)	PL4T (1)	PL5T (1)	PL6T (1)	PL7T (1)	PL8T (1)
1) For horizontal and vertica	=						
Compact ePM1 55%							
1	2	3	4	5	6	7	8
FT7M1T (1)	FT7M2T (1)	FT7M3T (1)	FT7M4T (1)	FT7M5T (1)	FT7M6T (1)	FT7M7T (1)	FT7M8T (1)
1) For horizontal and vertica	ll configurations.						
Hot water coil with 2	? rows for lines witi	h 4 pipes					
1	2	3	4	5	6	7	8
B2R1T	B2R2T	B2R3T	B2R4T	B2R5T	B2R6T	B2R7T	B2R8T
Hot water coil with 3	R rows for lines with	h 4 nines					
1	2	3	4	5	6	7	8
B3R1T	B3R2T	B3R3T	B3R4T	B3R5T	B3R6T	B3R7T	B3R8T
			551111	551.51	551101	551111	251101
Hot water coil with 4	4 rows for lines witi	h 4 pipes					
1	2	3	4	5	6	7	8
B4R1T	B4R2T	B4R3T	B4R4T	B4R5T	B4R6T	B4R7T	B4R8T
Suction damper							
1	2	3	4	5	6	7	8
SA1T	SA2T	SA3T	SA4T	SA5T	SA6T	SA7T	SA8T
ווער	JUTI	JUJI	ודתכ	ונאנ	JUI	ווחכ	JUUI
Outlet grille with adj	justable louvers						
1	2	3	4	5	6	7	8
GM1T	GM2T	GM3T	GM4T	GM5T	GM6T	GM7T	GM8T
Intaka arida							
ntake grids							
1 GA1T	2 GA2T	GA3T	4 GA4T	5 GAST	6 GA6T	7 GA7T	8 GA8T
UAII	UAZI	ICAD	UA41	ICAD	UAUI	UA/ I	UAOI
Protective roof for V	ertical installation	with top outlet					
1	2	3	4	5	6	7	8
TPVS1T (1)	TPVS2T (1)	TPVS3T (1)	TPVS4T (1)	TPVS5T (1)	TPVS6T (1)	TPVS7T (1)	TPVS8T (1)
1) The accessory is not comp	oatible with units equipped	l with EC plug fans.					
Protective roof for V							
1	2	3	4	5	6	7	8
TPVF1T	TPVF2T	TPVF3T	TPVF4T	TPVF5T	TPVF6T	TPVF7T	TPVF8T
Protective roof for h	orizontal installati	ion with front outlet	•				
11	2	3	4	5	6	7	8
TPL1T	TPL2T	TPL3T	TPL4T	TPL5T	TPL6T	TPL7T	TPL8T
Protective roof for h	orizontal installati	ion with Front outle	t				
1	2	3	4	5	6	7	8
TPPL1T (1)	TPPL2T (1)	TPPL3T (1)	TPPL4T (1)	TPPL5T (1)	TPPL6T (1)	TPPL7T (1)	TPPL8T (1)
To be installed on PLxT an							201 (1)
			the France and at				
toor for protecting p	ocket niters for ins	stallation on Line wi					
TPFTL1T (1)	TPFTL2T (1)	<u> </u>	<u>4</u>	5	6	7	- 8
		-	-	-	-	-	-
 To be installed on FT7MxT The accessory cannot be fitted 		icated with -					
Corner support feet							
1	2	3	4	5	6	7	8
P50MBT	P50MBT	P50MBT	P50MBT	P50MBT	P50MBT	P50MBT	P50MBT
. 5011101	. 5011151	1301101	15011151	1 3011151	1 3011151	1 3011101	1 201101
Lateral support feet	·						
1	2	3	4	5	6	7	8
P50ACT	P50ACT	P50ACT	P50ACT	P50ACT	P50ACT	P50ACT	P50ACT
Floatric coil 4001/ 3	EOU-						
Electric coil 400V~3							•
<u>1</u>	2 P10E2T	3 D14F2T	4 D10E4T	5	6 P20EcT	7 P40E7T	8 DEDEOT
B07E1T	B10E2T	B14E3T	B18E4T	B25E5T	B30E6T	B40E7T	B50E8T
lectric coil 460V~3	60Hz						
1	2	3	4	5	6	7	8
B07E1TZ	B10E2TZ	B14E3TZ	B18E4TZ	B25E5TZ	B30E6TZ	B40E7TZ	B50E8TZ
		. == :=			====		

Adjustment module with sensor for volumetric flow rate

1	2	3	4	5	6	7	8
CP1T (1)	CP1T (1)	CP2T (1)	CP2T (1)	CP2T (1)	CP2T (1)	CP2T (1)	CP2T (1)
(1) Accessory only available	for TNxxE versions.						
Adjustment module	e with sensor for dif	ferential pressure					
1	2	3	4	5	6	7	8
CP1TP (1)	CP1TP (1)	CP1TP (1)	CP1TP (1)	CP1TP (1)	CP1TP (1)	CP1TP (1)	CP1TP (1)
(1) Accessory only available	for TNxxE versions.						
Speed regulatory							
1	2	3	4	5	6	7	8
CP1TV (1)	CP1TV (1)	CP1TV (1)	CP1TV (1)	CP1TV (1)	CP1TV (1)	CP1TV (1)	CP1TV (1)

⁽¹⁾ Accessory only available for TNxxE versions.

CONFIGURATOR

Field	Description
1,2	TN
3	Size 1, 2, 3, 4, 5, 6, 7, 8
4	Version
4	Water coil, 4 rows (LH side for connections - the connections side can be altered on site)
6	Water coil, 6 rows (LH side for connections - the connections side can be altered on site)
Α	R410A direct expansion coil, 4 rows (RH side for connections - the connections side cannot be altered on site) (1)
В	R410A direct expansion coil, 4 rows (LH side for connections - the connections side cannot be altered on site) (2)
С	R410A direct expansion coil, 6 rows (RH side for connections - the connections side cannot be altered on site) (1)
D	R410A direct expansion coil, 6 rows (LH side for connections - the connections side cannot be altered on site) (2)
5	Fans (3)
В	Centrifugal with AC motor (low head)
E	Plug fans with EC motor
Р	Centrifugal with AC motor (high head)
6	Power supply (4)
0	400V ~ 3 50Hz
Z	460V ~ 3 60Hz

⁽¹⁾ With vertical configuration, the coil connections are on the opposite side to motor inspection. When transformed to horizontal configuration, the coil connections may be on the same side as motor inspection or on the opposite side, depending on the type of conversion.

(2) With vertical configuration, the coil connections may be on the same side as motor inspection or on the opposite side, depending on the type of conversion.

(3) The unit is always supplied with fan delivery directed upwards. The delivery flow direction can be altered on site.

(4) Field to be specified only in the case of a "B" or "P" fan unit. In the case of an "E" fan unit, the permitted power supply range is 380–480V ~ 3 50-60 Hz.

**VERSION: the definition of "RH connections side" or "LH connections side" refers to the position of the coil connections in relation to the air flow direction (convection: air flow from behind a hypothetical operator inserted in the flow).

^{**} All the units are always supplied and shipped in the vertical configuration. The customer is responsible for any possible modification from vertical to horizontal.

PERFORMANCE SPECIFICATIONS

TN 1-8 with 4-row water coil

Size		1	2	3	4	5	6	7	8
Cooling performance 7 °C / 12 °C (1)									
Cooling capacity	kW	15,6	21,3	29,1	38,1	44,8	56,7	74,7	96,4
Sensible cooling capacity	kW	10,7	14,7	20,1	26,2	33,3	41,7	55,1	70,9
Heating performance 70 °C / 60 °C (2)									
Heating capacity	kW	40,0	54,5	74,9	97,6	131,1	162,9	216,1	277,3
Performance in heating mode with additional coil fo	or 4-pipe systems								
Heating capacity with 2 row water coil	kW	25,2	34,0	46,8	61,5	84,4	103,8	138,0	178,5
Heating capacity with 3 row water coil	kW	33,5	45,6	62,7	82,0	110,8	137,3	182,5	234,4
Heating capacity with 4 row water coil	kW	40,0	54,5	74,9	97,6	131,1	162,9	216,1	277,3
Heating performance 45 °C / 40 °C (3)									
Heating capacity	kW	23,4	31,9	43,7	57,0	76,3	94,8	125,8	161,4
Performance in heating mode with additional coil fo	or 4-pipe systems								
Heating capacity with 2 row water coil	kW	14,7	19,8	27,3	36,0	49,0	60,3	80,1	103,8
Heating capacity with 3 row water coil	kW	19,6	26,6	36,6	47,9	64,4	79,8	106,1	136,3
Heating capacity with 4 row water coil	kW	23,4	31,9	43,7	57,0	76,3	94,8	125,8	161,4

⁽¹⁾ Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; (2) Room air temperature 10 °C d.b.; Water (in/out) 70 °C/60 °C (3) Room air temperature 10 °C d.b.; Water (in/out) 45 °C/40 °C;

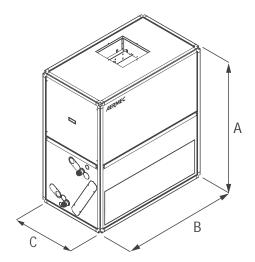
TN 1-8 with 4-row direct expansion coil

Size		1	2	3	4	5	6	7	8
Performance in cooling mode with incomin	g air at 27°C / 50% R.H. (1)								
Cooling capacity	kW	12,6	17,1	23,5	30,2	38,5	47,7	63,7	81,5
Sensible cooling capacity	kW	9,9	13,5	18,5	24,1	30,4	38,0	50,7	65,2

⁽¹⁾ Incoming air temperature 27°C D.B. 50% R.H.; R410A refrigerant, t.at. EVAP. 10°C, up to 8K, lower transformation at 0K, vapour - liquid vapour from 0 to 1; refer to the selection software.

TN 1-8 with 6-row water coil

Size		1	2	3	4	5	6	7	8
Cooling performance 7 °C / 12 °C (1)									
Cooling capacity	kW	20,0	27,4	37,7	49,2	58,3	74,5	98,9	127,8
Sensible cooling capacity	kW	13,4	18,3	25,2	32,8	41,1	51,8	68,8	88,5
Heating performance 70 °C / 60 °C (2)									
Heating capacity	kW	48,7	66,6	91,5	119,2	157,5	196,8	260,4	334,1
Performance in heating mode with additional coil	for 4-pipe systems								
Heating capacity with 2 row water coil	kW	25,2	34,0	46,8	61,5	84,4	103,8	138,0	178,5
Heating capacity with 3 row water coil	kW	33,5	45,6	62,7	82,0	110,8	137,3	182,5	234,4
Heating capacity with 4 row water coil	kW	40,0	54,5	74,9	97,6	131,1	162,9	216,1	277,3
Heating performance 45 °C / 40 °C (3)									
Heating capacity	kW	28,5	38,9	53,5	69,6	91,7	114,3	151,7	194,6
Performance in heating mode with additional coil	for 4-pipe systems								
Heating capacity with 2 row water coil	kW	14,7	19,8	27,3	36,0	49,0	60,3	80,1	103,8
Heating capacity with 3 row water coil	kW	19,6	26,6	36,6	47,9	64,4	79,8	106,1	136,3
Heating capacity with 4 row water coil	kW	23,4	31,9	43,7	57,0	76,3	94,8	125,8	161,4


⁽¹⁾ Room air temperature 27 °C d.b./19 °C w.b.; Water (in/out) 7 °C/12 °C; (2) Room air temperature 10 °C d.b.; Water (in/out) 70 °C/60 °C (3) Room air temperature 10 °C d.b.; Water (in/out) 45 °C/40 °C;

GENERAL TECHNICAL DATA

Fans

Size			1	2	3	4	5	6	7	8
Fans: B			ı			4		0		8
Fan Fan										
Number	4,6,A,B,C,D	no	1	1	1	1	1	1	1	1
Nr. poles	4,6,A,B,C,D 4,6,A,B,C,D	no.	4	4	4	4	4	4	4	4
		no.			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
Maximum air flow rate with cooling coil	4,6,A,B,C,D	m³/h	3000	4100	5650	7350	9400	11700	15500	20000
Maximum air flow rate with heating coil	4,6,A,B,C,D	m³/h	3500	4700	6400	8000	9750	13400	17800	20000
High static pressure - maximum	4,6,A,B,C,D	Pa	425	455	452	440	383	425	436	400
Total fan input power	4,6,A,B,C,D	kW	0,8	1,1	1,5	2,2	2,2	4,0	4,0	5,5
Version without resistance										
Rated current input	4,6,A,B,C,D	A	1,8	2,4	3,2	4,7	4,7	8,2	8,2	11,1
Peak current	4,6,A,B,C,D	A	5,3	6,2	6,8	6,4	6,4	7,0	7,0	5,9
Version with electric heater										
Rated current input	4,6,A,B,C,D	A	11,9	16,9	15,0	23,4	30,7	40,8	51,6	83,4
Peak current	4,6,A,B,C,D	Α	11,9	16,9	23,4	30,7	40,8	51,6	66,0	83,4
Fan										
Power supply	4,6,A,B,C,D		400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz
Fans: E										
Fan										
Number	4,6,A,B,C,D	no.	1	1	1	1	1	1	2	2
Nr. poles	4,6,A,B,C,D	no.	_	-	-	_	_	-	-	-
Maximum air flow rate with cooling coil	4,6,A,B,C,D	m³/h	3000	4100	5650	7350	9400	11700	15500	20000
Maximum air flow rate with heating coil	4,6,A,B,C,D	m³/h	3500	4700	6400	8400	10500	13400	17800	23000
High static pressure - maximum	4,6,A,B,C,D	Pa	700	660	700	700	660	640	700	580
Total fan input power	4,6,A,B,C,D	kW	1,5	1,5	2,5	3,4	3,4	3,4	3,4	3,4
Version without resistance	7,0,7,0,0,0	RVV	ر,۱	1,5	2,3	Э,т	Э,Т	Э,Т	3,7	Э,Т
Rated current input	4,6,A,B,C,D	A	2,4	2,4	4,0	5,4	5,4	5,4	2x5,4	2x5,4
Peak current	4,6,A,B,C,D	A	- Z,4	2,4	4,0		- 3,4	3,4	2x3,4	233,4
	4,0,A,D,C,D	А	-	-	-		-	-		
Version with electric heater	ACARCR	Α.	12.5	16.0	24.2	21.4	41.5	40.0	(0.6	02.1
Rated current input	4,6,A,B,C,D	A	12,5	16,9	24,2	31,4	41,5	48,8	68,6	83,1
Peak current	4,6,A,B,C,D	A	-	-	-	-	-	-	-	-
Fan										
Power supply	4,6,A,B,C,D		400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz
Fans: P										
Fan										
Number	4,6,A,B,C,D	no.	1	1	11	1	1	1	11	1
Nr. poles	4,6,A,B,C,D	no.	4	4	4	4	4	4	4	4
Maximum air flow rate with cooling coil	4,6,A,B,C,D	m³/h	3000	4100	5650	7350	9400	11700	15500	20000
Maximum air flow rate with heating coil	4,6,A,B,C,D	m³/h	3500	4700	6400	8400	10500	13400	17800	23000
High static pressure - maximum	4,6,A,B,C,D	Pa	600	627	674	672	567	670	625	610
Total fan input power	4,6,A,B,C,D	kW	1,1	1,5	2,2	3,0	3,0	5,5	5,5	7,5
Version without resistance										
Rated current input	4,6,A,B,C,D	А	2,4	3,2	4,7	6,3	6,3	11,1	11,1	14,9
Peak current	4,6,A,B,C,D	A	6,2	6,8	6,4	7,7	7,7	5,9	5,9	5,6
Version with electric heater				,	,	•		,	,	
Rated current input	4,6,A,B,C,D	Α	12,5	17,7	24,9	32,3	42,4	54,5	68,9	87,2
Peak current	4,6,A,B,C,D	A	12,5	17,7	24,9	32,3	42,4	54,5	68,9	87,2
Fan	יוטוייוטוכוט		14,5	17,7	- 1,7	36,3	12/1	51,5	00,7	31,12
Power supply	4,6,A,B,C,D		400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz	400~3 50Hz
						TUU C TUUT	TOU - J JUIL	TUU C ·· OUT	TUU C · OUT	ZUUC C. OUT
It is the maximum static pressure that can b	e supplied by the fa	an; it is equal to			<u>.</u>					
Size			1	2	3	4	5	6	7	8
Water coil H			475	475						

DIMENSIONS

Size			1	2	3	4	5	6	7	8
Dimensions and weights										
A	4,6,A,B,C,D	mm	1334	1334	1497	1497	1822	1822	2309	2309
В	4,6,A,B,C,D	mm	928	1172	1334	1659	1659	1984	1984	2472
C	4,6,A,B,C,D	mm	684	684	765	765	928	928	1172	1172
Size			1	2	3	4	5	6	7	8
Fans: B										
Dimensions and weights										
	4	kg	187	216	270	314	408	466	619	793
Emptywaight	6	kg	190	220	275	320	415	475	630	807
Empty weight	A,B	kg	191	220	274	318	412	470	623	797
	C,D	kg	195	225	280	325	420	480	635	812
Fans: E										
Dimensions and weights										
	4	kg	175	199	249	304	388	466	611	769
Emptywaiaht	6	kg	178	203	254	310	395	475	622	783
Empty weight	A,B	kg	179	203	253	308	392	470	615	773
	C,D	kg	183	208	259	315	400	480	627	788
Fans: P										
Dimensions and weights										
	4	kg	197	219	279	316	410	493	646	799
Emptywaight	6	kg	200	223	283	321	417	502	657	813
Empty weight	A,B	kg	201	223	283	320	414	497	650	803
	C,D	kg	205	228	289	327	422	507	662	818

 $Add \, 50mm \, to \, the \, height \, of \, the \, unit \, (A), \, to \, allow \, for \, the \, feet.$ The vertical configuration (B/D), the connections and motor inspection are on the same side.

NCD Air handling

- Maximum installation flexibility
- · EC fan Plug-fan
- Large range of capacities.

FEATURES

- Central air handling units with double panelling with panel thickness of 50 mm;
- Support structure realised in aluminium alloy sections and a large choice of panels;
- Wide range of sections and components to satisfy all plant engineering requirements
- Double intake centrifugal fans with forward or reverse blades.
- PLUG FAN type fan with Inverter regulation, able to adapt to the most varied system requirements.

Structure

- In aluminium sections;
- New panelling and gaskets, able to guarantee reduced seepage in compliance with the EN1886 Standard;
- Reduction of noise emission thanks to the use of material with high sound-absorption power;
- Small dimensions and contained height.

Internal components

- New high-efficiency heat exchangers with small pressure drops
- 3-damper mixing chamber.

Mixing chamber with three dampers. The configurations for the mixing chambers with three dampers are the following:

- two upper dampers and an internal one for recirculation;
- two front dampers and a horizontal one for recirculation (for overlapping control units);
- two lateral internal dampers and an internal for recirculation (configuration for expulsion and non-ducted fresh air intake).

Large availability of filters

- Filters with large surfaces to reduce the pressure drops and increase the duration;
- Cell pre-filters;
- Roll filters;
- Bag filters;
- Absolute filters;
- Activated carbon filters;

- Germicidal lamp;
- New efficient drop eliminator in PVC;
- New heat recoverers with high heat exchange.

Electric components

- Electronic regulation available able to optimise the performance and simplify installation of the control unit itself;
- New high performance selection software.

ACCESSORIES

Technical rooms;

Accessories for air intake/exhaust sections:

- Flange;
- Blank panel (to be perforated with care by the customer);
- Anti-vibration sheet on the intake/flow vents (with or without damper) with earth cable;
- Aluminium grille (for internal dampers only);
- Manual command on the dampers;
- Proportional servo-control;
- Proportional servo-control with spring return;
- Pedestrian grill on the floor dampers.

Accessories for the fan-motor sections:

- Damper on the flow vent;
- Damper on the flow vent;
- Micro switch on the inspection hatch.

Accessories common to several sections:

- Spot light with window with 24V bulb (the installer must envision the 24V power supply);
- Manometer with dial;
- Pressure switche;
- Instruments-probes holder GJ 1/4" double sleeve;
- Floor reinforced with non-slip sheet steel.

PERFORMANCE SPECIFICATIONS

	Air flow rate m ³ /h	Section heating coil m ²
NCD 1	1134	0,13
NCD 2	1958	0,22
VCD 3	2390	0,27
NCD 4	3132	0,35
CD 5	3823	0,42
CD 6	4307	0,48
CD 7	5257	0,58
CD 8	6207	0,69
ICD 9	8019	0,89
ICD 10	9477	1,05
CD 11	11548	1,28
CD 12	14213	1,58
CD 13	16978	1,89
CD 14	19742	2,19
CD 15	25761	2,86
CD 16	30772	3,42
ICD 17	37139	4,13
ICD 18	47187	4,80
CD 19	49235	5,47
CD 20	55283	6,14
D 21	61331	6,81
CD 22	67379	7,49
CD 23	73427	8,16
ICD 24	79475	8,83

The performance refers to an air speed through the coils equal to 2.5 m/s.

	EXT		734	894	1054	1214	1374	1534	1694	1854	2014
Height with base		INT	620	780	940	1100	1260	1420	1580	1740	1900
			NCD1	NCD1A	NCD2	NCD2	NCD3C	NCD4B	NCD5B	NCD6B	NCD6D
645	525	410	1370-1640	1880-2260	2350-2820	2350-2820	3390-4070	3890-4670	4380-5250	4860-5840	5330-6400
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
			NCD1B	NCD3A	NCD4	NCD5	NCD6A	NCD7A	NCD8A	NCD8C	NCD8F
805	685	570	1970-2360	2720-3260	3400-4080	4150-4980	4900-5870	5620-6740	6320-7590	7020-8430	7700-9240
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
			NCD2A	NCD4A	NCD6	NCD7	NCD8	NCD8D	NCD9	NCD9C	NCD9F
965	845	730	2580-3090	3550-4260	4440-5330	5420-6500	6400-7680	7350-8820	8270-9920	9180-11020	10070-12090
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
			NCD3B	NCD5A	NCD6E	NCD8B	NCD8H	NCD9A	NCD10	NCD10C	NCD11
1125	1005	890	3180-3820	4390-5270	5490-6580	6700-8030	7910-9490	9080-10890	10210-12250	11340-13610	12440-14930
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
				NCD6C	NCD7B	NCD8G	NCD9E	NCD10A	NCD10F	NCD11A	NCD12
1285	1165	1050		5220-6270	6530-7830	7970-9560	9410-11290	10800-12960	12150-14580	13500-16200	14810-17770
				m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
					NCD8E	NCD9B	NCD10B	NCD10G	NCD11D	NCD12A	NCD12C
1445	1325	1210			7570-9090	9240-11090	10910-13100	12530-15040	14100-16920	15660-18800	17180-20610
					m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
						NCD10D	NCD11B	NCD12B	NCD13A	NCD13D	NCD14B
1765	1645	1530				11790-14150	13920-16710	15990-19190	17990-21580	19980-23980	21920-26300
						m³/h	m³/h	m³/h	m³/h	m³/h	m³/h
								NCD13B	NCD14A	NCD14E	NCD15
2085	1965	1850						19440-23330	21870-26250	24300-29160	26650-31980
								m³/h	m³/h	m³/h	m³/h
										NCD15D	NCD15G
2405	2285	2170								28620-34350	31390-37670
										m³/h	m³/h
											NCD16B
2565	2445	2330									33760-40510
											m³/h

Height with base		INT	2220	2540	2860	3180	3500	3820	4140	4460	
645	525	410									
			NCD9D								
805	685	570	9200-11040								
			m³/h								
			NCD10E	NCD11C							
965	845	730	12030-14440	13990-16790							
			m³/h	m³/h							
			NCD11E	NCD12D	NCD13C						
1125	1005	890	14860-17830	17280-20730	19700-23640						
			m³/h	m³/h	m³/h						
			NCD13	NCD14	NCD14C	NCD15B					
1285	1165	1050	17690-21230	20570-24680	23450-28140	26330-31590					
			m³/h	m³/h	m³/h	m³/h					
			NCD13E	NCD14D	NCD15C	NCD15E	NCD16A				
1445	1325	1210	20520-24620	23860-28630	27200-32640	30540-36650	33880-40660				
			m³/h	m³/h	m³/h	m³/h	m³/h				
			NCD15A	NCD15F	NCD16C	NCD17A	NCD17D	NCD18B			
1765	1645	1530					43230-51870	47490-56990			
			m³/h	m³/h	m³/h	m³/h	m³/h	m³/h			
			NCD16	NCD16D	NCD17C	NCD18C	NCD19A	NCD20A	NCD21A	NCD21C	
2085	1965	1850							62940-75530	68130-81750	
			m³/h								
			NCD17	NCD18	NCD19	NCD20	NCD21	NCD22	NCD23	NCD24	
2405	2285	2170					61920-74300	68030-81630	74130-88960	80240-96280	
			m³/h								
			NCD17B	NCD18A	NCD19B	NCD20B	NCD21B	NCD22A	NCD23A	NCD24A	
2565	2445	2330					66590-79910			86290-	
			m³/h	103550 m ³ /h							

DIMENSIONS

	Section A (mm)	Section B (mm)
NCD1	645	735
NCD2	645	1055
NCD3	645	1215
NCD4	805	1055
NCD5	805	1215
NCD6	965	1055
NCD7	965	1215
NCD8	965	1375
NCD9	965	1695
NCD10	1130	1695
NCD11	1130	2015
NCD12	1285	2015
NCD13	1285	2335
NCD14	1285	2655
NCD15	2085	2015
NCD16	2085	2335
NCD17	2405	2335
NCD18	2405	2655
NCD19	2405	2975
NCD20	2405	3295
NCD21	2405	3615
NCD22	2405	3935
NCD23	2405	4255
NCD24	2405	4575

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

SPL 025-130

Swimming Pool Lines air handling unit for health centres

Air flow rate 4000 ÷ 13000 m³/h

- Maximum installation flexibility
- · EC fan Plug-fan
- Large range of capacities.

DESCRIPTION

The units from the SPL series represent the ideal solution to guarantee the comfort conditions in small-medium spaces such as health centres, spa areas, fitness centres, small swimming pools, sports facilities, etc. The unit contains a refrigerant circuit and a system for the recovery of sensible and latent heat coming from the humid air extracted from the space, thereby being optimised for the reduction of energy consumption.

The main function of the unit, which is a "plug and play" machine ready for use, is that of dehumidifying and at the same time ensuring control of the temperature and humidity conditions of the area served.

The unit is fitted with an efficient heat recovery system on the water side, to be used to partially heat the swimming pool water at no cost. The structure and all the internal components are built to ensure the maximum resistance to corrosion

FEATURES

Fitted as standard with panel filters in extract (G4 efficiency class according to EN779) and panel + bag filters (G4 + F9 efficiency class according to EN779) meet the requirements for the applicable standards for indoor air quality. Dirty filter differential pressure switches are provided as standard.

Structure

Anodised aluminium profile with reinforced nylon corner pieces. Casing made from sandwich type panels (50mm thickness), with internal surface pre-painted galvanised steel, external in pre-painted galvanised steel and insulating material hot injected polyurethane with a density of 42 kg/m³, fixed without screws but with panel locking profiles, doors with keyless handles.

This fixing method allows a uniform pressure on the casing, ensuring an excellent resistance to the leakage of air and water.

The support structures and the seals around components are completely painted to ensure the maximum corrosion resistance. The bottom surfaces of the unit are fitted with drain panels in pre-painted galvanised steel with a central drain point piped sideways.

Thermal recovery section

High efficiency static cross flow in pre-painted aluminium. Including dampers: recirculating damper used for the quick start up of the space, recirculating damper for the "primary" cycle, dampers on the air inlet and extract. All dampers are manufactured in anodised aluminium and are individually controlled by an external actuator for precise air flow control.

Refrigerant circuit

Fitted with scroll compressor supplied with rubber anti-vibration feet, refrigerant gas/air heat exchanger coil with copper tubes and pre-painted aluminium fins and painted frame, filter, electronic expansion valve, liquid receiver, filter drier, controls (pressure transducers and visual indicators) and safeties (high and low pressure pressostats), brazed copper connections, refrigerant charge of environmentally friendly R410A. The refrigerant circuit is installed in a compartment isolated from the air flow to facilitate checks and maintenance.

The units on request can also be realized without the refrigerant circuit. The size of the machine remains unchanged.

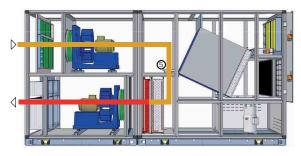
Fan section

Treated with epoxy paint resistant to corrosion, fitted with "plug fans" with backward curved impeller of high output. Electrical motor directly coupled to the impeller suitable for inverter control (standard).

Filtration systems

Hot water heating coil

With copper tubes and pre-painted aluminium fins to heat the supply air after dehumidification, controlled by a modulating 3 way valve (standard); this allows the accurate control of the supply air temperature. The frame of the coil is in painted galvanised steel to ensure the maximum resistance to corrosion.

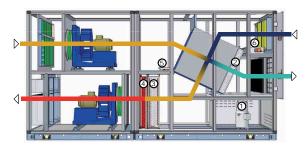

Electric power board

Power and controls panel unit mounted. Electrical installation for the connection of power and controls, set in tubes or conduits with glands and grommets, IP55 protective rating. Remote panel supplied as standard for the control of all the main functions and display of alarms.

OPERATING SCHEMATICS

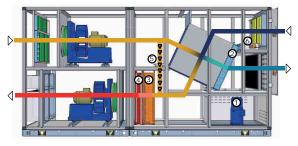
The principal operation modes of the unit are shown in the example schematics below.

"START UP" CYCLE


In all the following schematics the hot water coil is always operating because the external air temperature is below 10° C with a required supply air temperature to compensate for the heat losses from the building.

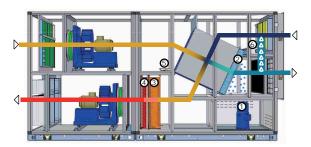
The operating mode is with no external air flow. The whole air flow is recirculated through damper 5 and returned to the pool area.

The hot water coil is operational.


The "start up cycle" is activated for the time necessary to heat up the

"DEHUMIDIFICATION" CYCLE

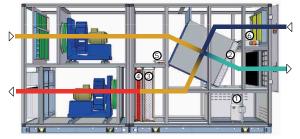
In night time mode the unit modifies the operating settings to adapt to the changes of evaporation from the pool and reduce consumption to the minimum.


Dehumidification with external air

The operating mode is with external air dehumidifying the space, compensating for evaporation from the pool. The refrigerant circuit (consisting of the compressor 1 and the coils 2 and 3) allows the sensible and latent heat recovery of the extracted air to be transferred to the supply air or the water, through the thermal heat exchange consisting of the double heat exchanger on the water side.

The hot water coil 4 supplements, if necessary, the heating capacity provided by the refrigerant circuit, placed downstream of the entering air flow (condensing coil 3).

ehumidification with external air and primary cycle

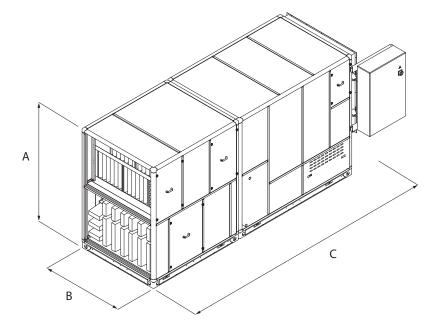


When required the compressor also assists in the dehumidification of the pool area.

The supply air flow is modulated by the fan inverter to reach the required hygrometric conditions.

As a function of the external ambient temperature the unit modifies the operating mode to achieve the best efficiency possible.

Dehumidification with external air (night cycle)


In night time mode the unit modifies the operating settings to adapt to the changes of evaporation from the pool and reduce consumption to the minimum.

PERFORMANCE SPECIFICATIONS

			025	040	060	100	130
Nominal airflow (supply/extract)		M³/h	2500	4000	6300	10000	13000
Available pressure (supply/			100	400	100	400	400
extract)		Pa	400	400	400	400	400
Heat recovery capacity	(1)	KW	7,90	12,60	20,40	32,00	41,50
recovered	(1)	NVV	7,90	12,00	20,40	32,00	41,30
Max heat recovery efficiency	(1)	%	80,80	79,30	80,10	79,50	79,40
Refrigerant circuit recovered	(1)	KW	7,50	10,50	21,30	31,70	45,70
capacity				10,30	21,30	31,70	45,70
Total recovered capacity	(1)	KW	15,40	23,10	41,60	63,70	87,30
Compressor absorbed power	(1)	KW	1,30	1,60	3,70	6,00	8,40
COP	(1)	-	11,80	14,40	11,20	10,60	10,40
COP	(2)	-	3,90	4,00	4,10	4,00	4,10
Total dehumidification capacity	(1)	Kg/h	15,50	25,20	40,10	63,70	82,70
Supply fan power input		KW	1,60	2,60	3,70	5,90	7,60
Extract fan power input		KW	1,20	1,90	2,70	4,50	5,70
Type / number of compressors		No.			Scroll / 1		
Hot water heating coil							
(standard)							
Capacity (without recovery	(1)	KW	26,10	35,40	61,60	95,30	124,50
active)	(1)	IXVV	20,10	33,40	01,00	93,30	124,50
Water flow rate	(3)	L/h	2250	3050	5300	8200	10700
Water pressure drop	(3)	KPa	23,50	43,70	33,10	48,80	46,30
Plate heat exchanger R410A/non							
aggressive water (standard)							
Nominal water flow rate	(4)	L/h	950	1120	2500	3600	5400
Pressure drops	(4)	KPa	19,00	19,00	31,00	32,00	33,00
Plate heat exchanger accessible							
non aggressive water/pool water							
(standard)							
Water flow rate nominal pool	(5)	L/h	1200	1400	3100	4500	6800
Pressure drop pool side	(5)	KPa	32,40	34,00	31,40	33,00	34,50
Pressure drop intermediate	(5)	KPa	21,20	22,30	20,60	21,60	22,50
circuit side	(5)	TAT G	21,20	22,30	20,00	21,00	22,30
Electric data							
Unit power supply					400 V-3- 50 Hz		
Maximum total current input		А	3,50	6,20	11,00	14,60	15,00
supply fan		n	5,50	0,20	11,00	17,00	13,00
Maximum total current input		А	2,60	4,90	6,40	11,30	11,30
extract fan			· · · · · · · · · · · · · · · · · · ·			<u> </u>	· · · · · · · · · · · · · · · · · · ·
Unit maximum current input		A	11,60	17,10	32,40	49,30	61,30
Unit starting current		A	32,10	46,10	91,40	181,90	184,30

- 1. External air 0°C,80% RH; internal air 29°C,60% RH.
- 2. Values as per conditions of D.M. 7 april 2008 for heating only operation
- **3.** Water temperature inlet/outlet 70/60°C; water pressure drop including 3 way valve
- **4.** Water temperature inlet/outlet non aggressive 27/37°C
- 5. Water temperature inlet/outlet intermediate circuit 37/27°C; water temperature inlet/outlet pool 25/35°C

DIMENSIONS

		025	040	060	100	130
A	mm	1765	1765	2245	2405	2405
В	mm	895	895	1055	1375	1695
C	mm	3230	3390	4190	4190	4670
Weight	Kg	900	1000	1350	2060	2600

SPL 160-250

Swimming Pool Lines Air handling unit high efficiency for health centres.

Air flow from 16000 to 25000 m³/h.

DESCRIPTION

The units from the SPL series represent the ideal solution to guarantee the comfort conditions in small-medium spaces such as health centres, spa areas, fitness centres, small swimming pools, sports facilities, etc. The unit contains a refrigerant circuit and a system for the recovery of sensible and latent heat coming from the humid air extracted from the space, thereby being optimised for the reduction of energy consumption. The main function of the unit, which is a "plug and play" machine ready for use, is that of dehumidifying and at the same time ensuring control of the temperature and humidity conditions of the area served. The unit is fitted with an efficient heat recovery system on the water side, to be used to partially heat the swimming pool water at no cost. The structure and all the internal components are built to ensure the maximum resistance to corrosion.

CHARACTERISTICS

Sizes

3 sizes available

Structure

Anodised aluminium profile with reinforced nylon corner pieces. Casing
made from sandwich type panels (50mm thickness), with internal surface pre-painted galvanised steel, external in pre-painted galvanised
steel and insulating material hot injected polyurethane with a density
of 42 kg/m³, fixed without screws but with panel locking profiles, doors
with keyless handles. This fixing method allows a uniform pressure on
the casing, ensuring an excellent resistance to the leakage of air and
water. The support structures and the seals around components are
completely painted to ensure the maximum corrosion resistance. The
bottom surfaces of the unit are fitted with drain panels in pre-painted
galvanised steel with a central drain point piped sideways.

Thermal recovery section

 High efficiency static cross flow in pre-painted aluminium. Including dampers: recirculating damper used for the quick start up of the space, recirculating damper for the "primary" cycle, dampers on the air inlet and extract. All dampers are manufactured in anodised aluminium and are individually controlled by an external actuator for precise air flow control.

Refrigerant circuit

- Fitted with scroll compressor supplied with rubber anti-vibration feet, refrigerant gas/air heat exchanger coil with copper tubes and pre-painted aluminium fins and painted frame, filter, electronic expansion valve, liquid receiver, filter drier, controls (pressure transducers and visual indicators) and safeties (high and low pressure pressostats), brazed copper connections, refrigerant charge of environmentally friendly R410A. The refrigerant circuit is installed in a compartment isolated from the air flow to facilitate checks and maintenance.
- The units on request can also be realized without the refrigerant circuit.
 The size of the machine remains unchanged

Fan section:

 Treated with epoxy paint resistant to corrosion, fitted with "plug fans" with backward curved impeller of high output. Electrical motor directly coupled to the impeller suitable for inverter control (standard).

Filtration systems:

Fitted as standard with panel filters in extract (G4 efficiency class according to EN779) and panel + bag filters (G4 + F9 efficiency class according to EN779) meet the requirements for the applicable standards for indoor air quality. Dirty filter differential pressure switches are provided as standard.

Hot water heating coil:

With copper tubes and pre-painted aluminium fins to heat the supply air after dehumidification, controlled by a modulating 3 way valve (standard); this allows the accurate control of the supply air temperature. The frame of the coil is in painted galvanised steel to ensure the maximum resistance to corrosion.

Electrical panel:

 Power and controls panel unit mounted. Electrical installation for the connection of power and controls, set in tubes or conduits with glands and grommets, IP55 protective rating. Remote panel supplied as standard for the control of all the main functions and display of alarms.

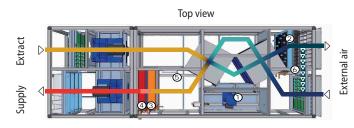
OPERATING SCHEMATICS

The principal operation modes of the unit are shown in the example schematics below.

In all the following schematics the hot water coil is always operating because the external air temperature is below 10°C with a required supply air temperature to compensate for the heat losses from the building.

"START UP" CYCLE

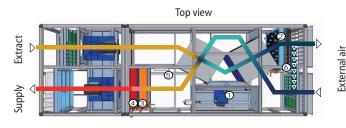
Top view


The operating mode is with no external air flow. The whole air flow is recirculated through damper 5 and returned to the pool area.

The hot water coil is operational.
The "start up cycle" is activated for

The "start up cycle" is activated for the time necessary to heat up the area

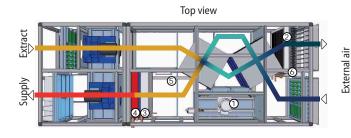
"DEHUMIDIFICATION" CYCLE


Dehumidification with external air

The operating mode is with external air dehumidifying the space, compensating for evaporation from the pool. The refrigerant circuit (consisting of the compressor 1 and the coils 2 and 3) allows the sensible and latent heat recovery of the extracted air to be transferred to the supply air or the water, through the thermal heat exchange consisting of the double heat exchanger on the water side.

The hot water coil 4 supplements, if necessary, the heating capacity provided by the refrigerant circuit, placed downstream of the entering air flow (condensing coil 3).

Dehumidification with external air and alpha cycle

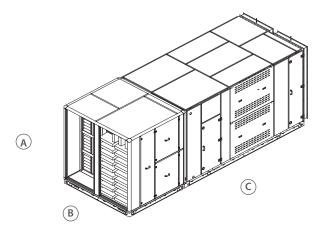


When required the compressor also assists in the dehumidification of the pool area.

The supply air flow is modulated by the fan inverter to reach the required hygrometric conditions.

As a function of the external ambient temperature the unit modifies the operating mode to achieve the best efficiency possible.

Dehumidification with external air (night cycle)


In night time mode the unit modifies the operating settings to adapt to the changes of evaporation from the pool and reduce consumption to the minimum.

TECHNICAL DATA

SPL		160	200	250
Nominal airflow (supply/extract)	m³/h	16000	20000	25000
Available pressure (supply/extract)	Pa	400	400	400
Heat recovery capacity recovered ¹	kW	59,6	68,6	89,2
Max heat recovery efficiency ¹	%	93	86	89
Refrigerant circuit recovered capacity ¹	kW	46,3	53,6	69,4
Total recovered capacity ¹	kW	105,9	122,2	158,6
Compressor power input ¹	kW	8,5	9,2	12,8
COP ¹	-	12,5	13,3	12,4
COP ²	-	4,0	3,9	3,9
Total dehumidification capacity ¹	kg/h	102,2	127,6	159,5
Supply fan power input	kW	10,9	13,7	17,7
Extract fan power input	kW	8,3	9,8	12,4
Type / number of compressors	n°		Scroll / 1	
Hot water heating coil (standard)				
Capacity (without recovery active) ¹	kW	131,9	182,7	205,9
Water flow rate 3	l/h	11300	15700	17700
Water pressure drop ³	kPa	43,7	37,9	42,2
Plate heat exchanger R410A/non aggressive	e water (standard)			
Water flow rate nominal ⁴	l/h	5760	6450	8260
Pressure drop ⁴	kPa	33	33	33
Plate heat exchanger accessible non aggres	sive water/pool w	ater (standard)		
Water flow rate nominal pool ⁵	l/h	7200	8100	10400
Pressure drop pool side ⁵	kPa	34,2	34,7	34,2
Pressure drop intermediate circuit side ⁵	kPa	22,3	22,7	22,2
Electrical data				
Unit power supply			400 V - 3 ph - 50 Hz	
Maximum total current input supply fan	А	29,2	41	42
Maximum total current input extract fan	А	22	22,6	30
Unit maximum current input	А	86,2	99,6	123
Unit starting current	А	209	223	287

External air 0°C,80% RH; internal air 29°C,60% RH.
Values as per conditions of D.M. 7 april 2008 for heating only operation.
Water temperature inlet/outlet 70/60°C; water pressure drop including 3 way valve.
Water temperature inlet/outlet non aggressive 27/37°C.
Water temperature inlet/outlet intermediate circuit 37/27°C; water temperature inlet/outlet pool 25/35°C
Preliminary technical data, subject to modification.

DIMENSIONAL DATA

SPL			160	200	250
Height (including base H=120mm) *	Α	mm	2085	2405	2405
Width *	В	mm	2015	2175	2335
Length *	C	mm	5790	5790	6430
Weight		kg	2780	3250	3580

 $[\]hbox{* The dimensions remain unchanged even if the unit, on request, is supplied without a refrigerant circuit.}$

RTX-N1-N8

Roof-Top for applications in medium crowed

Cooling capacity 12,70 ÷ 49,95 kW Heating capacity 13,50 ÷ 50,79 kW

- For medium crowding applications
- Upgraded thermodynamic heat recovery
- Handling section with plug fan coupled with BRUSHLESS EC motors
- Free-cooling / enthalpic free-cooling / photocatalytic system option

DESCRIPTION

Independent Roof-Top air-cooled air conditioner to treat, filter and renew air based on the selected configuration. Being fitted to function with 30% external and expelled air (MB4 versions), RTX units are designed for medium density applications like shopping malls, shops, offices and production areas.

Based on the version and accessories selected, the units allow you to manage free-cooling mode and, in the MB4 versions, there is thermodynamic recovery of the energy contained in the expelled air, allowing for higher performance and efficiency.

CONFIGURATIONS

$\label{eq:mb1:single} \textbf{MB1: Single ventilating cross-section for recovery air.}$

Recovery air only configuration where no fresh air is required. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

MB2: Single ventilating cross-section for recovery and external

Recovery and external air configuration. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

The presence of the recirculation damper (optional) allows for total free-cooling (100% external air).

If there are no extraction systems, the room will be in overpressure.

MB4: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power. The double flow and exhaust ventilating cross-section allows for partial free-cooling and has the thermodynamic recovery function.

Advantages of thermodynamic recovery (MB4):

 Energy recovery from the exhaust air flow that would otherwise be lost

- No further components are introduced and, therefore, there are no additional pressure drops
- Cooling circuit functioning with heat sources at more advantageous temperatures
- Reduction of defrosting cycles
- Increase in thermal and cooling efficiency
- Efficiency increase (EER/COP)

FFATURES

- 2 cooling circuits with electronic thermostatic expansion valve;
- High efficiency scroll compressors with low power consumption;
- Finned pack direct expansion internal and external exchangers;
- Plug fan type (EC) flow and exhaust fans (if any). The impellers are facing so as to ensure that the air flows through all the internal components with minimum noise;
- Axial fan unit for extremely silent functioning positioned on the condensing section.
- Filter with 55% COARSE efficiency (according to EN ISO 16890) on the fresh air flow; Also available: compact filter with ePM1 50% efficiency (according to EN ISO 16890). Positioning upstream of the components to be protected to ensure low pressure drops, having a large surface. Air quality control systems are also available (VOC and $\mathrm{CO}_{2\,\mathrm{probe}}$);
- The structure consists of a galvanised sheet metal base, frame in galvanised sheet metal shaped profiles powder coated in RAL9003 (self-bearing structure), pre-painted sheet metal panels (external) insulated with 28kg/mc dense adhesive insulation and sandwich type panels insulated with 25 mm thick 45kg/mc polyurethane, eco-friendly "GWP 0" (Global Warming Potential);
- The casing, designed to allow the internal components to be accessed for routine and extraordinary maintenance.

CONTROL

Microprocessor control able to manage the different functioning modes, ensuring maximum energy savings in any conditions of use. Interfaces to connect to remote supervision and control systems available as options.

FUNCTIONALITY AND TECHNOLOGICAL ADVANTAGES

RTX units are designed with the aim of reducing the energy consumption that subsequently dictated the technological choices made on the unit we will now introduce in brief.

Very high ventilation efficiency

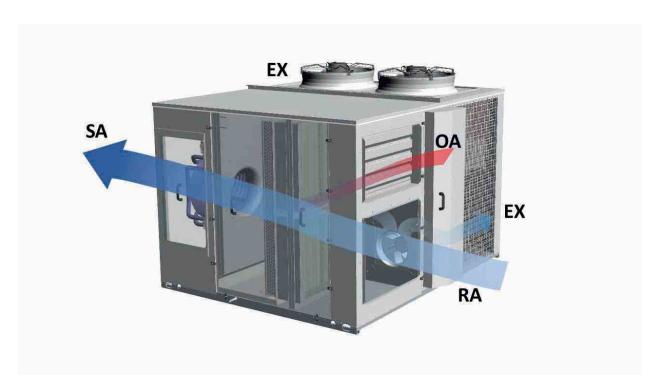
As ventilation is one of the major power consumption factors, we dedicated particular attention to designing and constructing the ventilation system.

State-of-the-art plug fans with EC brushless motors have been used both in flow and in recovery (if any), which enable high performance and reduced consumption. Furthermore, compared to conventional centrifugal fans, they have no belts or pulleys, thus facilitating flow rate adjustment and resulting in compactness, versatility and easy maintenance.

Special adaptive logic allows you to adjust the air flow rate to actual system demand with further resulting advantages in terms of consumption reduction.

Axial fans for the external section of the unit are helical. Electronic condensation control is available as an accessory, which regulates fan speed based on the load required, allowing for noise reduction. As an option, the motors can have electronic control (EC) to reduce consumption even in the condensing part.

Room air quality


Special attention was paid to the quality of the room air, entrusted to the standard 55% COARSE efficiency filters. F7 filters are also available as optional.

Active thermodynamic recovery

In the MB4 configurations, the units have a thermodynamic recovery function to recover the energy contained in the exhaust air, causing the expelled air flow to hit the external finned pack exchanger, allowing for higher performance and efficiency.

All of these technological advantages are controlled by a thermoregulation that is able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use via dedicated software.

MB4 CONFIGURATION WITH DOUBLE VENTILATING SECTION FOR RETURN AIR, EXTERNAL AIR AND EXPELLED AIR. STANDARD FREE-COOLING AND THERMODYNAMIC HEAT RECOVERY FUNCTION

SA Supply air EX Exhaust air OA Fresh air RA Return air

ACCESSORIES

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

AXECP: EC axial fans with available useful static pressure.

BAC: Interface card BACnet MS/TP pCOnet.

BE: Electric heating coil 2 stages.

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BPGC: After heating coil with hot gas. **BW:** 2-rows-heating coil with hot water.

BWV2V: 2 -rows -heating coil with hot water, with 2-way modulating

BWV3V: 2-rows heating coil with hot water, with 3-way modulating valve.

CA: Waterproof covers on external air intake.

DP: Dehumidification control (humidity probe in recovery) and of after-he- ating (if present).

FCT: Partial Temperature Free-Cooling for MB2, MB4 versions.

FT7: F7 efficiency pocket filters positioned on the supply air flow.

GP: External coil protection grid.

LW: Interface card LonWorks.

PRT1: Wall/recessed (up to 50 m) remote control panel.

PRT2: Wall/recessed (up to 200 m) remote control panel.

PSF4: Differential pressure switch signalling dirty recovery and renewal filters (if any).

PSTEP: Adjusting constant flow, step flow in function of the modulation of the cooling circuit.

RFC: Smoke detector and damper management.

RS: Serial card BMS RS485.

SCM: Modulating servo-controls (standard on MB3 model or if temper-

ature or enthalpic free-cooling is present).

SCMRM: Modulating Servo-control with spring return. SCO2: Probe CO2 (not available on MB1 fittings).

STA: Room temperature probe SUA: Room humidity probe.

SVOC: Probe VOC (not available on MB1 fittings).

VT: Antivibration mounts.

PERFORMANCE SPECIFICATIONS

Size		N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1									
Cooling performances (1)									
Cooling capacity	kW	12,70	15,50	19,10	22,20	28,60	33,00	43,00	47,00
Sensible cooling capacity	kW	8,60	10,40	12,80	14,80	19,00	22,40	28,80	32,10
Compressors absorbed power	kW	3,30	4,20	5,00	6,00	7,20	8,70	11,40	12,50
EER compressors		3,87	3,71	3,82	3,69	3,98	3,79	3,75	3,75
Heating performances (2)									
Heating capacity	kW	13,50	16,10	19,90	23,00	29,60	34,00	44,70	48,50
Compressors absorbed power	kW	3,07	3,65	4,28	5,15	6,23	6,86	9,43	10,02
Compressor COP		4,40	4,41	4,64	4,47	4,75	4,96	4,74	4,84

- (1) Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Size		N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB2									
Cooling performances (1)									
Cooling capacity	kW	13,42	16,34	20,16	23,35	30,21	34,79	45,26	49,44
Sensible cooling capacity	kW	8,92	10,86	13,40	15,40	19,70	23,40	30,00	33,50
Compressors absorbed power	kW	3,33	4,22	5,04	6,07	7,29	8,85	11,65	12,74
EER compressors		4,03	3,87	4,00	3,85	4,14	3,93	3,88	3,88
Heating performances (2)									
Heating capacity	kW	13,65	16,24	20,02	23,18	29,87	34,22	45,17	48,94
Compressors absorbed power	kW	2,77	3,31	3,86	4,65	5,62	6,15	8,58	9,22
Compressor COP		4,92	4,91	5,18	4,99	5,32	5,57	5,26	5,31

- (1) Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Size		N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB4									
Cooling performances (1)									
Cooling capacity	kW	13,49	16,49	20,33	23,58	30,45	35,16	45,65	49,95
Sensible cooling capacity	kW	8,93	10,91	13,40	15,50	19,80	23,50	30,20	33,60
Compressors absorbed power	kW	3,27	4,12	4,92	5,90	7,13	8,59	11,39	12,43
EER compressors		4,13	4,00	4,13	4,00	4,27	4,10	4,01	4,02
Heating performances (2)									
Heating capacity	kW	14,00	16,81	20,69	24,05	30,77	35,50	46,63	50,79
Compressors absorbed power	kW	2,81	3,36	3,92	4,73	5,71	6,27	8,74	9,38
Compressor COP		4,98	5,00	5,28	5,08	5,39	5,67	5,33	5,41

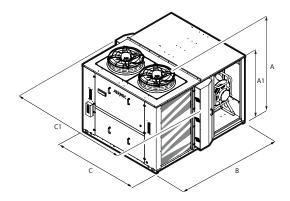
- (1) Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

ENERGY INDEX

Size			N1	N2	N3	N4	N5	N6	N7	N8
Energy index										
SEER	Н	W/W	3,73	3,60	3,76	3,70	3,86	3,86	3,80	3,77
ηςς	Н	%	146.1%	141.2%	147.5%	144.8%	151.5%	151.5%	148.8%	147.8%
Pdesignh	Н	kW	7	9	11	13	16	19	25	26
SCOP	Н	W/W	3,47	3,34	3,46	3,36	3,29	3,50	3,47	3,44
ηsh	Н	%	135.6%	130.5%	135.4%	131.2%	128.7%	137.1%	135.7%	134.4%

GENERAL TECHNICAL DATA

Size		N1	N2	N3	N4	N5	N6	N7	N8
Power supply									
Power supply		400V~3N 50Hz	400V~3N 50Hz	400V~3N 50Hz	400V~3N 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz	400V~3 50Hz
Compressor									
Туре	type				Sci	roll			
Number	no.	2	2	2	2	2	2	2	2
Circuits	no.	2	2	2	2	2	2	2	2
Refrigerant	type				R4	10A			
Sound data									
Sound power level	dB(A)	73,3	73,7	76,4	76,3	81,2	79,7	82,8	82,9
Sound pressure (1)	dB(A)	65,3	65,8	68,5	68,3	73,2	71,7	74,8	74,9


⁽¹⁾ MB1 configuration sound pressure measured in free field (Q=2), 1m away from the outer surface of the ducted unit, high static pressure 50 Pa (EN ISO 9614-2)... 3 dB(A) tolerance on sound power level (Eurovent 8/1).

FANS

Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1, MB2,	MB4									
External fans										
Туре	Н	type	axials							
Number	Н	no.	2	2	2	2	2	2	2	2
Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1, MB2,	MB4									
Internal fans										
Nominal air flow rate	Н	m³/h	2000	2800	3500	4000	5000	6500	8000	9500
Minimum air flow rate	Н	m³/h	1800	1800	2700	2700	4000	4000	6500	6500
Maximum air flow rate	Н	m³/h	2900	2900	4100	4100	6900	6900	10100	10100
Size			09	10	11	12	13	14	15	16
Configuration: MBT										
Exhaust										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2
Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1, MB2										
Delivery										
Туре	Н	type	Brushless EC							
Number	Н	no.	1	1	1	1	1	1	1	1
Maximum useful head (1)	Н	Pa	755	575	460	555	435	460	575	765
High static pressure (EN14511) (1)	Н	Pa	100	100	124	124	124	150	150	200
Configuration: MB4										
Delivery										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	1	1	1	1	1
Maximum useful head (1)	Н	Pa	755	575	460	555	435	460	575	765
High static pressure (EN14511) (1)	Н	Pa	100	100	124	124	124	150	150	200

⁽¹⁾ At the nominal/maximum flow rate with a new, clean air filter.

DIMENSIONS

Size			N1	N2	N3	N4	N5	N6	N7	N8
Configuration: MB1										
Dimensions and weights										
A	Н	mm	1170	1170	1470	1470	1610	1610	1710	1710
A1	Н	mm	910	910	1210	1210	1410	1410	1510	1510
В	Н	mm	1460	1460	1460	1460	1860	1860	2310	2310
С	Н	mm	1560	1560	1560	1560	1910	1910	1910	1910
C1	Н	mm	-	-	-	-	-	-	-	-
Empty weight	H	kg	335	335	405	405	594	594	745	745
Configuration: MB2										
Dimensions and weights										
A	Н	mm	1170	1170	1470	1470	1610	1610	1710	1710
A1	Н	mm	910	910	1210	1210	1410	1410	1510	1510
В	Н	mm	1460	1460	1460	1460	1860	1860	2310	2310
C	Н	mm	1560	1560	1560	1560	1910	1910	1910	1910
<u>C1</u>	Н	mm	-	-	-	-	-	-	-	-
Empty weight	H	kg	335	335	405	405	594	594	745	745
Configuration: MB4										
Dimensions and weights										
A	Н	mm	1170	1170	1470	1470	1610	1610	1710	1710
<u>A1</u>	Н	mm	910	910	1210	1210	1410	1410	1510	1510
В	Н	mm	1460	1460	1460	1460	1860	1860	2310	2310
(Н	mm	-	-	-	-	-	-	-	-
C1	Н	mm	1850	1850	1850	1850	2200	2200	2200	2200
Empty weight	Н	kg	345	345	429	429	619	619	775	775

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

RTX 09-16

Roof-Top for applications in medium crowed

Cooling capacity 50 ÷ 135 kW Heating capacity 49 ÷ 141 kW

- For medium crowding applications
- Upgraded thermodynamic heat recovery
- Handling section with plug fan coupled with BRUSHLESS EC motors
- Free-cooling / enthalpic free-cooling / photocatalytic system option

DESCRIPTION

Independent Roof -top type air cooled air conditioner, for treatment, filtration and renewal of the air , based on the chosen configuration. RTX 09-16units are designed fot medium crowding applications, like shopping malls, shops, offices , production areas being designed for operation with 30% external and expelled air (version MB3). The unit based on the version and selected accessories allows the management of the free-cooling operation, and can be equipped with a recuperator to recover the energy contained in the exaust air allowing higher perfomances and efficiencies.

VERSIONS

F Cooling only

H Heat pump.

FEATURES

Refrigerant circuit

functioning with R410A refrigerant, consisting of scroll compressors in "uneven" tandem configuration (except for sizes 09, 10 and 14) to ensure maximum energy savings at partial loads and better adaptability to system demands, providing only the energy actually needed. The compressors are equipped with electric resistances on the guards and thermal protection on the exhaust. The compressor compartment is isolated from the air flow.

Ventilation

The air treatment cross-section ventilation, which represents the highest expense in terms of machine operating costs, is entrusted to the plug fans with EC brushless motors which enable high performance, easy flow rate adjustment, compactness, low noise, versatility and easy maintenance. Furthermore, a special adaptive logic allows you to adjust the air flow rate to actual system demand with further advantages in terms of consumption reduction.

Axial fans

The axial fans, located in the condensing section of the unit, are the helical type, statically and dynamically balanced, protected electrically and mechanically by grids. Electronic condensation control is optional in F

versions and condensation and evaporation during winter functioning in H versions. The fans are also available with electronically controlled (EC) permanent magnet synchronous motor.

Exchangers

The internal and external heat exchangers are finned pack direct expansion, made with copper pipes arranged in staggered rows and mechanically expanded to better adhere to the collar of the louvers. The louvers are made of aluminium with a special corrugated surfaces, suitably spaced to ensure maximum heat exchange yield.

Air filtration

Entrusted to a filter with 55% Coarse efficiency (according to EN ISO 16890) on the fresh air flow.

Also available: compact filter with ePM1 50% efficiency or ePM1 80% efficiency (according to EN ISO 16890) and electronic filter on fresh air flow. Positioning upstream of the components to be protected to ensure low pressure drops, having a large surface. Air quality control systems are also available (VOC and CO2 probe).

Cleaning system with photocatalytic lamp

The Photocatalytic Oxidation technology generates natural oxidising ions capable of attracting and destroying the pollutants present in the air and on surfaces, by means of the combined action of UV rays with a catalyst structure composed of a four-metal alloy, mainly consisting of TiO₂ (titanium dioxide).

Thermoregulation

Electronic controller able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use by means of special software. Interfaces to connect to remote supervision and control systems available as options. The electrical panel complete with all devices is easily accessible.

The free-cooling/heating and defrosting logics are particularly sophisticated. As soon as the external conditions allow it, the unit is able to automatically activate the free-cooling or free-heating mode, which cools or heats the served room, while keeping the compressors off and introducing suitably treated external air. This mode significantly reduces both energy consumption and wear of the compressors. These func-

tions are also used when the external air energy content is not enough

CONFIGURATIONS

MB1: Single ventilating cross-section for recovery air.

Recovery air only configuration where no fresh air is required. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

MB2: Single ventilating cross-section for recovery and external

Recovery and external air configuration. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

The presence of the recirculation damper (optional) allows for total free-cooling (100% external air).

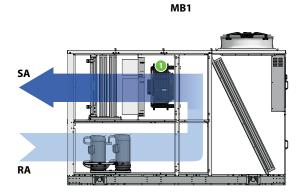
If there are no extraction systems, the room will be in overpressure.

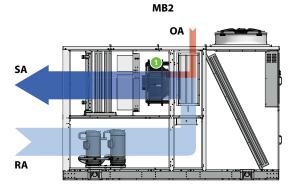
MB3: double ventilating cross-section (flow and return) for recovery air, external air and exhaust air, thermodynamic recovery.

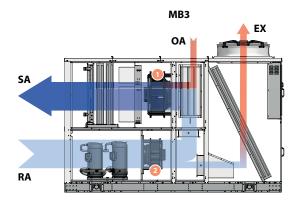
Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the useful flow static pressure while the recovery ventilating cross-section provides the useful recovery static pressure. The double flow and recovery ventilating cross-section allows for total freecooling (100% external air) without the need for a dedicated extraction system. The room overpressure or depression can be obtained by unbalancing the flow rates.

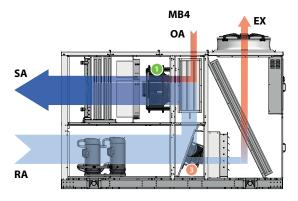
to cool or heat the room. In this case, the thermal cooling capacity is integrated by the compressors.

Thermodynamic recovery is performed by conveying expelled air on the external heat exchanger.


MB4: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, thermodynamic recovery.


Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power. The double flow and exhaust ventilating cross-section allows for partial free-cooling.


As for the MB3 version, it has the thermodynamic recovery function.


Advantages of thermodynamic recovery (MB3 - MB4 version):

- Energy recovery from the exhaust air flow that would otherwise be lost
- No further components are introduced and, therefore, there are no additional pressure drops
- Cooling circuit functioning with heat sources at more advantageous temperatures
- Reduction of defrosting cycles
- Increase in thermal and cooling efficiency
- Efficiency increase (EER/COP)

SA supply air RA fresh air

OA fresh air

EX Exhaust air

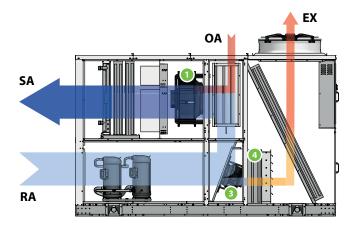
- Delivery fan
- Return fan 2
- **Expulsion fan**

MBT: DOUBLE VENTILATING CROSS-SECTION (FLOW AND EXPULSION) FOR RECOVERY AIR, EXTERNAL AIR AND EXHAUST AIR, UPGRADED THERMODYNAMIC RECOVERY.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power.

The double flow and exhaust ventilating cross-section allows for partial free-cooling.

The MBT configuration allows for the upgraded thermodynamic recovery on the exhaust air by fully exploiting the energy content still present in it. The exhaust flow rate, controlled by the dedicated exhaust fan, is conveyed to the innovative finned pack recovery coil, integrated in the cooling circuit of the unit.


The coil, perfectly hit by the air flow, recovers the energy still present in the exhaust flow and transfer it to the cooling circuit, increasing the treatment coil performance without increasing the input power of the compressors.

In summer functioning, the coil makes it possible to increase the liquid subcooling, while in winter functioning, the coil takes on part of the evaporation by operating the cooling circuit at more advantageous temperatures.

Advantages of upgraded thermodynamic recovery (MBT version):

- High heat exchange efficiency thanks to the dedicated recovery coil
- Further increase in unit cooling and heating capacity
- Further increase in unit efficiency (EER/COP)

- Reduced additional air side pressure drops (expelled air side only)
- The unit remains compact
- In heating functioning, the defrost cycles are further reduced due to the increase in evaporation temperature. The result is an increase in efficiency and greater room comfort.
- Compared to traditional passive recuperators, in heating functioning it allows for exhaust air recovery even with low temperature difference between external and indoor air (mild winters)
- Compared to traditional passive recuperators, in cooling functioning it allows for exhaust air recovery even with low temperature difference between external and indoor air (continental and temperate climate)
- The presence of the dedicated coil determines the recovery efficiency that can be used in the energy certification calculations.

- **SA** supply air
- RA fresh air
- **OA** fresh air
- **EX** Exhaust air

- 1 Delivery fan
- 2 Return fan
- 3 Expulsion fan
- 4 Dedicated thermodynamic recovery coil

ACCESSORIES

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

AXECP: EC axial fans with available useful static pressure.

BAC: Interface card BACnet MS/TP pCOnet.

BE: Electric heating coil 2 stages.

BEM: Modulating electric heating coil.

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BPGC: After heating coil with hot gas.

BW: 2-rows-heating coil with hot water.

BWV2V: 2 -rows -heating coil with hot water, with 2-way modulating valve.

BWV3V: 2-rows heating coil with hot water, with 3-way modulating valve.

CA: Waterproof covers on external air intake.

CF: Flue, only on unit with gas burner module.

CUR: Humidification control (humidity probe in recovery, limit humidity probe in supply, contact ON/OFF and modulating analog output).

DCPR: AC fans with pressure switch device of speed control function of the pressure of condensation and evaporation.

DP: Dehumidification control (humidity probe in recovery) and of after-he- ating (if present).

FCT: Partial Temperature Free-Cooling for MB2, MB4 versions.

FT7: F7 efficiency pocket filters positioned on the supply air flow.

FT9: Pocket filters F9 efficiency placed on the flow of supply air.

FTE: Electronic filters placed on the flow of supply air.

FTH: Enthalpy free-cooling.

GP: External coil protection grid.

Gx: Heating module with gas burner.

LFX: Device with photocatalytic effect.

LW: Interface card LonWorks.

MAN: High and low pressure gauges.

MSSM: Flow silencer module, only for rear flow.

MSSR: Recovery silencer module, only for rear air recovery.

PRT1: Wall/recessed (up to 50 m) remote control panel. **PRT2:** Wall/recessed (up to 200 m) remote control panel.

PRIZ: Wall/recessed (up to 200 m) remote control panel.

PSFT: Differential pressure switch signalling dirty filters.

PSTEP: Adjusting constant flow, step flow in function of the modulation of the cooling circuit.

RF: Smoke detector.

RFC: Smoke detector and damper management.

RS: Serial card BMS RS485.

SCM: Modulating servo-controls (standard on MB3 model or if temperature or enthalpic free-cooling is present).

SCMRM: Modulating Servo-control with spring return.

SCO2: Probe CO2 (not available on MB1 fittings).

STA: Room temperature probe

SUA: Room humidity probe.

SVOC: Probe VOC (not available on MB1 fittings).

UP: Manufacturer of immersed electrodes supplied and steam ramp installed.

VT: Antivibration mounts.

PERFORMANCE SPECIFICATIONS

MB1

Size		09	10	11	12	13	14	15	16
Configuration: MB1									
Cooling performances (1)									
Cooling capacity	kW	50,00	60,10	68,60	81,00	93,40	103,50	114,00	125,30
Sensible cooling capacity	kW	40,10	46,10	52,70	63,20	70,90	81,80	89,30	97,10
Compressors absorbed power	kW	11,90	14,40	18,80	17,90	23,10	25,60	30,50	35,50
EER compressors		4,20	4,17	3,65	4,53	4,04	4,04	3,74	3,53
Heating performances (2)									
Heating capacity	kW	49,40	61,10	69,30	80,60	93,70	102,20	113,70	126,60
Compressors absorbed power	kW	9,80	12,20	15,50	15,70	20,60	21,00	24,40	28,40
Compressor COP		5,04	5,01	4,47	5,13	4,55	4,87	4,66	4,46

- (1) Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.

 (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

MB2

Size		09	10	11	12	13	14	15	16
Configuration: MB2									
Cooling performances (1)									
Cooling capacity	kW	52,90	63,30	72,30	85,30	98,40	108,80	120,10	131,60
Sensible cooling capacity	kW	42,70	48,80	55,90	67,10	75,00	86,70	94,80	102,80
Compressors absorbed power	kW	12,10	14,60	19,00	18,10	23,30	25,90	30,90	35,90
EER compressors		4,37	4,34	3,81	4,71	4,22	4,20	3,89	3,67
Heating performances (2)									
Heating capacity	kW	50,50	61,90	70,60	82,20	94,90	103,60	115,30	128,10
Compressors absorbed power	kW	9,00	11,20	14,10	14,30	18,90	19,20	22,50	26,00
Compressor COP		5,61	5,53	5,01	5,75	5,02	5,40	5,12	4,93

- (1) Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

MB3

Size		09	10	11	12	13	14	15	16
Configuration: MB3									
Cooling performances (1)									
Cooling capacity	kW	53,40	63,70	73,10	86,10	99,30	110,00	121,30	133,30
Sensible cooling capacity	kW	43,00	48,90	56,20	67,40	75,30	87,00	95,10	103,20
Compressors absorbed power	kW	11,80	14,20	18,50	17,70	22,80	25,10	30,10	34,80
EER compressors		4,53	4,49	3,95	4,86	4,36	4,38	4,03	3,83
Heating performances (2)									
Heating capacity	kW	52,10	64,10	74,10	85,00	98,60	107,80	120,60	134,30
Compressors absorbed power	kW	9,20	11,40	14,40	14,60	19,10	19,40	22,90	26,70
Compressor COP		5,66	5,62	5,15	5,82	5,16	5,56	5,27	5,03

- (1) Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.

 (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

MB4

6 1			- 10	- 11	12	- 13	- 14	45	1/
Size		09	10	11	12	13	14	15	16
Configuration: MB4									
Cooling performances (1)									
Cooling capacity	kW	53,40	63,70	73,10	86,10	99,30	110,00	121,30	133,30
Sensible cooling capacity	kW	43,00	48,90	56,20	67,40	75,30	87,00	95,10	103,20
Compressors absorbed power	kW	11,80	14,20	18,50	17,70	22,80	25,10	30,10	34,80
EER compressors		4,53	4,49	3,95	4,86	4,36	4,38	4,03	3,83
Heating performances (2)									
Heating capacity	kW	52,10	64,10	74,10	85,00	98,60	107,80	120,60	134,30
Compressors absorbed power	kW	9,20	11,40	14,40	14,60	19,10	19,40	22,90	26,70
Compressor COP		5,66	5,62	5,15	5,82	5,16	5,56	5,27	5,03

- (1) Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Size		09	10	11	12	13	14	15	16
Configuration: MBT									
Cooling performances (1)									
Cooling capacity	kW	57,10	67,80	78,00	90,50	103,70	116,90	128,80	140,60
Sensible cooling capacity	kW	46,60	53,00	61,20	71,90	79,70	94,00	102,60	110,60
Compressors absorbed power	kW	11,80	14,20	18,50	17,70	22,80	25,10	30,10	34,80
EER compressors		4,84	4,77	4,22	5,11	4,55	4,66	4,28	4,04
Heating performances (2)									
Heating capacity	kW	55,40	68,00	78,30	90,10	103,60	114,40	127,50	141,40
Compressors absorbed power	kW	9,20	11,40	14,40	14,60	19,10	19,40	22,90	26,70
Compressor COP		6,02	5,96	5,44	6,17	5,42	5,90	5,57	5,30
Recovery efficiency	%	84%	92%	87%	90%	85%	85%	82%	78%

ENERGY INDEX

Size			09	10	11	12	13	14	15	16
Energy index										
SEER	Н	W/W	4,24	3,94	3,76	3,92	3,89	4,22	4,10	4,05
ηςς	Н	%	166.6%	154.5%	147.2%	153.9%	152.7%	165.7%	161.1%	159.1%
Pdesignh	Н	kW	29	34	38	46	52	57	62	71
SCOP	Н	W/W	3,59	3,50	3,30	3,27	3,22	3,47	3,41	3,38
ηsh	Н	%	140.5%	137.0%	128.8%	127.7%	126.0%	135.9%	133.5%	132.3%

GENERAL TECHNICAL DATA

Size			09	10	11	12	13	14	15	16
Power supply										
Power supply	Н		400V~3 50Hz							
Compressor										
Туре	Н	type	Scroll							
Number	Н	no.	2	2	2	2	2	2	2	2
Circuits	Н	no.	1	1	1	1	1	1	1	1
Refrigerant	Н	type	R410A							
Partialisation step	Н	no.	2	2	3	3	3	2	3	3

FANS

External fans

Size			09	10	11	12	13	14	15	16
Configuration: MB1, MB2, M	ЛВ3, МВ4,	MBT								
External fans										
Туре	Н	type	Assiali AC							
Number	Н	no.	2	2	2	2	2	2	2	2

Internal fans MB1-MB2-MB3-MB4-MBT

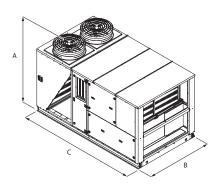
Size			09	10	11	12	13	14	15	16
Configuration: MB1, MI	B2, MB3, MB4,	MBT								
Internal fans										
Nominal air flow rate	Н	m³/h	9500	11000	13000	15000	17000	20000	22000	24000
Minimum air flow rate	Н	m³/h	6650	7700	9100	10850	12600	14000	15400	16800
Maximum air flow rate	Н	m³/h	9500	11000	13000	15500	18000	20000	22000	24000

Internal recovery fans

Size			09	IV	- 11	12	13	14	13	10
Configuration: MB3										
Recovery										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2

Expulsion fan MB4-MBT

Size			09	10	11	12	13	14	15	16
Configuration: MBT										
Exhaust										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2


⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Internal flow fans

Size			09	10	11	12	13	14	15	16
Configuration: MB1, MB2,	MB3, MB4,	MBT								
Delivery										
Туре	Н	type	RAD EC							
Number	Н	no.	1	1	1	2	2	2	2	2
Maximum useful head (1)	Н	Pa	770	510	445	555	740	640	525	675
High static pressure (EN14511) (1)	Н	Pa	200	200	200	200	250	250	250	300

⁽¹⁾ At the nominal/maximum flow rate with a new, clean air filter.

DIMENSIONS

Size			09	10	11	12	13	14	15	16
Dimensions and weights										
A	Н	mm	2061	2061	2061	2373	2373	2440	2440	2440
В	Н	mm	1900	1900	1900	2100	2100	2200	2200	2200
C	Н	mm	3400	3400	3400	3400	3400	4000	4000	4000

Roof-Top for applications in medium crowed

Cooling capacity 151 ÷ 307 kW Heating capacity 152 ÷ 310 kW

- For medium crowding applications
- Thermodynamic heat recovery
- Handling section with plug fan coupled with BRUSHLESS EC motors
- Free cooling / Enthalpy free cooling

DESCRIPTION

Independent Roof -top type air cooled air conditioner, for treatment, filtration and renewal of the air , based on the chosen configuration.

The RTX 09-16 units are designed for installation in places with an average degree of crowding such as shopping centres, shops, offices and production sites, as operation uses 30% outside expelled air (versions MB3 and MB4).

CONFIGURATIONS

MB1: Single ventilating cross-section for recovery air.

Recovery air only configuration where no fresh air is required. The useful flow and recovery static pressure is provided by the flow ventilating cross-section.

MB2: Single ventilating cross-section for recovery and external

Recovery and external air configuration. The useful flow and recovery static pressure is provided by the flow ventilating cross-section. The presence of the recirculation damper (optional) allows for total free-cooling (100% external air).

If there are no extraction systems, the room will be in overpressure.

MB3: double ventilating cross-section (flow and return) for recovery air, external air and exhaust air, thermodynamic recovery.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the useful flow static pressure while the recovery ventilating cross-section provides the useful recovery static pressure. The double flow and recovery ventilating cross-section allows for total freecooling (100% external air) without the need for a dedicated extraction system. The room overpressure or depression can be obtained by unbalancing the flow rates.

Thermodynamic recovery is performed by conveying expelled air on the external heat exchanger.

MB4: double ventilating cross-section (flow and expulsion) for recovery air, external air and exhaust air, thermodynamic recovery.

Depending on the version and the accessories chosen, the unit can manage free cooling mode. Versions MB3 and MB4 feature the thermodynamic recovery of the energy contained in the exhaust air, leading to higher performance and efficiency levels.

VERSIONS

- F Cooling only
- **H** Heat pump.

Recovery, external and exhaust air configuration. The flow ventilating cross-section provides the flow and recovery useful static pressure. The exhaust ventilating cross-section only controls the air flow rate to be expelled, with consequent reduction of the installed ventilation power. The double flow and exhaust ventilating cross-section allows for partial free-cooling.

As for the MB3 version, it has the thermodynamic recovery function.

Advantages of thermodynamic recovery (MB3 - MB4 version):

- Energy recovery from the exhaust air flow that would otherwise be
- No further components are introduced and, therefore, there are no additional pressure drops
- Cooling circuit functioning with heat sources at more advantageous temperatures
- Reduction of defrosting cycles
- Increase in thermal and cooling efficiency
- Efficiency increase (EER/COP)

FEATURES

- 2 cooling circuits with electronic thermostatic expansion valve;
- Scroll compressors (UNEVEN tandem) with high capacity and low electrical power consumption;
- Finned pack direct expansion internal and external exchangers;
- Plug fan type (EC) flow and exhaust fans (if any). The impellers are facing so as to ensure that the air flows through all the internal components with minimum noise;

- Axial fan unit for extremely silent functioning positioned on the condensing section.
- Filter with 55% COARSE efficiency (according to EN ISO 16890) on the fresh air flow; Also available: compact filter with ePM1 50% efficiency (according to EN ISO 16890). Positioning upstream of the components to be protected to ensure low pressure drops, having a large surface. Air quality control systems are also available (VOC and CO_{2 probe});
- The structure consists of a galvanised sheet metal base, frame in galvanised sheet metal shaped profiles powder coated in RAL9003 (self-bearing structure), pre-painted sheet metal panels (external) insulated with 28kg/mc dense adhesive insulation and sandwich type panels insulated with 25 mm thick 45kg/mc polyurethane, eco-friendly "GWP 0" (Global Warming Potential);
- The casing, designed to allow the internal components to be accessed for routine and extraordinary maintenance.

CONTROL

Microprocessor control able to manage the different functioning modes, ensuring maximum energy savings in any conditions of use. Interfaces to connect to remote supervision and control systems available as options.

FUNCTIONALITY AND TECHNOLOGICAL ADVANTAGES

RTX units are designed with the aim of reducing the energy consumption that subsequently dictated the technological choices made on the unit we will now introduce in brief.

Very high ventilation efficiency

As ventilation is one of the major power consumption factors, we dedicated particular attention to designing and constructing the ventilation system.

State-of-the-art plug fans with EC brushless motors have been used both in flow and in recovery (if any), which enable high performance and reduced consumption. Furthermore, compared to conventional centrifugal fans, they have no belts or pulleys, thus facilitating flow rate adjustment and resulting in compactness, versatility and easy maintenance.

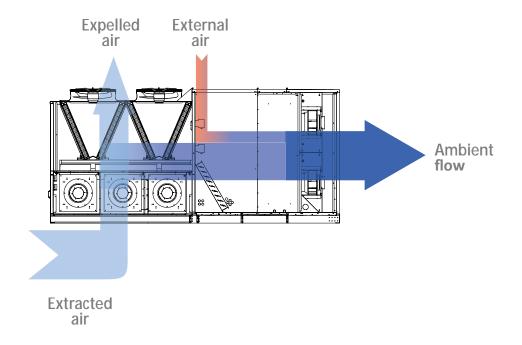
Special adaptive logic allows you to adjust the air flow rate to actual system demand with further resulting advantages in terms of consumption reduction.

Axial fans for the external section of the unit are helical. Electronic condensation control is available as an accessory, which regulates fan speed based on the load required, allowing for noise reduction. As an option, the motors can have electronic control (EC) to reduce consumption even in the condensing part.

Maximum seasonal efficiency

To improve the efficiency of the cooling circuit, tandem scroll compressors of different power levels are used (UNEVEN compressors on all sizes). This distinctive trait, combined with the use of next generation fans, means reduced consumption and enhanced adaptability to system requests (particularly in partial load operation), guaranteeing boosted seasonal efficiency levels.

Room air quality


Special attention has been paid to the quality of the air in the room, entrusted to filters that ensure 55% COARSE efficiency as standard. There is also the option of F7, F9 or electronic filters on the fresh air flow.

Active thermodynamic recovery

In the MB3-MB4 configuration, the unit with thermodynamic recovery function also takes advantage of the energy contained in the exhaust air, which would otherwise be lost; this ensures better performance and efficiency.

All of these technological advantages are controlled by a thermoregulation that is able to manage the different functioning modes, ensuring maximum energy savings in all conditions of use via dedicated software.

MB3 CONFIGURATION WITH TWIN FAN SECTION FOR RECIRCULATION AIR, OUTSIDE AIR AND EXHAUST AIR. TOTAL FREE COOLING FUNCTION (WITH 100% OUTSIDE AIR) AND THERMODYNAMIC RECOVERY FUNCTION AS STANDARD.

ACCESSORIES

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

AXECP: EC axial fans with available useful static pressure.

BAC: Interface card BACnet MS/TP pCOnet.

BE: Electric heating coil 2 stages. **BEM:** Modulating electric heating coil.

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BPGC: After heating coil with hot gas.

BW: 2-rows-heating coil with hot water.

BWV2V: 2 -rows -heating coil with hot water, with 2-way modulating valve.

BWV3V: 2-rows heating coil with hot water, with 3-way modulating

CA: Waterproof covers on external air intake.

CF: Flue, only on unit with gas burner module.

CUR: Humidification control (humidity probe in recovery, limit humidity probe in supply, contact ON/OFF and modulating analog output).

DCPR: AC fans with pressure switch device of speed control function of the pressure of condensation and evaporation.

DP: Dehumidification control (humidity probe in recovery) and of after-he- ating (if present).

FCT: Partial Temperature Free-Cooling for MB2, MB4 versions.

FT7: F7 efficiency pocket filters positioned on the supply air flow.

FT9: Pocket filters F9 efficiency placed on the flow of supply air.

FTE: Electronic filters placed on the flow of supply air.

FTH: Enthalpy free-cooling.

GP: External coil protection grid.

Gx: Heating module with gas burner.

LFX: Device with photocatalytic effect.

LW: Interface card LonWorks.

MAN: High and low pressure gauges.

MSSM: Flow silencer module, only for rear flow.

MSSR: Recovery silencer module, only for rear air recovery.

PRT1: Wall/recessed (up to 50 m) remote control panel.

PRT2: Wall/recessed (up to 200 m) remote control panel.

PSFT: Differential pressure switch signalling dirty filters.

PSTEP: Adjusting constant flow, step flow in function of the modulation of the cooling circuit.

RF: Smoke detector.

RFC: Smoke detector and damper management.

RS: Serial card BMS RS485.

SCM: Modulating servo-controls (standard on MB3 model or if temper-

ature or enthalpic free-cooling is present).

SCMRM: Modulating Servo-control with spring return.

SCO2: Probe CO2 (not available on MB1 fittings).

STA: Room temperature probe SUA: Room humidity probe.

SVOC: Probe VOC (not available on MB1 fittings).

UP: Manufacturer of immersed electrodes supplied and steam ramp

installed.

VT: Antivibration mounts.

PERFORMANCE SPECIFICATIONS

MR1

	17	18	19	20	21	22	23
kW	151,90	170,10	191,70	213,30	231,70	246,10	289,10
kW	114,30	125,40	136,10	151,60	164,70	178,50	202,30
kW	32,70	39,20	45,30	54,00	60,70	69,00	68,90
	4,65	4,34	4,23	3,95	3,82	3,57	4,20
kW	152,70	170,80	192,80	216,20	230,80	245,50	296,30
kW	28,20	33,90	39,20	43,90	46,30	51,20	58,60
	5,41	5,04	4,92	4,92	4,98	4,79	5,06
	kW kW	kW 151,90 kW 114,30 kW 32,70 4,65 kW 152,70 kW 28,20	kW 151,90 170,10 kW 114,30 125,40 kW 32,70 39,20 4,65 4,34 kW 152,70 170,80 kW 28,20 33,90	kW 151,90 170,10 191,70 kW 114,30 125,40 136,10 kW 32,70 39,20 45,30 4,65 4,34 4,23 kW 152,70 170,80 192,80 kW 28,20 33,90 39,20	kW 151,90 170,10 191,70 213,30 kW 114,30 125,40 136,10 151,60 kW 32,70 39,20 45,30 54,00 4,65 4,34 4,23 3,95 kW 152,70 170,80 192,80 216,20 kW 28,20 33,90 39,20 43,90	kW 151,90 170,10 191,70 213,30 231,70 kW 114,30 125,40 136,10 151,60 164,70 kW 32,70 39,20 45,30 54,00 60,70 4,65 4,34 4,23 3,95 3,82 kW 152,70 170,80 192,80 216,20 230,80 kW 28,20 33,90 39,20 43,90 46,30	kW 151,90 170,10 191,70 213,30 231,70 246,10 kW 114,30 125,40 136,10 151,60 164,70 178,50 kW 32,70 39,20 45,30 54,00 60,70 69,00 4,65 4,34 4,23 3,95 3,82 3,57 kW 152,70 170,80 192,80 216,20 230,80 245,50 kW 28,20 33,90 39,20 43,90 46,30 51,20

MR

IVIDZ								
Size		17	18	19	20	21	22	23
Configuration: MB2								
Cooling performances (1)								
Cooling capacity	kW	160,20	179,40	201,80	224,60	243,90	258,90	304,50
Sensible cooling capacity	kW	120,90	132,60	143,20	159,70	173,50	188,30	212,90
Compressors absorbed power	kW	33,10	39,50	45,60	54,60	61,60	69,80	69,70
EER compressors		4,84	4,54	4,43	4,11	3,96	3,71	4,37
Heating performances (2)								
Heating capacity	kW	155,10	174,20	195,50	219,50	234,00	248,60	300,70
Compressors absorbed power	kW	25,80	31,10	35,70	40,40	42,50	47,00	54,10
Compressor COP	-	6,01	5,60	5,48	5,43	5,51	5,29	5,56

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

MRS

IVIDS								
Size		17	18	19	20	21	22	23
Configuration: MB3								
Cooling performances (1)								
Cooling capacity	kW	161,30	181,10	203,70	226,90	246,70	262,10	307,20
Sensible cooling capacity	kW	121,30	133,30	143,80	160,50	174,50	189,20	213,90
Compressors absorbed power	kW	32,50	38,80	44,50	53,20	59,90	67,70	68,30
EER compressors		4,96	4,67	4,58	4,27	4,12	3,87	4,50
Heating performances (2)								
Heating capacity	kW	159,10	179,00	202,30	227,70	243,60	259,90	310,90
Compressors absorbed power	kW	26,20	31,40	36,30	41,00	43,30	47,90	55,00
Compressor COP		6,07	5,70	5,57	5,55	5,63	5,43	5,65

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air. (2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Size		17	18	19	20	21	22	23
Configuration: MB4								
Cooling performances (1)								
Cooling capacity	kW	161,30	181,10	203,70	226,90	246,70	262,10	307,20
Sensible cooling capacity	kW	121,30	133,30	143,80	160,50	174,50	189,20	213,90
Compressors absorbed power	kW	32,50	38,80	44,50	53,20	59,90	67,70	68,30
EER compressors		4,96	4,67	4,58	4,27	4,12	3,87	4,50
Heating performances (2)								
Heating capacity	kW	159,10	179,00	202,30	227,70	243,60	259,90	310,90
Compressors absorbed power	kW	26,20	31,40	36,30	41,00	43,30	47,90	55,00
Compressor COP		6,07	5,70	5,57	5,55	5,63	5,43	5,65

ENERGY INDEX

Size			17	18	19	20	21	22	23
Energy index			1						
SEER	Н	W/W	4,01	3,94	4,18	3,92	4,15	3,94	3,85
ηςς	Н	%	157.6%	154.6%	164.3%	153.8%	162.9%	154.5%	150.9%
Pdesignh	Н	kW	89	98	109	123	130	141	168
SCOP	Н	W/W	3,47	3,31	3,45	3,36	3,49	3,43	3,26
ηsh	Н	%	135.7%	129.4%	134.8%	131.5%	136.4%	134.2%	127.3%

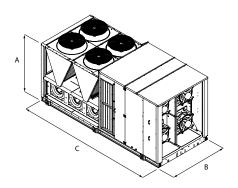
GENERAL TECHNICAL DATA

Size			17	18	19	20	21	22	23
Power supply									
Power supply	Н		400V~3 50Hz						
Compressor									
Туре	Н	type	Scroll						
Number	Н	no.	4	4	4	4	4	4	4
Circuits	Н	no.	2	2	2	2	2	2	2
Refrigerant	Н	type	R410A						
Partialisation step	Н	no.	6	6	6	6	6	6	6

FANS

FAINS	
External fans	

Size			17	18	19	20	21	22	23
Configuration: MB1, MB2, MB3	3, MB4								
External fans									
Туре	Н	type	Assiali AC						
Number	Н	no.	4	4	4	4	4	4	4
Internal fans									
Size			17	18	19	20	21	22	23
Configuration: MB1, MB2, MB3	3, MB4								
Internal fans									
Nominal air flow rate	Н	m³/h	26000	29000	33000	37000	40000	44000	48000
Minimum air flow rate	Н	m³/h	18200	20300	23100	25900	28000	30800	33600
Maximum air flow rate	Н	m³/h	36000	36000	44000	44000	53000	53000	53000
Internal recovery fans									
Size			17	18	19	20	21	22	23
Configuration: MB3									
Recovery									
Туре	Н	type	RAD EC						
Number	Н	no.	3	3	3	3	3	3	3
Expulsion fan									
Size			17	18	19	20	21	22	23
Configuration: MB4									
Exhaust									
Туре	Н	type	RAD EC						
Number	Н	no.	2	2	2	2	2	2)


⁽¹⁾ Ambient air 27°C d.b./19°C w.b.; External air 35°C/24°C w.b.; Functioning with 30% of external and expelled air.
(2) Ambient air 20°C D.B./15°C W.B.; Outside air 7°C D.B./6°C W.B. (EN14511); Operation with 30% outside and expelled air.

Internal flow fans

Size			17	18	19	20	21	22	23
Configuration: MB1									
Delivery									
Туре	Н	type	RAD EC						
Number	Н	no.	2	2	3	3	3	4	4
Maximum useful head (1)	Н	Pa	700	475	520	580	520	690	550
High static pressure (EN14511) (1)	Н	Pa	350	350	350	350	350	350	350
Configuration: MB2, MB3,	MB4								
Delivery									
Туре	Н	type	RAD EC						
Number	Н	no.	2	2	3	3	3	4	4
Maximum useful head (1)	Н	Pa	519	341	330	470	460	636	467
High static pressure (EN14511) (1)	Н	Pa	350	350	350	350	350	350	350

⁽¹⁾ At the nominal/maximum flow rate with a new, clean air filter.

DIMENSIONS

Size			17	18	19	20	21	22	23
Dimensions and weights									
A	Н	mm	2430	2430	2430	2430	2430	2430	2430
В	Н	mm	2200	2200	2200	2200	2200	2200	2200
C	Н	mm	5210	5210	5210	5210	7750	7750	7750

RTY 01-10

Rooftop

Cooling capacity 30,2 ÷ 133,6 kW Heating capacity 29,3 ÷ 137,9 kW

- Handling section with plug fans coupled with brushless EC motors
- Thermodynamic heat recovery
- Free-cooling operation
- For high crowding applications

Independent Roof-top type air conditioner for treatment, filtration and renewal of the air, based on the chosen configuration. RTY units are designed for high crowding applications, such as cinemas, conference rooms, restaurants, nightclubs being intended for operation with 80% external and expelled air.

The standard unit allows to manage the cooling operation and the recovery of the energy contained in the exhaust air allowing higher performances and efficiencies.

VERSIONS

RTY_H heat pumps

CONFIGURATIONS

MB3 with mixing chamber with three dampers, return fan and heat recovery from expelled air.

The configuration can be further customized with a wide choice of accessories

- 1 refrigerant circuit
- High efficiency scroll compressors (tandem UNEVEN) and low power consumption
- Finned exchangers of the refrigerant circuit direct expansion.
- Supply and return fans, of plug fan type (EC). The impellers are so oriented to ensure that the air flow passes through all the internal components, with the minimum noise.
- Group of axial fans for extremely silent operation placed on the condensing section.
- Electronic control of condensation and evaporation are standard to extend further the operating limits of the unit.
- G4 air filter on the flow of outside air and on the recovery; they are installed upstream of the components, to ensure low pressure drops.

CONTROI

Microprocessor control can handle the different modes of operation ensuring maximum energy savings in any conditions C

Interfaces for connections to remote control supervision system, available as optional.

ACCESSORIES AND FITTINGS

SSV: Supervision system

RS: Serial card BMS RS485 **LW:** Interface card LonWorks

BIP: Interface card Ethernet-pCOweb (BACNET IP)

BAC: interface card BACnet MS/TP pCOnet

FTH: Enthalpic free-cooling

PSTEP: Adjusting constant flow, step flow in function of the modulation of the cooling circuit

FT7: pocket filters F7 efficiency placed on the flow of supply air.

FT9: Pocket filters F9 efficiency placed on the flow of supply air

H10: Electronic filters placed on the flow of supply air.

PSF2: Differential pressure switch signaling fouled filters of recovery, renewal and discharge

Gx: Heating module with gas burner

BW: 2-rows heating coil with hot water

BWV2V: 2-rows heating coil with with hot water, with 2-way modulating valve

BWV3V: 2-rows heating coil with hot water, with 3-way modulating valve. **BE:** Electric heating coil 2 stages (not available with hot air generator)

BEM: Modulating electric heating coil (**not available with hot air generator**)

BPGC: After heating coil with hot gas.

AXEC: Axial fans with EC motors with speed control function according to the pressure of condensation and evaporation.

MAN: High and low pressure gauges

U: installed steam ramp

UP: Immersed electrode producer standard supplied and installed steam ramp

CUR: Humidification control (Humidity probe in recovery, limit humidity probe in supply, contact ON/OFF and modulating analog output)

DP: Dehumidification control (humidity probe in recovery) and of after-heating (if present)

SCO2: Probe CO2 **SVOC:** Probe VOC

STA: Room temperature probe **SUA:** Room humidity probe

RF: Smoke detector

RFC: Smoke detector and recirculation damper closure management and external air intake

PR1: Remote control panel

SCMRM: Modulating servo-controls with spring return **CA:** Waterproof headphones on external air intake **CF:** Flue pipe (only on version with gas burner module)

GP: Protection grille for external coils

VT: antivibration mounts

MSSM: Delivery silencers forms (only for rear air delivery) **MSSR:** Recovery silencers forms (only for rear air delivery)

NOTE: for more details on accessories and equipment, please refer to the technical handbook.

FEATURES AND TECHNOLOGICAL ADVANTAGES

RTY units have been designed with the aim of reducing energy consumption that dictated the result of technological choices present on the unit that we briefly present.

HIGH EFFICIENCY VENTILATION

Ventilation is one of the major factors of power consumption, for this reason particular attention has been given to the study and the construction of the ventilation system.

Fans type plug-fans with brushless EC motors have been used in both supply and recovery; they enables high performances and low power consumption; also comparing them to conventional centrifugal fans, they have no belts or pulleys allowing easy flow regulation, compactness, versatility and ease of maintenance.

A particular adaptive logic allows to adjust the air flow to the actual demand of the system with more consequent advantages in terms of reduction of consumption.

Axial fans for the external section of the unit are of helycal type; the electronic control of condensation is standard and it regulates the fan speed according to the load required, allowing a noise reduction.

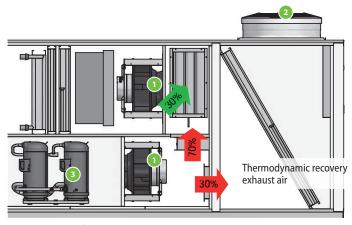
As an option, the motors can be electronically controlled (EC) for the reduction in consumption of the condenser section.

MAXIMUM SEASONAL EFFICIENCIES

To improve the efficiency of the refrigerant circuit, we have used scroll tandem compressors with different power between them (compressors UNEVEN except for size 08. This feature allows a reduction of consumptions and a better adaptability to the demands of the system, especially in the operation at partial loads, ensuring higher seasonal efficiency.

AIR QUALITY IN THE ROOM

Particular attention has been given naturally also to the quality of air in the room, entrusted to the standard filters with G4 efficiency on the flow of outside air, also available on the recovery (optional) for process applications.


They are also available as an (optional) compact filters F7 and F9 or electronic H10 on the flow of fresh air.

ACTIVE THERMODYNAMIC RECOVERY

It is also available a thermodynamic recovery for the recovery of the energy contained in the exhaust air in such a way that the flow of exhaust air invests the external finned heat exchanger, allowing higher performances and efficiencies.

Of course all these technological advantages are controlled by a temperature control of the latest generation, able to handle the different modes of operation; ensuring maximum energy savings in all operating conditions by means of a special software.

CONFIGURATION WITH THERMODYNAMIC RECOVERY "MB3"

- Plugfan supply and recovery
- 2 Axial fans
- Tandem scroll compressors

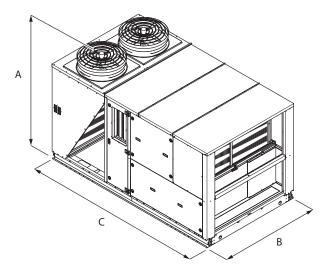
PERFORMANCE SPECIFICATIONS

Mod. RTY Heat pump

Size			01	02	03	04	05	06	07	08	09	10
Cooling capacity	(1)	kW	30,2	39,6	48,7	65,4	75,3	84,3	90,9	107,6	121,4	133,6
Sensitive cooling capacity		kW	21,2	27,1	32,6	43,1	48,9	55,2	61,1	70,5	80,6	87,4
Sensitive / total cooling power		kW	0,70	0,68	0,67	0,66	0,65	0,66	0,67	0,66	0,66	0,65
Compressor input power		kW	5,3	8,4	9,7	13,1	15,2	17,5	18,5	23,3	27,6	32,6
EER		W/W	5,70	4,71	5,00	5,00	4,96	4,82	4,92	4,61	4,39	4,09
EER global		W/W	4,63	4,02	3,86	3,54	3,54	3,44	3,41	3,33	3,20	3,01
Heating capacity	(2)	kW	29,3	39,7	48,5	66,5	76,6	85,8	91,4	110,4	123,4	137,9
Compressor input power		kW	4,4	7,0	8,4	12,4	14,2	15,7	15,5	19,2	21,8	25,5
COP		W/W	6,67	5,68	5,77	5,38	5,39	5,47	5,89	5,73	5,66	5,41
COP global		W/W	5,21	4,70	4,30	3,75	3,78	3,77	3,85	3,91	3,84	3,70

⁽¹⁾ Internal temperature 27°C d.b., 19°C w.b.; External temperature 35°C d.b., 24°C w.b.; U.R. 40%; (2) Internal temperature 20°C d.b., 15°C w.b.; External temperature 7°C d.b. 6°C w.b.;

GENERAL TECHNICAL DATA


Size				01	02	03	04	05	06	07	08	09	10
Compressors													
Compressors		type Scroll											
			n°	2	2	2	2	2	2	2	2	2	2
Circuits			n°	1	1	1	1	1	1	1	1	1	1
Capacity steps	(1)		%	3	3	3	3	3	3	3	2	3	3
Refrigerant gas		type	R410A										
Fans													
External fans		type Axials AC											
			n°	1	1	2	2	2	2	2	2	2	2
Internal fans of flow		type RAD EC											
			n°	1	1	1	1	1	1	1	1	1	2
			Ø mm	400	450	450	450	450	450	500	560	630	450
Internal fans of recovery			type			RAD EC							
			n°	1	1	1	1	1	1	1	2	2	2
			Ø mm	400	450	450	450	450	500	500	450	450	450
Air flow of inside fan	nom/max		m³/h	3500	4500	5500	7000	8000	9500	11500	14000	15000	16500
		min	m³/h	2450	3150	3850	4900	5600	6650	8050	9800	10500	11550
Available static pressure of supply	(2)	max	Pa	150	150	200	200	200	250	250	250	300	300
Available static pressure of recovery	(2)	max	Pa	171	184	248	235	245	311	336	372	439	465
Power supply	V/ph/Hz					400V/3/50Hz							

Sound pressure: Sound pressure measured in free field, (1m, Q=2) away from the external surface of the ducted unit, available static pressure 300Pa at a nominal flow (in accordance with the UNI EN ISO 3744).

Note: For more informations please refer to the technical documentation available on the website www.aermec.com

⁽¹⁾ Sizes 08 don't have UNEVEN compressors
(2) At the nominal/maximum flow rate, G4 medium fouling filter

DIMENSIONS

Size		Vers.	01	02	03	04	05	06	07	08	09	10
Dimensions												
A	mm	All	2061	2061	2061	2373	2373	2373	2373	2373	2373	2373
В	mm	All	1900	1900	1900	2100	2100	2100	2100	2100	2100	2100
C	mm	All	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400

AIR/WATER CHILLERS AND HEAT PUMPS

Aermec plant engineering really comes into its own in the field of machines and technology for centralised systems. Aermec offer a full range of chillers and heat pumps from the small domestic system up to that of the large size for the service industry.

The cooling capacity range is extremely wide, and the fittings solutions are equally diverse, for scroll, screw or centrifugal compressor applications.

The careful selection of materials and the close attention paid to every detail of assembly coupled with the huge selection of accessories complete the industry-leading products designed for use in this sector, making Aermec units a real "must" in the world of Italian and European climate control.

AIR / WATER C	HILLERS AND HEAT PUMPS	Air flow rate (m³/h)	(kW)	Heat. Cap. (kW)	Pag
Units with scroll comp	ressors				
ANKI 020-080	Reversible heat pumps inverter		5,8-24,8	6,1-20,8	326
НМІ	Reversible air/water heat pump		3,0-14,5	4,0-15,5	330
ВНР	Air/Water split type reversible heat pump		3,2-8,5	4,0-9,5	336
HMG	Reversible air/water heat pump		32-60	35-65	348
ANLI	Reversible heat pumps inverter		28,9	31,5	353
ANK 020-150	Reversible air/water heat pump		6,8-39,8	8,0-35,3	359
SWP	High temperature air cooled heat pumps for production of DHW			1,9	366
ANL 021-202	Air-water chiller		5,7-43,3		369
ANL 021H-203H	Reversible air/water heat pump		5,7-49,1	6,2-43,3	375
NRK 0090-0150	Reversible air/water heat pump		18,4-31,0	20,8-34,4	382
NRK 0200-0700	Reversible air/water heat pump		35,5-148,0	42,3-175,0	386
NRV 0550	Air-water chiller		108,3		391
NRL 0280-0350	Air-water chiller		56,0-82,0		395
NRL 0280H-0350H	Reversible air/water heat pump		51,0-76,0	58,0-86,0	400
NRB 0282-0754	Air-water chiller		56-202		405
NRB 0282H-0754H	Reversible air/water heat pump		52-261	57-193	414
NRG 0282-0804	Air-water chiller		55,8-224,6		422
NRG 0282H-0804H	Reversible air/water heat pump		52,5-212,0	56,6-214,4	431
NRGI 151-602	Air-water chiller		31,0-132,2		439
NRGI 151H-602H	Reversible air/water heat pump		28,9-123,7	31,6-133,9	444
NRG 0800-2400	Air-water chiller		225,7-725,0		450
NRG 0800H-3600H	Reversible air/water heat pump		195,2-962,3	209,3-991,9	458
NRB 0800-3600	Air-water chiller (plate heat exchanger)		217-1049		466
NRB 0800-3600 T	Air-water chiller (shell and tube heat exchanger)		217-1049		475
NRB 0800H-3600H	Reversible air/water heat pump (plate heat exchanger)		196-971	209-1006	483
NRB 0800H-3600H-T	Reversible air/water heat pump (shell and tube heat exchanger)		196-971	209-1006	492
CL 025-200	Air-water chiller with Plug Fan		5,8-41,0		500
CL 025H-200H	Reversible air/water heat pump with Plug Fan		6,5-50,9	7,7-44,8	505
NLC 0280-1250	Air-water chiller with Plug Fan		53-322		511
NLC 0280H-1250H	Reversible air/water heat pump with Plug Fan		53-322	55-342	518
Units with screw comp					
NSM 1402-9603	Air-water chiller		302-2100		523
NSMI 1251-6102	Chiller with Inverter screw compressors		285,6-1342,6		538
NSH	Reversible air/water heat pump		251-731	281-786	542
NSG	Air-water chiller (with R1234ze)		228-1580		548
Units with centrifugal					
TBA 1300-4325	Air-water chiller		328-1404		559
TBG 1230-4310	Air-water chiller		200-1165		564

ANKI 020-080

Reversible air/water heat pump

Cooling capacity 5,8 ÷ 24,8 kW Heating capacity 6,1 ÷ 20,8 kW

- Production of hot water up to 60 °C
- Production of hot domestic water with outside temperatures from –20 °C up to 42 °C
- Quick & easy installation

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users.

It's optimised for use in heating mode, and can be combined not only with low-temperature emission systems such as floor heating or fan coils, but also conventional radiators.

All the units are equipped with inverter scroll compressors, axial fans, external coils with aluminium louvers, a plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

X With inverter pump

FEATURES

Operating field

Working at full load up to -20°C outside air temperature in winter, and up to 46°C in summer. Possibility production technical hot water production up to 60°C (for more information see the technical documentation).

Version with Integrated hydronic kit

If a plug&play solution is required, there's also a version with an integrated hydronic unit containing the main hydraulic components including the water filter (supplied).

■ The water filter must be installed to validate the warranty.

CONTROL PCO

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

MOD485K: RS-485 simplified interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PGD1: Allows you to control the unit at a distance.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Antivibration supports

BDX: Condensate drip.

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

FACTORY FITTED ACCESSORIES

KR: Anti-freeze electric heater for the plate heat exchanger.

KRB: -

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	020	025	040	045	070	075	080
AERLINK	°,X	•	•	•	•	•	•	•
MOD485K	°,X	•	•	•	•	•	•	•
MULTICONTROL	°,X	•	•	•	•	•	•	•
PGD1	°,X	•	•	•	•	•	•	•
PR3	°,X	•	•	•	•	•	•	•
SAF (1)	°,X	•	•	•	•	•	•	•
SDHW (2)	°,X	•	•	•	•	•	•	•
SPLW (3)	°,X							

- For more information about SAF refer to the dedicated documentation.
 Probe required for MULTICONTROL for managing the domestic hot water system.
 Probe required for MULTICONTROL to manage the secondary circuit system.

Condensation control temperature

Ver	020	025	040	045	070	075	080
°,Х	DCPX71						
ntivibration							
Ver	020	025	040	045	070	075	080
۷,	VT9						
Condensate drip							
Ver	020	025	040	045	070	075	080
°,Х	BDX30	BDX30	BDX30	BDX30	BDX50	BDX50	BDX50
Heater exchanger							
Ver	020	025	040	045	070	075	080
°,X	KR2						

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Electric heater kit for the base

Ver	020	025	040	045	070	075	080
°,X	KRB1	KRB1	KRB1	KRB1	KRB2	KRB2	KRB2

CONFIGURATOR

-	1411.1	GONATON
Fiel	d	Description
1,2,	3,4	ANKI
5,6,	7	Size 020, 025, 040, 045, 070, 075, 080
8		Model
	Н	Heat pump
9		Version
	0	Standard
	Χ	With inverter pump
10		Heat recovery
	0	Without heat recovery
11		Coils
	0	Copper-aluminium
	٧	Copper pieps-Coated aluminium fins
12		Fans
	0	Standard
	F	Phase cut
	J	Inverter
13		Operating field
	0	Electronic thermostatic expansion valve
14		Evaporator
	0	Standard - PED
15		Power supply
	М	230V ~ 50Hz (1)
	T	400V ~ 3N 50Hz (2)
16		Field for future development
	0	Future developments

⁽¹⁾ For sizes from 020 \div 045 (2) For sizes from 070 \div 080

PERFORMANCE SPECIFICATIONS

$ANKI - (^{\circ}) - (230V \sim 50Hz / 400V 3N \sim 50Hz)$

Size		020	025	040	045	070	075	080
Cooling performance 12 °C/7 °C (1)								
Cooling capacity	kW	5,8	7,3	9,4	11,7	13,7	16,4	18,5
Input power	kW	2,0	2,6	3,2	4,3	4,8	6,2	7,7
Cooling total input current - 230V	A	8,3	11,0	14,0	18,0	-	-	-
Cooling total input current - 400V	A	-	-	-	-	7,3	9,4	11,0
EER	W/W	2,93	2,75	2,94	2,75	2,82	2,63	2,41
Water flow rate system side	l/h	1005	1256	1613	2024	2354	2818	3196
Pressure drop system side	kPa	16	22	13	19	17	25	31
Heating performance 40 °C / 45 °C (2)								
Heating capacity	kW	6,2	7,8	9,3	12,3	15,3	17,7	20,2
Input power	kW	1,9	2,4	3,0	4,1	4,8	6,0	7,2
Heating total input current - 230V	A	8,2	10,0	13,0	18,0	-	-	-
Heating total input current - 400V	A	-	-	-	-	7,3	9,1	11,0
COP	W/W	3,23	3,18	3,06	3,01	3,18	2,94	2,80
Water flow rate system side	l/h	1077	1345	1619	2131	2660	3072	3507
Pressure drop system side	kPa	14	21	10	17	17	23	30

$ANKI - (X) - (230V \sim 50Hz / 400V 3N \sim 50Hz)$

Size		020	025	040	045	070	075	080
Cooling performance 12 °C / 7 °C (1)								
Cooling capacity	kW	5,9	7,4	9,5	11,8	13,8	16,5	18,7
Input power	kW	2,0	2,6	3,1	4,2	4,8	6,2	7,7
Cooling total input current - 230V	A	8,9	12,0	14,0	19,0	-	-	-
Cooling total input current - 400V	A	-	-	-	-	8,3	10,0	12,0
EER	W/W	3,00	2,82	3,01	2,81	2,88	2,68	2,44
Water flow rate system side	l/h	1005	1256	1613	2024	2354	2818	3196
Useful head system side	kPa	75,0	68,0	73,0	60,0	82,0	62,0	43,0
Heating performance 40 °C / 45 °C (2)								
Heating capacity	kW	6,1	7,7	9,2	12,2	15,2	17,6	20,1
Input power	kW	1,9	2,4	3,0	4,0	4,8	6,0	7,2
Heating total input current - 230V	A	8,7	11,0	14,0	18,0	-	-	-
Heating total input current - 400V	A	-	-	-	-	8,2	10,0	12,0
COP	W/W	3,23	3,19	3,07	3,02	3,19	2,95	2,80
Water flow rate system side	l/h	1077	1345	1619	2131	2660	3072	3507
Useful head system side	kPa	76,0	67,0	74,0	59,0	73,0	55,0	33,0

ENERGY DATA

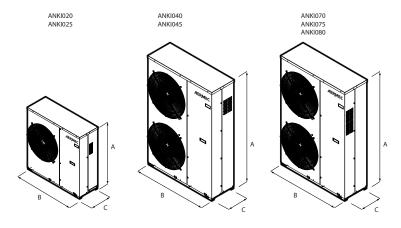
LINERGI DAIA									
Size			020	025	040	045	070	075	080
Cooling capacity with low leaving	g water temp (UE n° 20	16/2281)							
SEER	٥	W/W	3,50	3,54	3,76	3,77	3,49	3,47	3,44
DEEN	Х	W/W	4,12	4,25	4,38	4,37	3,78	3,81	3,77
nce	0	%	137,10	138,40	147,30	147,70	136,70	135,60	134,40
ηςς	Х	%	161,70	167,00	172,30	171,90	148,00	149,40	147,80
Size			020	025	040	045	070	075	080
UE 811/2013 performance in aver	rage ambient conditio	ns (average) - 35 °	C - Pdesignh ≤ 70 kV	W (1)					
Ddacianh	•	kW	6	7	9	12	14	17	19
Pdesignh	Х	kW	6	7	9	12	14	16	19
SCOP	0	W/W	3,58	3,55	3,40	3,20	3,50	3,33	3,30
otur	Х	W/W	3,83	3,83	3,60	3,35	3,60	3,43	3,40
nch	٥	%	140,00	139,00	133,00	125,00	137,00	130,00	129,00
ηsh	Х	%	150,00	150,00	141,00	131,00	141,00	134,00	133,00
F# sian au an annu alaas	٥		A+	A+	A+	A+	A+	A+	A+
Efficiency energy class	Χ		A++	A++	A+	A+	A+	A+	A+
(1) Efficiencies for low temperature	applications (35 °C)								
Size			020	025	040	045	070	075	080
UE 811/2013 performance in aver	rage ambient conditio	ns (average) - 55 °	C - Pdesignh ≤ 70 kV	W (1)					
Ddocianh	٥	kW	6	7	-	-	14	16	19
Pdesignh	Х	kW	5	7	-	-	13	16	18
CCOD	٥	W/W	2,87	2,89	-	-	2,90	2,88	2,83
SCOP	Х	W/W	2,90	2,95	-	-	2,88	2,88	2,83
nch	0	%	112,00	113,00			113,00	112,00	110,00
ηsh	Х	%	113,00	115,00	-	-	112,00	112,00	110,00
Efficiency energy class	°,X		A+	A+	-	-	A+	A+	A+

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA


Size			020	025	040	045	070	075	080
Electric data									
Maximum assessed (FLA)	0	А	12,1	14,1	20,0	23,6	12,5	13,5	15,0
Maximum current (FLA)	Χ	Α	12,9	14,9	20,8	24,4	13,6	14,6	16,1
Deals sussent (LDA)	0	А	8,0	8,0	10,0	10,0	15,0	15,0	15,0
Peak current (LRA)	Х	А	8,8	8,8	10,8	10,8	16,1	16,1	16,1
Power supply									
Power supply	°,X		230V ~ 50Hz	230V ~ 50Hz	230V ~ 50Hz	230V ~ 50Hz	400V ~ 3N 50Hz	400V ~ 3N 50Hz	400V ~ 3N 50Hz

GENERAL TECHNICAL DATA

Size			020	025	040	045	070	075	080
Compressor									
Туре	°,X	type	Rotary	Rotary	Rotary	Rotary	Scroll	Scroll	Scroll
Compressor regulation	°,X	Туре				Inverter			
Number	°,X	no.	1	1	1	1	1	1	1
Circuits	°,X	no.	1	1	1	1	1	1	1
Refrigerant	°,X	type				R410A			
Refrigerant charge (1)	°,X	kg	1,4	1,4	2,3	2,3	3,5	3,5	3,5
System side heat exchanger									
Туре	°,X	type				Brazed plate			
Number	°,X	no.	1	1	1	1	1	1	1
Hydraulic connections									
Connections (in/out)	°,X	Туре				Gas-M			
Size (in)	°,X	Ø				1"			
Size (out)	°,X	Ø				1"			
Fan									
Туре	°,X	type				Axial			
Fan motor	°,X	type				Asynchronous			
Number	°,X	no.	1	1	2	2	2	2	2
Air flow rate	°,X	m³/h	3590	3590	7480	7480	7400	7400	7400
Sound data calculated in cooling m	ode (2)								
Sound power level	°,X	dB(A)	64,0	65,4	66,7	67,7	67,7	69,0	69,0
Sound pressure level (10 m)	°,X	dB(A)	32,7	34,1	35,4	36,3	36,3	37,6	37,6

(1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			020	025	040	045	070	075	080
Dimensions and weights									
A	°,X	mm	1028	1028	1481	1481	1481	1481	1481
В	°,X	mm	1000	1000	1000	1000	1000	1000	1000
C	°,X	mm	346	346	346	346	450	450	450
Emptywaight	0	kg	80	80	113	113	174	174	174
Empty weight	χ	kg	82	82	115	115	178	178	178

 $\label{lem:continuous} Aermec \ reserves \ the \ right \ to \ make \ any \ modifications \ deemed \ necessary.$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

НМІ

Reversible air/water heat pump

DHWT

Cooling capacity 3,0 ÷ 14,5 kW Heating capacity 4,0 ÷ 15,5 kW

- New R32 ecological refrigerant gas
- Production of hot water up to 60 °C
- Production of hot domestic water with external temperatures from -25 °C to 48 °C
- · Quick & easy installation

DESCRIPTION

Reversible outdoor heat pump for air-conditioning systems where, in addition to cooling rooms, high-temperature hot water is required for heating or for the production of domestic hot water. For the production of DHW it is mandatory to combine it with the domestic hot water storage tank DHWT300S.

HMI is designed to meet the needs of both the new constructions market and the renovation market, **replacing or working alongside conventional boilers**.

It can be combined with low-temperature emission systems such as floor heating or fan coils, and also with more traditional radiators, and comes supplied with the main hydraulic components needed, thereby facilitating the final installation.

FEATURES

Operating limits

Working at full load up to -25 $^{\circ}$ C outside air temperature in winter, and up to 48 $^{\circ}$ C in summer. Maximum temperature of water produced in heating mode 60 $^{\circ}$ C.

- Refrigerant circuit with economizer.
- DC brushless axial flow fans designed for aerodynamic optimisation, reducing the noise level whilst at the same time increasing the efficiency and air flow rate.
- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Electronic expansion valve.

Main hydraulic components

- Inverter pump.
- Plate heat exchanger.
- Expansion tank
- Safety valve.
- Flow switch.

330

— Water filter supplied (mandatory installation).

Regulation

Adjustment via a multi-language touch-screen control panel:

- Management of a 3 way diverting valve (not supplied) for the production of domestic hot water.
- Management of a 2 way valve (not supplied) for shutting off part of the system.
- Weekly programming in time periods.
- Auto-restart function.
- Emergency operation (a supplementary heat source may be activated).
- **Quick hot water** function, for quickly heating domestic hot water.
- Weather dependent mode function for climate control.
- Quiet function for reduced noise operation (programmable with a timer).
- Condensation check
- When the anti-legionella cycle is activated (it's easily set via the control panel), the whole tank is heated once a week to a temperature (max. 70 °C) that weakens the bacteria responsible for the infection.

Special golden fin coil

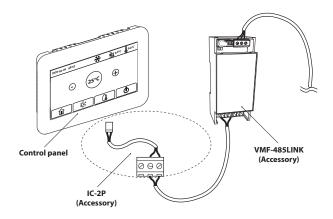
www.aermec.com

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

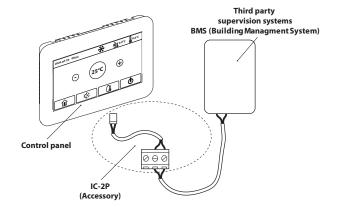
Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

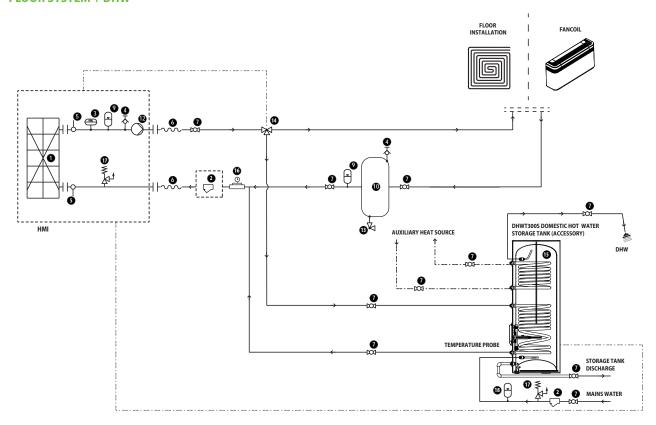
ACCESSORIES


DHWT3005: (220-240V~50Hz) DHW storage tank in enamelled steel. Single-phase power supply, tank capacity 300 litres with main and secondary coils and 3 kW back-up electric heater. Magnesium sacrificial anode. Indoor installation, as indicated in the installation manual.

HMICB15: Connection cable for the control panel. Cable length 15m. **IC-2P:** Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.


VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.

For more information about VMF system, refer to the dedicated documentation.


Connection with VMF-485LINK

Connection with third party supervision systems

FLOOR SYSTEM + DHW

COMPONENTS AS STANDARD

- Plate heat exchanger **— 1**
- Water filter (supplied) **— 2**
- 3 Flow switch
- Air drain valve **— 4**
- Water temperature sensor (IN/OUT) **— 5**
- **9 Expansion tank**
- 12 Pump

WARNING: in the case of a free-standing system, the bypass valve must be installed to ensure the circulation of a minimum amount of water to the system.

HYDRAULIC COMPONENTS NOT PROVIDED AND RESPONSIBILITY **OF THE INSTALLER**

- **4** Air drain valve
- Anti-vibration joints **—** 6
- **7** Flow shut-off valve
- **9 Expansion tank**
- **10** System storage tank (installation recommended if the system water content is lower than the value indicated in the technical manual).
- **13** Drain tap
- **14**
- 3 way valve **DHWT300S** accessory **— 15**
- 16 Loading unit
- **17** Safety valve
- Expansion tank **NOT supplied — 18**

PERFORMANCE SPECIFICATIONS

EUROVENT TECHNICAL DATA EN 14511:2013

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
Cooling performance 12 °C / 7 °C - EN 14511:2013 (1)												
Cooling capacity	kW	3,00	4,00	5,00	7,80	7,80	9,50	9,50	12,00	12,00	13,00	13,00
Input power	kW	0,94	1,29	1,61	2,48	2,64	3,20	3,11	4,14	4,38	4,96	4,91
Input current	Α	4,3	5,9	7,7	11,4	4,0	14,7	4,7	19,0	6,7	22,7	7,5
EER	W/W	3,19	3,10	3,11	3,15	2,95	2,97	3,05	2,90	2,74	2,62	2,65
Water flow rate	l/h	516	672	860	1320	1270	1650	1665	2080	2065	2270	2231
Useful head	kPa	75,0	74,0	74,0	71,0	71,0	65,0	64,0	51,0	51,0	45,0	46,0
Heating performance 40 °C / 45 °C - EN 14511:2013 (2)												
Heating capacity	kW	4,00	6,00	7,50	10,00	10,00	12,00	12,00	14,00	14,00	15,50	15,50
Input power	kW	1,00	1,58	2,00	2,70	2,70	3,48	3,48	4,18	4,18	4,70	4,70
Input current	Α	4,6	7,2	9,2	12,4	4,1	15,9	5,3	19,1	6,4	21,5	7,1
COP	W/W	4,00	3,80	3,75	3,70	3,70	3,45	3,45	3,35	3,35	3,30	3,30
Water flow rate	l/h	690	977	1240	1700	1710	2050	2040	2500	2474	2700	2734
Useful head	kPa	74,0	73,0	72,0	63,0	63,0	52,0	52,0	37,0	38,0	30,0	29,0

⁽¹⁾ Data EN 14511:2013; System side water heat exchanger 12 °C/7 °C; External air 35 °C (2) Data EN 14511:2013; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
Cooling performance 23 °C / 18 °C - EN 14511:2013 (1)												
Cooling capacity	kW	3,80	5,80	6,80	8,80	8,80	11,00	11,00	12,50	12,50	14,50	14,50
Input power	kW	0,82	1,32	1,55	1,96	1,96	2,56	2,56	3,05	3,05	3,82	3,82
Input current	Α	3,8	6,0	7,1	9,0	3,0	11,7	3,9	14,0	4,6	17,5	5,8
EER	W/W	4,63	4,39	4,39	4,49	4,49	4,30	4,30	4,10	4,10	3,80	3,80
Water flow rate	l/h	660	981	1220	1510	1500	1926	1900	2238	2200	2640	2570
Useful head	kPa	74,0	73,0	72,0	69,0	69,0	56,0	57,0	46,0	47,0	32,0	34,0
Heating performance 30 °C/35 °C - EN 14511:2013 (2)												
Heating capacity	kW	4,00	6,00	7,50	10,00	10,00	12,00	12,00	14,00	14,00	15,50	15,50
Input power	kW	0,79	1,20	1,63	2,17	2,17	2,64	2,64	3,22	3,22	3,60	3,60
Input current	Α	3,6	5,5	7,5	9,9	3,3	12,1	4,0	14,7	4,9	16,5	5,5
COP	W/W	5,10	5,00	4,60	4,61	4,61	4,55	4,55	4,35	4,35	4,31	4,31
Water flow rate	I/h	690	1030	1247	1736	1720	2137	2100	2524	2400	2703	2626
Useful head	kPa	74,0	73,0	72,0	62,0	62,0	49,0	50,0	36,0	40,0	30,0	32,0

EUROVENT TECHNICAL DATA EN 14511:2018

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	2,98	3,97	4,96	7,75	7,75	9,45	9,45	11,94	11,94	12,95	12,95
Input power	kW	0,94	1,29	1,61	2,48	2,64	3,20	3,11	4,14	4,38	4,96	4,91
Input current	Α	4,7	6,4	7,9	12,0	4,6	15,0	5,3	20,0	7,3	23,0	8,1
EER	W/W	3,17	3,08	3,08	3,12	2,94	2,95	3,04	2,88	2,73	2,61	2,64
Water flow rate	l/h	504	673	842	1318	1318	1609	1609	2038	2038	2210	2210
Useful head	kPa	74,0	74,0	74,0	69,0	69,0	64,0	64,0	52,0	52,0	47,0	47,0
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	4,03	6,04	7,55	10,06	10,06	12,06	12,06	14,05	14,05	15,54	15,54
Input power	kW	1,00	1,58	2,00	2,70	2,70	3,48	3,48	4,18	4,18	4,70	4,70
Input current	Α	5,1	7,8	9,7	13,0	4,7	17,0	5,9	20,0	6,9	22,0	7,7
COP	W/W	4,03	3,83	3,78	3,72	3,72	3,46	3,46	3,36	3,36	3,31	3,31
Water flow rate	l/h	710	1062	1326	1762	1762	2110	2110	2456	2456	2714	2714
Useful head	kPa	74,0	73,0	71,0	60,0	60,0	50,0	50,0	39,0	39,0	29,0	29,0

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

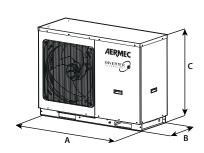
		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	3,77	5,76	6,75	8,75	8,75	10,94	10,94	12,44	12,44	14,45	14,45
Input power	kW	0,82	1,32	1,55	1,96	1,96	2,56	2,56	3,05	3,05	3,82	3,82
Input current	A	4,2	6,6	7,6	9,5	3,6	12,0	4,5	15,0	5,2	18,0	6,4
EER	W/W	4,60	4,36	4,36	4,46	4,46	4,27	4,27	4,08	4,08	3,78	3,78
Water flow rate	l/h	641	982	1152	1495	1495	1873	1873	2132	2132	2478	2478
Useful head	kPa	74,0	74,0	73,0	66,0	66,0	57,0	57,0	50,0	50,0	38,0	38,0
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	4,03	6,04	7,55	10,06	10,06	12,06	12,06	14,05	14,05	15,54	15,54
Input power	kW	0,79	1,20	1,63	2,17	2,17	2,64	2,64	3,22	3,22	3,60	3,60
Input current	A	4,1	6,0	8,0	11,0	3,9	13,0	4,6	15,0	5,5	17,0	6,1
COP	W/W	5,10	5,04	4,63	4,63	4,63	4,57	4,57	4,36	4,36	4,32	4,32
Water flow rate	l/h	708	1058	1321	1756	1756	2102	2102	2447	2447	2704	2704
Useful head	kPa	74,0	73,0	71,0	60,0	60,0	50,0	50,0	39,0	39,0	30,0	30,0

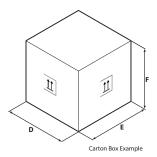
⁽¹⁾ Data EN 14511:2013; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2013; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

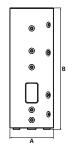
⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

ENERGY DATA

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
UE 811/2013 performance in average ambient condit	ons (averag	e) - 35 °C - Pde	signh ≤ 70 k	W (1)								
Pdesignh	kW	5	5	6	9	9	11	11	11	11	13	13
ηsh	%	185,00	185,00	183,00	176,00	176,00	175,00	175,00	168,00	168,00	164,00	164,00
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A++	A++	A++	A++
UE 811/2013 performance in average ambient condit	ons (averag	e) - 55 °C - Pde	signh ≤ 70 k	W (2)								
Pdesignh	kW	6	6	7	8	8	10	10	11	11	13	13
ηsh	%	126,00	126,00	127,00	128,00	128,00	126,00	126,00	125,00	125,00	125,00	125,00
Efficiency energy class		A++	A++	A++	A++	A++	A++	A++	A++	A++	A++	A++


GENERAL TECHNICAL DATA


		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
Electric data												
Rated current input (1)	А	10,4	10,4	10,4	23,0	12,0	25,0	12,0	29,0	12,0	29,0	12,0
Compressor												
Туре	type					Ro	otary DC Inver	ter				
Number	no.	1	1	1	1	1	1	1	1	1	1	1
Circuits	no.	1	1	1	1	1	1	1	1	1	1	11
Refrigerant	type						R32					
Potential global heating	GWP						675 kgCO₂eq					
Refrigerant charge (2)	kg	0,9	0,9	0,9	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2
Oil	Туре						FW68DA					
Total oil charge	kg	0,5	0,5	0,5	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
System side heat exchanger												
Туре	type						Brazed plate					
Number	no.	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	Туре						Gas Maschio					
Size (in)	Ø						1″					
Size (out)	Ø						1″					
Fan												
Туре	type						Axial					
Fan motor	type						Inverter					
Number	no.	1	1	1	1	1	1	1	1	1	1	1
Air flow rate	m³/h	2600	2600	2600	4500	4500	4500	4500	4500	4500	4500	4500
Sound data calculated in cooling mode (3)												
Sound pressure level (1 m)	dB(A)	51,0	52,0	53,0	56,0	56,0	56,0	56,0	57,0	57,0	59,0	59,0
Sound data calculated in heating mode (3)												
Sound power level	dB(A)	64,0	64,0	65,0	69,0	69,0	69,0	69,0	70,0	70,0	72,0	72,0
Sound pressure level (1 m)	dB(A)	50,0	50,0	51,0	54,0	54,0	54,0	54,0	55,0	55,0	57,0	57,0
Power supply												
Power supply			220-240	V ~ 50Hz			220-240V ~			380-415V 3N		
i owei suppiy			220-240	V JUIL		~ 50Hz	50Hz	~ 50Hz	50Hz	~ 50Hz	50Hz	~ 50Hz


⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(3) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

		HMI040	HMI060	HMI080	HMI100	HMI100T	HMI120	HMI120T	HMI140	HMI140T	HMI160	HMI160T
Dimensions and weights												
A	mm	1150	1150	1150	1200	1200	1200	1200	1200	1200	1200	1200
В	mm	345	345	345	460	460	460	460	460	460	460	460
C	mm	758	758	758	878	878	878	878	878	878	878	878
D	mm	1260	1260	1260	1295	1295	1295	1295	1295	1295	1295	1295
E	mm	490	490	490	595	595	595	595	595	595	595	595
F	mm	900	900	900	1020	1020	1020	1020	1020	1020	1020	1020
Net weight	kg	96,00	96,00	96,00	151,00	151,00	151,00	151,00	151,00	151,00	151,00	151,00
Weight for transport	kg	109,00	109,00	109,00	166,00	166,00	166,00	166,00	166,00	166,00	166,00	166,00

		DHM13002	
Dimensions and weights			
A	mm	620	
В	mm	1725	
Net weight	kg	140,00	

BHP

Reversible air/water split heat pump

Cooling capacity 3,2 ÷ 11,5 kW Heating capacity 4,0 ÷ 16,0 kW

- Indoor unit available in two versions, with and without DHW
- New R32 ecological refrigerant gas
- Production of hot water up to 60 °C
- · Anti-legionella function
- Multi-language touch-screen control panel

DESCRIPTION

BHP It's the new "split" type inverter heat pump system, more efficient than standard boiler systems as it guarantees sustainable, efficient heating, cooling and domestic hot water supply in every season.

BHP is designed to meet the needs of both the new constructions market and the renovation market, replacing or working alongside conventional boilers.

The system can be installed in systems with any hydronic terminal, and is already supplied with the main hydraulic components, thus facilitating final installation.

The indoor unit comes in two versions:

- BHP_W wall-mounting, without DHW storage tank but complete
 with a 3-way DHW-system diverting valve. For the production of
 DHW it is mandatory to combine it with the domestic hot water
 storage tank DHWT300S.
- BHP_F with base, complete with DHW storage tank.

FFATURES

Main hydraulic components

BHP outdoor unit

- inverter compressor,
- finned pack heat exchanger with copper pipes and aluminium louvers, with protective golden fin treatment,
- economizer,
- electronic valve,
- DC axial brushless fan,
- electric heater for the base.

BHP_W wall indoor unit

- plate heat exchanger,
- flow switch,
- inverter pump,
- expansion tank,
- drain valve,
- safety valve,
- Electric resistance system side,
- 3 way valve,

- DHW-system connections,
- water filter supplied (mandatory installation).

BHP_F indoor base unit

- plate heat exchanger,
- flow switch,
- inverter pump,expansion tank,
- drain valve,
- safety valve,
- Electric resistance system side,
- 3 way valve,
- DHW-system connections,
- $\label{eq:continuous_problem} \mbox{$-$} \mbox{ water filter supplied (mandatory installation),}$
- DHW storage tank of 185 litres with coil and supplementary electric heater, and anti-legionella function,
- tank with Titanium electronic sacrificial anode.

The indoor and outdoor units are connected by means of suitably sized cooling lines (supplied by the installer).

Cooling circuit use R32 (A2L) refrigerant with low GWP.

Operating limits

Full load operation down to -25°C (outside air temperature in winter), and up to 48° C in summer.

Regulations

Adjustment via multi-language touch-screen control panel:

- ganagement of a 3-way diverting valve for the production of domestic hot water,
- management of a 2 way valve (not supplied) for shutting off part of the system.
- weekly programming in time periods,
- auto-restart function,
- emergency operation,
- function quick water heating for a quick heating of domestic hot water
- forced operating **mode**,

- intelligent operation based on weather conditions for climate adjustment,
- quiet function for reduced noise operation (programmable with a timer),
- Anti-freeze function,
- condensation check,
- when the anti-legionella cycle is activated (it's easily set via the control panel), the whole tank is heated once a week to a temperature (max. 70 °C) that weakens the bacteria responsible for the infection,
- pre heating function of the floor to pre-heat the floor system before unit commissioning.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

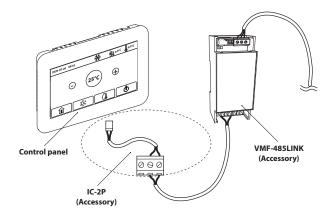
Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

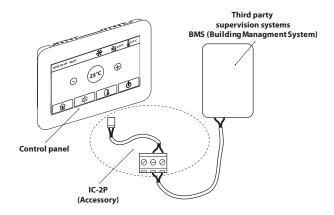
ACCESSORIES

DHWT3005: (220-240V~50Hz) DHW storage tank in enamelled steel. Single-phase power supply, tank capacity 300 litres with main and secondary coils and 3 kW back-up electric heater. Magnesium sacrificial anode. Indoor installation, as indicated in the installation manual.

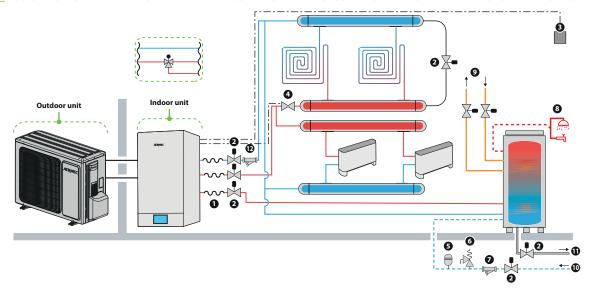
For the production of DHW it is mandatory to combine it with BHP $\,$ W.


IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.


Compatibility with VMF system

For more information about VMF system, refer to the dedicated documentation.

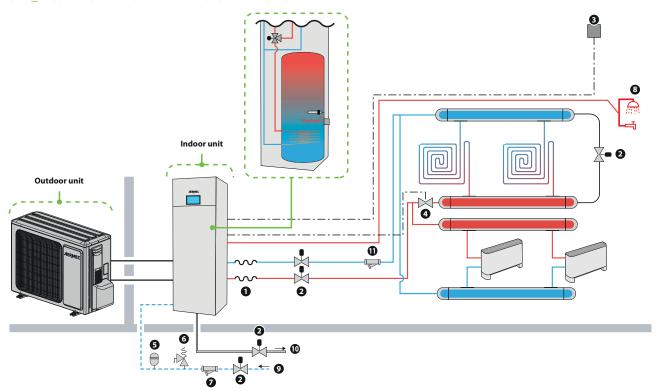

Connection with VMF-485LINK

Connection with third party supervision systems

BHP_W: DOMESTIC HOT WATER STORAGE TANK CONNECTION AND CONNECTION TO THE FLOOR SYSTEM AND FCU

HYDRAULIC COMPONENTS SUPPLIED AS STANDARD IN THE INDOOR UNIT

- Plate heat exchanger
- Flow switch
- Inverter circulator
- Expansion vessel
- Drain valve
- Pressure relief valve
- Electric resistance system side
- 3 way valve
- DHW-system connections


SUPPLIED HYDRAULIC COMPONENTS

— 12 Water filter supplied (mandatory installation)

HYDRAULIC COMPONENTS RECOMMENDED OUTSIDE THE UNIT (AT THE INSTALLER'S RESPONSIBILITY)

- 1. Anti-vibration joints
- 2. Shut-off tap
- 3. Ambient thermostat
- 4. 2 way valve
- 5. Expansion tank NOT supplied
- 6. Safety valve supplied with DHWT300S (installation is mandatory)
- 7. Water filter NOT supplied (installation is mandatory)
- 8. Hot domestic water
- 9. Auxiliary heat sources
- 10. Aqueduct
- **11.**Storage discharge

BHP_F: CONNECTION TO THE FLOOR SYSTEM AND FCU

www.aermec.com

HYDRAULIC COMPONENTS SUPPLIED AS STANDARD IN THE IN-**DOOR UNIT**

- Plate heat exchanger
- Flow switch
- Inverter pump
- Expansion vessel
- Drain valve
- Pressure relief valve
- Electric resistance system side
- 3 way valve

DHW-system connections SUPPLIED HYDRAULIC COMPONENTS

Water filter supplied (mandatory installation)

HYDRAULIC COMPONENTS RECOMMENDED OUTSIDE THE UNIT (AT THE INSTALLER'S RESPONSIBILITY)

- 1. Anti-vibration joints
- 2. Shut-off tap
- 3. Ambient thermostat
- 4. 2 way valve
- 5. Expansion tank NOT supplied
- 6. Safety valve **NOT supplied (installation is mandatory)**
- 7. Water filter NOT supplied (installation is mandatory)
- 8. Hot domestic water
- 9. Aqueduct
- **10.**Storage discharge

PERFORMANCE SPECIFICATIONS

Technical data Wall unit

Indoor unit		BHP060W	BHP060W	BHP100W	BHP100W	BHP160W	BHP160W	BHP160W
Outdoor unit		BHP040	BHP060	BHP080	BHP100	BHP120	BHP140	BHP160
Cooling performance 12 °C/7 °C(1)								
Cooling capacity	kW	3,20	4,09	5,30	6,50	10,07	11,30	11,60
Input power	kW	0,94	1,28	1,73	2,27	3,65	4,04	4,38
EER	W/W	3,42	3,20	3,06	2,86	2,93	2,80	2,65
Water flow rate system side	l/h	550	703	912	1118	1840	1944	1995
Useful head system side	kPa	76,0	74,0	70,0	63,0	56,0	54,0	48,0
Heating performance 40 °C / 45 °C (2)								
Heating capacity	kW	4,00	5,90	8,00	9,50	12,40	14,50	16,10
Input power	kW	1,02	1,51	2,14	2,64	3,22	3,87	4,41
COP	W/W	3,92	3,91	3,74	3,60	3,85	3,75	3,65
Water flow rate system side	l/h	688	1015	1376	1634	2133	2494	2769
Useful head system side	kPa	74,0	67,0	51,0	36,0	45,0	26,0	11,0
Cooling performance 23 °C / 18 °C (3)								
Cooling capacity	kW	3,80	5,80	7,00	8,52	11,00	12,60	13,00
Input power	kW	0,82	1,32	1,75	2,25	2,50	3,41	3,60
EER	W/W	4,63	4,40	4,00	3,79	4,40	3,70	3,61
Water flow rate system side	l/h	655	992	1204	1465	1892	2167	2236
Useful head system side	kPa	74,0	69,0	60,0	46,0	54,0	40,0	34,0
Heating performance 30 °C / 35 °C (4)								
Heating capacity	kW	4,00	6,00	8,00	9,50	12,00	14,00	15,50
Input power	kW	0,78	1,20	1,70	2,07	2,40	2,98	3,44
COP	W/W	5,13	5,00	4,71	4,59	5,00	4,70	4,50
Water flow rate system side	I/h	688	1032	1376	1634	2064	2408	2666
Useful head system side	kPa	74,0	66,0	51,0	36,0	45,0	26,0	15,0

Three-phase Wall unit technical data

Indoor unit		BHP100WT	BHP100WT	BHP160WT	BHP160WT	BHP160WT
Outdoor unit		BHP080T	BHP100T	BHP120T	BHP140T	BHP160T
Cooling performance 12 °C / 7 °C (1)						
Cooling capacity	kW	7,60	8,20	10,07	11,30	11,60
nput power	kW	2,35	2,73	3,65	4,04	4,38
EER	W/W	3,23	3,00	2,93	2,80	2,65
Nater flow rate system side	l/h	1307	1410	1840	1944	1995
Useful head system side	kPa	66,0	58,0	56,0	54,0	48,0
Heating performance 40 °C / 45 °C (2)						
Heating capacity	kW	8,00	10,20	12,40	14,50	16,13
nput power	kW	1,93	2,55	3,22	3,87	4,42
TOP	W/W	4,15	4,00	3,85	3,75	3,65
Nater flow rate system side	l/h	1376	1720	2133	2494	2774
Jseful head system side	kPa	60,0	45,0	45,0	26,0	11,0
Cooling performance 23 °C / 18 °C (3)						
Cooling capacity	kW	8,50	10,00	11,00	12,60	13,00
nput power	kW	1,74	2,33	2,50	3,41	3,60
EER	W/W	4,89	4,29	4,40	3,70	3,61
Nater flow rate system side	l/h	1462	1720	1892	2167	2236
Jseful head system side	kPa	54,0	41,0	54,0	40,0	34,0
Heating performance 30 °C / 35 °C (4)						
Heating capacity	kW	8,00	10,00	12,00	14,00	15,54
nput power	kW	1,63	2,15	2,40	2,98	3,45
TOP .	W/W	4,91	4,65	5,00	4,70	4,50
Vater flow rate system side	I/h	1376	1754	2064	2408	2673
Useful head system side	kPa	60,0	46,0	46,0	26,0	14,0

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

Technical data base unit

Indoor unit		BHP060F	BHP060F	BHP100F	BHP100F
Outdoor unit		BHP040	BHP060	BHP080	BHP100
Cooling performance 12 °C / 7 °C (1)					
Cooling capacity	kW	3,20	4,09	5,30	6,50
Input power	kW	0,94	1,28	1,73	2,27
EER	W/W	3,42	3,20	3,06	2,86
Water flow rate system side	l/h	550	703	912	1118
Useful head system side	kPa	76,0	74,0	70,0	63,0
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	4,00	5,90	8,00	9,50
Input power	kW	1,02	1,51	2,14	2,64
COP	W/W	3,92	3,91	3,74	3,60
Water flow rate system side	l/h	688	1015	1376	1634
Useful head system side	kPa	74,0	67,0	51,0	36,0
Cooling performance 23 °C / 18 °C (3)					
Cooling capacity	kW	3,80	5,80	7,00	8,52
Input power	kW	0,82	1,32	1,75	2,25
EER	W/W	4,63	4,40	4,00	3,79
Water flow rate system side	l/h	655	992	1204	1465
Useful head system side	kPa	74,0	69,0	60,0	46,0
Heating performance 30 °C / 35 °C (4)					
Heating capacity	kW	4,00	6,00	8,00	9,50
Input power	kW	0,78	1,20	1,70	2,07
COP	W/W	5,13	5,00	4,71	4,59
Water flow rate system side	I/h	688	1032	1376	1634
Useful head system side	kPa	74,0	66,0	51,0	36,0

- (1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

ENERGY DATA

Energy data Wall unit

Indoor unit		BHP060W	BHP060W	BHP100W	BHP100W	BHP160W	BHP160W	BHP160W
Outdoor unit		BHP040	BHP060	BHP080	BHP100	BHP120	BHP140	BHP160
UE 811/2013 performance in average ambient	conditions (average) - 35 °C - Pdesignh ≤	70 kW (1)					
Pdesignh	kW	5	6	7	9	11	12	13
SCOP	W/W	4,66	4,54	4,60	4,60	4,63	4,65	4,61
ηsh	%	183,50	178,70	181,00	181,00	182,00	183,00	181,20
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++
UE 811/2013 performance in average ambient	conditions (average) - 55 °C - Pdesignh ≤	≤ 70 kW (2)					
Pdesignh	kW	5	5	7	8	11	13	13
SCOP	W/W	3,28	3,26	3,30	3,25	3,24	3,50	3,50
ηsh	%	128,10	127,40	129,00	127,00	126,40	137,00	137,00
Efficiency energy class		A++	A++	A++	A++	A++	A++	A++
Performance as combined heat generator								
Bleeding profile		XL	XL	XL	XL	XL	XL	XL
Efficiency energy class		A	А	A	A	А	A	A

- (1) Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

Indoor unit		BHP060W	BHP060W	BHP100W	BHP100W	BHP160W	BHP160W	BHP160W
Outdoor unit		BHP040	BHP060	BHP080	BHP100	BHP120	BHP140	BHP160
Cooling capacity with low leaving water temp (UE r	n° 2016/2281)							
SEER	W/W	4,21	4,12	4,11	4,12	4,90	4,91	4,78
ηsc	%	165,00	162,00	161,00	162,00	193,00	193,00	188,00

Three-phase Wall unit energy data

Indoor unit		BHP100WT	BHP100WT	BHP160WT	BHP160WT	BHP160WT
Outdoor unit		BHP080T	BHP100T	BHP120T	BHP140T	BHP160T
UE 811/2013 performance in average amb	ient conditions (average)	- 35 °C - Pdesignh ≤ 70 kW	(1)			
Pdesignh	kW	8	9	11	12	13
SCOP	W/W	4,53	4,70	4,48	4,48	4,45
ηsh	%	178,10	185,20	176,00	176,00	175,00
Efficiency energy class		A+++	A+++	A+++	A+++	A+++
UE 811/2013 performance in average amb	ient conditions (average)	- 55 °C - Pdesignh ≤ 70 kW	(2)			
Pdesignh	kW	9	10	11	13	13
SCOP	W/W	3,48	3,49	3,23	3,38	3,38
ηsh	%	136,10	136,70	126,00	132,00	132,00
Efficiency energy class		A++	A++	A++	A++	A++
Performance as combined heat generator						
Bleeding profile		XL	XL	XL	XL	XL
Efficiency energy class		A	A	A	A	A

(1) Efficiencies for low temperature applications (35 °C) (2) Efficiencies for average temperature applications (55 °C)

Indoor unit		BHP100WT	BHP100WT	BHP160WT	BHP160WT	BHP160WT
Outdoor unit		BHP080T	BHP100T	BHP120T	BHP140T	BHP160T
Cooling capacity with low leaving water	temp (UE n° 2016/2281)					
SEER	W/W	4,11	4,12	4,74	4,76	4,64
nsc	%	161.00	162.00	187.00	187.00	183,00

Energy data base unit

Indoor unit		BHP060F	BHP060F	BHP100F	BHP100F
Outdoor unit		BHP040	BHP060	BHP080	BHP100
UE 811/2013 performance in average ambie	nt conditions (average) - 3	5 °C - Pdesignh ≤ 70 kW (1)			
Pdesignh	kW	5	6	7	9
SCOP	W/W	4,66	4,54	4,60	4,60
ηsh	%	183,50	178,70	181,00	181,00
Efficiency energy class		A+++	A+++	A+++	A+++
UE 811/2013 performance in average ambie	nt conditions (average) - 5	5 °C - Pdesignh ≤ 70 kW (2)			
Pdesignh	kW	5	5	7	8
SCOP	W/W	3,28	3,26	3,30	3,25
ηsh	%	128,10	127,40	129,00	127,00
Efficiency energy class		A++	A++	A++	A++
Performance as combined heat generator					
Bleeding profile		L	L	L	L
Efficiency energy class		A	A	A	A

(1) Efficiencies for low temperature applications (35 °C)
 (2) Efficiencies for average temperature applications (55 °C)

Indoor unit		BHP060F	BHP060F	BHP100F	BHP100F		
Outdoor unit		BHP040	BHP060	BHP080	BHP100		
Cooling capacity with low leaving water temp (UE n° 2016/2281)							
SEER	W/W	4,21	4,12	4,11	4,12		
ηςς	%	165,00	162,00	161,00	162,00		

INDOOR UNIT

BHP_W indoor wall unit

		BHP060W	BHP100W	BHP160W
Electric data				
Rated power input (1)	kW	3,1	6,1	6,1
Electric heater				
Number	no.	2	2	2
Power of the single heater	kW	1,50	3,00	3,00
System side heat exchanger				
Туре	type		Brazed plate	
Number	no.	1	1	1
Unit / system input	type		G1 male	
Unit / system output	type		G1 male	
DHW output	type		G1 male	
Circulator				
Quantity	no.	1	1	1
Motor	type		DC brushless	
Expansion vessel				
Number	no.	1	1	1
Volume	I	10,0	10,0	10,0
Maximum pressure	bar	2,5	2,5	2,5
Sound data calculated in cooling mode (2)				
Sound power level	dB(A)	42,0	42,0	42,0
Sound pressure	dB(A)	14,0	14,0	14,0
Power supply				
Power supply			230V ~ 50Hz	

Three-phase wall unit BHP_WT

		BHP100WT		BHP160WT	
Electric data					
Rated power input (1)	kW	6,1		6,1	
Electric heater					
Number	no.	2		2	
Power of the single heater	kW	3,00		3,00	
System side heat exchanger					
Туре	type		Brazed plate		
Number	no.	1		1	
Unit / system input	type		G1 male		
Unit / system output	type		G1 male		
DHW output	type		G1 male		
Circulator					
Quantity	no.	1		1	
Motor	type		DC brushless		
Expansion vessel					
Number	no.	1		1	
Volume		10,0		10,0	
Maximum pressure	bar	2,5		2,5	
Sound data calculated in cooling mode (2)				
Sound power level	dB(A)	42,0		42,0	
Sound pressure	dB(A)	14,0		14,0	
Power supply					
Power supply			400V ~ 3N 50Hz		

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

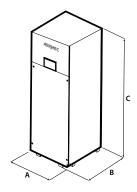
⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

BHP_F indoor base unit

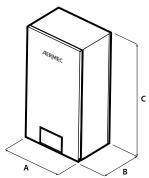
		BHP060F	BHP100F	
Electric data				
Rated power input (1)	kW	3,1	6,1	
Electric heater				
Number	no.	2	2	
Power of the single heater	kW	1,50	3,00	
System side heat exchanger				
Туре	type		Brazed plate	
Number	no.	1	1	
Unit / system input	type		G1 male	
Mains water input	type		G1 male	
Unit / system output	type		G1 male	
DHW output	type		G1 male	
Circulator				
Quantity	no.	1	1	
Motor	type		DC brushless	
Expansion vessel				
Number	no.	1	1	
Volume		10,0	10,0	
Maximum pressure	bar	2,5	2,5	
Sound data calculated in cooling mode (2)			
Sound power level	dB(A)	42,0	42,0	
Sound pressure	dB(A)	14,0	14,0	
Power supply				
Power supply		·	230V ~ 50Hz	

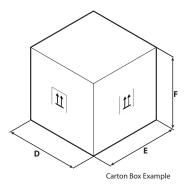
⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

OUTDOOR UNIT


Electric data		BHP040	BHP060	BHP080	BHP080T	BHP100	BHP100T
ated current input (1)	A	10,0	10,0	19,0	7,5	22,0	7,5
ompressor		10,0	10,0	17,0	7,3	22,0	7,5
ype	type			Rotativo doppio	stadio inverter		
lumber	no.	1	1	1	1	1	1
Circuits	no.	1	1	1	1	1	1
lefrigerant	type				32		•
lefrigerant charge	kg	1,00	1,00	1,60	1,84	1,60	1,84
otential global heating	GWP	1,00	1,00	675kg		1,00	1,01
Dil	GWI			07510	cozcq		
уре	type			FW6	AΠΑ		
Quantity	l l	0,47	0,47	0,84	0,84	0,84	0,84
Refrigeration pipework		υ,τι	0,77	0,04	0,04	0,01	0,01
Diameter of liquid refrigerant connections	mm (inch)			6,35	1///")		
Diameter of refrigerant gas connections	mm (inch)			12,7			
	min (man)			12,7	(1/2)		
xchanger	tuno			Finns	d coil		
/pe	type				d coil		
ouvers type	type	1	1	Gold			
umber	no.	1	1	1	1	1	1
xpansion vessel							
ype	type				pansion valve		
umber	no.	1	1	1	1	1	1
an							
ype	type			Invert			
an motor	type			DC bru	ishless		
umber	no.	1	1	1	1	1	1
ir flow rate	m³/h	3200	3200	3300	3300	3300	3300
ound data calculated in cooling mode (2)							
ound power level	dB(A)	62,0	62,0	67,0	68,0	68,0	68,0
ound pressure level (1 m)	dB(A)	52,0	52,0	55,0	55,0	55,0	55,0
ound pressure level (10 m)	dB(A)	34,0	34,0	39,0	40,0	40,0	40,0
ower supply							
ower supply			230V ~ 50Hz		400V 3N ~ 50Hz	230V ~ 50Hz	400V 3N ~ 50H
		BHP120	BHP120T	BHP140	BHP140T	BHP160	BHP160T
lectric data		DIII 120	DIII 1201	DIII 140	DIII 1401	DIII 100	DIII 1001
ated current input (1)	A	25,6	9,2	28,7	11,5	30,3	11,5
ompressor		25,0	7/2	20,1	,5	50/5	,5
ype	type			Rotativo donnio	stadio inverter		
lumber	no.	1	1	1	1	1	1
ircuits	no.	1	1	1	1	1	1
					32	ı	
	type	1,84	1,84	1,84	1,84	1,84	1,84
		1.04			1,04	1,04	
efrigerant charge	kg	.,	.,			,	1,07
efrigerant charge otential global heating	kg GWP	.,,- :	.,,,,,	675kg		,	1,01
efrigerant charge otential global heating il	GWP	.,,	.,	675kg	CO₂eq	,	1,04
efrigerant charge otential global heating il rpe				675kg FW6	CO ₂ eq	405	
efrigerant charge otential global heating il ype uantity	GWP	1,05	1,05	675kg	CO₂eq	1,05	1,05
efrigerant charge otential global heating il ype uantity efrigeration pipework	GWP type			675kg FW6 1,05	CO ₂ eq 8DA 1,05	1,05	
efrigerant charge il //P //P //P uantity efrigeration pipework iameter of liquid refrigerant connections	GWP type I mm (inch)	1,05	1,05	675kg FW6	CO ₂ eq		
efrigerant charge it it rpe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections	GWP type		1,05	675kg FW6 1,05	CO ₂ eq 8DA 1,05		
efrigerant charge il ip pe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections iameter of refrigerant gas connections	type I mm (inch) mm (inch)	1,05	1,05	675kg FW6 1,05	(O ₂ eq 18DA 1,05 (1/4") 15,87		
efrigerant charge il ip pe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections iameter	GWP type I mm (inch)	1,05	1,05	675kg FW6 1,05 6,35 i	(O ₂ eq 18DA 1,05 (1/4") 15,87		
efrigerant charge il ip pe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections iameter	type I mm (inch) mm (inch)	1,05	1,05	675kg FW6 1,05 6,35 i	(O ₂ eq 18DA 1,05 (1/4") 15,87		
efrigerant charge otential global heating il /pe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections xchanger /pe ouvers type umber	type I mm (inch) mm (inch)	1,05	1,05	675kg FW6 1,05 6,35 i	(O ₂ eq 18DA 1,05 (1/4") 15,87		
efrigerant charge otential global heating il /pe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections xchanger /pe ouvers type umber	type I mm (inch) mm (inch) type type	1,05	1,05 (1/2°)	675kg FW6 1,05 6,35 i	(O ₂ eq 1,05 1,05 15,87 d coil en fin	(5/8")	1,05
efrigerant charge il ipe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections iameter of refrigerant gas connections exchanger ipe uvers type umber expansion vessel	type I mm (inch) mm (inch) type type	1,05	1,05 (1/2°)	675kg FW6 1,05 6,35 l	(O ₂ eq 1,05 1,05 15,87 d coil en fin	(5/8")	1,05
efrigerant charge bential global heating il pe uantity efrigeration pipework tameter of liquid refrigerant connections tameter of refrigerant gas connections exchanger pe buvers type umber kpansion vessel	type I mm (inch) mm (inch) type type no.	1,05	1,05 (1/2°)	675kg FW6 1,05 6,35 l	(O ₂ eq 1,05 1,05 15,87 d coil en fin 1	(5/8")	1,05
efrigerant charge bential global heating il rpe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections ackhanger rpe buvers type umber kpansion vessel rpe	type I mm (inch) mm (inch) type type no.	1,05	1,05 (1/2")	FW6 1,05 6,35 i Finne Goldi 1	(O ₂ eq 1,05 1,05 15,87 15,87 1 1 1 1 1 1 1 1 1	(5/8")	1,05
efrigerant charge bential global heating il tree uantity efrigeration pipework tameter of liquid refrigerant connections tameter of refrigerant gas connections exchanger tree unuers type umber expansion vessel tree umber unuers	type I mm (inch) mm (inch) type type no. type no.	1,05	1,05 (1/2")	FW6 1,05 6,35 i Finne Goldi 1	(O ₂ eq 1,05 1,05 15,87 15,87 1 1 1 1 1 1 1 1 1	(5/8")	1,05
efrigerant charge bential global heating il rpe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections ackhanger rpe buvers type umber kpansion vessel rpe umber an	type I mm (inch) mm (inch) type type no. type no.	1,05	1,05 (1/2")	FW6 1,05 6,351 Finne Gold 1 Electronic ex 1	(O ₂ eq 1,05 1,05 15,87 15,87 1 1 1 1 1 1 1 1 1	(5/8")	1,05
efrigerant charge bential global heating il rpe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections ackhanger rpe buvers type umber kpansion vessel rpe umber an rpe	type I mm (inch) mm (inch) type type no. type type type type type	1,05	1,05 (1/2") 1	FW6 1,05 6,351 Finne Gold 1 Electronic ex 1 Inverte	1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05	1	1,05
efrigerant charge otential global heating il pe uantity efrigeration pipework ameter of liquid refrigerant connections ameter of refrigerant gas connections echanger pe uuvers type umber epansion vessel pe umber in pe n motor	type I mm (inch) mm (inch) type type no. type no.	1,05	1,05	FW6 1,05 6,351 Finne Gold 1 Electronic ex 1 Inverte DC bru 1	1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,07 1,05 1,07 1,07 1,07 1,07 1,07 1,07 1,07 1,07	1 1	1,05
efrigerant charge otential global heating il pe uantity efrigeration pipework ameter of liquid refrigerant connections ameter of refrigerant gas connections cchanger pe uuvers type umber ccpansion vessel pe umber ccpansion vessel pe umber cup connections cchanger pe umber ccpansion vessel pe	type I mm (inch) mm (inch) type type no. type type type type type	1,05	1,05 (1/2") 1	FW6 1,05 6,351 Finne Gold 1 Electronic ex 1 Inverte	1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05	1	1,05
efrigerant charge otential global heating il rpe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections ixchanger rpe ouvers type umber ixpe umber ixp	type I mm (inch) mm (inch) type type no. type no. type no. type no.	1,05 12,7 1 1 1 1 5044	1,05 (1/2") 1 1 1 1 5044	FW6 1,05 6,351 Finne Gold 1 Electronic ex 1 Inverte DC bru 1 5044	(O ₂ eq 1,05 1,05 15,87 15,87 1 1 1 1 1 1 1 1 1	1 1 1 5044	1,05
efrigerant charge otential global heating il /pe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections xxchanger //pe ouvers type umber xxpansion vessel //pe umber an //pe an motor umber ir flow rate ound data calculated in cooling mode (2) ound power level	type I mm (inch) mm (inch) type type no. type no. type no. dype type no. dype type no. dype type no.	1,05 12,7 1 1 1 1 5044 68,0	1,05 (1/2") 1 1 1 1 5044	675kg FW6 1,05 6,351 Finne Gold 1 Electronic ex 1 Inverte DC br. 1 5044	(1/4") 15,87 d coil en fin 1 pansion valve 1 er axial ushless 1 5044	1 1 1 1 5044	1,05 1 1 1 5044 68,0
efrigerant charge otential global heating iil //pe uantity efrigeration pipework iameter of liquid refrigerant connections iameter of refrigerant gas connections xxchanger //pe buvers type umber xxpansion vessel //pe umber an //pe an motor umber ir flow rate ound data calculated in cooling mode (2) ound power level ound pressure level ound pressure level (1 m)	type I mm (inch) mm (inch) type type no. type no. type dype no. dype type no. dype type no. dype type no. dype type no.	1,05 12,7 1 1 1 1 5044 68,0 60,0	1,05 (1/2") 1 1 1 5044 68,0 60,0	FW6 1,05 6,351 Finne Gold 1 Electronic ex 1 Inverte DC bru 1 5044	(CO ₂ eq 1,05 1,05 1,05 1,05 1,05 1,05 1,05 1,05	1 1 1 5044 68,0 61,0	1,05 1 1 1 5044 68,0 61,0
lefrigerant charge lefrigerant charge lefrigerant charge lotential global heating lit lype luantity lefrigeration pipework literation versuel liter	type I mm (inch) mm (inch) type type no. type no. type no. dype type no. dype type no. dype type no.	1,05 12,7 1 1 1 1 5044 68,0	1,05 (1/2") 1 1 1 1 5044	675kg FW6 1,05 6,351 Finne Gold 1 Electronic ex 1 Inverte DC br. 1 5044	(1/4") 15,87 d coil en fin 1 pansion valve 1 er axial ushless 1 5044	1 1 1 1 5044	1,05 1 1 1 5044 68,0

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


DIMENSIONS AND WEIGHTS


Indoor units and domestic hot water storage tank

BHP_F

BHP_W

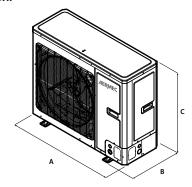
BHP_W

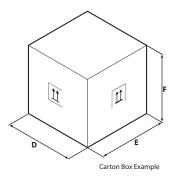
		BHP060W	BHP100W	BHP160W
Indoor unit				
A	mm	460	460	460
В	mm	318	318	318
C	mm	860	860	860
D	mm	568	568	568
E	mm	390	390	390
F	mm	1133	1133	1133
Net weight	kg	62,00	62,00	58,00
Weight for transport	kg	71,00	71,00	71,00

BHP_WT

		BHP100WT	BHP160WT
Indoor unit			
A	mm	460	460
В	mm	318	318
(mm	860	860
D	mm	568	568
E	mm	390	390
F	mm	1133	1133
Net weight	kg	60,00	60,00
Weight for transport	kg	71,00	71,00

BHP_F


		BHP060F	BHP100F
Indoor unit			
A	mm	600	600
В	mm	600	600
C	mm	1756	1756
D	mm	803	803
E	mm	683	683
F	mm	2000	2000
Net weight	kg	210,00	210,00
Weight for transport	kg	233,00	233,00


DHWT300S

		DHWT300S	
Dimensions and weights			
A	mm	620	
В	mm	1725	
Net weight	kg	140,00	

Outdoor units

ВНР

ВНР

ВПР							
		BHP040	BHP060	BHP080	BHP080T	BHP100	BHP100T
Outdoor unit							
A	mm	975	975	982	982	982	982
3	mm	396	396	427	360	427	360
	mm	702	702	787	787	787	787
)	mm	1028	1028	1097	1097	1097	1097
	mm	458	458	478	478	478	478
	mm	830	830	937	937	937	937
Vet weight	kg	55,00	55,00	82,00	88,00	82,00	88,00
Weight for transport	kg	65,00	65,00	92,00	98,00	92,00	98,00
		BHP120	BHP120T	BHP140	BHP140T	BHP160	BHP160T
Outdoor unit							
4	mm	940	940	940	940	940	940
3	mm	460	460	460	460	460	460
	mm	820	820	820	820	820	820
)	mm	1103	1103	1103	1103	1103	1103
	mm	573	573	573	573	573	573
	mm	973	973	973	973	973	973
	mm	7/3	713	,,,			
let weight	kg	104,00	110,00	104,00	110,00	104,00	110,00

HMG

Reversible air/water heat pump

Cooling capacity 32 ÷ 60 kW Heating capacity 35 ÷ 65 kW

- New R32 ecological refrigerant gas
- Touch-screen control panel
- · Easy and quick to install
- · Reliability and compactness
- Modularity

DESCRIPTION

HMG the new outdoor reversible inverter heat pump system for producing chilled and heated water.

These units are designed to meet the plant engineering needs of residential or commercial contexts, or industrial applications.

HMG formed of fully independent modules that can be linked together to create a modular system, with the possibility to connect units of different power levels.

The base, the structure and the panels are made of galvanized steel treated with polyester paint.

FEATURES

Operating limits

Operation from -20°C outside air temperature (winter) to 52°C (summer).

Production of hot water up to 50 °C.

For more information about the operating limits of these units, refer to the specific paragraph on this product data sheet.

Modularity

HMG an outdoor modular system of reversible inverter heat pumps for producing hot and chilled water, with connectable base modules purposely designed to minimise the overall dimensions. Units of different power levels can be connected.

Modularity allows the installation of these units to be adapted to the real system development requirements, so the installed power can be increased over time in a simple and cost effective manner.

On the basis of these requirements, the user can choose either: **homogeneous modularity** or **sequential modularity**.

Homogeneous modularity

Made possible with the use of a control panel **TCP** (mandatory accessory) to be connected to the master unit of the system.

This type of modularity allows the modules to work with a homogeneous capacity control logic whilst still guaranteeing delay switch-on and switch-off to avoid power consumption peaks and intelligent defrosting (the simultaneous defrosting of up to 1/3 of the modules installed).

Up to 16 modules can be linked together with this operating mode.

To take full advantage of the characteristics of this working mode, you are advised to use it in systems with a pump (or a group of pumps) that serves all the units. The control logic manages the switch-on and switch-off of the pump(s) on the basis of the operating conditions of the generation system.

Sequential modularity

Made possible with the use of accessories TCP, IC-2P, VMF-485LINK and VME-F6

This type of modularity allows the HMG units to be added to the control system of the whole hydraulic/aeraulic system, so DHW can also be managed.

Unit switch-on and switch-off is managed in a sequential manner, according to a selected control logic (free regulation, regulation by load or regulation by temperature difference).

For more information about VMF system, refer to the dedicated documentation

Up to 4 modules can be linked together with this operating mode HMG. Management is optimised for systems where each unit commands its own pump.

Main components

- Flow switch.
- DC brushless axial flow fans designed for aerodynamic optimisation, reducing the noise level whilst at the same time increasing the efficiency and air flow rate.
- Compressor twin rotary inverter.
- Special coil with fin golden coating.
- High-efficiency shell & tube heat exchanger (system side) for excellent reliability and a long lifespan.
- Electronic expansion valve.
- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.

Regulation

Adjustment via **touch-screen control panel (TCP accessory compulsory)**::

- management of (up to) two pumps (not supplied) that can work alternately, boosting the reliability of the system,
- management of (up to) two auxiliary electric resistors (not supplied),
- Quiet function for reduced noise operation,
- climatic regulation function,
- unit anti-freeze protection at low temperatures,
- weekly programming in time periods,
- high and low pressure protection,
- smart compressor control, extending the lifespan of the unit and enhancing its reliability,
- alarm history.

Special golden fin coil

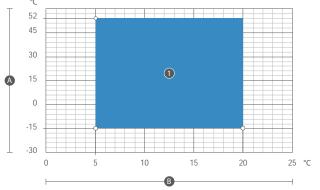
Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

ACCESSORIES

TCP: Touch-screen control panel. (Accessory compulsory).

IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

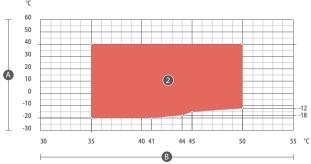
VMF-485LINK: Expansion to interface the unit with the VMF communication protocol, making it possible to manage it from the VMF-E5 or VMF-E6 supervisors.


VMF-E6: White flush-mounting panel with 4.3 inch colour touchscreen. For the centralised command/control of a complete hydronic/aeraulic system consisting of: fan coils (up to 64 fan coil zones formed of 1 master + max. 5 slaves), heat pumps (up to 4), MZC accessories (up to 5) for the management of radiant panels (using a suitable number of VMF-REB accessories, up to 64 radiant panels associated with the fan coil zones and up to 32 radiant panels associated with the zones served by MZC), the complete management of DHW production, control of the RAS heater and/or the boiler, management of digital I/Os, control of heat recovery units and VOC probes (up to 4).

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

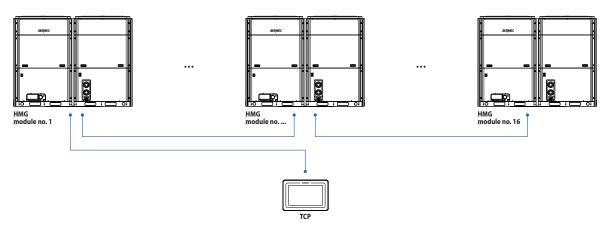
OPERATING LIMITS


Cooling mode

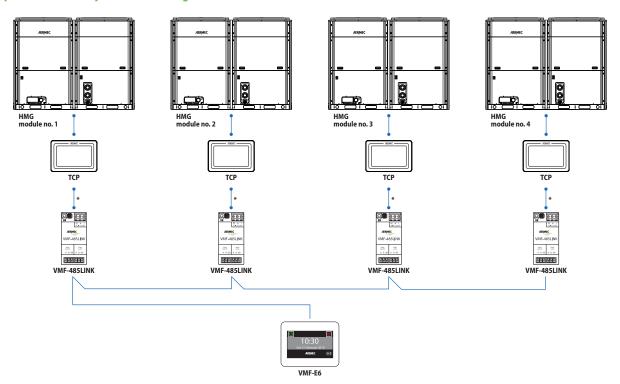
KEY

- 1 cooling mode
- A outdoor air temperature (°C)
- B water produced temperature (°C)

Heating mode range



KEY


- 2 heating mode
- A outdoor air temperature (°C)
- B water produced temperature (°C)

MODULARITY

Homogeneous modularity - connection diagram

Sequential modularity - connection diagram

^{*} Connection to be made with the aid of the accessory IC-2P.

PERFORMANCE SPECIFICATIONS

		HMG0350	HMG0600
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	kW	32,0	60,0
Input power	kW	11,7	20,8
Water flow rate system side	l/h	5528	10346
Pressure drop system side	kPa	80	55
Cooling total input current	A	19,2	32,9
EER	W/W	2,74	2,88
Heating performance 40 °C / 45 °C (2)			
Heating capacity	kW	35,0	65,0
Input power	kW	10,6	19,9
Water flow rate system side	l/h	6039	11249
Heating total input current	A	17,5	30,7
COP	W/W	3,30	3,27
Cooling performance 23 °C / 18 °C (3)			
Cooling capacity	kW	41,4	72,5
Input power	kW	10,5	19,1
Water flow rate system side	l/h	7198	12574
Cooling total input current	A	16,2	31,0
EER	W/W	3,94	3,80
Heating performance 30 °C / 35 °C (4)			
Heating capacity	kW	36,0	62,6
Input power	kW	8,8	15,1
Water flow rate system side	l/h	6191	10798
Heating total input current	A	12,4	24,2
COP	W/W	4,09	4,15

ENERGY DATA

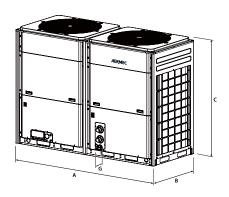
		HMG0350	HMG0600
UE 811/2013 performance in average	ambient conditions (average) - 35 °C - Pde	signh ≤ 70 kW (1)	
Pdesignh	kW	24	51
SCOP	W/W	3,90	3,90
ηsh	%	153,00	153,00
Efficiency energy class		A++	A++
Cooling capacity with low leaving wat	er temp (UE n° 2016/2281)		
ηςς	%	173,00	181,00
SEER	W/W	4,40	4,60

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

		HMG0350	HMG0600
Electric data			
Rated current input (1)	A	22,0	52,0
Power supply			
Power supply		380-415V 3N ~ 50Hz	380-415V 3N ~ 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.


⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Data EN 14511:2022; System side water heat exchanger 23 °C / 18 °C; External air 35 °C (4) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

GENERAL TECHNICAL DATA

		HMG0350	HMG0600
Compressor			
Туре	type		Inverter rotary
Number	no.	1	2
Circuits	no.	1	2
Refrigerant	type		R32
Refrigerant charge	kg	5,50	11,00
System side heat exchanger			
Туре	type		Shell and tube
Number	no.	1	1
Connections (in/out)	Туре	G1"1/2 (male)	G2" (male)
Fan			
Туре	type		Axial
Fan motor	type		Inverter
Number	no.	2	2
Air flow rate	m³/h	12600	24000
Sound data calculated in cooling mode (1)	·	
Sound power level	dB(A)	81,0	86,0
Sound pressure level (10 m)	dB(A)	49,5	54,3
Sound pressure level (1 m)	dB(A)	65,0	69,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

		HMG0350	HMG0600
Dimensions and weights			
A	mm	1340	2200
В	mm	765	880
(mm	1605	1675
G	mm	80	85
D	mm	1420	2267
E	mm	920	1030
F	mm	1775	1867
Net weight	kg	405,00	686,00
Weight for transport	kg	422,00	722,00

G: tap protrusion

Reversible air/water heat pump

Cooling capacity 29,0 ÷ 42,3 kW Heating capacity 31,4 ÷ 33,3 kW

- Version with built-in hydronic kit inverter
- · High efficiency also at partial loads
- Production of hot domestic water (d.H.W.)

DESCRIPTION

Reversible inverter heat pump for outdoor use suitable for responding to heating / cooling requests and the production of domestic hot water. Equipped with inverter compressor, axial fans, external copper coils with aluminum fins, plate heat exchanger on the system side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

It can be combined in systems with hydronic terminals or even with traditional radiators and perfectly meets the needs of the residential market: low noise, easy installation.

VERSIONS

° Standard

P With on/off pump

X With inverter pump

FEATURES

Operating field

Work at full load up to 42 $^{\circ}$ C outside air temperature in the summer season with the possibility of producing hot water up to 60 $^{\circ}$ C (for more details refer to the technical documentation).

Components

- High efficiency scroll and Twin rotary compressors with permanent magnet DC motors of "high side" type (with high pressure casing), designed for variable speed operation
- Differential pressure switch / flow switch as standard
- Water filter
- High efficiency heat exchangers
- Axial flow fan units for extremely quiet operation
- Fitted with EMC filters

Integrated hydronic kit

The built-in hydraulic kit includes:

- Expansion vessel
- Safety valve water side
- Air vent valve

Inverter pumps variable speed pump with water side pressure transducer installed and unit mounted microprocessor, capable of controlling various operating modes:

- ΔP constant: the differential pressure between pump inlet and outlet is kept constant, the number of revolutions is reduced with the progressive closing of the terminals;
- ΔP variable: the differential pressure is reduced as the flow rate decreases, to take into account the lower pressure drops along the supply pipes to the terminals (recommended if the development of these pipes is high).

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

- Capable of variable water flow rates on primary circuit (terminals with 2-way valves);
- Perfect water temperature control even in systems with low water content:
- Suitable for heat pump mode summer operation to provide domestic hot water (DHW) with the DCPX fan speed controller accessory (when provided).

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MODU-485BL: RS-485 interface for supervision systems with MODBUS

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Antivibration supports

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

■ NB: if the SAF thermo-accumulator is used, the MOD485-BL accessory is not required.

FACTORY FITTED ACCESSORIES

KR: Anti-freeze electric heater for the plate heat exchanger.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	101
AERLINK	°,P,X	•
AERSET	°,P,X	•
MODU-485BL	°,P,X	•
MULTICONTROL	°,P,X	•
PR3	°,P,X	•
SAF (1)	°,P,X	•
SDHW (2)	°,P,X	•
SPLW (3)	°,P,X	•
VMF-CRP	°,P,X	•

- (1) For more information about SAF refer to the dedicated documentation.
 (2) Probe required for MULTICONTROL for managing the domestic hot water system.
 (3) Probe required for MULTICONTROL to manage the secondary circuit system.

BSKW: Electric heater kit

Model	Ver	101
BS6KW400T	°,P,X	•
BS9KW400T	°,Р,Х	•

DCPX: Condensation control temperature

Ver	101	
°,Р,Х	DCPX53	

VT: Antivibration

Ver	101
°,P,X	VT15

KR: electric heater for the heat exchanger

Ver	101
°,P,X	KR100

A grey background indicates the accessory must be assembled in the factory

KRB: Electric heater for the base

Ver	101	
°,P,X	KRB3 (1)	

⁽¹⁾ Incompatible with the condensate collection basin accessory with integrated resistance.

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3,4	ANLI
5,6,7	Size 101
8	Model
Н	Heat pump
9	Version
0	Standard
Р	With on/off pump
Χ	With inverter pump
10	Heat recovery
0	Without heat recovery
11	Coils
٥	Alluminium
R	Copper pipes-copper fins
S	Tinned copper
V	Copper pieps-Coated aluminium fins
12	Operating field (1)
0	Electronic thermostatic expansion valve
13	Evaporator
0	Standard
14	Power supply
T	400V 3N ~ 50Hz

⁽¹⁾ Water produced up to $+4\,^{\circ}\text{C}$. For different temperature please contact the factory.

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

ANLI - (H°)

` '		
Size		101
Cooling performance 12 °C/7 °C (1)		
Cooling capacity	kW	29,0
Input power	kW	11,5
Cooling total input current	A	16,0
EER	W/W	2,53
Water flow rate system side	l/h	4986
Pressure drop system side	kPa	50
Heating performance 40 °C/45 °C (2)		
Heating capacity	kW	31,4
Input power	kW	11,1
Heating total input current	A	16,0
COP	W/W	2,83
Water flow rate system side	l/h	5458
Pressure drop system side	kPa	59

ANLI - (HX)

Size		101
Cooling performance 12 °C/7 °C(1)		
Cooling capacity	kW	29,0
Input power	kW	12,4
Cooling total input current	A	18,0
EER	W/W	2,33
Water flow rate system side	l/h	4986
Useful head system side	kPa	175,0
Heating performance 40 °C / 45 °C (2)		
Heating capacity	kW	31,4
Input power	kW	12,1
Heating total input current	A	17,0
COP	W/W	2,59
Water flow rate system side	l/h	5458
Useful head system side	kPa	158,0

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANLI - (HP)

Size		101
Cooling performance 12 °C/7 °C (1)		
Cooling capacity	kW	29,0
Input power	kW	12,1
Cooling total input current	A	17,0
EER	W/W	2,40
Water flow rate system side	l/h	4986
Useful head system side	kPa	92,0
Heating performance 40 °C / 45 °C (2)		
Heating capacity	kW	31,4
Input power	kW	11,8
Heating total input current	A	17,0
COP	W/W	2,67
Water flow rate system side	l/h	5458
Useful head system side	kPa	76,0

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

ANLI - (H°)

	101
kW	42,3
kW	13,1
A	19,0
W/W	3,22
l/h	7301
kPa	107
kW	33,3
kW	9,5
A	13,0
W/W	3,51
l/h	5763
kPa	66
	kW A W/W I/h kPa kW kW A W/W

ANLI - (HX)

Size		101
Cooling performance 23 °C / 18 °C (1)		
Cooling capacity	kW	42,3
Input power	kW	14,3
Cooling total input current	A	21,0
EER	W/W	2,96
Water flow rate system side	l/h	7301
Useful head system side	kPa	81,0
Heating performance 30 °C / 35 °C (2)		
Heating capacity	kW	33,3
Input power	kW	10,5
Heating total input current	A	15,0
COP	W/W	3,17
Water flow rate system side	l/h	5763
Useful head system side	kPa	147,0
(1) Data EN 14511-2022. Contain aids contain hard configuration 22 90 / 10 90. Festivated air 25 90		'

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

ANLI - (HP)

Size		101
Cooling performance 23 °C / 18 °C (1)		
Cooling capacity	kW	42,3
Input power	kW	14,3
Cooling total input current	A	21,0
EER	W/W	2,96
Water flow rate system side	l/h	7301
Useful head system side	kPa	81,0
Heating performance 30 °C/35 °C (2)		
Heating capacity	kW	33,3
Input power	kW	10,5
Heating total input current	A	15,0
COP	W/W	3,17
Water flow rate system side	l/h	5763
Useful head system side	kPa	147,0

ENERGY DATA

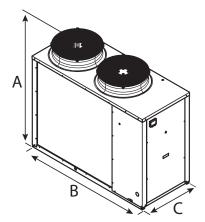
Size			101
Cooling capacity with low leavi	ng water temp (UE n° 2016/2281)		
SEER	0	W/W	3,81
SEEK	P,X	W/W	3,57
nce	0	%	149,20
ηςς	P,X	%	139,80
UE 811/2013 performance in av	erage ambient conditions (average) -	35 °C - Pdesignh ≤ 70 kW (1)	
Ddacianh	°,X	kW	29
Pdesignh	P	kW	30
SCOP	°,X	W/W	3,23
	Р	W/W	3,25
ηsh	°,X	%	126,00
	P	%	127,00
Efficiency energy class	°,P,X		A+

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

Size			101
Electric data			
	0	A	21,0
Maximum current (FLA)	Р	A	24,4
	Χ	A	25,5
Peak current (LRA)	°,P,X	A	-

GENERAL TECHNICAL DATA


Size			101
Compressor			
Туре	°,P,X	type	Scroll
Number	°,P,X	no.	1
Compressor regulation	°,P,X	Туре	Inverter
Circuits	°,P,X	no.	1
Refrigerant	°,P,X	type	R410A
Refrigerant charge (1)	°,P,X	kg	4,5
System side heat exchanger			
Туре	°,P,X	type	Brazed plate
Number	°,P,X	no.	1
Hydraulic connections			
Connections (in/out)	°,P,X	Туре	Gas - F
Sizes (in/out)	°,P,X	Ø	1″1/4
Fan			
Туре	°,P,X	type	Axial
Fan motor	°,P,X	type	On/Off
Number	°,P,X	no.	2
Air flow rate	°,P,X	m³/h	13200
Sound data calculated in cooling r	node (2)	·	
Sound power level	°,P,X	dB(A)	76,0
Sound pressure level (10 m)	°,P,X	dB(A)	44,5
(a) Tl. 1. 11. 12. 1. 11. 11. 11. 11. 11. 11.	21 2 1 1 12 1 1 2 1 2 1 2 1 2 1 2 1 2 1	9 6 1 1 64 65 31 153 153 1 31 373	

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			101
Dimensions and weights			
A	°,P,X	mm	1450
В	°,P,X	mm	1750
C	°,P,X	mm	750
Furniture: als	0	kg	293
Empty weight	P,X	kg	308

Numero Verde 800-843085

ANK 020-150

Reversible air/water heat pump

Cooling capacity 6,8 ÷ 39,8 kW Heating capacity 8,0 ÷ 35,3 kW

- Production of hot water up to 60 °C
- Production of hot domestic water with external temperatures from -20 °C up to 42 °C
- Compact dimensions
- Quick & easy installation

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users.

It's optimised for use in heating mode, and can be combined not only with low-temperature emission systems such as floor heating or fan coils, but also conventional radiators.

Equipped with scroll compressors, axial fans, external coil with aluminium louvers, plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

P With pump

FEATURES

Operating field

Working at full load up to -20° C outside air temperature in winter, and up to 46° C in summer. Possibility production technical hot water production up to 60° C (for more information see the technical documentation).

Soft-start

Version with Integrated hydronic kit

To have a Plug & Play solution is also available the version with the integrated Hydronic group that contains the main hydraulic components including the water filter.

Inverter fan

Inverter fans as standard in size up 020 to 085 in all versions.

■ The DCPX accessory is not required for these sizes.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Antivibration supports

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

KRB: -

BDX: Condensate drip with resistance

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

ACCESSORIES COMPATIBILITY

Model	Ver	020	030	040	045	050	085	100	150
AERLINK	°,A,P	•	•	•	•	•	•	•	•
AERSET	°,A,P	•	•		•	•	•	•	•
MODU-485BL	°,A,P	•	•	•	•	•	•	•	•
MULTICONTROL	°,A,P	•	•	•	•		•		•
PR3	°,A,P	•	•	•	•	•	•	•	•
SDHW (1)	°,A,P	•	•	•	•	•	•	•	•
SPLW (2)	°,A,P	•	•		•	•	•	•	•
VMF-CRP	°,A,P	•	•	•	•	•	•	•	

Probe required for MULTICONTROL for managing the domestic hot water system.
 Probe required for MULTICONTROL to manage the secondary circuit system.

Ver	020	030	040	045	050	085	100	150
°,A,P	-	-	-	-	-	-	DCPX53	DCPX53

The accessory cannot be fitted on the configurations indicated with -

Ver	020	030	040	045	050	085	100	150
Power supply: °								
0 A D	BS6KW400T,	BS6KW400T,						
°,A,P	BS9KW400T	BS9KW400T						
Power supply: M								
0 A D	BS4KW230M,	BS4KW230M,	BS4KW230M,					
°,A,P	BS6KW230M	BS6KW230M	BS6KW230M	-	-	-	-	-
Ver	020	030	040	045	050	085	100	150
°,P	VT9	VT9	VT9	VT9	VT9	VT9	VT15	VT15
A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15	VT15
Ver	020	030	040	045	050	085	100	150
Power supply: °								
°,A,P	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)					

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	020	030	040	045	050	085	100	150
°,A,P	KRB1 (1)	KRB2 (1)	KRB3 (1)	KRB3 (1)				

 $(1) \ \ In compatible \ with \ the \ condensate \ collection \ basin \ accessory \ with \ integrated \ resistance.$

A grey background indicates the accesso	ry must be assembled in the	e factory						
Ver	020	030	040	045	050	085	100	150
°,A,P	BDX8	BDX9	BDX9	BDX9	BDX9	BDX9	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	ANK
4,5,6	Size 020, 030, 040, 045, 050, 085, 100, 150
7	Model
Н	Heat pump
8	Version
0	Standard
A	With storage tank and pump
Р	With pump
9	Execution
0	Standard
10	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
11	Operating field
0	Standard mechanic thermostatic valve (1)
Υ	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (3)
12	Evaporator
0	Standard
13	Power supply
0	400V 3N ∼ 50Hz (4)
М	230V ~ 50Hz (5)

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

ANK - (°) / 12/7 °C - 40/45 °C

Size		020	030	040	045	050	085	100	150
Power supply: °									
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	kW	6,8	8,2	10,5	11,6	13,1	15,5	25,3	29,3
Input power	kW	2,3	2,8	3,5	4,0	4,3	5,2	8,1	10,0
Cooling total input current	A	4,3	5,6	7,1	7,7	8,7	11,0	17,0	20,0
EER	W/W	2,93	2,91	2,98	2,93	3,03	3,00	3,12	2,92
Water flow rate system side	l/h	1169	1406	1811	1997	2253	2677	4362	5056
Pressure drop system side	kPa	16	9	16	14	18	24	32	36
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	8,0	10,0	12,2	14,0	15,3	17,4	27,1	33,3
Input power	kW	2,5	3,1	3,8	4,2	4,4	5,0	8,3	10,5
Heating total input current	A	4,7	6,2	7,6	8,0	9,0	10,0	18,0	21,0
COP	W/W	3,21	3,24	3,25	3,38	3,48	3,46	3,24	3,19
Water flow rate system side	I/h	1376	1738	2117	2430	2656	3021	4689	5774
Pressure drop system side	kPa	22	14	22	21	25	31	37	47
Power supply: M									
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	6,8	8,2	9,6	11,7	-	-	-	-
Input power	kW	2,3	2,8	3,2	3,7	-	-	-	-
Cooling total input current	A	11,0	13,0	16,0	19,0	-	-	-	-
EER	W/W	2,92	2,91	2,97	3,16	-	-	-	-
Water flow rate system side	l/h	1179	1406	1649	2018	-	-	-	-
Pressure drop system side	kPa	16	9	14	14	-	-	-	-
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	8,0	10,0	10,9	13,5	-	-	-	-
Input power	kW	2,5	3,1	3,4	3,8	-	-	-	-
Heating total input current	A	12,0	15,0	17,0	19,0	-	-	-	-
COP	W/W	3,16	3,24	3,15	3,50	-	-	-	-
Water flow rate system side	l/h	1376	1738	1881	2332	-	-	-	-
Pressure drop system side	kPa	22	14	18	19	-	-	-	-

⁽¹⁾ Water produced up to +4 °C (2) Water produced from 0 °C \div -8 °C (3) Water produced from +4 °C up to +0 °C

⁽⁴⁾ For ANK 020 ÷ 045 sizes (5) Only for ANK 020 ÷ 045 sizes

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANK - (A/P) / 12/7 °C - 40/45 °C

Size		020	030	040	045	050	085	100	150
Power supply: °									
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	6,9	8,2	10,6	11,7	13,2	15,7	25,6	29,7
Input power	kW	2,3	2,8	3,5	4,0	4,3	5,2	8,2	10,4
Cooling total input current	Α	4,9	6,2	7,8	8,7	9,8	12,0	18,0	22,0
EER	W/W	3,00	2,97	3,05	2,95	3,06	3,03	3,12	2,87
Water flow rate system side	l/h	1169	1406	1811	1997	2253	2677	4362	5056
Useful head system side	kPa	78,0	82,0	70,0	81,0	74,0	63,0	115,0	144,0
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	7,9	9,9	12,1	13,9	15,2	17,3	26,8	33,0
Input power	kW	2,4	3,0	3,7	4,2	4,4	5,0	8,4	10,8
Heating total input current	A	5,3	6,9	8,3	9,1	10,0	12,0	19,0	23,0
COP	W/W	3,22	3,26	3,27	3,35	3,46	3,44	3,18	3,05
Water flow rate system side	I/h	1376	1738	2117	2430	2656	3021	4689	5774
Useful head system side	kPa	72,0	76,0	61,0	68,0	59,0	50,0	105,0	109,0
Power supply: M									
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	kW	6,9	8,2	9,7	11,8	-	-	-	-
Input power	kW	2,3	2,8	3,2	3,7	-	-	-	-
Cooling total input current	A	12,0	14,0	16,0	20,0	-	-	-	-
EER	W/W	2,99	2,96	3,02	3,17	-	-	-	-
Water flow rate system side	l/h	1179	1406	1649	2018	-	-	-	-
Useful head system side	kPa	78,0	71,0	62,0	70,0	-	-	-	-
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	7,9	9,9	10,8	13,4	-	-	-	-
Input power	kW	2,5	3,1	3,4	3,9	-	-	-	-
Heating total input current	A	13,0	15,0	18,0	20,0	-	-	-	-
COP	W/W	3,17	3,25	3,16	3,45	-	-	-	-
Water flow rate system side	I/h	1376	1738	1881	2332	-	-	-	-
Useful head system side	kPa	72,0	58,0	52,0	57,0	_	_	_	_

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

ANK - (°) / 23/18 °C - 30/35 °C

Size		020	030	040	045	050	085	100	150
Power supply: °									
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,5	11,4	14,7	16,2	18,2	21,7	34,0	39,4
Input power	kW	2,4	2,9	3,7	4,2	4,5	5,5	8,8	10,9
Cooling total input current	A	4,5	5,8	7,4	8,0	9,1	11,0	18,0	22,0
EER	W/W	3,88	3,86	3,95	3,89	4,02	3,96	3,86	3,61
Water flow rate system side	l/h	1637	1969	2536	2797	3155	3749	5889	6826
Pressure drop system side	kPa	31	18	31	27	35	47	58	66
Heating performance 30 °C / 35 °C (2)									
Heating capacity	kW	8,5	10,6	13,0	14,6	16,2	18,2	29,2	35,6
Input power	kW	2,1	2,6	3,1	3,5	3,8	4,3	6,9	8,8
Heating total input current	A	4,0	5,2	6,2	6,8	7,7	8,9	15,0	18,0
COP	W/W	4,03	4,04	4,20	4,15	4,31	4,18	4,21	4,07
Water flow rate system side	I/h	1473	1830	2253	2525	2799	3137	5041	6147
Pressure drop system side	kPa	25	15	25	22	28	33	43	53
Power supply: M									
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,5	11,4	13,3	16,3	-	-	-	-
Input power	kW	2,5	2,9	3,4	3,9	-	-	-	-
Cooling total input current	A	12,0	14,0	17,0	19,0	-	-	-	-
EER	W/W	3,86	3,86	3,94	4,19	-	-	-	-
Water flow rate system side	l/h	1652	1969	2310	2826	-	-	-	-
Pressure drop system side	kPa	31	18	27	27	-	-	-	-
Heating performance 30 °C / 35 °C (2)									
Heating capacity	kW	8,5	10,6	11,6	14,0	-	-	-	-
Input power	kW	2,2	2,6	2,8	3,3	-	-	-	-
Heating total input current	A	10,0	12,0	14,0	16,0	-	-	-	-
COP	W/W	3,96	4,04	4,08	4,30	-	-	-	-
Water flow rate system side	I/h	1473	1830	2001	2424	-	-	-	-
Pressure drop system side	kPa	25	15	21	20	-	-	-	-

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ANK - (A/P) / 23/18 °C - 30/35 °C

Size		020	030	040	045	050	085	100	150
Power supply: °									
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,5	11,5	14,8	16,3	18,4	21,8	34,3	39,8
Input power	kW	2,4	2,9	3,6	4,2	4,5	5,5	8,9	11,4
Cooling total input current	A	5,1	6,5	8,1	9,2	10,0	12,0	19,0	24,0
EER	W/W	4,00	3,98	4,06	3,92	4,05	3,99	3,85	3,48
Water flow rate system side	l/h	1637	1969	2536	2797	3155	3749	5889	6826
Useful head system side	kPa	62,0	70,0	45,0	55,0	38,0	16,0	66,0	51,0
Heating performance 30 °C / 35 °C (2)									
Heating capacity	kW	8,4	10,5	12,9	14,5	16,1	18,0	28,9	35,3
Input power	kW	2,1	2,6	3,0	3,5	3,8	4,3	7,0	9,2
Heating total input current	A	4,6	5,9	6,9	7,9	8,8	10,0	16,0	20,0
COP	W/W	4,07	4,08	4,26	4,12	4,28	4,16	4,11	3,85
Water flow rate system side	I/h	1473	1830	2253	2525	2799	3137	5041	6147
Useful head system side	kPa	69,0	73,0	56,0	65,0	54,0	45,0	95,0	90,0
Power supply: M									
Cooling performance 23 °C / 18 °C (1)									
Cooling capacity	kW	9,6	11,5	13,4	16,4	-	-	-	-
Input power	kW	2,4	2,9	3,4	3,9	-	-	-	-
Cooling total input current	A	12,0	14,0	17,0	20,0	-	-	-	-
EER	W/W	3,99	3,93	4,00	4,18	-	-	-	-
Water flow rate system side	l/h	1652	1969	2310	2826	-	-	-	-
Useful head system side	kPa	62,0	47,0	29,0	32,0	-	-	-	-
Heating performance 30 °C / 35 °C (2)									
Heating capacity	kW	8,6	10,8	11,9	13,8	-	-	-	-
Input power	kW	2,2	2,6	2,9	3,4	-	-	-	-
Heating total input current	A	11,0	13,0	15,0	17,0	-	-	-	-
COP	W/W	3,88	4,11	4,10	4,11	-	-	-	-
Water flow rate system side	I/h	1486	1877	2061	2397	-	-	-	-
Trace non race system side									

ENERGY DATA

Energy index ANK - H°

Size		020	030	040	045	050	085	100	150
Power supply: °									
Cooling capacity with low leaving water temp (UE n° 20	016/2281)								
SEER	W/W	3,07	3,18	3,32	3,32	3,45	3,45	3,81	3,63
ηςς	%	119,80	124,10	129,80	129,80	135,00	135,00	149,40	142,30
UE 811/2013 performance in average ambient condition	ons (average) - 35 °	C - Pdesignh ≤ 70	kW (1)						
Pdesignh	kW	7	9	11	13	14	16	26	32
SCOP	W/W	3,38	3,40	3,50	3,48	3,60	4,65	3,90	3,90
ηsh	%	3,38	3,40	3,50	3,48	3,60	3,40	3,90	3,90
Efficiency energy class		A+	A+	A+	A+	A+	A+	A++	A++
Power supply: M									
Cooling capacity with low leaving water temp (UE n° 20	016/2281)								
SEER	W/W	3,07	3,18	3,27	3,55	-	-	-	-
ηςς	%	119,60	124,10	127,80	139,00	-	-	-	-
UE 811/2013 performance in average ambient condition	ons (average) - 35 °	C - Pdesignh ≤ 70	kW (1)						
Pdesignh	kW	7	9	10	12	-	-	-	-
SCOP	W/W	3,33	3,40	3,43	3,55	-	-	-	-
ηsh	%	130,00	133,00	134,00	139,00	-	-	-	-
Efficiency energy class		A+	A+	A+	A+	-	-	-	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

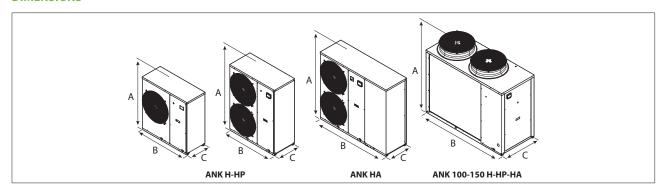
⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

Energy index ANK - HP/HA

Size		020	030	040	045	050	085	100	150
Power supply: °									
Cooling capacity with low leaving water temp (UE n° 2	016/2281)								
SEER	W/W	3,09	3,20	3,39	3,33	3,46	3,50	3,74	3,50
ηςς	%	121,00	125,00	132,00	130,00	135,00	137,00	147,00	137,00
UE 811/2013 performance in average ambient condition	ons (average) - 35 °	C - Pdesignh ≤ 70	kW (1)						
Pdesignh	kW	7	9	11	13	14	15	25	30
SCOP	W/W	3,45	3,50	3,58	3,53	3,65	3,45	3,83	3,70
ηsh	%	135,00	137,00	140,00	138,00	143,00	135,00	150,00	145,00
Efficiency energy class		A+	A+	A+	A+	A+	A+	A++	A++
Power supply: M									
Cooling capacity with low leaving water temp (UE n° 2	016/2281)								
SEER	W/W	3,10	3,20	3,34	3,54	-	-	-	-
ηςς	%	121,00	125,00	131,00	138,00	-	-	-	-
UE 811/2013 performance in average ambient condition	ons (average) - 35 °	C - Pdesignh ≤ 70	kW (1)						
Pdesignh	kW	7	9	10	12	-	-	-	-
SCOP	W/W	-	-	-	-	-	-	-	-
ηsh	%	133,00	137,00	137,00	141,00	-	-	-	-
Efficiency energy class		A+	A+	A+	A+	-	-	-	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA


Size			020	030	040	045	050	085	100	150
Power supply: °										
Electric data										
Mariana arrant (FLA)	0	А	6,0	8,0	9,0	11,0	12,0	12,0	22,0	26,0
Maximum current (FLA)	A,P	A	6,8	8,4	9,8	11,9	13,1	13,6	23,6	28,9
Deals assument (LDA)	٥	А	40,0	40,0	54,0	61,0	71,0	91,0	73,0	105,0
Peak current (LRA)	A,P	А	40,4	41,0	55,0	62,6	72,6	92,6	74,6	107,8
Peak current with Soft-start	°,A,P	A	-	-	-	-	-	-	-	-
Power supply: M										
Electric data										
	0	A	14,0	19,0	22,0	25,0	-	-	-	-
Maximum current (FLA)	A	А	14,6	20,1	22,9	26,3	-	-	-	-
	P	A	14,6	20,1	22,9	26,3	-	-	-	-
Dl	°,P	A	-	-	-	-	-	-	-	-
Peak current (LRA)	A	Α	-	-	-	-	-	-	-	-
	0	A	45,0	45,0	45,0	45,0	-	-	-	-
Peak current with Soft-start	A	Α	45,7	45,7	45,7	46,3	-	-	-	-
	P	A	45,7	45,7	45,7	46,3	-	-	-	-

GENERAL TECHNICAL DATA

Size			020	030	040	045	050	085	100	150
Compressor									'	
Туре	°,A,P	type				Sci	roll			
Compressor regulation	°,A,P	Туре				On-	-off			
Number	°,A,P	no.	1	1	1	1	1	1	2	2
Circuits	°,A,P	no.	1	1	1	1	1	1	1	1
Refrigerant	°,A,P	type				R4	10A			
Refrigerant charge (1)	°,A,P	kg	2,9	4,3	4,3	5,5	6,0	6,0	12,0	14,5
System side heat exchanger										
Туре	°,A,P	type				Braze	d plate			
Number	°,A,P	no.	1	1	1	1	1	1	1	1
Hydraulic connections										
Connections (in/out)	°,A,P	Туре				Gas	5-F			
Size (in)	°,A,P	Ø				1′	11/4			
Size (out)	°,A,P	Ø				1′	11/4			
Fan										
Туре	°,A,P	type				Ax	rial			
Fan motor	°,A,P	type	Inverter	Inverter	Inverter	Inverter	Inverter	Inverter	Asynchronous	Asynchronous
Number	°,A,P	no.	1	1	2	2	2	2	2	2
Air flow rate	°,A,P	m³/h	3500	8000	8000	7500	7500	7500	14500	14500
Sound data calculated in cooling	mode (2)									
Sound power level	°,A,P	dB(A)	68,0	70,5	70,5	70,5	70,5	70,5	77,0	78,0
Sound pressure level (10 m)	°,A,P	dB(A)	36,7	39,2	39,1	39,1	39,1	39,1	72,6	73,6

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			020	030	040	045	050	085	100	150
Dimensions and weights										
A	°,A,P	mm	1028	1281	1281	1281	1281	1281	1450	1450
	°,P	mm	1000	1000	1000	1000	1000	1000	1450	1450
D	A	mm	1358	1450	1450	1450	1450	1450	1750	1750
C	°,A,P	mm	400	400	450	450	450	450	750	750
	0	kg	118	149	152	165	172	174	296	341
Empty weight	A	kg	160	211	214	232	238	241	364	412
	P	kg	123	154	157	175	182	184	314	362

SWP

- Production of hot water up to 60°C (70°C with the electric heater)
- Operation with suction air from 8°C to 35°C (extended to -15°C to 45°C with the electric heater)
- Versions with standard storage tank or with 1 or 2 coils to be used in combination with several additional sources

DESCRIPTION

The SWP heat pumps use the thermal energy of air for production of domestic hot water. The process occurs in the most efficient and profitable way with average COPs > 3. The energy advantage of the SWP heat pumps also safeguards the environment, using most of its energy from solar radiation.

Easy installation, silent and reliable functioning and very low maintenance requirements complete the benefits of this highly ecological and economic system.

FEATURES

- Steel tank with a double vitrification.
- Condenser wrapped externally to the boiler with no scales and refrigerant-water fluid contamination
- Auxiliary coil to be used together with a boiler or solar panels
- Integrated NTC sensor to control the water temperature
- External air sensor for automatic connection of the electric heater with unfavourable temperatures in heat pump mode
- Anti-corrosion magnesium anode
- Hydraulic connections located at rear of unit
- Thermal insulation made of very thick expanded polyurethane foam with a silver grey RAL 2006 external covering (ABS)
- Adjustable support feet
- Gas R134a
- Electric heater 1500 W 230V
- High pressure safety devices

- Rotary compressor
- Radial fan with an adjustment of 40 % of the nominal flow rate

Electronic controller:

- water set point adjustment
- external air temperature sensing
- auto-diagnostic with display of the high/low pressure alarm, water overheating alarm and disconnected sensors alarm
- record of run hours
- control of minimum time between successive compressor starts
- setting of parameters from the keyboard
- control of electric heater in manual mode or in supplementary automatic mode for low external temperatures
- periodic antibacterial treatment cycle to eliminate and prevent Legionella from developing
- user display to set the operating mode and various parameters with different levels of accessibility by means of passwords

VERSIONS

SWP301: Standard where the heat pump and the electric heater are the source of heat.

SWP 30151: With auxiliary coil to be used together with a boiler or solar panels.

SWP301S2: With double auxiliary coils for simultaneous use of three heat sources.

ACCESSORIES

SWPTA: Titanium electronic sacrificial anode.

ACCESSORIES COMPATIBILITY

Accessory	SWP301	SWP301S1	SWP301S2
SWPTA	•	•	•

PERFORMANCE SPECIFICATIONS

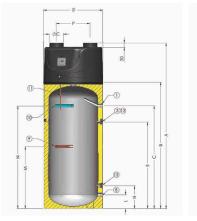
		SWP301	SWP301S1	SWP301S2
Performance in heating mode from 10°C t	:o 54°C (1)			
Heating capacity	W	1950	1950	1950
Electric input power (average)	W	488	488	488
Electric input power (maximum)	W	700	700	700
Input power in standby (Pes)	W	43	43	43
COP (2)	W/W	2,91	2,91	2,91
Heating time	hh:mm	07:22	07:22	07:22

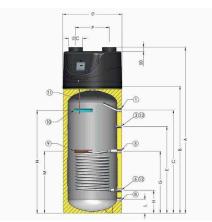
⁽¹⁾ Values measured when heating the water from 10°C to 54°C with 15°C inlet air temperature and 71° relative humidity (2) Value obtained on the entire L-type withdrawal cycle, at the reference temperature of 54°C (as required by EN 16147)

ELECTRIC DATA

		SWP301	SWP301S1	SWP301S2
Power supply				
Power supply		230V~50Hz	230V~50Hz	230V~50Hz
Electric heater				
Number	no.	1	1	1
Input power	W	1500	1500	1500
Maximum current	A	10,00	10,00	10,00

GENERAL TECHNICAL DATA


		SWP301	SWP301S1	SWP301S2
Accumulation inertial				
Storage tank capacity	I	273	268	265
Insulation thickness	mm	50	50	50
Type of corrosion protection	type		Anodo sacrificale in magnesio	
Maximum operating pressure	bar	6	6	6
Maximum working pressure of auxiliary coil (inf./sup.)	bar	10,0	10,0	10,0
Auxiliary serpentine surface (inf./sup.)		-	1,5	1,5/0,6
Capacity required for the coil 80/60 °C (inf./sup.)		-	1,6	1,6/0,6
Domestic hot water production 80/60 ° C - 10/45 ° C			0,9	0.0/0.2
(DIN 4708)		<u>-</u>	0,9	0,9/0,3
Maximum volume of DHW usable at 40 °C (Vmax)	I	370	370	370
Max DHW temperature with heat pump	°C		60 (55 di fabbrica)	
Fan				
Туре	type		Radiale	
Number	no.	1	1	1
Air flow rate	m³/h	450	450	450
High static pressure	Pa	80	80	80
Sound data				
Sound power level	dB(A)	60,0	60,0	60,0
Sound pressure level (L _o A at 1 metre) (1)	dB(A)	49,0	49,0	49,0


⁽¹⁾ In free field, with non-ducted inlets/outlets

DIMENSIONS

SWP 301

SWP 301S2

Key:

- Hot water withdrawal Rp 1" 1
- Heating delivery Rp 1" 2
- 3 Recirculation - Rp 1/2"
- 4 Heating return - Rp 1"
- 5
- Solar delivery Rp 1" Solar return Rp 1" 6
- Condensate drainage Rp 1/2" Chilled water inlet Rp 1"
- Electric heater Rp 1" 1/4 9
- 10 Anode Rp 1" 1/4
- Control probe sump L = 700 mm Rp11 1/2"
- 12 Probe sump L = 70 mm, Ø 12 mm

		SWP301	SWP301S1	SWP301S2
Dimensions and weig	hts			
A	mm	1845	1845	1845
В	mm	1410	1410	1410
(mm	1150	1150	1150
D	mm	-	-	1060
E	mm	965	965	965
F	mm	-	-	890
G	mm	-	690	690
Н	mm	-	255	255
I	mm	965	965	965
L	mm	155	155	155
М	mm	690	690	690
N	mm	1145	1145	1145
Ø	mm	660	660	660
Øc	mm	160	160	160
Weight for transport	kg	112,00	127,00	145,00

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

ANL 021-202

Air-water chiller

Cooling capacity 5,7 ÷ 43,3 kW

- Standard version
- Version with Integrated hydronic kit system side

DESCRIPTION

Chillers for external installation for chilled water production with scroll compressors, axial fans, external copper coils with aluminum louvers from size 020 to 090, microchannel from size 102 to 202.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

N With increased pump

P With pump

Q With storage tank and increased pump

FEATURES

Operating field

Operation at full load up to 46° C external air temperature. Unit can produce chilled water up to -10° C.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to facilitate installation.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

Double mechanical thermostat

On the configurator it is also possible to select the option "W" double mechanical thermostatic valve for low temperatures.

Using two electronic valves in parallel guarantees a precise and efficient control in a wide operating range. This allows them to produce chilled water from -10 $^{\circ}$ C to +18 $^{\circ}$ C.

The option is only available for sizes from 050 to 090 in the °-A-Q versions and from size 102 to 202 in all versions.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Antivibration supports

FACTORY FITTED ACCESSORIES

COMPATIBILITY WITH VMF SYSTEM

DRE: Electronic device for peak current reduction. **RA:** Anti-freeze electric heater for the buffer tank.

For more information about VMF system, refer to the dedicated documentation.

KR: Anti-freeze electric heater for the plate heat exchanger.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	021	026	031	041	050	070	080	090	102	152	202
	°,A,P			•								•
AERLINK	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P		•	•	•	•	•	•	•	•	•	
MODU-485BL	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
MULTICONTROL	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
PR3	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
SPLW (1)	N									•	•	•
	Q					•	•	•	•	•	•	•
·	°,A,P	•	•	•	•	•	•	•	•	•	•	•
VMF-CRP	N									•	•	•
	Q											

⁽¹⁾ Probe required for MULTICONTROL to manage the secondary circuit system.

DCPX: Condensation control temperature

Ver	021	026	031	041	050	070	080	090	102	152	202
°,A,P	DCPX50	DCPX52	DCPX52	DCPX52							
N	-	-	-	-	-	-	-	-	DCPX52	DCPX52	DCPX52
Q	-	-	-	-	DCPX50	DCPX50	DCPX50	DCPX50	DCPX52	DCPX52	DCPX52

VT: Antivibration

Ver	021	026	031	041	050	070	080	090	102	152	202
°,P	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT15	VT15	VT15
A	VT9	VT9	VT9	VT9	VT15						
N	-	-	-	-	-	-	-	-	VT15	VT15	VT15
Q	-	-	-	-	VT15						

DRE: Device for peak current reduction

	Ver	050	070	080	090	102	152	202
Ī	ower supply: °							
	°,A,P,Q	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)
	N	-	-	-	-	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

KR: electric heater for the plate heat exchanger

Ver	021	026	031	041	050	070	080	090	102	152	202
°,P	KR2	KR100	KR100	KR100							
A,Q	-	-	-	-	KR2	KR2	KR2	KR2	KR100	KR100	KR100
N	-	-	-	-	-	-	-	-	KR100	KR100	KR100

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

RA: electric heater for the buffer tank

- 3												
	Ver	021	026	031	041	050	070	080	090	102	152	202
	A	RA	RA100	RA100	RA100							
	0	-	-	-	-	RA	RA	RA	RA	RA100	RA100	RA100

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	ANL
4,5,6	Size
4,3,0	021, 026, 031, 041, 050, 070, 080, 090, 102, 152, 202
7	Model
0	Cooling only
8	Version
0	Standard
A	With storage tank and pump
N	With increased pump (1)
P	With pump
Q	With storage tank and increased pump (2)
9	Heat recovery
•	Without heat recovery
D	With desuperheater (3)
10	Coils
0	Copper-aluminium (4)
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
11	Operating field
0	Standard mechanic thermostatic valve (5)
W	Double mechanical thermostat for low temperature (6)
Υ	Low temperature mechanic thermostatic valve (7)
Z	Low temperatures mechanic thermostatic valve (8)
12	Evaporator
0	Standard
13	Power supply
0	400V 3N ∼ 50Hz (9)
M	230V ~ 50Hz (10)

PERFORMANCE SPECIFICATIONS

$ANL - (400V 3N \sim 50Hz / 230V \sim 50Hz)$

Size		021	026	031	041	050	070	080	090	102	152	202
Power supply: °												
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	5,7	6,2	7,5	9,6	13,4	16,4	20,4	22,2	26,5	32,9	42,8
Input power	kW	1,9	2,0	2,5	3,3	4,1	4,9	6,4	6,8	8,0	10,2	13,5
Cooling total input current	A	3,7	4,2	4,7	6,2	8,7	9,7	12,0	13,0	16,0	19,0	25,0
EER	W/W	3,03	3,04	2,99	2,90	3,26	3,33	3,18	3,28	3,32	3,21	3,18
Water flow rate system side	l/h	979	1065	1289	1649	2302	2835	3522	3831	4570	5670	7388
Pressure drop system side	kPa	21	21	22	24	30	30	36	50	58	61	68
Power supply: M												
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	5,7	6,2	7,5	9,6	-	-	-	-	-	-	-
Input power	kW	1,9	2,0	2,5	3,3	-	-	-	-	-	-	-
Cooling total input current	A	6,4	7,3	8,2	11,0	-	-	-	-	-	-	-
EER	W/W	3,03	3,04	2,99	2,90	-	-	-	-	-	-	-
Water flow rate system side	l/h	979	1065	1289	1649	-	-	-	-	-	-	-
Pressure drop system side	kPa	21	21	22	24	-	-	-	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

⁽¹⁾ Only for ANL 102 ÷ 202 sizes
(2) Only for ANL 050 ÷ 202 sizes
(3) If the unit is also fitted with one of the low temperature valves in addition to the desuperheater, it is necessary to always guarantee a water temperature of 35°C at the inlet of the heat exchanger. The desuperheater is only available in sizes from 050 to 090 in the version with storage tank "A", and from size 102 to 202 in all versions.

(4) Sizes from 102 to 202 have a micro-channel coil

⁽⁵⁾ Water produced up to +4 °C
(6) Water produced from -10 °C to 18 °C; Option available only for sizes starting from 050 to 090 in the °-A-Q versions and from 102 to 202 in all versions
(7) Water produced from 0 °C up to -10 °C
(8) Water produced from +4 °C up to +0 °C
(9) For all sizes
(10) Only for ANL 021 ÷ 041 sizes

ANL - P (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		021	026	031	041	050	070	080	090	102	152	202
Power supply: °												
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	5,7	6,2	7,6	9,7	13,5	16,6	20,6	22,4	26,8	33,2	43,2
Input power	kW	1,8	2,0	2,5	3,2	4,1	4,9	6,4	6,7	8,1	10,5	13,8
Cooling total input current	A	4,0	4,5	5,0	6,6	9,3	10,0	13,0	13,0	17,0	21,0	27,0
EER	W/W	3,11	3,12	3,07	2,97	3,31	3,38	3,23	3,35	3,32	3,15	3,13
Water flow rate system side	l/h	979	1065	1289	1649	2302	2835	3522	3831	4570	5670	7388
Useful head system side	kPa	73,0	73,0	71,0	65,0	76,0	72,0	57,0	52,0	84,0	115,0	90,0
Power supply: M												
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	5,7	6,2	7,6	9,7	-	-	-	-	-	-	-
Input power	kW	1,8	2,0	2,5	3,2	-	-	-	-	-	-	-
Cooling total input current	A	7,0	7,9	8,8	11,0	-	-	-	-	-	-	-
EER	W/W	3,11	3,12	3,07	2,97	-	-	-	-	-	-	-
Water flow rate system side	l/h	979	1065	1289	1649	-	-	-	-	-	-	-
Useful head system side	kPa	73,0	73,0	71,0	65,0	-	-	-	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ANL - N (400V 3N ~ 50Hz)

Size		021	026	031	041	050	070	080	090	102	152	202
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	-	-	-	-	-	-	-	-	26,8	33,3	43,3
Input power	kW	-	-	-	-	-	-	-	-	8,5	10,6	13,8
Cooling total input current	A	-	-	-	-	-	-	-	-	18,0	21,0	27,0
EER	W/W	-	-	-	-	-	-	-	-	3,17	3,15	3,13
Water flow rate system side	l/h	-	-	-	-	-	-	-	-	4570	5669	7387
Useful head system side	kPa	-	-	-	-	-	-	-	-	140,0	185,0	159,0

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ANL - A (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		021	026	031	041	050	070	080	090	102	152	202
Power supply: °												
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	5,7	6,2	7,6	9,7	13,5	16,6	20,6	22,4	26,8	33,2	43,2
Input power	kW	1,8	2,0	2,5	3,2	4,1	4,9	6,4	6,7	8,1	10,5	13,8
Cooling total input current	А	4,0	5,0	5,0	7,0	10,0	11,0	13,0	14,0	17,0	21,0	27,0
EER	W/W	3,11	3,12	3,07	2,97	3,31	3,38	3,23	3,35	3,32	3,15	3,13
Water flow rate system side	l/h	979	1065	1288	1649	2302	2834	3522	3831	4570	5669	7387
Useful head system side	kPa	73,0	73,0	71,0	65,0	76,0	72,0	57,0	52,0	84,0	115,0	91,0
Power supply: M												
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	5,7	6,2	7,6	9,7	-	-	-	-	-	-	-
Input power	kW	1,8	2,0	2,5	3,2	-	-	-	-	-	-	-
Cooling total input current	A	7,0	7,9	8,8	11,0	-	-	-	-	-	-	-
EER	W/W	3,11	3,12	3,07	2,97	-	-	-	-	-	-	-
Water flow rate system side	l/h	979	1065	1289	1649	-	-	-	-	-	-	-
Useful head system side	kPa	73,0	73,0	71,0	65,0	-	-	-	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ANL - Q (400V 3N ~ 50Hz)

71112 Q (1001 511 50112)												
Size		021	026	031	041	050	070	080	090	102	152	202
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	-	-	-	-	13,6	16,7	20,7	22,5	26,8	33,3	43,3
Input power	kW	-	-	-	-	4,2	5,0	6,5	6,8	8,5	10,6	13,8
Cooling total input current	A	-	-	-	-	10,0	11,0	13,0	14,0	18,0	21,0	27,0
EER	W/W	-	-	-	-	3,24	3,33	3,19	3,31	3,17	3,15	3,13
Water flow rate system side	l/h	-	-	-	-	2302	2834	3522	3831	4570	5669	7387
Useful head system side	kPa	-	-	-	-	160,0	159,0	144,0	140,0	140,0	185,0	159,0

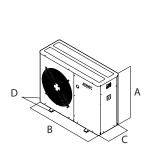
⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

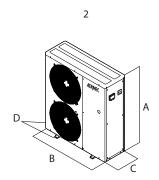
Size			021	026	031	041	050	070	080	090	102	152	202
SEER - 12/7 (EN14825:2018) with standard f	fans (1)												
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A,P	W/W	4,18	4,20	4,17	4,10	4,16	4,34	4,19	4,31	4,11	4,11	4,10
SEER —	N	W/W	-	-	-	-	-	-	-	-	- (2)	- (2)	- (2)
_	Q	W/W	-	-	-	-	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	0	%	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A,P	%	164,00	164,80	163,60	161,00	163,40	170,70	164,60	169,40	161,30	161,20	161,10
Seasonal efficiency —	N	%	-	-	-	-	-	-	-	-	- (2)	- (2)	- (2)
_	Q	%	-	-	-	-	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEER - 23/18 (EN14825: 2018) with standard	d fans (3)												
	0	W/W	4,34	4,35	4,31	4,21	4,55	4,68	4,49	4,61	4,83	4,73	4,69
	A,P	W/W	4,49	4,51	4,48	4,47	4,55	4,64	4,57	4,66	4,49	4,25	4,28
SEER —	N	W/W	-	-	-	-	-	-	-	-	4,15	4,18	4,23
_	Q	W/W	-	-	-	-	4,18	4,44	4,35	4,49	4,15	4,18	4,23
	٥	%	170,40	170,90	169,20	165,20	179,10	184,30	176,60	181,50	190,30	186,00	184,70
Cassand off sion on	A,P	%	176,70	177,50	176,00	175,60	179,00	182,40	179,80	183,50	176,60	167,00	168,00
Seasonal efficiency —	N	%	-	-	-	-	-	-	-	-	163,10	164,20	166,00
_	Q	%	-	-	-	-	164,30	174,50	171,10	176,70	163,10	164,20	166,00
SEPR - (EN14825: 2018) High temperature v	vith standa	rd fans (3)											
	0	W/W	5,92	5,92	5,85	5,69	6,36	6,50	6,21	6,43	6,79	6,58	6,49
	A,P	W/W	6,56	6,57	6,45	6,21	6,74	6,90	6,55	6,78	6,68	6,18	6,17
SEPR —	N	W/W	-	-	-	-	-	-	-	-	5,91	6,09	6,10
_	Q	W/W	-	-	-	-	6,03	6,28	6,08	6,30	5,91	6,09	6,10

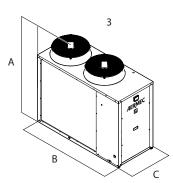
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA


Size			021	026	031	041	050	070	080	090	102	152	202
Power supply: °													
Electric data													
	٥	Α	5,0	6,0	6,0	9,0	11,0	14,0	16,0	17,0	22,0	26,0	32,0
Maximum assessed (FLA)	A,P	Α	6,0	7,0	7,0	10,0	13,0	15,0	18,0	19,0	23,0	28,0	34,0
Maximum current (FLA)	N	Α	-	-	-	-	-	-	-	-	24,0	28,0	34,0
	Q	Α	-	-	-	-	12,0	14,0	17,0	18,0	24,0	28,0	34,0
	0	A	28,0	38,0	39,0	44,0	65,0	75,0	102,0	96,0	76,0	87,0	117,0
Peak current (LRA)	A,P	А	29,0	39,0	40,0	45,0	67,0	77,0	104,0	98,0	77,0	89,0	119,0
	N	А	-	-	-	-	-	-	-	-	78,0	89,0	119,0
	Q	А	-	-	-	-	66,0	76,0	103,0	97,0	78,0	89,0	119,0
Power supply: M													
Electric data													
	٥	A	13,0	16,0	18,0	22,0	-	-	-	-	-	-	-
Maximum current (FLA)	A,P	А	14,0	17,0	19,0	23,0	-	-	-	-	-	-	-
	N,Q	A	-	-	-	-	-	-	-	-	-	-	-
	0	Α	64,0	68,0	69,0	100,0	-	-	-	-	-	-	-
Peak current (LRA)	A,P	А	62,0	69,0	70,0	101,0	-	-	-	-	-	-	-
an carrent (Emy	N,Q	А	-	-	-	-	-	-	-	-	-	-	-

GENERAL TECHNICAL DATA


		ANL021	ANL026	ANL031	ANL041	ANL050	ANL070	ANL080	ANL090	ANL102	ANL152	ANL202
Compressor												
Туре	type						Scroll					
Compressor regulation	Туре						0n-0ff					
Number	no.	1	1	1	1	1	1	1	1	2	2	2
Circuits	no.	1	1	1	1	1	1	1	1	1	1	1
Refrigerant	type						R410A					
Refrigerant charge (1)	kg	1,2	1,2	1,2	1,3	2,8	2,8	3,0	3,9	5,9	5,9	5,9
System side heat exchanger												
Туре	type						Brazed plate					
Number	no.	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections												
Sizes (in/out)	Ø						1″1/4					
Fan												
Туре	type						Axial					
Fan motor	type					Asynch	ronous with p	hase cut				
Number	no.	1	1	1	1	1	1	1	1	2	2	2
Air flow rate	m³/h	2500	2500	3500	3500	7200	7200	7300	7200	14000	13500	13500
Sound data calculated in cooling mode (2)												
Sound power level	dB(A)	61,0	61,0	68,0	68,0	69,0	69,0	69,0	68,0	76,0	77,0	78,0


		ANL021	ANL026	ANL031	ANL041	ANL050	ANL070	ANL080	ANL090	ANL102	ANL152	ANL202
Sound pressure level (1 m)	dB(A)	29,8	29,8	36,8	36,8	37,6	37,6	37,6	36,6	44,5	45,5	46,5

DIMENSIONS

1

- ANL 021-041
- ANL 050-070 2
- 3 ANL 102-202

Size			021	026	031	041	050	070	080	090	102	152	202
Dimensions and weights													
	°,P	mm	1000	1000	1000	1000	1252	1252	1252	1252	1450	1450	1450
Α.	A	mm	1015	1015	1015	1015	1281	1281	1281	1281	1450	1450	1450
A	N	mm	-	-	-	-	-	-	-	-	1450	1450	1450
	Q	mm	-	-	-	-	1281	1281	1281	1281	1450	1450	1450
	°,P	mm	900	900	900	900	1124	1124	1124	1124	1750	1750	1750
n	A	mm	1124	1124	1124	1124	1165	1165	1165	1165	1750	1750	1750
В	N	mm	-	-	-	-	-	-	-	-	1750	1750	1750
	Q	mm	-	-	-	-	1165	1165	1165	1165	1750	1750	1750
	°,P	mm	310	310	310	310	384	384	384	384	750	750	750
r	А	mm	384	384	384	384	550	550	550	550	750	750	750
C	N	mm	-	-	-	-	-	-	-	-	750	750	750
	Q	mm	-	-	-	-	550	550	550	550	750	750	750
	°,P	mm	354	354	354	354	428	428	428	428	-	-	-
n	A	mm	428	428	428	428	-	-	-	-	-	-	-
D	N	mm	-	-	-	-	-	-	-	-	-	-	-
	Q	mm	-	-	-	-	-	-	-	-	-	-	-
<u> </u>	0	kg	86	86	86	86	120	120	120	156	270	293	329
	A	kg	103	103	103	103	147	147	147	183	338	364	400
Empty weight	N	kg	-	-	-	-	-	-	-	-	338	364	400
	Р	kg	91	91	91	91	127	127	163	163	288	314	350
	Q	kg	-	-	-	-	151	151	151	187	338	364	400

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

ANL 021H -203H

Reversible air/water heat pump

Cooling capacity 5,7 ÷ 49,1 kW Heating capacity 6,2 ÷ 43,3 kW

- It is possible to produce hot domestic water
- Compact dimensions
- Quick & easy installation

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users.

Equipped with scroll compressors, axial fans, external coil with aluminium louvers, plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

N With increased pump

P With pump

Q With storage tank and increased pump

FEATURES

Operating field

Full load up to 46 ° C ambient air temperature with the possibility to produce chilled water down to -10° C in cooling mode (for more details refer to the technical documentation).

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to facilitate installation.

Inverter fans

Inverter fans from size 031 to 091 for all sizes.

■ The DCPX accessory is not required for these sizes.

Double mechanical thermostat

On the configurator it is also possible to select the option "W" double mechanical thermostatic valve for low temperatures.

Using two electronic valves in parallel guarantees a precise and efficient control in a wide operating range. This allows them to produce chilled water from -10 $^{\circ}$ C to +18 $^{\circ}$ C.

■ The option is available only for sizes starting from 051 to 091 in the °-A-Q versions and from size 103 to 203 in all versions.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with

the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

VT: Antivibration supports BDX: Condensate drip.

RA: Anti-freeze electric heater for the buffer tank.

KR: Anti-freeze electric heater for the plate heat exchanger.

KRB: -

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

ACCESSORIES COMPATIBILITY

Model	Ver	021	026	031	041	051	071	081	091	103	153	203
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
AERLINK	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
MODU-485BL	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
MULTICONTROL	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
PR3	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
SDHW (1)	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
SPLW (2)	N									•	•	•
	Q					•	•	•	•	•	•	•
	°,A,P	•	•	•	•	•	•	•	•	•	•	•
VMF-CRP	N									•	•	•
	Q					•	•	•	•	•	•	•

⁽¹⁾ Probe required for MULTICONTROL for managing the domestic hot water system.
(2) Probe required for MULTICONTROL to manage the secondary circuit system.

DCPX: Condensation control temperature

Ver	021	026	031	041	051	071	081	091	103	153	203
°,A,P	DCPX51	DCPX51	-	-	-	-	-	-	DCPX53	DCPX53	DCPX53
0	-	-	-	-	-	-	-	-	DCPX53	DCPX53	DCPX53

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Ver	021	026	031	041	051	071	081	091	103	153	203
°,P	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT9	VT15	VT15	VT15
A	VT9	VT9	VT9	VT9	VT15						
N	-	-	-	-	-	-	-	-	VT15	VT15	VT15
Q	-	-	-	-	VT15						

Condensate drip

Ver	021	026	031	041	051	071	081	091	103	153	203
°,P	BDX5	-	-	-							
A	BDX5	BDX5	BDX5	BDX5	BDX6	BDX6	BDX6	BDX6	-	-	-
Q	-	-	-	-	BDX6	BDX6	BDX6	BDX6	-	-	-

The accessory cannot be fitted on the configurations indicated with -

DRE: Device for peak current reduction

Ver	021	026	031	041	051	071	081	091	103	153	203
°,A,P,Q	-	-	-	-	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)
N	-	-	-	-	-	-	-	-	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

KR: electric heater for the heat exchanger

Ver	021	026	031	041	051	071	081	091	103	153	203
°,P	KR2	KR100	KR100	KR100							
A	-	-	-	-	KR2	KR2	KR2	KR2	KR100	KR100	KR100
N,Q	-	-	-	-	-	-	-	-	KR100	KR100	KR100

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

RA: Anti-freeze electric heater for the buffer tank

Ver	021	026	031	041	051	071	081	091	103	153	203
A	RA	RA100	RA100	RA100							
Q	-	-	-	-	RA	RA	RA	RA	RA100	RA100	RA100

A grey background indicates the accessory must be assembled in the factory

KRB: Electric heater for the base

Ver	021	026	031	041	051	071	081	091	103	153	203
°,A,N,P,Q	-	-	-	-	-	-	-	-	KRB3 (1)	KRB3 (1)	KRB3 (1)

⁽¹⁾ Incompatible with the condensate collection basin accessory with integrated resistance. The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	ANL
4,5,6	Size 021, 026, 031, 041, 051, 071, 081, 091, 103, 153, 203
7	Model
Н	Heat pump
8	Version
•	Standard
A	With storage tank and pump
N	With increased pump (1)
P	With pump
Q	With storage tank and increased pump (2)
9	Heat recovery
0	Without heat recovery
D	With desuperheater (3)
10	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
11	Operating field
0	Standard mechanic thermostatic valve
W	Double mechanical thermostat for low temperature (4)
12	Evaporator
0	Standard
13	Power supply
0	400V 3N ~ 50Hz (5)
M	230V ~ 50Hz (6)

⁽¹⁾ Only for ANL 103 + 203 sizes
(2) Only for ANL 051 + 203 sizes
(3) The desuperheater must be intercepted during heating mode. If the unit is also fitted with one of the low temperature valves in addition to the desuperheater, during cold operation, it is necessary to always guarantee a water temperature of 35°C at the inlet of the heat exchanger. It is only available in sizes from 051 to 091 in the version with storage tank "A", and from size 103 to 203 in all versions.

(4) Water produced from -10 °C to 18 °C; Option available only for sizes starting from 051 to 091 in the °-A-Q versions and from 103 to 203 in all versions
(5) Only for ANL 021 + 203 sizes
(6) Only for ANL 021 + 041 sizes

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

$ANL - (H^{\circ}) - (400V 3N \sim 50Hz / 230V \sim 50Hz)$

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	5,7	6,2	7,5	9,6	13,3	16,3	20,0	21,5	25,5	31,7	40,2
Input power	kW	1,9	2,0	2,5	3,3	4,4	5,9	6,7	6,7	9,2	11,0	14,1
Cooling total input current - 400V	A	3,7	4,2	4,7	6,2	8,7	9,7	12,0	13,0	16,0	19,0	25,0
Cooling total input current - 230V	A	6,4	7,3	8,1	11,0	-	-	-	-	-	-	-
EER	W/W	3,02	3,02	2,98	2,90	3,06	2,77	3,01	3,21	2,79	2,87	2,85
Water flow rate system side	l/h	979	1065	1289	1649	2294	2807	3452	3713	4398	5467	6929
Pressure drop system side	kPa	30	31	32	30	34	35	44	60	55	57	62
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	6,2	7,0	8,4	9,8	13,3	17,4	21,0	22,1	26,2	35,5	42,0
Input power	kW	1,9	2,2	2,7	3,1	4,1	5,2	6,0	6,4	8,8	11,1	12,7
Heating total input current - 400V	Α	3,8	4,4	5,4	6,8	9,5	10,0	13,0	14,0	17,0	19,0	25,0
Heating total input current - 230V	A	6,6	7,6	9,3	12,0	-	-	-	-	-	-	-
COP	W/W	3,21	3,27	3,17	3,22	3,21	3,32	3,49	3,47	2,99	3,21	3,32
Water flow rate system side	l/h	1078	1217	1460	1700	2294	3007	3638	3827	4529	6137	7265
Pressure drop system side	kPa	36	40	41	37	38	39	53	72	70	70	78

ANL - (HA/HP) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	5,7	6,2	7,6	9,7	13,4	16,4	20,2	21,7	25,8	32,1	40,6
Input power	kW	1,8	2,0	2,5	3,2	4,3	5,8	6,6	6,6	9,2	11,1	14,2
Cooling total input current - 400V	A	4,0	4,5	5,0	6,6	9,3	10,0	13,0	13,0	17,0	21,0	27,0
Cooling total input current - 230V	A	6,9	7,9	8,7	11,0	-	-	-	-	-	-	-
EER	W/W	3,11	3,12	3,07	2,97	3,11	2,82	3,06	3,29	2,79	2,89	2,87
Water flow rate system side	l/h	979	1065	1289	1649	2294	2807	3452	3713	4398	5467	6929
Useful head system side	kPa	73,0	73,0	71,0	65,0	76,0	72,0	57,0	52,0	88,0	125,0	111,0
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	6,2	7,0	8,3	9,7	13,1	17,2	20,9	21,9	25,9	35,0	41,5
Input power	kW	1,9	2,1	2,6	3,0	4,1	5,2	5,9	6,3	8,9	11,2	12,7
Heating total input current - 400V	A	4,1	4,7	5,8	7,2	10,0	11,0	14,0	14,0	18,0	21,0	27,0
Heating total input current - 230V	A	7,2	8,2	9,9	12,0	-	-	-	-	-	-	-
COP	W/W	3,23	3,30	3,21	3,25	3,20	3,33	3,51	3,51	2,92	3,14	3,26
Water flow rate system side	l/h	1078	1217	1460	1700	2294	3007	3638	3827	4529	6137	7265
Useful head system side	kPa	68,0	67,0	65,0	58,0	72,0	65,0	46,0	40,0	64,0	94,0	68,0

ANL - (HN/HQ) - (400V 3N ~ 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 12 °C/7 °C (1)												
Cooling capacity	kW	-	-	-	-	13,5	16,5	20,3	21,8	25,8	32,1	40,6
Input power	kW	-	-	-	-	4,4	5,9	6,7	6,7	9,6	11,4	14,5
Cooling total input current - 400V	A	-	-	-	-	9,7	11,0	13,0	14,0	18,0	21,0	27,0
EER	W/W	-	-	-	-	3,05	2,78	3,03	3,25	2,68	2,82	2,81
Water flow rate system side	l/h	-	-	-	-	2294	2807	3452	3713	4398	5467	6929
Useful head system side - ver. "Q"	kPa	-	-	-	-	160	159	144	140	147	192	170
Useful head system side - ver. "N"	kPa	-	-	-	-	-	-	-	-	147	192	170
Heating performance 40 °C / 45 °C (2)												
Heating capacity	kW	-	-	-	-	13,0	17,1	20,8	21,8	25,9	35,0	41,5
Input power	kW	-	-	-	-	4,2	5,3	6,1	6,4	9,3	11,4	13,0
Heating total input current - 400V	A	-	-	-	-	10,0	11,0	14,0	15,0	19,0	21,0	28,0
COP	W/W	-	-	-	-	3,10	3,24	3,42	3,43	2,78	3,07	3,19
Water flow rate system side	l/h	-	-	-	-	2294	3007	3638	3827	4529	6137	7265
Useful head system side - ver. "Q"	kPa	-	-	-	-	154	151	131	126	107	169	141
Useful head system side - ver. "N"	kPa	-	-	-	-	-	-	-	-	107	169	141

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

$ANL - (H^{\circ}) - (400V 3N \sim 50Hz / 230V \sim 50Hz)$

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	6,9	7,5	9,0	11,6	16,1	19,7	24,2	26,0	30,8	38,3	48,5
Input power	kW	2,0	2,1	2,6	3,4	4,5	6,1	7,0	7,1	9,6	11,6	14,8
Cooling total input current - 400V	A	3,8	4,3	4,9	6,4	9,0	10,0	13,0	13,0	16,0	19,0	26,0
Cooling total input current - 230V	A	6,6	7,6	8,4	11,0	-	-	-	-	-	-	-
EER	W/W	3,50	3,50	3,45	3,36	3,54	3,21	3,47	3,68	3,21	3,31	3,27
Water flow rate system side	l/h	1189	1293	1564	2002	2784	3407	4189	4506	5338	6636	8410
Pressure drop system side	kPa	44	46	47	44	50	52	65	88	81	84	92
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	6,5	7,3	8,8	10,3	13,8	18,1	21,9	23,1	27,3	37,0	43,9
Input power	kW	1,7	1,9	2,3	2,7	3,5	4,7	5,4	5,7	7,8	9,9	11,3
Heating total input current - 400V	A	3,3	3,8	4,6	6,0	8,1	9,1	11,0	12,0	15,0	17,0	22,0
Heating total input current - 230V	A	5,6	6,5	8,0	10,0	-	-	-	-	-	-	-
COP	W/W	3,88	3,96	3,85	3,77	3,90	3,89	4,08	4,05	3,49	3,74	3,87
Water flow rate system side	l/h	1120	1265	1518	1767	2385	3126	3782	3979	4709	6381	7553
Pressure drop system side	kPa	39	43	44	40	41	42	57	78	76	76	84

ANL - (HA/HP) - (400V 3N ~ 50Hz/230V ~ 50Hz)

		-										
Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	6,9	7,5	9,1	11,7	16,2	19,8	24,4	26,2	31,1	38,8	49,1
Input power	kW	1,9	2,1	2,6	3,4	4,5	6,0	6,9	6,9	9,7	11,6	14,8
Cooling total input current - 400V	A	4,2	4,7	5,2	6,8	9,7	11,0	13,0	14,0	17,0	21,0	28,0
Cooling total input current - 230V	A	7,2	8,2	9,0	12,0	-	-	-	-	-	-	-
EER	W/W	3,63	3,63	3,58	3,46	3,62	3,28	3,55	3,81	3,21	3,36	3,32
Water flow rate system side	l/h	1189	1293	1564	2002	2784	3407	4189	4506	5338	6636	8410
Useful head system side	kPa	63,0	63,0	60,0	51,0	60,0	53,0	31,0	24,0	47,0	63,0	41,0
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	6,4	7,3	8,7	10,2	13,7	18,0	21,8	22,9	27,1	36,6	43,3
Input power	kW	1,6	1,8	2,2	2,7	3,5	4,6	5,3	5,6	8,0	10,0	11,4
Heating total input current - 400V	A	3,6	4,1	5,0	6,4	8,8	9,8	12,0	13,0	16,0	19,0	24,0
Heating total input current - 230V	A	6,2	7,1	8,6	11,0	-	-	-	-	-	-	-
COP	W/W	3,93	4,02	3,91	3,81	3,90	3,91	4,11	4,11	3,40	3,67	3,81
Water flow rate system side	l/h	1120	1265	1518	1767	2385	3126	3782	3979	4709	6381	7553
Useful head system side	kPa	67,0	64,0	62,0	55,0	69,0	61,0	41,0	34,0	55,0	81,0	53,0

ANL - (HN/HQ) - (400V 3N ~ 50Hz)

Size		021	026	031	041	051	071	081	091	103	153	203
Cooling performance 23 °C / 18 °C (1)												
Cooling capacity	kW	-	-	-	-	16,3	19,9	24,5	26,3	31,1	38,7	49,0
Input power	kW	-	-	-	-	4,6	6,2	7,0	7,0	10,2	11,9	15,2
Cooling total input current - 400V	A	-	-	-	-	10,0	11,0	14,0	14,0	18,0	22,0	28,0
EER	W/W	-	-	-	-	3,54	3,23	3,51	3,76	3,07	3,25	3,23
Water flow rate system side	l/h	-	-	-	-	2784	3407	4189	4506	5338	6636	8410
Useful head system side - ver. "Q"	kPa	-	-	-	-	136	135	114	108	79	146	114
Useful head system side - ver. "N"	kPa	-	-	-	-	-	-	-	-	79	146	114
Heating performance 30 °C / 35 °C (2)												
Heating capacity	kW	-	-	-	-	13,6	17,9	21,7	22,8	27,0	36,6	43,4
Input power	kW	-	-	-	-	3,6	4,7	5,4	5,7	8,4	10,2	11,7
Heating total input current - 400V	А	-	-	-	-	9,1	10,0	13,0	13,0	17,0	19,0	25,0
COP	W/W	-	-	-	-	3,75	3,79	4,00	4,01	3,22	3,57	3,71
Water flow rate system side	l/h	-	-	-	-	2385	3126	3782	3979	4709	6381	7553
Useful head system side - ver. "Q"	kPa	-	-	-	-	149	146	125	119	92	159	129
Useful head system side - ver. "N"	kPa	-	-	-	-	-	-	-	-	92	159	129

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

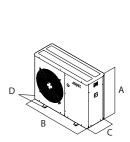
ENERGY DATA

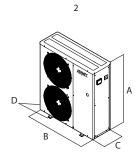
Size			021	026	031	041	051	071	081	091	103	153	203
Power supply: °													
Cooling capacity with low leaving v	vater temp (UE n° 2	016/2281)											
	٥	W/W	3,13	3,19	3,28	3,34	3,76	3,49	3,80	3,91	3,58	3,74	3,73
SEER	A,P	W/W	3,29	3,36	3,45	3,50	3,89	3,69	3,99	4,16	3,55	3,53	3,55
SEER	N	W/W	-	-	-	-	-	-	-	-	3,14	3,48	3,53
	Q	W/W	-	-	-	-	3,30	3,24	3,53	3,75	3,14	3,48	3,53
	0	%	122,00	125,00	128,00	131,00	147,00	137,00	149,00	153,00	140,00	146,00	146,00
	A,P	%	129,00	131,00	135,00	137,00	153,00	145,00	157,00	163,00	139,00	138,00	139,00
ηςς	N	%	-	-	-	-	-	-	-	-	123,00	136,00	138,00
	Q	%	-	-	-	-	129,00	127,00	138,00	147,00	123,00	136,00	138,00
UE 811/2013 performance in avera	ge ambient conditi	ons (average)	- 35 °C - Pdes	ignh ≤ 70 kV	V (1)								
	0	kW	6,00	6,00	8,00	9,00	13,00	16,00	20,00	21,00	25,00	33,00	40,00
Ddarianh	A,P	kW	6,00	6,00	8,00	9,00	12,00	16,00	20,00	21,00	24,00	33,00	39,00
Pdesignh	N	kW	-	-	-	-	-	-	-	-	24,00	33,00	39,00
	Q	kW	-	-	-	-	12,00	16,00	19,00	21,00	24,00	33,00	39,00
	0	W/W	3,30	3,30	3,33	3,28	3,43	3,43	3,58	3,50	3,53	3,58	3,70
CCOD	A,P	W/W	3,40	3,40	3,40	3,35	3,48	3,48	3,60	3,53	3,45	3,45	3,60
SCOP	N	W/W	-	-	-	-	-	-	-	-	3,23	3,35	3,53
	Q	W/W	-	-	-	-	3,23	3,28	3,43	3,40	3,23	3,35	3,53
	0	%	129,00	129,00	130,00	128,00	134,00	134,00	140,00	137,00	138,00	140,00	145,00
	A,P	%	133,00	133,00	133,00	131,00	136,00	136,00	141,00	138,00	135,00	135,00	141,00
ηsh	N	%	-	-	-	-	-	-	-	-	126,00	131,00	138,00
	Q	%	-	-	-	-	126,00	128,00	134,00	133,00	126,00	131,00	138,00
	0		A+	A+	A+	A+	A+	A+	A+	A+	A+	A++	A++
Tetrain au annum dans	A,P		A+	A+	A+	A+	A+	A+	A+	A+	A+	A+	A+
Efficiency energy class	N		-	-	-	-	-	-	-	-	A+	A+	A+
	Q		-	-	-	-	A+						

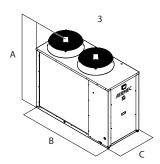
⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

ELECTRIC DATA													
Size			021	026	031	041	051	071	081	091	103	153	203
Power supply: °													
Electric data													
	0	A	7,0	7,0	7,7	9,7	11,3	13,5	16,3	17,3	22,0	26,0	32,0
Mariana and (FLA)	A,P	A	7,7	7,7	8,4	10,4	13,3	15,5	18,3	19,3	23,9	29,1	35,1
Maximum current (FLA)	N	А	-	-	-	-	-	-	-	-	26,2	30,2	36,2
	Q	Α	-	-	-	-	14,0	13,5	19,0	20,0	26,2	30,2	36,2
	0	A	27,5	33,5	36,7	49,7	65,3	75,3	102,3	96,3	76,0	87,0	117,0
D 1 ((DA)	A,P	A	28,2	34,2	37,4	50,4	67,3	75,3	104,3	98,3	77,9	90,1	120,1
Peak current (LRA)	N	Α	-	-	-	-	-	-	-	-	80,2	91,2	121,2
	Q	A	-	-	-	-	68,0	75,3	105,0	99,0	80,2	91,2	121,2
Power supply: M													
Electric data													
	0	A	17,5	17,5	20,7	24,7	-	-	-	-	-	-	-
Maximum current (FLA)	A,P	A	18,5	18,5	20,5	25,6	-	-	-	-	-	-	-
	N,Q	A	-	-	-	-	-	-	-	-	-	-	-
	0	А	59,5	62,5	83,7	98,7	-	-	-	-	-	-	-
Peak current (LRA)	A,P	A	60,5	63,5	84,5	99,6	-	-	-	-	-	-	-
	N,Q	А	-	-	-	-	-	-	-	-	-	-	-


GENERAL TECHNICAL DATA


Size		021	026	031	041	051	071	081	091	103	153	203
Compressor												
Туре	type						Scroll					
Compressor regulation	Туре						On-Off					
Number	no.	1	1	1	1	1	1	1	1	2	2	2
Circuits	no.	1	1	1	1	1	1	1	1	1	1	1
Refrigerant	type						R410A					
Refrigerant charge (1)	kg	1,8	1,8	2,0	2,0	2,9	2,9	3,1	3,9	4,6	5,4	5,7
System side heat exchanger												
Туре	type						Brazed plate					
Number	no.	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	Туре						Gas - F					
Sizes (in/out)	Ø						1" 1/4					
Fan												
Туре	type						Axial					


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size		021	026	031	041	051	071	081	091	103	153	203
Fan motor	type	Asynchronous	Asynchronous	Asynchronous	Inverter	Inverter	Inverter	Inverter	Inverter	Asynchronous	Asynchronous	Asynchronous
Number	no.	1	1	1	1	1	2	2	2	2	2	2
Air flow rate	m³/h	2500	2500	3500	3500	7200	7200	7300	7200	14000	13500	13500
Sound data calculated in cooling m	ode (2)											
Sound power level	dB(A)	61,0	61,0	68,0	68,0	69,0	69,0	69,0	68,0	76,0	77,0	78,0
Sound pressure level (10 m)	dB(A)	29,8	29,8	36,8	36,8	37,6	37,6	37,6	36,6	44,5	45,5	46,5

DIMENSIONS

- ANL 021 041 1 ANL 051 - 091 2
- 3 ANL 103 - 203

Size	·	, and the second	021	026	031	041	051	071	081	091	103	153	203
Dimensions and weights													
	°,P	mm	1000	1000	1000	1000	1252	1252	1252	1252	1450	1450	1450
٨	A	mm	1015	1015	1015	1015	1281	1281	1281	1281	1450	1450	1450
A	N	mm	-	-	-	-	-	-	-	-	1450	1450	1450
	Q	mm	-	-	-	-	1281	1281	1281	1281	1450	1450	1450
	°,P	mm	900	900	900	900	1124	1124	1124	1124	1750	1750	1750
В	A	mm	1124	1124	1124	1124	1165	1165	1165	1165	1750	1750	1750
D	N	mm	-	-	-	-	-	-	-	-	1750	1750	1750
	Q	mm	-	-	-	-	1165	1165	1165	1165	1750	1750	1750
	°,P	mm	310	310	310	310	384	384	384	384	750	750	750
ſ	A	mm	384	384	384	384	550	550	550	550	750	750	750
	N	mm	-	-	-	-	-	-	-	-	750	750	750
	Q	mm	-	-	-	-	550	550	550	550	750	750	750
	°,P	mm	354	354	354	354	428	428	428	428	-	-	-
D	A	mm	428	428	428	428	-	-	-	-	-	-	-
U	N	mm	-	-	-	-	-	-	-	-	-	-	-
	Q	mm	-	-	-	-	-	-	-	-	-	-	-
	•	kg	86	86	86	86	120	120	120	156	270	293	329
	A	kg	103	103	103	103	147	147	183	183	338	364	400
Empty weight	N	kg	-	-	-	-	-	-	-	-	338	364	400
	P	kg	91	91	91	91	127	127	163	163	288	314	350
	Q	kg	-	-	-	-	147	147	183	183	338	364	400

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

NRK 0090-0150

Reversible air/water heat pump

Cooling capacity 18,4 ÷ 31,0 kW Heating capacity 20,8 ÷ 34,4 kW

- Cooling / heating / high-temperature water production even for DHW production.
- Water produced up to +65 °C
- Heating operations with external temperatures down to -20 °C
- Optimised for heating mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential, commercial complexes or industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° High efficiency

FEATURES

Operating field

Working at full load up to -20 $^{\circ}$ C outside air temperature in winter, and up to 48 $^{\circ}$ C in summer. Hot water production up to 65 $^{\circ}$ C.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one pumps or storage tank to obtain a solution that allows you to save money and to facilitate installation.

Components

Water filter, flow switch, low and high pressure transducers as standard supply on all units.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

DCPX as standard

Phase-cut device that regulates the fan speed to ensure optimum unit operation in all conditions.

CONTROL

MODUCONTROL control type.

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SAF: Thermal buffer tank kit with instantaneous Domestic Hot Water production. For more information about SAF refer to the dedicated documentation.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with the VMF-E6 panel, the VMF-CRP modules will be able to manage heat recovery units, RAS, boiler, sanitary management, I/O control, pumps. **VT:** Antivibration supports

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

■ Refer to the specific "SAF" datasheet for more information about correct system operation, and about the required or recommended accessories. Please consult the VMF system for the production of DHW with a thermal storage tank not supplied by Aermec.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0090	0100	0150
AERLINK	0	•	•	•
AERNET	0	•	•	•
BMConverter	0	•	•	•
MODU-485BL	0	•	•	•
MULTICONTROL	0	•	•	•
PR3	0	•	•	•
SAF (1)	0	•	•	•
SDHW (2)	0	•	•	•
SPLW (3)	0	•	•	•
VMF-CRP	۰	•	•	•

- (1) For more information about SAF refer to the dedicated documentation.
 (2) Probe required for MULTICONTROL for managing the domestic hot water system.
 (3) Probe required for MULTICONTROL to manage the secondary circuit system.

BSKW: Electric heater kit

Model	Ver	0090	0100	0150
BS6KW400T	0	•	•	•
BS9KW400T	0	•	•	•

BS6KW400T (6kW, 400V 3); BS9KW400T (9kW, 400V 3)

VT: Antivibration

Ver	0090	0100	0150
Integrated hydronic kit: 00, 01, 03, P1, P3			
0	VT15	VT15	VT15

DRE: Device for peak current reduction

Ver	0090	0100	0150
0	DRE10 (1)	DRE10 (1)	DRE15 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRK
4,5,6,7	Size 0090, 0100, 0150
8	Operating field (1)
0	Standard mechanic thermostatic valve
9	Model
Н	Heat pump
10	Heat recovery
0	Without heat recovery
D	With desuperheater (2)
11	Version
0	High efficiency
12	Coils
0	Alluminium

Field	Description
R	Copper pipes-copper fins
S	Tinned copper
V	Copper pieps-Coated aluminium fins
13	Fans
0	Standard
14	Power supply
0	400V ~ 3N 50Hz
15,16	Integrated hydronic kit
00	Without hydronic kit
01	Storage tank with low head pump
03	Storage tank with high head pump
P1	Single pump low head
P3	Single pump high head

- (1) Water produced up to $+4\,^{\circ}\text{C}$. (2) The desuperheater can only be used with cold running.

PERFORMANCE SPECIFICATIONS

NRK - (°) / 12/7 °C - 40/45 °C

Size		0090	0100	0150
Cooling performance 12 °C / 7 °C (1)				
Cooling capacity	kW	18,4	26,4	31,0
Input power	kW	5,8	8,4	9,8
Cooling total input current	A	13,0	18,0	20,0
EER	W/W	3,19	3,15	3,15
Water flow rate system side	l/h	3172	4546	5338
Pressure drop system side	kPa	19	39	54
Heating performance 40 °C / 45 °C (2)				
Heating capacity	kW	20,8	28,7	34,4
Input power	kW	6,1	8,3	10,3
Heating total input current	A	14,0	17,0	21,0
COP	W/W	3,40	3,45	3,34
Water flow rate system side	l/h	3601	4965	5953
Pressure drop system side	kPa	24	45	65

NRK - (°) / 23/18 °C - 30/35 °C

Size		0090	0100	0150
Cooling performance 23 °C / 18 °C (1)				
Cooling capacity	kW	24,5	34,9	40,9
Input power	kW	6,1	9,0	10,6
Cooling total input current	A	14,0	18,0	22,0
EER	W/W	4,03	3,88	3,86
Water flow rate system side	l/h	4236	6040	7093
Pressure drop system side	kPa	34	69	95
Heating performance 30 °C/35 °C (2)				
Heating capacity	kW	20,4	28,2	33,8
Input power	kW	5,0	6,7	8,3
Heating total input current	A	11,0	14,0	17,0
COP	W/W	4,11	4,22	4,09
Water flow rate system side	I/h	3521	4866	5833
Pressure drop system side	kPa	23	43	-

ENERGY DATA

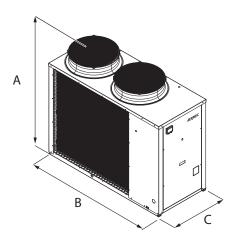
Size			0090	0100	0150
Cooling capacity with low leaving	water temp (UE n° 2016/2	281)			
SEER	0	W/W	3,35	3,39	3,42
Jsc	٥	%	131,10	132,60	133,80
UE 811/2013 performance in aver	age ambient conditions (a	verage) - 55 °C - Pdesignh ≤ 70 kl	W (1)		
Pdesignh	0	kW	22	28	34
SCOP	0	W/W	3,03	2,98	2,90
ηsh	0	%	118,00	116,00	113,00
Efficiency energy class	٥		A+	A+	A+

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Size			0090	0100	0150
Electric data					
Maximum current (FLA)	0	A	19,1	24,6	29,5
Peak current (LRA)	0	A	104,2	121,2	143,2

NRK-0090-0150-HP_Y_UN50_05 384 www.aermec.com


⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C
(2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

GENERAL TECHNICAL DATA

Size			0090	0100	0150
Compressor					
Туре	0	type		Scroll	
Compressor regulation	0	Туре		On-Off	
Number	0	no.	1	1	1
Circuits	0	no.	1	1	1
Refrigerant	0	type		R410A	
Refrigerant charge (1)	0	kg	13,0	14,0	16,0
System side heat exchanger					
Туре	0	type		Brazed plate	
Number	0	no.	1	1	1
Hydraulic connections					
Connections (in/out)	o	Туре		Gas-F	
Size (in)	0	Ø		11/2"	
Size (out)	0	Ø		11/2"	
Fan					
Туре	0	type		axials	
Fan motor	o	type		Asynchronous	
Number	0	no.	2	2	2
Air flow rate	0	m³/h	14200	14200	13700
Sound data calculated in cooling mo	ode (2)		·		
Sound power level	0	dB(A)	78,0	78,0	78,0
Sound pressure level (10 m)	0	dB(A)	46,5	46,5	46,5

DIMENSIONS

Size			0090	0100	0150
Dimensions and weights					
A	0	mm	1450	1450	1450
В	0	mm	1750	1750	1750
(0	mm	750	750	750
Empty weight	0	kg	289	328	372

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

NRK 0200-0700

Reversible air/water heat pump

Cooling capacity 35,5 ÷ 148 kW Heating capacity 42,31 ÷ 175 kW

- Water produced up to +65 °C
- Heating operations with external temperatures down to -20 °C
- Optimized for operation in heating mode
- Night mode

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users.

It's optimised for use in heating mode, and can be combined not only with low-temperature emission systems such as floor heating or fan coils, but also conventional radiators.

Equipped with scroll compressors, axial fans, external coil with aluminium louvers, plate heat exchanger on the side.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency **E** Silenced high efficiency

FEATURES

Operating field

Working at full load up to -20 °C outside air temperature in winter, and up to 48 °C in summer. Hot water production up to 65 °C.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to facilitate installation.

Components

Water filter, flow switch, low and high pressure transducers as standard supply on all units.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

CONTROL

pCO⁵ control type

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

GP: Anti-intrusion grid. **VT:** Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

PRM1: It is a manual pressure switch electrically wired in series with the existing automatic high pressure switch on the compressor discharge nine.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating

parameters and graphically view the progress of some variables in real time

AERCALM: The aim of the accessory installed in the electric box of the unit is to provide a clean contact for commanding - on the basis of the outside air temperature - a boiler to replace the heat pump. Aercalm must be requested at the time of ordering, as it is installed in the factory.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
AER485P1	A					•	•	•	•	•	•
AEK483P1	E	•	•	•	•	•	•	•	•	•	
AERBACP	A					•	•	•	•	•	•
AENDACY	E	•	•	•	•	•	•	•	•	•	•
AERLINK	A					•	•	•	•	•	
AEKLINK	E	•	•	•	•	•	•	•	•	•	•
AFDNET	A					•	•	•	•	•	•
AERNET	E	•	•	•	•	•	•	•	•	•	•
BMConverter	A					•	•	•	•	•	•
biviconverter	E	•	•	•	•	•	•	•	•	•	•
MULTICULUED EVO	A					•	•	•	•	•	•
MULTICHILLER_EVO	E	•	•	•	•	•	•	•	•	•	•
DCD1	A					•	•	•	•	•	•
PGD1	E	•	•	•		•	•	•	•	•	

GP: anti-intrusion grid

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			
E	GP3	GP3	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			

⁽¹⁾ x_i indicates the quantity to buy

VT: Antivibration

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Integrated hydronic kit: 00, P1, P2,	, P3, P4									
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22
E	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT22	VT22
Integrated hydronic kit: 01, 02, 03,	04, 05, 06, 07, 08									
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT22	VT22

DRE: Device for peak current reduction

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	DRE351 (1)	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)
E	DRE201 (1)	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

A grey background indicates the accessory must be assembled in the factory

RIF: Power factor correction

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	RIF65	RIF58	RIF59	RIF60	RIF61	RIF61
E	RIF55	RIF56	RIF54	RIF57	RIF65	RIF58	RIF59	RIF60	RIF61	RIF61

A grey background indicates the accessory must be assembled in the factory

PRM1: Manually reset pressure switch

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
A	-	-	-	-	PRM1	PRM1	PRM1	PRM1	PRM1	PRM1
E	PRM1									

A grey background indicates the accessory must be assembled in the factory

7", touch screen keyboard

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
C TOUCH	A					•	•	•	•	•	•
C-TOUCH	F										

Clean contact for controlling a boiler.

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
AERCALM	A					•	•	•	•	•	•
AERCALIVI	E										

CONFIGURATOR

Field	Description
1,2,3	NRK
4,5,6,7	Size 0200, 0280, 0300, 0330, 0350, 0500, 0550, 0600, 0650, 0700
8	Operating field (1)
0	Standard mechanic thermostatic valve
9	Model
Н	Heat pump
10	Heat recovery
0	Without heat recovery
D	With desuperheater (2)
11	Version
A	High efficiency
E	Silenced high efficiency
12	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
٧	Copper pieps-Coated aluminium fins
13	Fans
0	Standard (3)
J	Inverter (4)
M	Oversized (5)
14	Power supply
۰	400V 3N ~ 50Hz
15,16	Integrated hydronic kit
00	Without hydronic kit
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
05	Storage tank with holes for heaters and single low head pump (6)
06	Storage tank with holes for heaters and pump low head + stand-by pump (6)
07	Storage tank with holes for heaters and single high head pump (6)
08	Storage tank with holes for heaters and pump high head + stand-by pump (6)
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump

static pressure.

(5) Option available only for size 0200÷0330.

(6) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

NRK - A / 12/7 °C - 40/45 °C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 12 °C/7 °C (1)		0200	0200		0330	0330		0330		0050	
Cooling capacity	kW	-	-	-	-	75,4	88,8	101,6	117,4	133,4	148,1
Input power	kW	-	-	-	-	25,4	29,5	34,4	41,0	45,0	52,6
Cooling total input current	A	-	-	-	-	55,0	61,0	66,0	72,0	87,0	107,0
EER	W/W	-	-	-	-	2,97	3,01	2,95	2,86	2,97	2,82
Water flow rate system side	l/h	-	-	-	-	12983	15278	17488	20211	22975	25516
Pressure drop system side	kPa	-	-	-	-	23	26	32	28	34	42
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	-	-	-	-	87,9	103,9	118,9	136,6	155,6	174,4
Input power	kW	-	-	-	-	25,5	30,2	34,7	39,9	45,6	51,7
Heating total input current	А	-	-	-	-	54,0	59,0	64,0	70,0	85,0	106,0
COP	W/W	-	-	-	-	3,45	3,44	3,42	3,42	3,41	3,37
Water flow rate system side	l/h	-	-	-	-	15236	18010	20602	23680	26988	30254
Pressure drop system side	kPa	-	-	-	-	32	36	44	37	45	57

⁽¹⁾ Water produced up to +4 °C
(2) The desuperheater must be isolated in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
(3) As standard in sizes fom 0350-0700.
(4) Standard for size 0200+0330, without useful static pressure. Option for size 0350÷0700 with useful

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRK-E/12/7°C-40/45°C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	35,6	50,4	59,5	66,1	74,4	87,4	99,8	114,5	130,8	145,3
Input power	kW	11,7	17,4	19,5	22,3	27,6	32,4	38,1	45,8	49,5	58,1
Cooling total input current	A	28,0	38,0	42,0	49,0	60,0	67,0	73,0	72,0	95,0	119,0
EER	W/W	3,05	2,90	3,05	2,96	2,69	2,70	2,62	2,50	2,64	2,50
Water flow rate system side	l/h	6131	8670	10235	11379	12801	15035	17175	19713	22512	25033
Pressure drop system side	kPa	18	17	23	19	22	25	30	27	32	41
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	42,2	59,7	69,4	78,2	87,9	103,9	118,9	136,6	155,6	174,4
Input power	kW	12,0	17,0	19,9	22,4	25,5	30,2	34,7	39,9	45,6	51,7
COP	W/W	3,50	3,50	3,49	3,49	3,45	3,44	3,42	3,42	3,41	3,37
Heating total input current	A	24,0	34,0	38,0	44,0	54,0	59,0	64,0	70,0	85,0	106,0
Water flow rate system side	l/h	7318	10355	12032	13569	15236	18010	20602	23680	26988	30254
Pressure drop system side	kPa	24	22	30	25	32	36	44	37	45	57

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

NRK - A / 23/18 °C - 30/35 °C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	-	-	-	-	93,2	108,2	122,7	143,0	165,0	181,0
Input power	kW	-	-	-	-	26,4	30,7	35,9	43,3	47,0	55,1
Cooling total input current	А	-	-	-	-	57,0	63,0	69,0	75,0	90,0	112,0
EER	W/W	-	-	-	-	3,54	3,53	3,42	3,30	3,51	3,28
Water flow rate system side	l/h	-	-	-	-	16111	18705	21231	24719	28513	31266
Pressure drop system side	kPa	-	-	-	-	35	39	47	42	52	63
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	-	-	-	-	86,4	101,5	114,6	132,6	150,2	170,5
Input power	kW	-	-	-	-	20,6	24,5	27,8	31,7	37,0	41,9
Heating total input current	А	-	-	-	-	44,0	48,0	51,0	55,0	68,0	85,0
COP	W/W	-	-	-	-	4,19	4,15	4,13	4,19	4,06	4,06
Water flow rate system side	l/h	-	-	-	-	14931	17533	19787	22919	25938	29467
Pressure drop system side	kPa	-	-	-	-	31	34	41	35	42	54

NRK-E/23/18°C-30/35°C

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	44,2	61,5	72,1	80,9	91,9	106,5	120,6	139,5	161,7	177,5
Input power	kW	12,2	18,2	20,4	23,5	28,7	33,6	39,7	48,3	51,7	60,8
Cooling total input current	А	29,0	40,0	44,0	51,0	62,0	69,0	76,0	75,0	99,0	124,0
EER	W/W	3,64	3,37	3,53	3,44	3,20	3,16	3,04	2,89	3,13	2,92
Water flow rate system side	I/h	7643	10631	12470	13977	15886	18408	20850	24110	27939	30673
Pressure drop system side	kPa	28	26	34	29	34	37	44	40	49	62
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	41,4	57,2	67,2	75,7	86,4	101,5	114,6	132,6	150,2	170,5
Input power	kW	9,4	13,3	15,8	18,1	20,6	24,5	27,8	31,7	37,0	41,9
Heating total input current	Α	19,0	26,0	30,0	35,0	44,0	48,0	51,0	55,0	68,0	85,0
COP	W/W	4,41	4,31	4,26	4,18	4,19	4,15	4,13	4,19	4,06	4,06
Water flow rate system side	l/h	7156	9895	11628	13083	14931	17533	19787	22919	25938	29467
Pressure drop system side	kPa	23	20	28	23	31	34	41	35	42	54
(4) 0											

ENERGY DATA

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling capacity with low leaving water t	emp (UE n° 2	016/2281)										
SEER	Α	W/W	-	-	-	-	3,45	3,52	3,46	3,42	3,44	3,33
DEEK	E	W/W	3,40	3,30	3,48	3,39	3,35	3,42	3,34	3,29	3,35	3,27
nce	Α	%	-	-	-	-	134,80	137,60	135,20	133,70	134,60	130,00
ηςς	E	%	133,00	128,80	136,10	132,50	130,90	133,70	130,60	128,70	130,90	127,90
UE 813/2013 performance in average aml	bient conditi	ons (average) -	55 °C - Pdesig	nh ≤ 400 kW (1)							
Delacionale	Α	kW	-	-	-	-	89	106	121	137	157	178
Pdesignh	E	kW	44	62	70	80	89	106	121	137	157	178
SCOP	Α	W/W	-	-	-	-	2,88	2,90	3,03	3,03	2,93	2,90
SCOP	E	W/W	3,08	3,03	3,00	3,03	2,88	2,90	3,03	3,03	2,93	2,90
nch	Α	%	-	-	-	-	112,00	113,00	118,00	118,00	114,00	113,00
ηsh	E	%	120,00	118,00	117,00	118,00	112,00	113,00	118,00	118,00	114,00	113,00

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

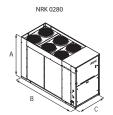
⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/ 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA

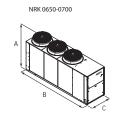
Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Electric data												
Mariana Artification	А	A	-	-	-	-	75,0	85,0	94,0	114,0	144,0	147,0
Maximum current (FLA)	E	A	40,0	49,0	61,0	74,0	75,0	85,0	94,0	114,0	144,0	147,0
Deals surrent (LDA)	А	A	-	-	-	-	216,0	226,0	191,0	228,0	285,0	288,0
Peak current (LRA)	E	A	124,0	146,0	175,0	215,0	216,0	226,0	191,0	228,0	285,0	288,0

GENERAL TECHNICAL DATA


Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Compressor												
Туре	A,E	type					Sc	roll				
Compressor regulation	A,E	Type					On-	-Off				
Number	A,E	no.	2	2	2	2	2	3	4	4	4	4
Circuits	A,E	no.	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type					R4	10A				
Defrimenent sharms (1)	А	kg	-	-	-	-	23,0	28,0	29,0	29,0	39,0	40,0
Refrigerant charge (1)	E	kg	14,0	16,0	16,0	16,0	23,0	28,0	29,0	29,0	39,0	40,0
System side heat exchanger												
Туре	A,E	type					Braze	d plate				
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	A,E	Туре					Groove	d joints				
Sizes (in/out)	A,E	Ø	21/2"	21/2"	21/2"	2½"	21/2"	2½"	2½"	21/2"	2½"	3"
Fan												
Туре	A,E	type					ax	ials				
Number	A	no.	-	-	-	-	2	2	2	2	3	3
Nulliber	E	no.	4	6	8	8	2	2	2	2	3	3
Air flow rate	A	m³/h	-	-	-	-	37000	36500	36500	36500	58000	58000
AIT HOW rate	E	m³/h	14000	20000	26000	26000	21100	21400	22400	22400	31900	31900
Sound data calculated in cooling m	ode (2)											
Cound nower level	A	dB(A)	-	-	-	-	82,0	82,0	82,0	83,0	85,0	85,0
Sound power level	E	dB(A)	74,0	74,0	75,0	75,0	74,0	74,0	74,0	75,0	77,0	77,0
Cound procesure lovel (10 m)	A	dB(A)	-	-	-	-	50,1	50,1	50,1	51,1	53,0	53,0
Sound pressure level (10 m)	E	dB(A)	42,3	42,3	43,2	43,2	42,1	42,1	42,1	43,1	45,0	45,0

(1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


DIMENSIONS

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Dimensions and weights												
Δ.	A	mm	-	-	-	-	1875	1875	1875	1875	1875	1875
A	E	mm	1606	1606	1606	1606	1875	1875	1875	1875	1875	1875
D	A	mm	-	-	-	-	3330	3330	3330	3330	4330	4330
В	E	mm	2700	2700	3250	3250	3330	3330	3330	3330	4330	4330
(A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100
	E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Emptyweight	Α	kg	-	-	-	-	1118	1264	1325	1367	1562	1597
Empty weight	E	kg	804	876	960	967	1118	1264	1325	1367	1562	1597

 $\label{lem:continuous} Aermec \ reserves \ the \ right \ to \ make \ any \ modifications \ deemed \ necessary.$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRV 0550

Air-water chiller

Cooling capacity 108,3 kW

- Easy and quick to install compact
- · Reliability and modularity
- Microchannel coils

DESCRIPTION

NRV is made up of independent 108kW modules that can be connected to each other up to a power of 970kW. Every single module is an outdoor chiller to produce chilled water.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 47°C external air temperature. Unit can produce chilled water up to 4 °C.

Maximum yield at full load but even partial load, thanks to the partialisation steps that increase as the number of connected modules increases this ensures continuous adaptation to the actual system requirements.

Modularity

It is possible to couple up to 9 chillers designed to reduce the overall unit dimensions to a minimum.

The combination of the various chillers allows all the strengths of the individual module to be maintained.

Modularity allows you to adapt installation to the actual development needs of the system. This way the cooling capacity can be increased over time simply and affordably.

Modularity is essential when component redundancy is required, as it allows for a safer system design and increased reliability.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

Microchannel coils

Microchannel heat exchanger that guarantees higher thermal exchange yield. Circuit that optimises the liquid distribution in the coil, which is arranged with V beam geometry with open angle.

Components

Unit is already equipped with a water filter, differential pressure switch and butterfly check valves, useful to cut off the hydraulic circuit for maintenance; for instance, to clean the filter.

In the event of variable flow rate, the motorised hydronic valves can intercept one or more modules to reduce the flow rate in low heat load conditions.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

Night Mode is standard in the unit with J inverter fan and in the E silenced version. Either a DCPX or inverter fan is necessary for the high efficiency version.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

GPNY_BACK: kit with 1 anti-intrusion grid for the short side of the unit. **GPNYB_SIDE:** kit with 2 anti-intrusion grids for the long side of the

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

KNYB: Pair of caps with grooved joints assembled on the unit manifold. **KREC:** Accessory kit to remote the electric power supply input to the

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0550
AER485P1	A,E	•
AERBACP	A,E	•
AERLINK	A,E	•
GPNYB_SIDE	A,E	•
GPNYB_SIDE GPNY_BACK	A,E	•
MULTICHILLER_EVO	A,E	•
PGD1	A,E	•

Condensation control temperature

Ver	0550
Fans: M	
A	DCPXNRV0550
F	As standard

DRE: electronic device for peak current reduction

Ver	0550
A,E	DRE (1)

(1) Contact the factory A grey background indicates the accessory must be assembled in the factory

KNYB: Pair of caps with grooved joints assembled on the unit manifold

Ver	0550	
A,E	KNYB	

A grey background indicates the accessory must be assembled in the factory

KREC: kit to remote the electric power supply input to the back

Ver	0550
A,E	KREC

A grey background indicates the accessory must be assembled in the factory

RIF: Power factor correction

Ver	0550
A,E	RIF (1)

⁽¹⁾ Contact the factory A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRV
4,5,6,7	Size 0550
8	Operating field
۰	Standard mechanic thermostatic valve (1)
Х	Electronic thermostatic expansion valve
9	Model
0	Cooling only
10	Heat recovery
0	Without heat recovery
D	With desuperheater
11	Version
A	High efficiency
E	Silenced high efficiency
12	Coils
0	Aluminium microchannel
0	Coated aluminium microchannel
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
13	Fans
J	Inverter (2)
М	Oversized
14	Power supply (3)
0	400V 3 ~ 50Hz
15,16	Integrated hydronic kit
00	Without hydronic kit

(3) With magnet circuit breakers

PERFORMANCE SPECIFICATIONS

Size			0550
Cooling performance 12 °C / 7 °C (1)			
Cooling canacity	A	kW	108,3
Cooling capacity	E	kW	103,8
Innut nower	A	kW	34,8
Input power	E	kW	36,2
Cooling total input current	A,E	A	62,0
rrp.	A	W/W	3,11
EER	E	W/W	2,86
Water flow rate system side	A	l/h	18646
Water flow rate system side	E	l/h	17862
Pressure drop system side	A	kPa	32
	E	kPa	30

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0550
SEER - 12/7 (EN14825:2018) wit	th standard fans (1)		
SEER	A	W/W	4,39
JEEN .	E	W/W	4,33
Seasonal efficiency	A	%	172,6%
	E	%	170,3%
SEER - (EN14825:2018) 12/7 wit	th inverter fans (1)		
CEED	A	W/W	4,51
SEER	E	W/W	4,45
Concornal officional	A	%	177,2%
Seasonal efficiency	E	%	174,8%
SEPR - (EN14825: 2018) High te	mperature with standard fans (2)		
SEPR	A,E	W/W	5,62
SEPR - (EN14825: 2018) High te	mperature with inverter fans (2)		
SEPR	A,E	W/W	5,62

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

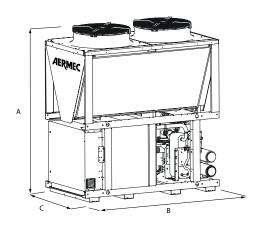
ELECTRIC DATA

Size			0550
Electric data			
Maximum current (FLA)	A,E	A	95,6
Peak current (LRA)	A,E	A	280,6

⁽¹⁾ Water produced up to +4 °C (2) With "J" fan is unnecessary DCPX accessory

GENERAL TECHNICAL DATA

Size			0550
Compressor			
Туре	A,E	type	Scroll
Number	A,E	no.	2
Circuits	A,E	no.	1
Refrigerant	A,E	type	R410A
System side heat exchanger			
Туре	A,E	type	Brazed plate
Number	A,E	no.	1
System side hydraulic connection	ns		
Connections (in/out)	A,E	Туре	Grooved joints
Sizes (in/out)	A,E	Ø	6"
Fan			
Size			0550
Fans: J			
Fan			
Туре	A,E	type	axials
Fan motor	A,E	type	On-Off
Number	A,E	no.	2


Size			0550
Fans: J			
Fan			
Туре	A,E	type	axials
Fan motor	A,E	type	On-Off
Number	A,E	no.	2
Air flow rate	A	m³/h	32000
	E	m³/h	24000
High static pressure	A,E	Pa	0
Sound data calculated in coolir			
Causal manuar laural	A	dB(A)	85,0
Sound power level	E	dB(A)	81,8
Fans: M			
Fan			
Туре	A,E	type	axials
Fan motor	A,E	type	Asynchronous
Number	A,E	no.	2
Air flow rate	A	m³/h	36000
	E	m³/h	24000
High static pressure	A,E	Pa	0
Sound data calculated in coolir	ng mode (1)		
Sound nower level	Α	dB(A)	86,9

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

dB(A)

DIMENSIONS

Sound power level

Size			0550			
Dimensions and weights						
A	A,E	mm	2480			
В	A,E	mm	2200			
C	A,E	mm	1190			
Empty weight	A,E	kg	1105			

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

81,8

395

NRL 0280-0350

Air-water chiller

Cooling capacity 56 ÷ 82 kW

- Low noise levels in silenced versions
- High efficiency also at partial loads
- Night mode
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 47 °C external air temperature. Unit can produce chilled water (up to -10°C of water produced in some versions).

Dual-circuit unit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid. **VT:** Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

PRM1: It is a manual pressure switch electrically wired in series with the existing automatic high pressure switch on the compressor discharge nine

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating

parameters and graphically view the progress of some variables in real time

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	0280	0300	0330	0350
AER485P1	E	•	•	•	•
AERBACP	E	•	•	•	•
AERLINK	E	•	•	•	•
AERNET	E	•	•	•	•
MULTICHILLER_EVO	E	•	•	•	•
PGD1	E	•	•	•	•
Model	Ver	0280	0300	0330	0350
C-TOUCH	E	•	•	•	•

Condensation control temperature

Ver	0280	0300	0330	0350
Fans: M				
E	DCPX63	DCPX63	DCPX63	DCPX63

Antivibration

Ver	0280	0300	0330	0350			
Integrated hydronic kit: 00, P1, P2, P3, P4							
E	VT17	VT17	VT17	VT17			
Integrated hydronic kit: 01, 02, 03, 04, 05, 06, 07, 08, 09							
E	VT13	VT13	VT13	VT13			

Anti-intrusion grid

Device for peak current reduction

Ver 0280		0300	0330	0350				
Power supply: °								
E	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)				

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

	Ver	0280	0300	0330	0350			
	E	RIF50	RIF50	RIF50	RIF51			

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

	Description							
	NRL							
,7	Size 0280, 0300, 0330, 0350							
	Operating field							
0	Standard mechanic thermostatic valve (1)							
Χ	Electronic thermostatic expansion valve (1)							
Y	Low temperature mechanic thermostatic valve (2)							
	Model							
0	Cooling only							
C	Motocondensing unit							
	Heat recovery							
0	Without heat recovery							
D	With desuperheater (3)							
T	With total recovery							
	Version (4)							
E	Silenced high efficiency							
	Coils							
0	Copper-aluminium							
R	Copper pipes-copper fins							
S	Copper pipes-Tinned copper fins							
V	Copper pieps-Coated aluminium fins							
	Fans							
J	Inverter (5)							
M	Oversized (6)							
	Power supply							
0	400V ~ 3N 50Hz with magnet circuit breakers							
,	Integrated hydronic kit							
	Without hydronic kit							
	R R M							

Field	Description
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (7)
06	Storage tank with holes for heaters and pump low head + stand-by pump (7)
07	Storage tank with holes for heaters and single high head pump (7)
08	Storage tank with holes for heaters and pump high head + stand-by pump (7)
	Double loop
09	Double loop
10	Double loop with supplementary electric heater
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump

- (1) Water produced from 4 °C ÷ 18 °C (2)) Water produced from 4 °C ÷ 18 °C for version"E", -10 °C for the others versions (3) For "YT" "ZT" "YD" and "ZD" recovery versions, contact the headquarters; Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program (4) The size up 0280 ÷ 0350 are only available in the silenced versions "E" with inverer fans (5) Standard for size 0280 ÷ 0350, without useful static pressure, option for other size with useful static pressure. (6) Standard for size 0500, without useful static pressure, option for other size with useful static pressure. (7) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRL - E

Size		0280	0300	0330	0350
Cooling performance 12 °C / 7 °C (1)					
Cooling capacity	kW	56,8	64,8	73,8	82,8
Input power	kW	17,1	19,7	22,1	25,5
Cooling total input current	A	30,0	34,0	37,0	45,0
EER	W/W	3,33	3,29	3,34	3,24
Water flow rate system side	I/h	9793	11168	12714	14260
Pressure drop system side	kPa	43	39	35	44

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRL - C

Size			0280	0300	0330	0350		
Model: C								
Cooling performance 12 °C/7 °C	(1)							
Cooling capacity	E	kW	59,0	67,0	76,0	85,0		
Input power	E	kW	17,0	19,6	22,0	25,3		
Input current	E	A	35,0	39,0	43,0	49,0		
EER	E	W/W	3,47	3,42	3,45	3,36		

⁽¹⁾ Evaporating temperature 5 °C, External air 35 °C

ENERGY INDICES (REG. 2016/2281 EU)

Energy index data

Size			0280	0300	0330	0350
Fans: J						
SEER - 12/7 (EN14825: 2018) (1)						
SEER	E	W/W	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	- (2)	- (2)	- (2)	- (2)
SEER - 23/18 (EN14825: 2018) (3)						
SEER	E	W/W	4,55	4,70	4,62	4,47
Seasonal efficiency	E	%	178,90	184,90	181,60	175,90
SEPR - (EN 14825: 2018) (3)						
SEPR	E	W/W	5,81	5,94	5,85	5,66

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
 (3) Calculation performed with FIXED water flow rate.

Size			0280	0300	0330	0350
Fans: M						
SEER - 12/7 (EN14825: 2018) (1)						
SEER	E	W/W	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	- (2)	- (2)	- (2)	- (2)
SEER - 23/18 (EN14825: 2018) (3)						
SEER	E	W/W	4,55	4,70	4,62	4,47
Seasonal efficiency	E	%	178,90	184,90	181,60	175,90
SEPR - (EN 14825: 2018) (3)						
SEPR	E	W/W	5,81	5,94	5,85	5,66

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

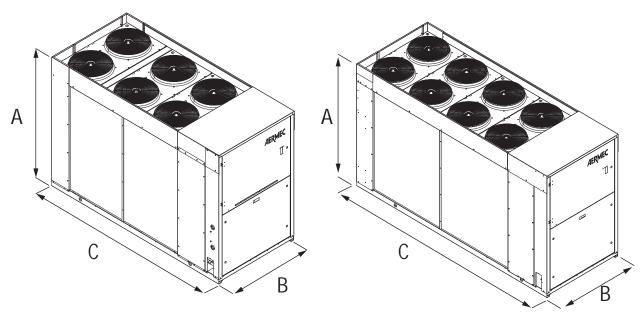
ELECTRIC DATA

Size			0280	0300	0330	0350
Electric data						
Maximum current (FLA)	E	A	46,0	53,0	58,0	63,0
Peak current (LRA)	E	A	155,0	184,0	190,0	200,0

GENERAL TECHNICAL DATA

General data

Size			0280	0300	0330	0350
Compressor						
Туре	E	type		Sc	roll	
Compressor regulation	E	Туре		0n	-Off	
Number	E	no.	2	2	2	2
Circuits	E	no.	2	2	2	2
Refrigerant	E	type		R4	10A	
System side heat exchanger						
Туре	E	type		Braze	d plate	
Number	E	no.	1	1	1	1
System side hydraulic connections						
Connections (in/out)	E	Туре		Groove	ed joints	
Sizes (in/out)	E	Ø		2"	1/2	
Sound data calculated in cooling mode	(1)					
Sound power level	E	dB(A)	74,0	74,0	75,0	76,0
Sound pressure level (10 m)	E	dB(A)	42,3	42,2	43,2	44,2


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Fans

Size			0280	0300	0330	0350		
Fan								
Туре	E	type	Axial					
Number	E	no.	6	6	8	8		
Size			0280	0300	0330	0350		
Fans: M								
Increased fan								
Fan motor	E	type		Asynchronous	with phase cut			
Without Static pressure								
Air flow rate	E	m³/h	-	-	-	-		
High static pressure	E	Pa	-	-	-	-		
Sound power level	E	dB(A)	-	-	-	-		
With static pressure								
Air flow rate	E	m³/h	22000	22000	27000	27000		
High static pressure	E	Pa	50	50	50	50		
Sound power level	E	dB(A)	74,0	74,0	75,0	76,0		
Size			0280	0300	0330	0350		
Fans: J								
Inverter fan								
Fan motor	E	type		Inv	erter			
Air flow rate	E	m³/h	22000	22000	27000	27000		
High static pressure	E	Pa	80	80	80	80		
Sound data calculated in cooling n	node (1)							
Sound power level	E	dB(A)	74,0	74,0	75,0	76,0		

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Dimensions and weights

Size			0280	0300	0330	0350
Dimensions and weights						
A	E	mm	1606	1606	1606	1606
В	E	mm	1100	1100	1100	1100
C	E	mm	2450	2950	2950	2950
Dimensions and weights witho	out hydronic kit					
Empty weight	E	kg	686	751	761	767

NRL 0280H-0350H

Reversible air/water heat pump

Cooling capacity 51 ÷ 76 kW Heating capacity 58 ÷ 86 kW

- · High efficiency also at partial loads
- Compact dimensions
- Quick & easy installation

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15°C outside air temperature in winter, and up to 46°C in summer. Hot water production up to 55°C (for more information see the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

- Floating HP control: the function can be activated with inverter fans or with DCPX which allows unit operation to be optimised at any operating point through continuous modulation of the fan speed. In addition, the use of inverter fans ensures an increase in energy efficiency at partial loads.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

BMConverter: The BMConverter accessory consists of the FPC-N54 network device which allows units that communicate via the Modbus RTU protocol on RS485, to be controlled by a third-party BMS system via the BACNet TCP-IP protocol.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid. **VT:** Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0280	0300	0330	0350
AER485P1	E,L	•	•	•	•
AERBACP	E,L	•	•	•	•
AERLINK	E,L	•	•	•	•
AERNET	E,L	•	•	•	•
BMConverter	E,L	•	•	•	•
MULTICHILLER_EVO	E,L	•	•	•	•
PGD1	E,L	•	•	•	•
Model	Ver	0280	0300	0330	0350
C-TOUCH	E,L	•	•	•	•

Condensation control temperature

Ver	0280	0300	0330	0350
Fans: M				
E,L	DCPX63	DCPX63	DCPX63	DCPX63

Antivibration

Ver	0280	0300	0330	0350			
Integrated hydronic kit: 00, P1, P2, P3, P4							
E,L	VT17	VT17	VT17	VT17			
Integrated hydronic kit: 01, 02, 03, 04, 05, 06, 07, 08, 09							
E,L	VT13	VT13	VT13	VT13			

Anti-intrusion grid

Ver	0280		0300	0330	0350
E	GP3		GP4	GP4	GP4
L	GP3		GP3	GP3	GP3
Model	Ver	0280	0300	0330	0350
C-TOUCH	E,L	•	•	•	•

Device for peak current reduction

Ver	0280	0300	0330	0350
E,L	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0280	0300	0330	0350
E,L	RIF50	RIF50	RIF50	RIF51

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

CON	41.1	dunatur
Field		Description
1,2,3		NRL
4,5,6,	,7	Size 0280, 0300, 0330, 0350
8		Operating field
(0	Standard mechanic thermostatic valve
)	Χ	Electronic thermostatic expansion valve
9		Model
	Н	Heat pump
10		Heat recovery
(0	Without heat recovery
- 1	D	With desuperheater (1)
11		Version
	E	Silenced high efficiency
	L	Standard silenced
12		Coils
•	0	Copper-aluminium
- 1	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
1	V	Copper pieps-Coated aluminium fins
13		Fans
	J	Inverter (2)
- 1	М	Oversized
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
	1	220V~ 3 50Hz with magnet circuit breakers

Field	Description					
15,16	Integrated hydronic kit					
00	Without hydronic kit					
	Kit with storage tank and pump/s					
01	Storage tank with low head pump					
02	Storage tank with low head pump + stand-by pump					
03	Storage tank with high head pump					
04	Storage tank with high head pump + stand-by pump					
	Kit with pump/s and storage tank with holes for heaters					
05	Storage tank with holes for heaters and single low head pump (3)					
06	Storage tank with holes for heaters and pump low head + stand-by pump (3)					
07	Storage tank with holes for heaters and single high head pump (3)					
08	Storage tank with holes for heaters and pump high head + stand-by pump (3)					
	Double loop					
09	Double loop					
	Kit with pump/s					
P1	Single pump low head					
P2	Pump low head + stand-by pump					
P3	Single pump high head					
P4	Pump high head + stand-by pump					

- (1) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (2) Standard for size 0280 ÷ 0350, without useful static pressure, option for other size with useful static
- (2) Standard in Jack V200 0334, Ministed search Se

PERFORMANCE SPECIFICATIONS

NRL HL

MALTIL					
Size		0280	0300	0330	0350
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	50,8	60,8	65,9	72,8
Input power	kW	20,4	22,8	26,4	31,4
Cooling total input current	A	36,0	40,0	44,0	51,0
EER	W/W	2,49	2,67	2,49	2,32
Water flow rate system side	I/h	8762	10480	11340	12542
Pressure drop system side	kPa	47	43	29	45
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	58,2	68,2	75,2	82,3
Input power	kW	19,0	21,7	24,6	28,3
Heating total input current	A	33,0	38,0	41,0	50,0
COP	W/W	3,06	3,14	3,05	2,91
Water flow rate system side	I/h	10080	11818	13035	14252
Pressure drop system side	kPa	61	54	36	56

NRL HE

Size		0280	0300	0330	0350
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	52,9	61,9	68,8	76,8
Input power	kW	18,1	20,2	23,4	26,9
Cooling total input current	A	30,0	34,0	37,0	45,0
EER	W/W	2,93	3,06	2,94	2,86
Water flow rate system side	l/h	9106	10652	11855	13229
Pressure drop system side	kPa	27	27	51	29
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	59,1	69,2	76,3	86,2
Input power	kW	17,5	20,6	23,1	26,1
Heating total input current	A	35,0	39,0	43,0	49,0
COP	W/W	3,38	3,36	3,31	3,30
Water flow rate system side	l/h	10254	11992	13209	14947
Pressure drop system side	kPa	25	34	66	34

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

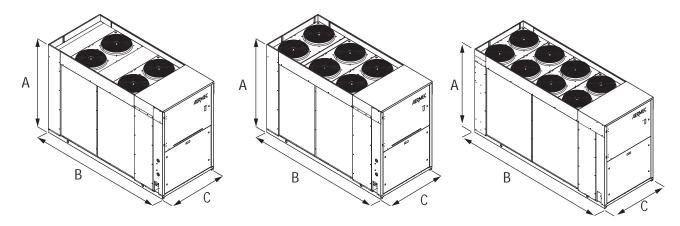
⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA

Size			0280	0300	0330	0350
Electric data						
Maximum summert (FLA)	E	A	46,0	53,0	58,0	63,0
Maximum current (FLA)	L	A	46,0	53,0	53,0	63,0
Deals surrent (LDA)	E	A	155,0	184,0	190,0	200,0
Peak current (LRA)	L	A	155,0	184,0	184,0	200,0

ENERGY DATA

Size			0280	0300	0330	0350
Cooling capacity with low leaving	g water temp (UE n° 2016	/2281)				
SEER	E	W/W	3,74	3,71	3,80	3,71
DEEN	L	W/W	2,96	3,19	3,01	3,28
	E	%	146,50	145,20	148,90	145,30
ηςς	L	%	115,30	124,40	117,30	128,30
UE 811/2013 performance in ave	rage ambient conditions	(average) - 35 °C - Pdesignl	1 ≤ 70 kW (1)			
Efficiency energy class	E,L		A+	A+	A+	-
Delocianh	E	kW	50	58	64	73
Pdesignh	L	kW	49	58	64	71
	E	%	138,00	137,00	137,00	135,00
ηsh	L	%	125,00	128,00	125,00	125,00
CCOD	E	W/W	3,53	3,50	3,50	3,45
SCOP	L	W/W	3,20	3,28	3,20	3,20


⁽¹⁾ Efficiencies for low temperature applications (35 °C)

GENERAL TECHNICAL DATA

Size			0280	0300	0330	0350
Compressor						
Туре	E,L	type		Sc	roll	
Compressor regulation	E,L	Туре		0n	-Off	
Number	E,L	no.	2	2	2	2
Circuits	E,L	no.	2	2	2	2
Refrigerant	E,L	type		R4	10A	
System side heat exchanger						
Туре	E,L	type		Braze	d plate	
Number	E,L	no.	1	1	1	1
System side hydraulic connections						
Connections (in/out)	E,L	Туре		Groove	ed joints	
Sizes (in/out)	E,L	Ø		2"	1/2	
Fan						
Туре	E,L	type		ax	ials	
Number	E	no.	6	8	8	8
Number	L	no.	4	6	6	6
N: () und -	E	m³/h	20000	26000	26000	26000
Air flow rate	L	m³/h	14000	20000	20000	20000
Sound data calculated in cooling m	node (1)					
Carrad marrian larval	E	dB(A)	74,0	75,0	75,0	76,0
Sound power level	L	dB(A)	73,0	74,0	74,0	75,0
Cound avecause laurel (10 mg)	E	dB(A)	42,3	43,2	43,2	44,2
Sound pressure level (10 m)	L	dB(A)	41,3	42,3	42,3	43,3

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0280	0300	0330	0350
Dimensions and weights						
A	E,L	mm	1606	1606	1606	1606
В	E,L	mm	1100	1100	1100	1100
r	E	mm	-	2950	2950	2950
L	L	mm	2450	2450	2450	2450
Weights						
Wish and budges in his	E	kg	730	795	805	811
Without hydronic kit	L	kg	713	724	731	740

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0282-0754

Air-water chiller

Cooling capacity 56 ÷ 202 kW

- · High seasonal efficiency
- Night mode
- Reduced amount of refrigerant
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 51°C external air temperature. Unit can produce chilled water (up to -10°C of water produced in some versions).

Dual-circuit unit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Allows, with continuous fan modulation, to optimize the operation of the unit in any operating point, ensuring an increase in the energy efficiency at partial load.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

ACCESSORIES

www.aermec.com

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid. **VT:** Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
	°,A					•	•	•	•	•	•	•	•	•	•	•
AER485P1	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•	•	•	•	•	•	•
AERBACP	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•	•	•	•	•	•	•
AERLINK	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•	•	•	•	•	•	
AERNET	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•		•	•	•	•	
	°,A					•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	U				•	•	•	•	•	•	•	•	•	•	•	
	°,A					•	•	•	•	•	•	•	•	•	•	•
PGD1	E,L,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Condensation control temperature

Ver	0282	0302	0332	0352	0502	0552	0602	0604
Fans: °								
E,L	DCPX140	DCPX140	DCPX140	DCPX140	-	-	-	-
N	DCPX140	DCPX140	DCPX140	-	-	-	-	-
ans: M								
°,A	-	-	-	-	DCPX142	DCPX142	DCPX142	DCPX142
E,L	DCPX141	DCPX141	DCPX141	DCPX141	As standard	As standard	As standard	As standard
N	DCPX141	DCPX141	DCPX141	As standard				
U	-	-	-	DCPX142	DCPX142	DCPX142	DCPX143	DCPX143
Ver	0652	0654	0682	07	702	0704	0752	0754
ans: M			'					

Ver	0652	0654	0682	0702	0704	0752	0754
Fans: M							
0	DCPX142	DCPX142	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143
A	DCPX142	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143
E,L,N	As standard						
U	DCPX143						

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Integrated hydronic kit: 00, I1, I2, I3,	, I4, P1, P2, P3,	P4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
N	VT17	VT17	VT17	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23
U	-	-	-	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23
Integrated hydronic kit: 01, 02, 03, 0	4, 05, 06, 07, 0	B, 09, K1, K	2, K3, K4												
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
N	VT13	VT13	VT13	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23
U	-	-	-	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT23	VT23	VT23	VT23

Anti-intrusion grid

 Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
0	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									
A	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
E	GP3	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)	GP2 x 3 (1)	GP2 x 3 (1)	GP2 x 3 (1)	GP2 x 3 (1)				
L	GP3	GP3	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)	GP2 x 3 (1)	GP2 x 3 (1)	GP2 x 3 (1)					
N	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)	GP14 x 4 (1)	GP14 x 4 (1)	GP14 x 4 (1)	GP14 x 4 (1)				
U	-	-	-	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)	GP14 x 4 (1)	GP14 x 4 (1)	GP14 x 4 (1)	GP14 x 4 (1)				

(1) x_i indicates the quantity to buy The accessory cannot be fitted on the configurations indicated with -

Power factor correction

	0202	0202	4222	42.52	0.500	0.550	0.400	2424
Ver	0282	0302	0332	0352	0502	0552	0602	0604
°,A	-	-	-	-	RIF0502	RIF0552	RIF0602	RIF0604
E,L,N	RIF0282	RIF0302	RIF0332	RIF0352	RIF0502	RIF0552	RIF0602	RIF0604
U	-	-	-	RIF0352	RIF0502	RIF0552	RIF0602	RIF0604

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754
°,A,E,L,N,U	RIF0652	RIF0652	RIF0682	RIF0702	RIF0704	RIF0752	RIF0754

A grey background indicates the accessory must be assembled in the factory

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0602	0604
°,A	-	-	-	-	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)
E,L,N	DRENRB282 (1)	DRENRB302 (1)	DRENRB332 (1)	DRENRB352 (1)	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)
U	-	-	-	DRENRB352 (1)	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. The accessory cannot be fitted on the configurations indicated with – A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754
°,A,E,L,N,U	DRENRB652 (1)	DRENRB654 (1)	DRENRB682 (1)	DRENRB702 (1)	DRENRB704 (1)	DRENRB752 (1)	DRENRB754 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°,A	-	-	-	-	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12
E,L	T6NRB6	T6NRB6	T6NRB6	T6NRB6	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12
N	T6NRB6	T6NRB6	T6NRB6	T6NRB8	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12
U	-	-	-	T6NRB8	T6NRB8	T6NRB8	T6NRB8	T6NRB11	T6NRB8	T6NRB11	T6NRB9	T6NRB10	T6NRB12	T6NRB10	T6NRB12

The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory

Touch screen keyboard

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°,A,E,L,N,U	C-TOUCH														

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRB
4,5,6,7	Size 0282, 0302, 0332, 0352, 0502, 0552, 0602, 0604, 0652, 0654, 0682, 0702, 0704 0752, 0754
8	Operating field
٥	Standard mechanic thermostatic valve (1)
χ	Electronic thermostatic expansion valve (1)
Υ	Double mechanical thermostat for low temperature (2)
Z	Low temperature electronic thermostatic valve (3)
9	Model
٥	Cooling only
C	Motocondensing unit
10	Heat recovery
۰	Without heat recovery
D	With desuperheater (4)
T	With total recovery (4)
11	Version
0	Standard
Α	High efficiency
Е	Silenced high efficiency
L	Standard silenced
N	Silenced very high efficiency
U	Very high efficiency
12	Coils
0	Copper-aluminium Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
13	Fans
0	Standard (5)
J	Inverter
М	Oversized (6)
14	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump

Field	Description
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (7)
06	Storage tank with holes for heaters and pump low head + stand-by pump (7)
07	Storage tank with holes for heaters and single high head pump (7)
08	Storage tank with holes for heaters and pump high head + stand-by pump (7)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
l1	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter (8)
W2	Double low head pump + Storage tank + variable speed inverter (8)
W3	Single high head pump + Storage tank + variable speed inverter (8)
W4	Double high head pump + Storage tank + variable speed inverter (8)

- (1) Water produced from 4 °C ÷ 18 °C
 (2) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from -10 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ 18 °C
 (4) For "YT" "ZT" "YD" and "ZD" recovery versions, contact the headquarters; Warning: on the recovery side, a minimum input temperature of 35 °C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program
 (5) As standard in sizes from 0282 to 0352 versions E L and in size from 0282 to 0332 version N
 (6) As standard in sizes from 0502 to 0754 version ° A E L, in sizes from 0352 to 0754 version N U
 (7) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.
 (8) L'opzione Y e Z non è compatibile con W1/W2/W3/W4

PERFORMANCE SPECIFICATIONS

NRB - °

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	W	-	-	-	-	98352	107034	125935	125537	135136	141027	159747	178947	170676	195742	193506
Input power	W	-	-	-	-	33237	37531	41619	45636	47434	52150	54799	60755	58313	71811	67186
Cooling total input current	A	-	-	-	-	59,0	65,0	71,0	80,0	81,0	92,0	93,0	102,0	104,0	117,0	117,0
EER	W/W	-	-	-	-	2,96	2,85	3,03	2,75	2,85	2,70	2,92	2,95	2,93	2,73	2,88
Water flow rate system side	l/h	-	-	-	-	16941	18444	21694	21620	23270	24282	27502	30805	29385	33700	33309
Pressure drop system side	kPa	-	-	-	-	39	46	42	50	49	48	52	66	71	78	65

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - L

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	56,5	64,3	73,9	85,5	96,3	104,5	122,6	121,5	131,1	134,8	156,1	174,3	166,4	189,9	187,4
Input power	kW	19,8	22,2	24,8	29,6	34,0	38,6	42,9	47,6	49,2	55,0	56,0	62,5	60,0	74,7	69,5
Cooling total input current	A	35,0	41,0	46,0	54,0	59,0	65,0	72,0	82,0	82,0	95,0	93,0	102,0	105,0	119,0	119,0
EER	W/W	2,85	2,90	2,98	2,89	2,83	2,71	2,86	2,55	2,67	2,45	2,79	2,79	2,78	2,54	2,70
Water flow rate system side	I/h	9734	11090	12722	14734	16583	18007	21114	20937	22592	23230	26870	30010	28645	32685	32255
Pressure drop system side	kPa	37	48	39	52	37	43	40	46	45	44	50	62	66	73	61

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - A

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	-	-	-	-	103,9	114,8	130,1	129,7	140,0	150,2	167,9	186,9	176,8	207,6	198,8
Input power	kW	-	-	-	-	31,4	35,4	40,3	43,5	45,0	47,6	51,9	59,2	56,6	69,6	63,8
Cooling total input current	A	-	-	-	-	55,0	59,0	68,0	73,0	74,0	77,0	86,0	94,0	98,0	103,0	107,0
EER	W/W	-	-	-	-	3,31	3,24	3,23	2,98	3,11	3,16	3,24	3,16	3,12	2,98	3,11
Water flow rate system side	I/h	-	-	-	-	17889	19764	22404	22344	24116	25867	28897	32172	30430	35736	34210
Pressure drop system side	kPa	-	-	-	-	30	36	35	42	40	57	46	56	55	60	58

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - E

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	60,6	68,4	77,0	89,2	100,4	110,5	123,9	122,2	132,4	144,8	161,4	178,0	168,2	195,9	187,7
Input power	kW	18,6	21,1	23,8	28,3	32,5	36,9	42,7	46,6	48,2	49,4	54,0	62,6	59,7	74,7	68,0
Cooling total input current	Α	32,0	36,0	41,0	46,0	54,0	59,0	69,0	75,0	77,0	77,0	86,0	95,0	100,0	107,0	110,0
EER	W/W	3,26	3,24	3,23	3,16	3,09	3,00	2,90	2,62	2,75	2,93	2,99	2,84	2,82	2,62	2,76
Water flow rate system side	l/h	10429	11774	13258	15372	17275	19020	21329	21052	22807	24939	27779	30648	28950	33719	32307
Pressure drop system side	kPa	26	33	30	40	27	33	32	36	36	52	42	51	49	53	52

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - U

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C (1)																
Cooling capacity	kW	-	-	-	92,7	104,5	117,2	132,1	137,9	146,8	152,9	171,6	191,4	180,5	209,6	202,9
Input power	kW	-	-	-	27,1	30,8	34,5	38,8	41,3	44,2	45,5	50,7	59,3	56,2	67,2	63,1
Cooling total input current	Α	-	-	-	51,0	56,0	61,0	68,0	76,0	76,0	86,0	88,0	101,0	104,0	116,0	115,0
EER	W/W	-	-	-	3,42	3,39	3,40	3,40	3,34	3,32	3,36	3,39	3,23	3,21	3,12	3,21
Water flow rate system side	l/h	-	-	-	15945	17984	20172	22745	23741	25275	26327	29532	32945	31067	36076	34915
Pressure drop system side	kPa	-	-	-	24	30	29	38	34	36	42	41	51	48	61	56

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - N

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	60,8	69,0	76,9	89,7	100,8	112,4	128,6	133,5	142,2	147,1	164,5	185,1	174,5	201,1	195,1
Input power	kW	17,8	20,5	22,9	27,8	31,9	36,1	39,4	42,4	45,3	47,2	52,9	60,9	57,5	70,2	65,3
Cooling total input current	A	33,0	39,0	44,0	50,0	55,0	62,0	66,0	74,0	75,0	85,0	88,0	100,0	102,0	116,0	114,0
EER	W/W	3,42	3,37	3,36	3,23	3,16	3,12	3,26	3,15	3,14	3,11	3,11	3,04	3,03	2,87	2,99
Water flow rate system side	l/h	10460	11884	13249	15444	17352	19347	22150	22978	24481	25334	28325	31856	30031	34611	33586
Pressure drop system side	kPa	27	25	31	22	28	27	36	32	34	39	38	48	45	56	52

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: °																	
SEER - 12/7 (EN14825: 2018) (1)																	
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEER	E	W/W	4,48	4,58	4,49	4,42	-	-	-	-	-	-	-	-	-	-	-
JEH	L	W/W	4,28	4,27	4,35	4,25	-	-	-	-	-	-	-	-	-	-	-
	N	W/W	4,68	4,72	4,62	-	-	-	-	-	-	-	-	-	-	-	-
	°,A,U	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	E	%	176,20	180,20	176,40	173,60	-	-	-	-	-	-	-	-	-	-	-
Jeasona: emiliency	L	%	168,10	167,80	171,10	167,00	-	-	-	-	-	-	-	-	-	-	-
	N	%	184,00	185,70	181,70	-		-	-	-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)																	
	°,A,U	W/W	-		-	-			-	-		-	-	-	-	-	-
SEER	E	W/W	5,36	5,48	5,40	5,44			-	-				-	-	-	-
	L	W/W	5,05	5,10	5,21	5,09	-	-		-	-	-	-	-	-	-	-
	N	W/W	5,61	5,67	5,59	-	-	-	-	-	-	-	-	-	-	-	-
	°,A,U	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	E	%	211,40	216,30	213,10	214,70	-	-	-	-	-	-	-	-	-	-	-
,	L	%	199,00	201,10	205,30	200,70	-	-	-	-	-	-	-	-	-	-	-
CPDD /PH 4 4027 2040) (2)	N	%	221,40	223,80	220,60	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN 14825: 2018) (2)	0.4.11	111.011		-				-					-				
	°,A,U	W/W	-	- (12	- (12	- ()(-	-	-	-	-	-	-	-	-	-	-
SEPR	E	W/W	6,46	6,42	6,13	6,36	-	-	-	-	-	-	-	-		-	-
	L	W/W	6,15	6,00	5,97	6,07	-	-	-	-	-	-	-	-	-	-	-
Farmer I	N	W/W	6,71	6,53	6,23	-	-	-	-	-	-	-	-	-	-	-	-
Fans: J																	
SEER - 12/7 (EN14825: 2018) (1)	0	NA AN					424	4.22	4.20	4.13	120	4 1 1	4.20	120	4.13	4.24	4.13
		W/W	-	-	-	-	4,34	4,23	4,39	4,12	4,26	4,11	4,28	4,26	4,13	4,24	4,12
	A	W/W	- 4.50	- 4.00	- 4.00	4.52	4,48	4,48	4,59	4,20	4,48	4,13	4,49	4,40	4,34	4,44	4,16
SEER	E	W/W	4,59	4,69	4,60	4,52	4,48	4,46	4,53	4,16	4,34	4,18	4,51	4,32	4,13	4,33	4,11
	L	W/W	4,38	4,37	4,46	4,35	4,36	4,24	4,38	4,11	4,18	4,12	4,32	4,23	4,13	4,19	4,11
	N	W/W	4,79	4,84	4,73	4,81	4,68	4,76	4,84	4,53	4,72	4,39	4,77	4,60	4,35	4,56	4,31
	U	W/W	-	-	-	4,74	4,71	4,82	4,65	4,33	4,66	4,31	4,76	4,53	4,22	4,52	4,29
		%	-		-	-	170,60	166,20	172,60	161,80	167,30	161,40	168,20	167,40	162,20	166,60	161,80
	A E	%				177,80	176,20	176,20	180,60	165,00	176,20	162,20	176,60	173,00	170,60	174,60	163,40
Seasonal efficiency		%	180,60	184,60	181,00		176,20	175,40	178,20	163,40	170,60	164,20	177,40	169,80	162,20	170,20	161,40
	L N	<u>%</u> %	172,20	171,80 190,60	175,40	171,00	171,40 184,20	166,60 187,40	172,20 190,60	161,40 178,20	164,20 185,80	161,80 172,60	169,80 187,80	166,20 181,00	162,20 171,00	164,60	161,40
	U		188,60	190,00	186,20	189,40										179,40	169,40
SEER - 23/18 (EN14825: 2018) (2)	U	70				186,80	185,40	189,80	183,00	170,20	183,40	169,40	187,40	178,20	165,80	177,80	168,60
3EER - 23/10 (EN14023, 2010) (2)	0	W/W					5,31	5,07	5,29	4,89	5,04	4,93	5,13	5,12	5,01	4,99	4.05
	A	W/W					5,55	5,42	5,54	5,06	5,36	5,11	5,43	5,23	5,30	5,24	4,95 5,03
	E	W/W	5,50	5,62	5,55	5,58	5,47	5,41	5,37	4,88	5,10	5,05	5,37	5,06	4,93	5,02	4,88
SEER		W/W	5,17	5,22	5,34	5,22	5,27	5,00	5,12	4,81	4,89	4,82	5,13	4,92	4,91	4,83	4,84
	L	W/W	5,75	5,82	5,73	5,91	5,72	5,68	5,88	5,49	5,67	5,29	5,71	5,46	5,27	5,38	5,21
	U	W/W	-	-	-	5,92	5,86	5,85	5,72	5,32	5,68	5,30	5,79	5,45	5,22	5,41	5,21
	0	%				J,72 -	209,30	199,60	208,40	192,70	198,50	194,20	202,20	201,60	197,50	196,50	194,80
	A	%			-	-	219,00	213,90	218,60	199,50	211,30	201,30	214,10	206,30	208,80	206,60	198,20
	E	%	216,80	221,60	218,80	220,00	215,70	213,30	211,80	192,00	200,80	199,10	211,60	199,30	194,00	197,90	192,20
Seasonal efficiency	<u>-</u>	%	203,80	205,90	210,60	205,60	207,70	197,10	201,70	189,40	192,70	189,70	202,00	193,60	193,20	190,00	190,40
	N	%	227,00	229,80	226,30	233,30	225,80	224,10	232,30	216,40	223,70	208,50	225,30	215,30	207,60	212,10	205,20
	U	%	-	-	-	233,80	231,40	231,10	225,80	209,60	224,00	209,00	228,70	214,90	205,70	213,40	205,40
SEPR - (EN 14825: 2018) (2)		,,					,				,, • •				/, 3	5,10	
((0	W/W	-				5,79	5,61	5,74	5,62	5,66	5,57	5,59	5,84	5,94	5,45	5,76
	A	W/W	-		-	-	6,10	5,97	6,00	5,73	5,97	5,74	5,92	5,79	5,89	5,75	5,78
	E	W/W	6,46	6,42	6,13	6,36	5,98	5,95	5,79	5,41	5,72	5,68	5,83	5,67	5,69	5,51	5,47
SEPR	L	W/W	6,15	6,00	5,97	6,07	5,79	5,65	5,61	5,31	5,55	5,28	5,58	5,60	5,77	5,37	5,53
	N	W/W	6,71	6,53	6,23	6,54	6,22	6,21	6,16	6,12	6,14	5,93	6,09	5,97	6,08	5,83	5,90
	U	W/W	-	-	-	6,43	6,30	6,31	6,01	6,15	6,09	5,88	6,19	5,88	6,05	5,85	6,07
Fans: M	_					-, -	.,	.,	.,	-, -	.,	-, -	-, -	-,	.,	.,	
SEER - 12/7 (EN14825: 2018) (1)																	
	0	W/W	-	-	-	-	4,23	4,13	4,29	- (3)	4,16	- (3)	4,18	4,16	- (3)	4,14	- (3)
	A	W/W	-			_	4,37	4,37	4,48	- (3)	4,37	- (3)	4,38	4,29	- (3)	4,33	- (3)
	E	W/W	4,48	4,58	4,49	4,42	4,37	4,35	4,42	- (3)	4,24	- (3)	4,40	4,21	- (3)	4,23	- (3)
SEER		W/W	4,48	4,27	4,49	4,42	4,25	4,14	4,42	- (3)	4,11	- (3)	4,40	4,13	- (3)	4,23	- (3)
	L	W/W	4,68	4,72	4,62	4,69	4,56	4,65	4,72	4,42	4,61	4,28	4,65	4,49	4,24	4,45	4,20
	U	W/W	4,00	4,/2	- 4,02	4,62	4,59	4,71	4,72	4,42	4,54	4,20	4,64	4,49	4,11	4,41	4,18

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C

Size 0282 0302 0332 0352 0502 0552 0602 064 0652 0654 0682 0702 0704 Possible % % - - - - 166,20 162,00 168,40 - 13,40 - 164,10 163,40 - - - - 171,00 171,	0752 0754 162,50 - (3) 170,20 - (3) 166,00 - (3) 161,30 - (3)
M	170,20 - (3) 166,00 - (3) 161,30 - (3)
E % 176,20 180,20 176,40 173,60 171,70 171,00 173,80 - (3) 166,50 - (3) 172,80 165,50 - (3)	166,00 - (3) 161,30 - (3)
Seasonal efficiency —	161,30 - (3)
L % 168,10 167,80 171,10 167,00 167,00 162,50 167,80 - (3) 161,20 - (3) 165,70 162,10 - (3)	
N % 184,00 185,70 181,70 184,70 179,50 182,90 185,90 173,70 181,20 168,20 182,90 176,40 166,70	174,90 165,10
U % 181,70 180,60 185,20 178,50 165,60 178,70 165,10 182,50 173,80 161,40	173,30 164,30
SEER - 23/18 (EN14825: 2018) (2)	
_ ° W/W 5,17 4,95 5,16 4,77 4,95 4,80 5,01 4,99 4,86	4,82 4,90
A W/W 5,42 5,28 5,40 4,91 5,22 4,94 5,29 5,10 4,95	5,11 4,99
E W/W 5,36 5,48 5,40 5,44 5,33 5,27 5,24 4,68 4,97 4,93 5,23 4,93 4,81	4,90 4,74
SEER L W/W 5,05 5,10 5,21 5,09 5,13 4,88 4,99 4,65 4,77 4,52 5,00 4,79 4,78	4,67 4,74
N W/W 5,61 5,67 5,59 5,76 5,58 5,54 5,74 5,35 5,53 5,12 5,56 5,32 5,13	5,24 5,07
U W/W 5,77 5,71 5,71 5,58 5,18 5,53 5,17 5,64 5,32 5,08	5,27 5,07
° % 203,90 194,80 203,30 187,70 195,10 189,00 197,30 196,70 191,50	189,90 193,00
A % 213,60 208,30 213,10 193,50 205,80 194,60 208,70 201,10 194,90	201,30 196,70
E % 211,40 216,30 213,10 214,70 210,20 207,90 206,50 184,00 195,90 194,00 206,10 194,20 189,20	193,00 186,50
Seasonal efficiency L	183,80 186,40
N % 221,40 223,80 220,60 227,50 220,00 218,70 226,60 210,90 218,20 203,00 219,50 209,70 202,20	206,70 199,90
U % 227,60 225,50 225,40 220,30 204,00 218,30 203,60 222,70 209,60 200,00	207,90 199,90
SEPR - (EN 14825: 2018) (2)	
° W/W 5,79 5,61 5,74 5,62 5,66 5,57 5,59 5,84 5,94	5,45 5,76
A W/W 6,10 5,97 6,00 5,73 5,97 5,74 5,92 5,79 5,89	5,75 5,78
E W/W 6,46 6,42 6,13 6,36 5,98 5,95 5,79 5,41 5,72 5,68 5,83 5,67 5,69	5,51 5,47
SEPR L W/W 6,15 6,00 5,97 6,07 5,79 5,65 5,61 5,31 5,55 5,28 5,58 5,60 5,77	5,37 5,53
N W/W 6,71 6,53 6,23 6,54 6,22 6,12 6,16 6,12 6,14 5,93 6,09 5,97 6,08	5,83 5,90
U W/W 6,43 6,30 6,31 6,01 6,15 6,09 5,88 6,19 5,88 6,05	5,85 6,07

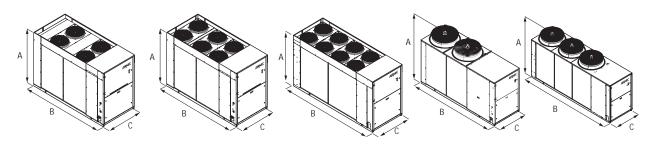
ELECTRIC DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Electric data																	
	0	A	-	-	-	-	72,2	77,1	86,0	98,2	94,9	111,3	112,7	127,3	131,4	144,0	141,2
	A	A	-	-	-	-	72,2	77,1	86,0	98,2	94,9	114,5	112,7	127,3	131,4	144,0	141,2
Maximum aurent (FLA)	E	A	42,6	49,2	56,9	65,3	72,2	77,1	86,0	98,2	94,9	114,5	112,7	127,3	131,4	144,0	141,2
Maximum current (FLA)	L	A	41,5	49,2	55,8	65,3	72,2	77,1	86,0	98,2	94,9	111,3	112,7	127,3	131,4	144,0	141,2
	N	Α	42,6	50,3	56,9	67,3	72,2	77,1	89,2	101,3	98,1	114,5	112,7	130,5	134,6	147,2	144,4
	U	A	-	-	-	67,3	72,2	77,1	89,2	101,3	98,1	114,5	112,7	130,5	134,6	147,2	144,4
	0	A	-	-	-	-	277,6	282,5	329,2	211,9	338,1	225,1	363,8	378,4	274,9	476,4	346,6
	A	Α	-	-	-	-	277,6	282,5	329,2	211,9	338,1	228,3	363,8	378,4	274,9	476,4	346,6
DI	E	A	148,0	163,0	170,6	208,9	277,6	282,5	329,2	211,9	338,1	228,3	363,8	378,4	274,9	476,4	346,6
Peak current (LRA)	L	A	146,9	163,0	169,5	208,9	277,6	282,5	329,2	211,9	338,1	225,1	363,8	378,4	274,9	476,4	346,6
	N	A	148,0	164,1	170,6	210,8	277,6	282,5	332,4	215,1	341,3	228,3	363,8	381,6	278,1	479,6	349,8
	U	A	-	-	-	210,8	277,6	282,5	332,4	215,1	341,3	228,3	363,8	381,6	278,1	479,6	349,8

GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Compressor																	
Туре	°,A,E,L,N,U	type								Scroll							
	°,A	no.	-	-	-	-	2	2	2	4	2	4	2	2	4	2	4
Number	E,L,N	no.	2	2	2	2	2	2	2	4	2	4	2	2	4	2	4
	U	no.	-	-	-	2	2	2	2	4	2	4	2	2	4	2	4
	°,A	no.	-	-	-	-	1	1	1	2	1	2	1	1	2	1	2
Circuits	E,L,N	no.	1	1	1	1	1	1	1	2	1	2	1	1	2	1	2
	U	no.	-	-	-	1	1	1	1	2	1	2	1	1	2	1	2
Refrigerant	°,A,E,L,N,U	type								R410A							
System side heat	exchanger																
Туре	°,A,E,L,N,U	type								Brazed plate	2						
	°,A	no.	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1
Number	E,L,N	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	U	no.	-	-	-	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connec	tions																
	°,A	Ø	-	-	-	-	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2
Sizes (in/out)	E,L,N	Ø								2"1/2							
	U	Ø	-	-	-	2"1/2	2"1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2

G.s. = Grooved joints


⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C

Fans																	
Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fan																	
Туре	°,A,E,L,N,U	type	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial
-	0	no.	-	-	-	-	2	2	2	2	3	3	3	2	2	3	3
-	A	no.	-	-	-	-	2	2	2	2	3	3	3	2	3	3	3
Number	E	no.	6	6	8	8	2	2	2	2	3	3	3	2	3	3	3
-	L	no.	4	6	6	8	2	2	2	2	3	3	3	2	2	3	3
-	N	no.	6	8	8	2	2	2	3	3	3	4	4	3	3	4	4
	U	no.	-		-	2	2	2	3	3	3	4	4	3	3	4	4
Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: °																	
Fan																	
Fan motor	°,A,U	type								synchrono							
	E,L,N	type m³/h							Asynchro	nous with	pnase cut						
-	°,A,U E	m³/h	20700	22200	27500	24800	-	-				-	-	-	-	-	-
Air flow rate		m ³ /h	15200	20700	22200	27500											
-	N N	m ³ /h	22200	27500	24800	2/300	-	-		-	-	-	-	-	-	-	
Sound data calculated in cooling mode (1		ni /II	22200	21 300	۷٩٥٥٥												
water tartainten in cooling mode (1	°,A,U	dB(A)						_	-					-			
	,n,o E	dB(A)	72,4	72,9	73,7	73,9	-	-	-	-	-	-	-	-	-	-	-
Sound power level		dB(A)	71,8	72,9	73,3	73,9	-	-	-	_	-	-	-	_	-	-	
-	N	dB(A)	72,4	73,3	73,7	-	-	-	-	-	-	-	-	-	-	-	-
(1) Sound power: calculated on the basis of n	neasurements i					-2, as requ	ired for Eu	rovent cer	tification. S	Sound pre	sure meas	ured in fre	e field (in	complianc	e with UNI	EN ISO 37	44).
Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: M			7202	0302	0332	0332	0302	- 0332	0002	0001	0032	0051	0002	0,02	0,01	0,52	- 0751
Increased fan																	
-	°,A,U	type							A	synchrono	us						
Fan motor	E,L,N	type							Asynchro	nous with	phase cut						
With static pressure																	
	0	m³/h	-	-	-	-	36600	36600	35100	35100	35100	33700	55200	53100	53100	53100	53100
_	A	m³/h	-	-	-	-	35100	35100	33800	33800	33700	53100	53100	51100	51100	51100	51100
Air flow rate	E	m³/h	20700	22200	27500	24800	26800	26800	25600	25600	25600	40500	40500	38800	38800	38800	38800
All How face	L	m³/h	15200	20700	22200	27500	30900	30900	29500	29500	46500	44600	44600	29500	28300	44600	44600
-	N	m³/h	22200	27500	24800	26800	25600	25600	40500	40500	40500	38800	38800	54600	54600	54600	54600
	U	m³/h	-	-	-	35100	33700	33700	53100	53100	53100	51100	51100	71200	71200	71200	71200
-	°,A	<u>Pa</u>	-	-	-	-	120	120	120	120	120	120	120	120	120	120	120
High static pressure	E,L	Pa	80	80	80	80	50	50	50	50	50	50	50	50	50	50	50
	N N	Pa	20	20	20	120	120	120	120	120	120	120	120	120	120	120	120
	U	Pa	-		-	120	120	120	120	120	120	120	120	120	120	120	120
-		dB(A)		-	-		84,5	85,0 85,0	85,3 85,3	84,2 84,2	85,5 85,5	84,3 85,9	86,9	87,0	85,9	87,7	87,5 87,5
-	A E	dB(A)	72,4	72,9	73,7	73,9	84,5 80,7	81,5	82,1	76,1	82,5	77,2	86,9 83,6	87,0 83,8	85,9 77,4	87,7 85,0	83,0
Sound power level	i	dB(A)	71,8	72,9	73,3	73,9	80,7	81,5	82,1	76,1	82,5	76,5	83,6	83,8	77,4	85,0	83,5
-	N N	dB(A)	72,4	73,3	73,7	79,7	80,7	81,5	83,0	76,9	83,4	77,2	83,6	84,5	77,9	85,5	83,3
-	U	dB(A)	-	-	-	84,0	84,5	85,0	86,6	85,8	86,8	85,9	86,9	87,9	87,0	88,5	88,5
Without Static pressure		,				. ,	. ,-	,	,-	,.	,.	,	,	. ,	- ,	,.	
•	0	m³/h	-	-	-	-	42300	42300	40400	40400	40400	38700	63700	61000	61000	61000	61000
_	A	m³/h	-	-	-	-	40400	40400	38600	38600	38600	61100	61000	58500	58500	58500	58500
Air flow rate	E	m³/h		-		-	26800	26800	25600	25600	25600	40500	40500	38800	38800	38800	38800
Air flow rate	L	m³/h	-	-	-	-	30900	30900	29500	29500	29500	28300	46500	44600	44600	44600	44600
	N	m³/h	-	-	-	26800	25600	25600	40500	40500	40500	38800	38800	54600	54600	54600	54600
	U	m³/h	-	-	-	45700	44000	44000	69000	69000	69000	66500	69000	66500	66500	66500	66500
High static pressure	°,A,E,L	Pa	-	-	-	-	0	0	0	0	0	0	0	0	0	0	0
J	N,U	Pa	-	-	-	0	0	0	0	0	0	0	0	0	0	0	0
	0	dB(A)	-	-	-	-	86,6	86,8	87,0	86,0	87,1	86,0	88,2	88,3	87,7	88,6	88,5
	A	dB(A)	-	-	-	-	86,6	86,8	87,0	86,0	87,1	87,7	88,2	88,3	87,7	88,6	88,5
Sound power level	E	dB(A)	-	-	-	-	80,7	81,5	82,1	76,1	82,5	77,2	83,6	83,8	77,4	85,0	83,0
	L	dB(A)	-	-	-	70.7	80,7	81,5	82,1	76,1	82,5	76,5	83,6	83,8	77,4	85,0	83,5
-	N N	dB(A)	-		-	79,7	80,7	81,5	83,0	76,9	83,4	77,2	83,6	84,5	77,9	85,5	83,3
	U	dB(A)	-	-	-	86,4	86,6	86,8	88,5	87,7	88,6	87,7	88,2	89,3	88,9	89,6	89,6

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans: J																	
Inverter fan																	
Fan motor	°,A,E,L,N,U	type								Inverter							
	0	m³/h	-	-	-	-	36600	36600	35100	35100	35100	33700	55200	53100	53100	53100	53100
	Α	m³/h	-	-	-	-	35100	35100	33800	33800	33700	53100	53100	51100	51100	51100	51100
Air flow rate	E	m³/h	20700	22200	27500	24800	26800	26800	25600	25600	25600	40500	40500	38800	38800	38800	38800
All HOW fale	L	m³/h	15200	20700	22200	27500	30900	30900	29500	29500	29500	28300	46500	44600	44600	44600	44600
	N	m³/h	22200	27500	24800	26800	25600	25600	40500	40500	40500	38800	38800	54600	54600	54600	54600
	U	m³/h	-	-	-	35100	33700	33700	53100	53100	51100	71200	71200	53100	51100	71200	71200
	°,A	Pa	-	-	-	-	120	120	120	120	120	120	120	120	120	120	120
High static processo	E,L	Pa	20	20	20	20	120	120	120	120	120	120	120	120	120	120	120
High static pressure	N	Pa	20	20	20	120	120	120	120	120	120	120	120	120	120	120	120
	U	Pa	-	-	-	120	120	120	120	120	120	120	120	120	120	120	120
Sound data calculated in cooling mode (I)																
	0	dB(A)	-	-	-	-	84,5	85,0	85,3	85,5	86,9	87,0	87,7	84,2	84,3	85,9	87,5
	A	dB(A)	-	-	-	-	84,5	85,0	85,3	85,5	86,9	87,0	87,7	84,2	85,9	85,9	87,5
Cound namer lavel	E	dB(A)	72,4	72,9	73,7	73,9	80,7	81,5	82,1	82,5	83,6	83,8	85,0	76,1	77,2	77,4	83,0
Sound power level	L	dB(A)	71,8	72,9	73,3	73,9	80,7	81,5	82,1	82,5	83,6	83,8	85,0	76,1	76,5	77,4	83,5
	N	dB(A)	72,4	73,3	73,7	79,7	80,7	81,5	83,0	83,4	83,6	84,5	85,5	76,9	77,2	77,9	83,3
	U	dB(A)	-	-	-	84,0	84,5	85,0	86,6	86,8	86,9	87,9	88,5	85,8	85,9	87,0	88,5

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Dimensions and weights																	
	°,A	mm	-	-	-	-	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
Λ	E,L	mm	1680	1680	1680	1680	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
A	N	mm	1680	1680	1680	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
	U	mm	-	-	-	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
	0	mm	-	-	-	-	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
	A	mm	-	-	-	-	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
В	E	mm	2450	2950	2950	2950	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
D	L	mm	2450	2450	2950	2950	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
	N	mm	2950	2950	2950	3200	3200	3200	4010	4010	4010	4010	4010	5200	5200	5200	5200
	U	mm	-	-	-	3200	3200	3200	4010	4010	4010	4010	4010	5200	5200	5200	5200
	°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
(E,L,N	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	U	mm	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Weights																	
	•	kg	-	-	-	-	993	1018	1075	1160	1075	1210	1267	1427	1331	1440	1392
	A	kg	-	-	-	-	1046	1072	1116	1200	1116	1325	1347	1507	1410	1531	1471
Without hudronic lit	E	kg	828	889	912	962	1046	1072	1116	1116	1347	1507	1531	1200	1325	1410	1471
Without hydronic kit	L	kg	810	828	894	907	993	1018	1075	1160	1075	1210	1267	1427	1331	1440	1392
	N	kg	884	907	957	1020	1076	1109	1232	1243	1426	1647	1660	1327	1415	1549	1607
	U	kg	-	-	-	1020	1076	1109	1232	1243	1426	1647	1660	1327	1415	1549	1607

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0282H-0754H

Reversible air/water heat pump

Cooling capacity 52 ÷ 261 kW Heating capacity 57 ÷ 193 kW

- · High efficiency also at partial loads
- Components redundancy for greater safety
- Reduced amount of refrigerant
- Compact dimensions

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15°C outside air temperature in winter, and up to 48°C in summer. Hot water production up to 55°C (for more information see the technical documentation).

Units mono or dual-circuit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, available to configurator, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

■ VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTRO

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or with DCPX which allows unit operation to be optimised at any operating point through continuous modulation of the fan speed. In addition, the use of inverter fans ensures an increase in energy efficiency at partial loads.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using

Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid. VT: Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real

AERCALM: The aim of the accessory installed in the electric box of the unit is to provide a clean contact for commanding - on the basis of the outside air temperature - a boiler to replace the heat pump. Aercalm must be requested at the time of ordering, as it is installed in the fac-

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
AER485P1	°,A					•	•	•	•	•	•	•	•	•	•	•
AEK483PT	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A					•	•	•	•	•	•	•	•	•	•	•
AENDACE	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	°,A					•	•	•	•	•	•	•	•	•	•	•
AERLINK	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,A					•	•	•	•	•	•	•	•	•	•	•
AERINEI	E,L	•			•	•	•	•	•	•	•	•	•	•		•
MULTICUULIED EVO	°,A					•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	E,L	•			•	•	•	•	•	•	•	•	•	•		•
DCD1	°,A					•	•	•	•	•	•	•	•	•	•	•
PGD1	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Condensation control temperature

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Fans:°															
۰	-	-	-	-	DCPX142	DCPX142	DCPX142	DCPX142	DCPX142	DCPX142	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143
A	-	-	-	-	DCPX142	DCPX142	DCPX142	DCPX142	DCPX142	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143	DCPX143
E,L	DCPX140	DCPX140	DCPX140	DCPX140	As standard										
Fans: M															
E,L	DCPX141	DCPX141	DCPX141	DCPX141	-	-	-	-	-	-	-	-	-	-	-

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Integrated hydronic kit: 00, I1, I2, I3,	14, P1, P2, P3,	P4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT17	VT17	VT17	VT17	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
Integrated hydronic kit: 01, 02, 03, 04	4, 05, 06, 07, 0	8, K1, K2, K	3, K4, W1, V	V2, W3, W4											
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	VT22
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
0	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									
A	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)									
E	GP3	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)									
L	GP3	GP3	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)									

(1) x_i indicates the quantity to buy The accessory cannot be fitted on the configurations indicated with -

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0602	0604
°,A	-	-	-	-	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)
E,L	DRENRB282 (1)	DRENRB302 (1)	DRENRB332 (1)	DRENRB352 (1)	DRENRB502 (1)	DRENRB552 (1)	DRENRB602 (1)	DRENRB604 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

The accessory cannot be fitted on the configurations indicated with

A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754
°,A,E,L	DRENRB652 (1)	DRENRB654 (1)	DRENRB682 (1)	DRENRB702 (1)	DRENRB704 (1)	DRENRB752 (1)	DRENRB754 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

À grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°,A	-	-	-	-	RIF0502	RIF0552	RIF0602	RIF0604	RIF0652	RIF0654	RIF0682	RIF0702	RIF0704	RIF0752	RIF0754
E,L	RIF0282	RIF0302	RIF0332	RIF0352	RIF0502	RIF0552	RIF0602	RIF0604	RIF0652	RIF0654	RIF0682	RIF0702	RIF0704	RIF0752	RIF0754

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Touch screen keyboard

Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
°,A,E,L	C-TOUCH														

A grey background indicates the accessory must be assembled in the factory

Clean contact for controlling a boiler.

Model	Ver	0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
AERCALM	°.A.E.L								•		•			•		•

CONFIGURATOR

Field		Description
1,2,3		NRB
4,5,6,	,7	Size 0282, 0302, 0332, 0352, 0502, 0552, 0602, 0604, 0652, 0654, 0682, 0702, 0704 0752, 0754
8		Operating field
(0	Standard mechanic thermostatic valve (1)
)	Χ	Electronic thermostatic expansion valve (1)
١	Y	Double mechanical thermostat for low temperature (2)
7	Z	Low temperature electronic thermostatic valve (3)
9		Model
ŀ	Н	Heat pump
10		Heat recovery
C	0	Without heat recovery
[D	With desuperheater (4)
11		Version
0	0	Standard
- 1	A	High efficiency
E	E	Silenced high efficiency (5)
I	L	Standard silenced (5)
12		Coils
c	0	Copper-aluminium
F	R	Copper pipes-copper fins
9	S	Copper pipes-Tinned copper fins
١	V	Copper pieps-Coated aluminium fins
13		Fans
c	0	Standard
J	J	Inverter
I	M	Oversized (6)
14		Power supply
C	0	400V ~ 3N 50Hz with magnet circuit breakers
15,16		Integrated hydronic kit
		Without hydronic kit
(00	Without hydronic kit
		Kit with storage tank and pump/s
(01	Storage tank with low head pump
(02	Storage tank with low head pump + stand-by pump

Field	Description
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (7)
06	Storage tank with holes for heaters and pump low head + stand-by pump (7)
07	Storage tank with holes for heaters and single high head pump (7)
08	Storage tank with holes for heaters and pump high head + stand-by pump (7)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
11	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter
W2	Double low head pump + Storage tank + variable speed inverter
W3	Single high head pump + Storage tank + variable speed inverter
W4	Double high head pump + Storage tank + variable speed inverter

- (1) Water produced from 4 °C ÷ 18 °C
 (2) Water produced from -10 °C ÷ 18 °C
 (3) Water produced from -10 °C ÷ 18 °C
 (4) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (5) The size 0282-0302-0332-0352 are only available in the silenced versions "HL/HE"
 (6) Only for 0282 ÷ 0352 sizes
 (7) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

416 NRB-0282-0754-HP_Y_UN50_11 www.aermec.com

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

NRB H°

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	-	-	-	-	91,2	99,7	116,0	115,4	124,7	133,4	151,0	169,9	159,9	187,2	180,8
Input power	kW	-	-	-	-	33,5	37,5	42,6	46,2	47,8	51,2	51,7	60,0	58,0	69,8	65,7
Cooling total input current	Α	-	-	-	-	61,0	67,0	74,0	83,0	83,0	92,0	90,0	102,0	105,0	116,0	116,0
EER	W/W	-	-	-	-	2,72	2,66	2,72	2,50	2,61	2,60	2,92	2,83	2,76	2,68	2,75
Water flow rate system side	I/h	-	-	-	-	15705	17177	19972	19876	21484	22988	25997	29247	27534	32236	31116
Pressure drop system side	kPa	-	-	-	-	35	42	37	44	43	44	50	61	65	74	59
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	-	-	-	-	96,8	105,8	123,7	129,0	136,1	143,4	158,7	178,4	171,8	198,7	188,6
Input power	kW	-	-	-	-	31,0	33,8	38,7	42,7	43,3	47,7	51,2	58,2	57,3	66,0	61,8
Heating total input current	Α	-	-	-	-	56,0	60,0	68,0	77,0	76,0	87,0	89,0	99,0	104,0	110,0	111,0
COP	W/W	-	-	-	-	3,12	3,13	3,20	3,03	3,15	3,01	3,10	3,07	3,00	3,01	3,05
Water flow rate system side	l/h	-	-	-	-	16773	18334	21443	22371	23594	24863	27527	30948	29797	34460	32710
Pressure drop system side	kPa	-	-	-	-	40	48	43	56	52	52	56	69	76	84	65

NRB HL

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	52,1	59,2	67,3	78,1	88,5	96,5	111,5	110,4	119,3	126,4	147,0	164,5	154,9	180,5	174,0
Input power	kW	19,5	22,0	24,8	29,5	34,1	38,3	44,1	48,4	49,9	54,2	52,3	61,5	59,2	72,5	67,8
Cooling total input current	Α	35,0	41,0	47,0	55,0	59,0	66,0	74,0	84,0	84,0	94,0	87,0	100,0	103,0	116,0	116,0
EER	W/W	2,67	2,69	2,71	2,65	2,60	2,52	2,53	2,28	2,39	2,33	2,81	2,68	2,62	2,49	2,57
Water flow rate system side	I/h	8974	10197	11584	13455	15234	16630	19200	19020	20540	21776	25312	28324	26677	31068	29958
Pressure drop system side	kPa	33	42	33	45	33	39	34	40	39	40	48	58	60	69	55
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	57,5	65,7	75,3	84,9	96,8	105,8	123,7	129,0	136,1	143,4	158,7	178,4	171,8	198,7	188,6
Input power	kW	17,6	20,7	23,1	26,9	31,0	33,8	38,7	42,6	43,3	47,7	51,2	58,2	57,3	66,0	61,8
Heating total input current	Α	32,0	38,0	43,0	51,0	56,0	60,0	68,0	77,0	76,0	87,0	89,0	99,0	104,0	110,0	111,0
COP	W/W	3,27	3,17	3,26	3,16	3,12	3,13	3,20	3,03	3,15	3,01	3,10	3,07	3,00	3,01	3,05
Water flow rate system side	l/h	9973	11376	13056	14711	16773	18334	21443	22371	23594	24863	27527	30948	29797	34460	32710
Pressure drop system side	kPa	41	53	42	54	40	47	43	55	52	52	56	69	75	84	65

NRB HA

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	-	-	-	-	96,9	106,5	123,6	123,1	133,6	142,1	163,9	178,5	168,0	199,9	190,0
Input power	kW	-	-	-	-	32,3	36,1	39,5	43,3	45,0	47,2	50,7	57,0	55,4	66,5	62,8
Cooling total input current	А	-	-	-	-	57,0	61,0	68,0	73,0	74,0	79,0	85,0	94,0	99,0	102,0	106,0
EER	W/W	-	-	-	-	3,00	2,95	3,13	2,84	2,97	3,01	3,23	3,13	3,03	3,01	3,03
Water flow rate system side	l/h	-	-	-	-	16684	18331	21277	21205	23007	24462	28216	30726	28924	34406	32698
Pressure drop system side	kPa	-	-	-	-	26	31	32	38	38	50	44	52	50	56	54
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	-	-	-	-	100,3	110,9	124,3	129,7	138,2	149,4	164,1	179,7	172,3	200,6	190,0
Input power	kW	-	-	-	-	30,7	33,5	37,6	40,5	42,0	46,7	50,2	56,3	54,3	62,9	59,5
Heating total input current	Α	-	-	-	-	56,0	60,0	67,0	73,0	74,0	86,0	87,0	96,0	99,0	106,0	107,0
COP	W/W	-	-	-	-	3,27	3,31	3,31	3,20	3,29	3,20	3,27	3,19	3,17	3,19	3,19
Water flow rate system side	l/h	-	-	-	-	17406	19230	21553	22489	23953	25914	28469	31171	29889	34800	32956
Pressure drop system side	kPa	-	-	-	-	28	34	33	42	41	56	45	54	54	57	55

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Beat exchanger water (services side) 12°C / 7°C; outside air 3°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40°C / 45°C; Outside air 7°C d.b. / 6°C w.b.

NRB HE

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	55,4	62,1	70,0	81,2	94,0	103,0	119,1	117,6	128,0	138,3	159,4	172,5	162,3	191,7	182,6
Input power	kW	18,5	21,0	23,7	28,3	32,8	36,9	40,7	44,7	46,9	47,7	51,4	58,5	56,7	69,3	64,9
Cooling total input current	Α	32,0	37,0	42,0	47,0	56,0	61,0	68,0	74,0	75,0	76,0	83,0	93,0	98,0	102,0	106,0
EER	W/W	3,00	2,96	2,95	2,86	2,86	2,79	2,92	2,63	2,73	2,90	3,10	2,95	2,87	2,77	2,81
Water flow rate system side	l/h	9530	10696	12052	13983	16181	17722	20498	20255	22037	23819	27431	29692	27947	33000	31425
Pressure drop system side	kPa	23	29	26	35	24	29	30	34	34	48	41	49	47	51	50
Heating performance 40 °C / 45 °C (2)																
Heating capacity	kW	59,0	68,2	76,6	87,1	100,3	110,9	124,3	129,7	138,2	149,4	164,1	179,7	172,3	200,6	190,0
Input power	kW	17,5	20,3	22,9	26,4	30,7	33,5	37,6	40,5	42,0	46,7	50,2	56,3	54,3	62,9	59,5
Heating total input current	Α	33,0	38,0	44,0	50,0	56,0	60,0	67,0	73,0	74,0	86,0	87,0	96,0	99,0	106,0	107,0
COP	W/W	3,37	3,36	3,35	3,30	3,27	3,31	3,31	3,20	3,29	3,20	3,27	3,19	3,17	3,19	3,19
Water flow rate system side	l/h	10227	11816	13289	15100	17406	19230	21553	22489	23953	25914	28469	31171	29889	34800	32956
Pressure drop system side	kPa	26	35	31	41	28	34	33	42	41	56	45	54	54	57	55

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

NRB H°

1111211																
Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	-	-	-	-	122,6	133,3	155,1	154,9	165,6	183,4	203,5	227,9	218,9	248,3	247,3
Input power	kW	-	-	-	-	36,3	41,0	46,5	50,2	52,2	55,9	55,8	65,6	62,6	77,0	72,2
Cooling total input current	Α	-	-	-	-	65,0	72,0	80,0	89,0	90,0	99,0	96,0	110,0	112,0	126,0	126,0
EER	W/W	-	-	-	-	3,38	3,25	3,33	3,08	3,17	3,28	3,65	3,48	3,50	3,23	3,42
Water flow rate system side	l/h	-	-	-	-	21190	23054	26805	26775	28622	31700	35175	39395	37837	42931	42743
Pressure drop system side	kPa	-	-	-	-	63	75	67	81	76	84	92	111	123	131	112
Heating performance 30 °C/35 °C (2)																
Heating capacity	kW	-	-	-	-	98,8	107,2	127,4	132,8	139,6	146,7	163,5	182,9	176,8	201,7	192,4
Input power	kW	-	-	-	-	25,4	27,7	31,8	34,3	35,5	38,4	42,0	47,3	46,5	53,2	50,4
Heating total input current	Α	-	-	-	-	46,0	49,0	56,0	61,0	62,0	70,0	72,0	80,0	84,0	88,0	90,0
COP	W/W	-	-	-	-	3,89	3,87	4,01	3,87	3,93	3,82	3,90	3,87	3,80	3,79	3,82
Water flow rate system side	l/h	-	-	-	-	17058	18508	21998	22936	24118	25357	28248	31616	30551	34851	33261
Pressure drop system side	kPa	-	-	-	-	41	49	45	59	54	54	59	72	80	86	68

NRB HL

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	69,6	79,3	92,2	105,6	118,1	128,2	147,6	146,8	156,6	170,9	196,8	218,8	210,1	237,3	235,3
Input power	kW	21,9	24,2	27,3	32,5	37,3	42,4	48,9	53,8	55,5	60,7	57,2	68,1	64,8	81,0	75,7
Cooling total input current	Α	39,0	44,0	51,0	60,0	64,0	72,0	81,0	92,0	93,0	104,0	94,0	110,0	111,0	128,0	128,0
EER	W/W	3,18	3,27	3,37	3,25	3,17	3,02	3,02	2,73	2,82	2,82	3,44	3,22	3,24	2,93	3,11
Water flow rate system side	I/h	12041	13740	15960	18270	20427	22163	25508	25376	27064	29542	34006	37824	36327	41017	40668
Pressure drop system side	kPa	59	77	63	83	59	69	61	70	68	73	86	103	112	120	101
Heating performance 30 °C / 35 °C (2)																
Heating capacity	kW	58,9	66,7	77,1	86,8	98,8	107,2	127,4	132,8	139,6	146,7	163,5	182,9	176,8	201,7	192,4
Input power	kW	13,9	16,5	18,4	21,5	25,4	27,7	31,8	34,3	35,5	38,4	42,0	47,3	46,5	53,2	50,4
Heating total input current	Α	25,0	30,0	34,0	40,0	46,0	49,0	56,0	61,0	62,0	70,0	72,0	80,0	84,0	88,0	90,0
COP	W/W	4,25	4,06	4,19	4,03	3,89	3,87	4,01	3,87	3,93	3,82	3,90	3,87	3,80	3,79	3,82
Water flow rate system side	l/h	10168	11516	13317	14972	17058	18508	21998	22936	24118	25357	28248	31616	30551	34851	33261
Pressure drop system side	kPa	42	54	44	56	41	48	45	57	54	54	59	72	79	86	68
·																

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/ 18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C / 35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

NRB HA

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	-	-	-	-	131,3	143,6	166,5	170,4	178,7	198,2	222,3	241,2	231,6	268,1	261,3
Input power	kW	-	-	-	-	34,9	39,4	42,9	47,2	49,0	50,3	54,8	62,4	59,6	73,6	68,8
Cooling total input current	Α	-	-	-	-	61,0	66,0	74,0	79,0	80,0	82,0	91,0	101,0	105,0	112,0	115,0
EER	W/W	-	-	-	-	3,77	3,65	3,88	3,61	3,65	3,94	4,06	3,86	3,88	3,65	3,80
Water flow rate system side	l/h	-	-	-	-	22699	24821	28771	29452	30874	34255	38412	41683	40019	46336	45163
Pressure drop system side	kPa	-	-	-	-	48	57	59	73	68	98	81	97	96	102	103
Heating performance 30 °C / 35 °C (2)																
Heating capacity	kW	-	-	-	-	104,2	114,6	128,1	133,6	141,8	154,4	169,0	184,0	177,3	203,5	193,6
Input power	kW	-	-	-	-	25,2	27,6	30,9	32,6	34,4	38,0	41,2	45,8	44,1	50,7	48,5
Heating total input current	Α	-	-	-	-	46,0	49,0	54,0	59,0	60,0	69,0	71,0	78,0	80,0	85,0	87,0
COP	W/W	-	-	-	-	4,14	4,16	4,15	4,10	4,12	4,07	4,10	4,02	4,02	4,01	3,99
Water flow rate system side	l/h	-	-	-	-	18004	19795	22128	23077	24492	26674	29206	31801	30649	35173	33469
Pressure drop system side	kPa	-	-	-	-	30	36	35	45	43	60	47	56	56	58	57

NRB HE

Size		0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 23 °C / 18 °C (1)																
Cooling capacity	kW	76,4	85,7	96,8	111,4	126,2	137,5	158,5	160,4	168,9	191,5	214,3	230,5	221,2	253,2	247,4
Input power	kW	20,4	23,1	25,7	31,2	35,9	41,0	45,2	49,8	52,2	51,4	56,4	65,1	62,1	78,2	72,6
Cooling total input current	Α	35,0	40,0	45,0	51,0	61,0	67,0	75,0	81,0	82,0	81,0	90,0	102,0	106,0	114,0	117,0
EER	W/W	3,74	3,72	3,77	3,57	3,51	3,36	3,51	3,22	3,24	3,72	3,80	3,54	3,56	3,24	3,41
Water flow rate system side	l/h	13219	14836	16740	19268	21829	23767	27392	27721	29185	33098	37025	39827	38232	43759	42750
Pressure drop system side	kPa	43	55	50	66	44	52	53	64	60	92	75	88	88	91	92
Heating performance 30 °C / 35 °C (2)																
Heating capacity	kW	60,5	70,2	78,9	90,4	104,2	114,6	128,1	133,6	141,8	154,4	169,0	184,0	177,3	203,5	193,6
Input power	kW	13,8	16,1	18,2	21,1	25,2	27,6	30,9	32,6	34,4	38,0	41,2	45,8	44,1	50,7	48,5
Heating total input current	Α	26,0	30,0	35,0	40,0	46,0	49,0	54,0	59,0	60,0	69,0	71,0	78,0	80,0	85,0	87,0
COP	W/W	4,38	4,36	4,34	4,28	4,14	4,16	4,15	4,10	4,12	4,07	4,10	4,02	4,02	4,01	3,99
Water flow rate system side	l/h	10456	12125	13636	15617	18004	19795	22128	23077	24492	26674	29206	31801	30649	35173	33469
Pressure drop system side	kPa	27	37	33	43	30	36	35	45	43	60	47	56	56	58	57

ENERGY DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling capacity with low leaving wate	r temp (UE n° 2	2016/2281)															
	0	W/W	-	-	-	-	3,92	3,83	3,99	3,70	3,91	3,67	4,14	3,97	3,73	3,88	3,76
	A	W/W	-	-	-	-	4,21	4,14	4,39	3,93	4,20	3,92	4,38	4,27	3,99	4,24	4,06
SEER	E	W/W	4,28	4,32	4,22	4,24	4,17	4,10	4,33	3,86	4,12	3,93	4,35	4,21	3,98	4,16	3,92
	L	W/W	4,10	4,11	4,11	4,00	3,88	3,83	3,93	3,68	3,89	3,64	4,08	3,89	3,70	3,81	3,71
	0	%	-	-	-	-	154,00	150,00	157,00	145,00	153,00	144,00	163,00	156,00	146,00	152,00	147,00
	A	%	-	-	-	-	165,00	163,00	173,00	154,00	165,00	154,00	172,00	168,00	157,00	167,00	160,00
ηςς	E	%	168,00	170,00	166,00	167,00	164,00	161,00	170,00	151,00	162,00	154,00	171,00	165,00	156,00	163,00	154,00
	L	%	161,00	161,00	161,00	157,00	152,00	150,00	154,00	144,00	153,00	143,00	160,00	153,00	145,00	149,00	145,00
UE 813/2013 performance in average ar	nbient conditi	ions (avera	ge) - 35 °C	- Pdesign	h ≤ 400 k	W (1)											
-	0	kW	-	-	-	-	88,80	97,30	112,20	116,80	124,50	129,90	144,90	162,80	157,50	182,70	172,10
Dalarianh	A	kW	-	-	-	-	90,20	99,60	112,20	116,80	125,80	135,00	149,00	164,10	157,00	183,30	173,60
Pdesignh	E	kW	53,46	53,46	53,46	78,80	90,20	99,60	112,20	116,80	125,80	135,00	149,00	164,10	157,00	183,30	173,60
	L	kW	52,20	60,22	68,44	78,20	88,80	97,30	112,20	116,80	124,50	129,90	144,90	162,80	157,50	182,70	172,10
	0	%	-	-	-	-	135,90	139,50	140,40	130,40	140,30	129,50	134,00	137,30	126,30	138,40	128,50
	A	%	-	-	-	-	138,00	142,80	143,20	133,00	143,10	132,10	139,80	141,30	128,00	142,00	133,00
ηsh	E	%	158,26	158,26	158,26	152,70	138,50	142,80	143,20	133,00	143,10	132,10	139,80	141,30	128,40	142,00	133,00
	L	%	156,16	152,79	152,22	150,00	135,90	139,50	140,40	130,50	140,30	129,50	134,00	137,30	126,30	138,40	128,50
	0	W/W	-	-	-	-	3,47	3,56	3,58	3,34	3,58	3,31	3,43	3,51	3,23	3,54	3,29
SCOP	A	W/W	-	-	-	-	3,53	3,65	3,66	3,40	3,65	3,38	3,57	3,61	3,29	3,63	3,40
CUL	Е	W/W	4,03	4,04	4,03	3,89	3,54	3,65	3,65	3,40	3,66	3,38	3,57	3,61	3,29	3,62	3,40
	L	W/W	3,98	3,89	3,88	3,83	3,47	3,56	3,59	3,34	3,58	3,31	3,43	3,51	3,23	3,54	3,29

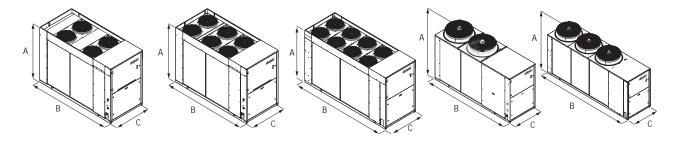
⁽¹⁾ Efficiencies for low temperature applications (35 °C)

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Electric data																	
	0	Α	-	-	-	-	74,3	79,2	88,1	100,3	97,0	113,5	115,9	130,5	134,6	147,2	144,4
Maximum current (FLA)	A	Α	-	-	-	-	74,3	79,2	88,1	100,3	97,0	117,7	115,9	130,5	134,6	147,2	144,4
Maximum current (FLA)	E	Α	42,6	49,2	56,9	65,3	74,3	79,2	88,1	100,3	97,0	117,7	115,9	130,5	134,6	147,2	144,4
	L	Α	41,5	49,2	55,8	65,3	74,3	79,2	88,1	100,3	97,0	113,5	115,9	130,5	134,6	147,2	144,4
	0	Α	-	-	-	-	279,8	284,7	331,4	214,1	340,3	227,2	367,0	381,6	278,1	479,6	349,8
Deals surrent (LDA)	A	Α	-	-	-	-	279,8	284,7	331,4	214,1	340,3	231,5	367,0	381,6	278,1	479,6	349,8
Peak current (LRA)	E	Α	148,0	163,0	170,6	208,9	279,8	284,7	331,4	214,1	340,3	231,5	367,0	381,6	278,1	479,6	349,8
	L	A	146,9	163,0	169,5	208,9	279,8	284,7	331,4	214,1	340,3	227,2	367,0	381,6	278,1	479,6	349,8


GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Compressor																	
Туре	°,A,E,L	type								Scroll							
Compressor regulation	°,A,E,L	Туре								0n-0ff							
Number -	°,A	no.	-	-	-	-	2	2	2	4	2	4	2	2	4	2	4
Nulliber	E,L	no.	2	2	2	2	2	2	2	4	2	4	2	2	4	2	4
Circuits -	°,A	no.	-	-	-	-	1	1	1	2	1	2	1	1	2	1	2
Circuits	E,L	no.	1	1	1	1	1	1	1	2	1	2	1	1	2	1	2
Refrigerant	°,A,E,L	type								R410A							
_	0	kg	-	-	-	-	12,2	12,2	16,8	17,6	16,8	20,0	24,5	24,5	23,0	24,5	23,0
Refrigerant charge (1)	Α	kg	-	-	-	-	15,9	15,8	17,8	19,8	18,4	21,6	28,6	28,6	27,0	28,6	27,0
Keirigerant Charge (1)	E	kg	9,1	10,7	11,1	12,5	15,9	15,8	17,8	19,8	18,4	21,6	28,6	28,6	27,0	28,6	27,0
	L	kg	8,8	9,4	10,3	11,0	12,2	12,2	16,8	17,6	16,8	20,0	24,5	24,5	23,0	24,5	23,0
System side heat exchanger																	
Туре	°,A,E,L	type								Brazed plat	e						
Number -	°,A	no.	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1
Nullibel	E,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																	
Connections (in/out)	°,A,E,L	Туре							G	rooved joir	nts						
Sizes (in/out)	°,A,E,L	Ø								2"1/2							
Fan																	
Туре	°,A,E,L	type								Axial							
_	0	no.	-	-	-	-	2	2	2	2	2	2	3	3	3	3	3
Number -	Α	no.	-	-	-	-	2	2	2	2	3	3	3	2	3	3	3
Nullibei	E	no.	6	6	8	8	2	2	2	2	2	3	3	3	3	3	3
	L	no.	4	6	6	8	2	2	2	2	2	2	3	3	3	3	3
_	0	m³/h	-	-	-	-	42785	42785	41094	41065	41094	39542	62015	61936	61936	61936	61936
Air flow rate	A	m³/h	-	-	-	-	41080	41080	39461	39461	59701	59684	59684	39461	61963	59684	59684
All flow face	E	m³/h	21230	22746	28176	25787	31149	31149	29855	29855	29855	47085	45202	45187	45187	45187	45187
	L	m³/h	15574	21226	22732	28156	32650	32650	31613	31169	31161	29823	47087	47125	47125	47125	47125
Sound data calculated in cooling mode (2)																	
_	0	dB(A)	-	-	-	-	86,6	86,9	87,1	86,5	87,3	86,5	88,8	88,9	88,2	89,4	89,5
Sound power level -	Α	dB(A)	-	-	-	-	86,6	86,9	87,1	86,5	87,3	88,2	88,8	88,9	88,2	89,4	89,5
Soulid power level	E	dB(A)	73,0	73,5	74,3	74,5	82,2	82,9	83,3	76,7	83,7	77,8	84,9	85,0	78,0	86,1	84,0
	L	dB(A)	72,4	73,5	73,9	74,5	82,2	82,9	83,3	76,7	83,7	77,1	84,9	85,0	78,0	86,1	84,0
_	0	dB(A)	-	-	-	-	54,8	55,0	55,2	54,6	55,4	54,6	56,8	56,9	56,2	57,4	57,5
Sound pressure level (10 m)	Α	dB(A)	-	-	-	-	54,8	55,0	55,2	54,6	55,4	56,2	56,8	56,9	56,2	57,4	57,5
Journa pressure rever (10 m)	E	dB(A)	41,3	41,7	42,5	42,7	50,3	51,0	51,4	44,8	51,8	45,8	52,9	53,1	46,0	54,1	52,0
_	L	dB(A)	40,7	41,7	42,1	42,7	50,3	51,0	51,4	44,8	51,8	45,3	52,9	53,1	46,0	54,1	52,0

L db(A) 40,7 41,7 42,1 42,7 50,3 51,0 51,4 44,8 51,8 45,3 52,9 53,1 46,0 54,1 52,0

(1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0602	0604	0652	0654	0682	0702	0704	0752	0754
Dimensions and weights																	
Α.	°,A	mm	-	-	-	-	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
A	E,L	mm	1680	1680	1680	1680	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898	1898
	0	mm	-	-	-	-	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
В	A	mm	-	-	-	-	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
D	E	mm	2450	2950	2950	2950	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010	4010
	L	mm	2450	2450	2950	2950	3200	3200	3200	3200	3200	3200	4010	4010	4010	4010	4010
(°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	E,L	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100

NRG 0282-0804

Air-water chiller

Cooling capacity 55,8 ÷ 224,6 kW

- · High efficiency also at partial loads
- · Reduced amount of refrigerant
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas (A2L).

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to $\,50^{\circ}\text{C}\,$ external air temperature. Unit can produce chilled water up to -10 $^{\circ}\text{C}.$

For more information refer to the selection program and to to the dedicated documentation.

Units mono or dual-circuit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

 VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption and to guarantee operation of the unit even in critical conditions.

CONTRO

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or with DCPX which allows unit operation to be optimised at any operating point through continuous modulation of the fan speed. In addition, the use of inverter fans ensures an increase in energy efficiency at partial loads.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

VT: Antivibration supports

GP: Anti-intrusion grid.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
AER485P1	E,N		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AER403PT	L		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	U				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	E,N		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERDACE	L		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	U				•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	°,A					•		•	•					•	•			•	
AERNET	E,N		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
ACRINCI	L		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	U					•		•	•	•				•	•			•	•
	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICULUED EVO	E,N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	U				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
DCD1	E,N		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
	U				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Condensation control temperature

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
Fans: °									
E,L	DCPX145	DCPX145	DCPX145	DCPX145	-	-	-	-	-
N	DCPX145	DCPX145	DCPX145	-	-	-	-	-	-
Fans: M									
°,A	-	-	-	-	DCPX146	DCPX146	DCPX147	DCPX146	DCPX147
E,L	-	-	-	-	As standard				
N	-	-	-	As standard					
U	-	-	-	DCPX146	DCPX146	DCPX146	DCPX147	DCPX147	DCPX147
Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: M									
°,A	DCPX146	DCPX147							
E	As standard								
L	As standard	-	-						
N	As standard	As standard	As standard	-	-	-	-	-	-
U	DCPX147	DCPX147	DCPX147	-	-	-	-	-	-

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Integrated hydronic kit: 00, I1, I2, I3,	14, P1, P2, P	3, P4																
٥	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT17	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT17	VT17	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	-	-
N	VT13	VT13	VT13	VT11	VT11	VT11	VT22											
U	-	-	-	VT11	VT11	VT11	VT22											
Integrated hydronic kit: 01, 02, 03, 04	4, 05, 06, 07,	08, K1, K	2, K3, K4,	W1, W2,	W3, W4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22	VT22	VT22	VT22	VT22	-	-

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
N	VT13	VT13	VT13	VT11	VT11	VT11	VT22											
U	-	-	-	VT11	VT11	VT11	VT22											

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°,A	-	-	-	-	GP2 x 2 (1)				
E,L	GP3	GP3	GP4	GP4	GP2 x 2 (1)				
N	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			
U	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)	GP2 x 3 (1)			

(1) $\,x_{-}$ indicates the quantity to buy The accessory cannot be fitted on the configurations indicated with -

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
0	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)						
A,E	GP2 x 2 (1)	GP2 x 3 (1)							
L	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)	-	-				
N,U	GP2 x 3 (1)								

(1) x _ indicates the quantity to buy

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652
°,A	-	-	DRENRG332N	-	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604	DRENRG652
E,L,N	DRENRG282	DRENRG302	DRENRG332N	DRENRG352	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604	DRENRG652
U	-	_	DRFNRG332N	DRFNRG352	DRFNRG502	DRFNRG552	DRFNRG554	DRFNRG602	DRFNRG604	DRFNRG652

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0654	0682	0702	0704	0752	0754	0802	0804
°,A,E,N,U	DRENRG654N	DRENRG682	DRENRG702	DRENRG704	DRENRG752	DRENRG754	DRENRG802	DRENRG804
	DRFNRG654N	DRFNRG682	DRFNRG702	DRFNRG704	DRFNRG752	DRFNRG754	_	-

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652
°,A	-	-	RIFNRG332N	-	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604	RIFNRG652
E,L,N	RIFNRG282	RIFNRG302	RIFNRG332N	RIFNRG352	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604	RIFNRG652
U	-	-	RIFNRG332N	RIFNRG352	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604	RIFNRG652

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0654	0682	0702	0704	0752	0754	0802	0804
°,A,E,N,U	RIFNRG654N	RIFNRG682	RIFNRG702	RIFNRG704	RIFNRG752	RIFNRG754	RIFNRG802	RIFNRG804
L	RIFNRG654N	RIFNRG682	RIFNRG702	RIFNRG704	RIFNRG752	RIFNRG754	-	-

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
°,A,E,N,U	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2
L	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	-	-

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

424 NRG-0282-0804-CO_Y_CE50_09 www.aermec.com

CONFIGURATOR

Field	Description
1,2,3	NRG
4,5,6,7	Size
	0282, 0302, 0332, 0352, 0502, 0552, 0554, 0602, 0604, 0652, 0654, 0682, 0702, 0704, 0752, 0754, 0802, 0804
8	Operating field (C)
X	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
9	Model
0	Cooling only
10	Heat recovery
0	Without heat recovery
D	With desuperheater (3)
T	With total recovery
11	Version
0	Standard
Α	High efficiency
E	Silenced high efficiency (4)
L	Standard silenced (4)
N	Silenced very high efficiency (4)
U	Very high efficiency
12	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
13	Fans
0	Standard (5)
J	Inverter (6)
M	Oversized (7)
14	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (8)
06	Storage tank with holes for heaters and pump low head + stand-by pump (8)
07	Storage tank with holes for heaters and single high head pump (8)
08	
0	Storage tank with holes for heaters and pump high head + stand-by pump (8) Double loop
00	
09	Double loop
n1	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
	Single low head pump + fixed speed inverter
<u> 12</u>	Single low head pump with fixed speed inverter + stand-by pump
I3	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter
W2	Double low head pump + Storage tank + variable speed inverter
W3	Single high head pump + Storage tank + variable speed inverter
W4	Double high head pump + Storage tank + variable speed inverter
(1) Water produced	

⁽¹⁾ Water produced from 4 °C ÷ 20 °C (2) Water produced from 8 °C to -10 °C. The option is not compatible with hydronic kits W1-W2-W3-W4. (3) Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program

⁽⁴⁾ The size 0282-0302-0332-0352 only available in low noise versions.

(5) As standard in sizes from 0282 to 0352 versions E - L and in size from 0282 to 0332 version N

(6) As standard in size 0702-0704-0752-0754-0802-0804 in the version U and N.

 ⁽⁷⁾ As standard in sizes from 0502 to 0804 version ° - L - A - E and in sizes from 0352 to 0682 and in sizes from 0554 to 0654 version N - U.
 (8) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRG - °

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	-	-	-	-	100,8	110,6	117,6	127,1	130,0	138,5	143,5	161,9	182,0	171,7	203,9	194,0	222,4	212,3
Input power	kW	-	-	-	-	33,4	37,8	37,8	39,7	44,2	45,1	50,7	52,5	59,4	57,4	69,6	66,5	80,4	74,8
Cooling total input current	A	-	-	-	-	59,0	64,0	59,0	68,0	79,0	77,0	91,0	88,0	95,0	108,0	111,0	117,0	127,0	126,0
EER	W/W	-	-	-	-	3,02	2,92	3,11	3,20	2,94	3,07	2,83	3,08	3,06	2,99	2,93	2,92	2,77	2,84
Water flow rate system side	l/h	-	-	-	-	17363	19059	20268	21893	22383	23841	24712	27874	31338	29554	35100	33389	38287	36547
Pressure drop system side	kPa	-	-	-	-	40	49	46	44	56	53	50	54	69	71	68	67	81	80

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - L

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754
Cooling performance 12 °C/7 °C(1)																	
Cooling capacity	kW	55,8	63,8	73,3	84,5	98,9	108,2	113,4	123,5	123,9	132,9	139,3	159,0	178,5	168,5	198,8	189,6
Input power	kW	19,7	22,1	24,4	28,6	33,9	38,6	38,5	40,9	45,2	46,7	53,6	53,5	60,3	59,0	71,8	68,2
Cooling total input current	Α	32,0	41,0	45,0	55,0	58,0	63,0	59,0	68,0	79,0	77,0	92,0	88,0	96,0	107,0	112,0	117,0
EER	W/W	2,83	2,88	3,01	2,95	2,92	2,80	2,95	3,02	2,74	2,85	2,60	2,97	2,96	2,85	2,77	2,78
Water flow rate system side	l/h	9604	10989	12618	14572	17043	18647	19537	21269	21332	22880	23984	27367	30726	29004	34224	32640
Pressure drop system side	kPa	35	46	37	50	39	46	45	43	54	50	47	52	66	69	65	64

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - A

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	-	-	-	-	105,3	116,3	118,7	129,7	132,2	141,2	151,3	167,9	186,4	177,0	208,8	199,2	228,6	218,5
Input power	kW	-	-	-	-	31,0	34,9	37,7	40,1	43,8	45,6	47,8	51,1	57,3	56,2	67,0	64,9	77,2	73,6
Cooling total input current	A	-	-	-	-	56,0	60,0	60,0	69,0	80,0	78,0	88,0	85,0	93,0	106,0	108,0	115,0	124,0	123,0
EER	W/W	-	-	-	-	3,39	3,33	3,14	3,23	3,02	3,09	3,16	3,29	3,25	3,15	3,12	3,07	2,96	2,97
Water flow rate system side	l/h	-	-	-	-	18133	20029	20437	22332	22778	24316	26053	28900	32076	30475	35940	34279	39342	37605
Pressure drop system side	kPa	-	-	-	-	30	36	34	34	42	41	56	45	57	56	62	59	74	72

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - E

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	58,7	64,8	74,8	88,1	101,0	112,1	115,3	124,8	126,8	134,9	147,6	161,6	180,1	171,4	201,8	191,5	216,6	208,9
Input power	kW	18,7	21,5	23,3	27,6	31,6	35,8	38,6	40,7	45,6	46,8	49,3	52,1	59,4	58,0	70,9	67,4	81,8	77,1
Cooling total input current	Α	31,0	41,0	45,0	54,0	55,0	60,0	61,0	70,0	81,0	79,0	87,0	85,0	95,0	106,0	111,0	116,0	129,0	126,0
EER	W/W	3,14	3,02	3,21	3,19	3,20	3,13	2,98	3,07	2,78	2,88	2,99	3,10	3,03	2,96	2,85	2,84	2,65	2,71
Water flow rate system side	l/h	10097	11156	12874	15166	17382	19311	19858	21482	21840	23238	25406	27822	31004	29499	34739	32965	37282	35953
Pressure drop system side	kPa	24	29	28	37	28	34	32	32	38	37	53	43	53	52	57	55	67	65

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - U

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	-	-	-	94,0	105,1	116,7	122,4	134,4	135,9	148,2	154,1	170,1	192,0	179,4	215,0	203,9	236,8	224,6
Input power	kW	-	-	-	26,8	30,6	34,4	36,1	38,2	41,9	42,9	46,5	49,5	57,5	56,2	66,4	63,6	75,7	72,1
Cooling total input current	Α	-	-	-	53,0	57,0	61,0	58,0	68,0	78,0	76,0	87,0	83,0	92,0	106,0	106,0	114,0	120,0	121,0
EER	W/W	-	-	-	3,51	3,43	3,39	3,39	3,52	3,24	3,45	3,32	3,44	3,34	3,19	3,24	3,20	3,13	3,11
Water flow rate system side	l/h	-	-	-	16172	18095	20096	21081	23146	23408	25528	26524	29288	33054	30884	37012	35090	40762	38655
Pressure drop system side	kPa	-	-	-	24	30	28	37	38	46	36	43	47	53	58	66	59	80	72

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - N

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	59,7	66,0	76,0	92,0	103,0	114,9	120,1	131,5	132,9	144,6	148,5	163,6	188,0	175,9	209,5	199,0	227,4	218,5
Input power	kW	18,1	20,8	23,3	27,9	31,8	36,1	37,0	39,2	43,2	44,5	48,5	52,1	57,9	56,8	67,6	65,1	78,0	74,5
Cooling total input current	A	30,0	41,0	45,0	52,0	57,0	62,0	57,0	67,0	78,0	75,0	88,0	85,0	92,0	106,0	107,0	114,0	123,0	123,0
EER	W/W	3,29	3,17	3,26	3,30	3,24	3,18	3,25	3,35	3,07	3,25	3,06	3,14	3,25	3,10	3,10	3,06	2,92	2,93
Water flow rate system side	l/h	10270	11372	13087	15837	17726	19768	20680	22650	22893	24895	25579	28156	32351	30273	36062	34256	39138	37603
Pressure drop system side	kPa	25	31	29	23	28	26	36	36	44	34	41	44	50	56	63	57	75	68

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: °																				
SEER - 12/7 (EN14825: 2018) (1)																				
	°,A,U	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEER	E	W/W	4,52	4,35	4,51	4,43	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	L	W/W	4,25	4,17	4,39	4,28	-	-	-	-	-		-	-		-	-	-	-	-
	N N	W/W	4,69	4,62	4,65	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	°,A,U	%	- 177.70	171 11	177.50	- 174.20	-	-	-	-	-		-	-		-	-	-	-	-
Seasonal efficiency	E	%	177,70		177,59		-	-	-	-	-	-	-	-	-	-	-	-	-	-
	L	%	166,98	163,66			-	-	-	-	-	-	-	-	-	-	-	-	-	-
CEED 22/10/FN1402F-2010\/2\	N	%	184,57	181,62	183,16	-	-	-	-	-	-		-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)	°,A,U	VAL (VAL																		
	,A,U F	W/W		-			-		-				-		-		-			-
SEER		W/W	5,30	5,05	5,28	5,14	-		-	-	-			-			-	-	-	
	L	W/W	4,85	4,73	5,05	4,94			-	-	-	-	-	-			-	-	-	
	N O A II	W/W	5,50	5,36	5,44	-	-		-	-	-		-	-	-	-	-	-	-	-
	°,A,U E	<u>%</u> %	208,80	199,00													-			
Seasonal efficiency				186,10																
	L	%	190,90			194,70														
CFDR - (FN 14825- 2018) /2)	N	%	417,10	211,30	Z 14,4U	-	-		-	-	-		-	-		-	-	-	-	-
SEPR - (EN 14825: 2018) (2)	°,A,U	W/W					_													
	,A,U	W/W W/W	6,66	6,39	6,59	6,52	-						-							
SEPR	L	W/W	6,34	6,26	6,43	6,30										-				-
	L	W/W	6,87	6,70	6,81	- 0,30									<u> </u>					
Fans: J	- 11	VV/ VV	0,07	0,70	0,01															
SEER - 12/7 (EN14825: 2018) (1)																				
JEER - 12// (EN 14023, 2010) (1)	0	W/W				_	4,30	4,30	4,36	4,44	4,33	4,32	4,31	4,37	4,38	4,28	4,32	4,29	4,23	4,26
	Α	W/W				_	4,50	4,55	4,43	4,61	4,38	4,55	4,35	4,60	4,56	4,42	4,53	4,37	4,34	4,27
	E	W/W	4,56	4,40	4,56	4,48	4,54	4,46	4,44	4,53	4,40	4,33	4,37	4,55	4,38	4,40	4,37	4,39	4,25	4,27
SEER		W/W	4,29	4,21	4,43	4,32	4,32	4,24	4,35	4,30	4,33	4,23	4,31	4,28	4,24	4,30	4,23	4,30		7,21
	N N	W/W	4,74	4,66	4,70	4,78	4,71	4,59	4,54	4,77	4,46	4,69	4,49	4,75	4,63	4,48	4,59	4,48	4,37	4,33
	U	W/W		-		4,77	4,73	4,77	4,51	4,68	4,44	4,72	4,51	4,82	4,66	4,44	4,64	4,42	4,50	4,30
	0	%	_	_		-	169,07	169,11	171,47	174,48	170,14	169,96	169,32	171,68	172,37	168,37	169,62	168,51	166,33	167,34
	A	%					176,81	179,08	174,25	181,27	172,29	179,03	170,93	181,13		173,98		171,94	170,64	167,83
	E	%	179,42	172,83	179,43	176,18	178,57	175,52		178,28	173,17	170,02	171,96	179,14	172,39	172,91	171,65	172,46	166,80	167,89
Seasonal efficiency		%	168,77	165,30		169,95	169,78	166,72		168,86	170,11	166,28	169,22	168,35	166,67	169,00	166,22		-	-
	N	%	186,54				185,24		178,48	187,81	175,31	184,43	176,70	186,89	182,33			176,26	171,95	170,07
	U	%	-	-	-	187,91	186,30			184,10				189,79		174,64		173,97	177,05	
SEER - 23/18 (EN14825: 2018) (2)						,.	,	,	,	,	,	/	,	,	,	,	,		,	,
	0	W/W	-	-	-	-	4,99	4,86	5,09	5,02	5,00	4,85	5,02	4,90	4,97	4,91	4,88	4,88	4,78	4,71
	A	W/W	-	-	-	-	5,27	5,18	5,28	5,27	5,23	4,92	5,10	5,22	5,20	5,15	5,12	5,02	4,90	4,74
	E	W/W	5,34	5,10	5,33	5,19	5,20	4,92	5,24	4,99	5,22	4,69	5,10	5,07	4,82	5,09	4,61	4,99	4,74	4,68
SEER	L	W/W	4,90	4,77	5,09	4,99	4,85	4,59	5,09	4,73	5,03	4,56	5,05	4,81	4,61	4,89	4,58	4,86	-	-
	N	W/W	5,56	5,41	5,49	5,52	5,40	5,07	5,34	5,39	5,23	5,26	5,29	5,28	5,23	5,17	5,10	5,11	4,84	4,94
	U	W/W	-	-	-	5,64	5,56	5,44	5,39	5,33	5,29	5,12	5,37	5,47	5,35	5,16	5,24	5,08	5,07	4,80
	0	%	-	-	-	-	196,60							193,00		193,20			188,00	185,20
	Α	%	-	-	-	-										202,90		197,80	193,10	186,50
Cassand officians	E	%	210,70	200,80	210,00	204,60			206,70					199,60	189,90	200,40				
Seasonal efficiency	L	%	192,90													192,50		191,50	-	-
	N	%	219,30	213,20	216,50				210,60					208,10	206,00	203,70	201,10	201,30	190,40	194,50
	U	%	-	-	-				212,60											
SEPR - (EN 14825: 2018) (2)																				
	0	W/W	-	-	-	-	5,78	5,60	6,35	5,79	6,38	5,73	6,34	5,66	6,07	6,34	5,81	6,03	5,78	5,94
	A	W/W	-	-	-	-	6,23	5,98	6,61	5,93	6,60	6,14	6,51	5,98	6,27	6,54	6,05	6,08	5,90	5,90
CEDD	E	W/W	6,66	6,39	6,59	6,52	6,30	6,03	6,47	5,93	6,55	5,79	6,41	6,01	6,13	6,44	5,85	6,06	5,21	5,87
SEPR	L	W/W	6,34	6,26	6,43	6,30	5,86	5,68	6,35	5,73	6,47	5,69	6,47	5,64	5,95	6,28	5,72	5,92	-	-
	N	W/W	6,87	6,70	6,81	6,88	6,47	6,14	6,58	6,20	6,54	6,21	6,57	6,17	6,54	6,56	6,25	6,19	5,93	6,35
	U	W/W	-	-	-	6,73	6,43	6,14	6,73	6,18	6,68	6,51	6,73	6,26	6,34	6,68	6,18	6,30	6,10	5,99
Fans: M																				
SEER - 12/7 (EN14825: 2018) (1)				-	_	-	4,18	4,18	4,23	4,31	4,20	4,20	4,18	4,24	4,26	4,16	4,19	4,16	4,11	4,14
SEER - 12/7 (EN14825: 2018) (1)	0	W/W	-																	
SEER - 12/7 (EN14825: 2018) (1)		W/W W/W	-	-	-	-	4,36	4,42	4,30	4,47	4,26	4,42	4,22	4,47	4,43	4,30	4,40	4,25	4,22	4,15
					-	-							4,22 4,25				4,40 4,24	4,25 4,26		
SEER - 12/7 (EN14825: 2018) (1) SEER	A	W/W					4,36 4,41 4,19	4,34	4,30 4,31 4,22	4,47 4,40 4,17	4,26 4,27 4,20	4,20	4,25	4,47 4,42 4,16	4,43 4,26 4,12	4,30 4,27 4,18			4,22 4,12	4,15 4,15 -
	A	W/W W/W		-	-		4,41		4,31	4,40	4,27			4,42	4,26	4,27	4,24	4,26	4,12	

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
	0	%	-	-	-	-	164,19	164,24	166,29	169,41	164,99	165,02	164,13	166,59	167,36	163,42	164,59	163,49	161,43	162,48
	Α	%	-	-	-	-	171,56	173,79	169,11	175,81	167,34	173,76	166,00	175,82	174,24	168,98	173,01	166,92	165,82	162,95
-	E	%	-	-	-	-	173,34	170,47	169,31	173,05	167,98	165,00	166,82	173,83	167,44	167,75	166,62	167,42	161,90	163,00
Seasonal efficiency -	L	%	-	-	-	-	164,75	161,78	165,90	163,73	165,02	161,37	164,21	163,40	161,82	164,05	161,39	164,10	-	-
	N	%	-	-	-	182,41	179,82	175,17	173,00	182,25	170,09	178,97	171,51	181,37	-	-	-	-	-	-
	U	%	-	-	-	182,34	180,84	182,53	172,00	178,62	169,50	180,31	172,13	184,18	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)																				
	0	W/W	-	-	-	-	4,86	4,73	4,94	4,89	4,86	4,71	4,87	4,77	4,84	4,77	4,74	4,75	4,64	4,58
	Α	W/W	-	-	-	-	5,13	5,04	5,13	5,12	5,09	4,79	4,96	5,08	5,06	5,01	4,98	4,88	4,78	4,61
SEER -	E	W/W	-	-	-	-	5,06	4,79	5,09	4,85	5,07	4,56	4,95	4,93	4,70	4,94	4,62	4,85	4,48	4,55
SEER	L	W/W	-	-	-	-	4,72	4,46	4,94	4,60	4,89	4,44	4,91	4,68	4,48	4,75	4,45	4,73	-	-
_	N	W/W	-	-	-	5,37	5,25	4,93	5,19	5,24	5,08	5,12	5,14	5,14	-	-	-	-	-	-
	U	W/W	-	-	-	5,49	5,41	5,29	5,23	5,19	5,14	4,98	5,21	5,31	-	-	-	-	-	-
	0	%	-	-	-	-	191,30	186,20	194,50	192,40	191,20	185,50	191,70	187,60	190,40	187,70	186,60	186,80	182,70	180,00
_	Α	%	-	-	-	-	202,10	198,50	202,20	201,70	200,40	188,50	195,30	200,00	199,40	197,20	196,30	192,20	188,00	181,20
Seasonal efficiency -	E	%	-	-	-	-	199,30	188,40	200,50	191,00	199,60	179,50	195,10	194,00	184,80	194,60	181,60	190,90	176,30	178,80
Seasonal eniciency	L	%	-	-	-	-	185,80	175,40	194,70	181,00	192,50	174,40	193,30	184,00	176,20	187,00	175,10	186,10	-	-
	N	%	-	-	-	211,70	207,10	194,20	204,40	206,50	200,30	201,60	202,70	202,40	-	-	-	-	-	-
	U	%	-	-	-	216,60	213,50	208,70	206,30	204,40	202,40	196,20	205,50	209,50	-	-	-	-	-	-
SEPR - (EN 14825: 2018) (2)																				
	0	W/W	-	-	-	-	5,78	5,60	6,35	5,79	6,38	5,73	6,34	5,66	6,07	6,34	5,81	6,03	5,78	5,94
	Α	W/W	-	-	-	-	6,23	5,98	6,61	5,93	6,60	6,14	6,51	5,98	6,27	6,54	6,05	6,08	5,90	5,90
CEDD	E	W/W	-	-	-	-	6,30	6,03	6,47	5,93	6,55	5,79	6,41	6,01	6,13	6,44	5,85	6,06	5,21	5,87
SEPR -	L	W/W	-	-	-	-	5,86	5,68	6,35	5,73	6,47	5,69	6,47	5,64	5,95	6,28	5,72	5,92	-	-
-	N	W/W	-	-	-	6,88	6,47	6,14	6,58	6,20	6,54	6,21	6,57	6,17	-	-	-	-	-	-
-	U	W/W	-	-	-	6,73	6,43	6,14	6,73	6,18	6,68	6,51	6,73	6,26	-	-	-	-	-	-

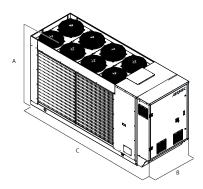
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

ELECTRIC DATA																				
Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Electric data																				
	0	Α	-	-	-	-	73,5	79,1	80,5	88,3	97,2	97,4	113,5	111,5	122,6	132,7	139,4	144,0	156,1	155,3
	A	Α	-	-	-	-	73,5	79,1	80,5	88,3	97,2	97,4	111,4	111,5	122,6	132,7	139,4	144,0	156,1	155,3
Maximum current (FLA)	E	Α	41,6	49,9	51,3	67,6	73,5	79,1	80,5	88,3	97,2	97,4	111,4	111,5	122,6	132,7	139,4	144,0	156,1	155,3
Maximum current (FLA)	L	Α	40,2	49,9	53,9	67,6	73,5	79,1	80,5	88,3	97,2	97,4	113,5	111,5	122,6	132,7	139,4	144,0	-	-
	N	Α	41,6	49,9	51,3	67,6	73,5	79,1	83,4	91,2	100,1	100,3	111,4	111,5	125,6	135,7	142,4	147,0	159,1	158,3
	U	Α	-	-	-	67,6	73,5	79,1	83,4	91,2	100,1	100,3	111,4	111,5	125,6	135,7	142,4	147,0	159,1	158,3
	0	Α	-	-	-	-	276,8	282,5	200,8	329,5	221,3	338,6	268,5	396,5	407,7	287,7	601,7	347,4	618,4	358,7
	A	Α	-	-	-	-	276,8	282,5	200,8	329,5	221,3	338,6	226,7	396,5	407,7	287,7	601,7	347,4	618,4	358,7
Dook surrent (LDA)	E	Α	161,9	174,0	172,3	222,6	276,8	282,5	200,8	329,5	221,3	338,6	226,7	396,5	407,7	287,7	601,7	347,4	618,4	358,7
Peak current (LRA)	L	Α	160,5	174,0	213,0	222,6	276,8	282,5	200,8	329,5	221,3	338,6	268,5	396,5	407,7	287,7	601,7	347,4	-	-
	N	Α	161,9	174,0	172,3	222,6	276,8	282,5	203,7	332,4	224,2	341,5	226,7	396,5	410,7	290,7	604,7	350,4	621,4	361,7
	U	А	-	-	-	222,6	276,8	282,5	203,7	332,4	224,2	341,5	226,7	396,5	410,7	290,7	604,7	350,4	621,4	361,7

[■] Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA


Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Compressor																				
Tune	°,A,E,N,U	type									Sc	roll								
Туре	L	type	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll	-	-									
Communication	°,A,E,N,U	Туре									0n	-Off								
Compressor regulation	L	Туре	0n-0ff	0n-0ff	0n-0ff	0n-0ff	0n-0ff	0n-0ff	On-Off	-	-									
Number	°,A,E,N,U	no.	2	2	2	2	2	2	4	2	4	2	4	2	2	4	2	4	2	4
Number	L	no.	2	2	2	2	2	2	4	2	4	2	4	2	2	4	2	4	-	-
Circuita	°,A,E,N,U	no.	1	1	1	1	1	1	2	1	2	1	2	1	1	2	1	2	1	2
Circuits	L	no.	1	1	1	1	1	1	2	1	2	1	2	1	1	2	1	2	-	-
Defricement	°,A,E,N,U	type									R	32								
Refrigerant	L	type	R32	R32	R32	R32	R32	R32	R32	-	-									
System side heat exchanger																				
	°,A,E,N,U	type									Braze	d plate								
Туре		tuno	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed	Brazed											
	L	type	plate	plate	plate	plate	plate	plate	plate	_										
Number	°,A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Number	L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-
System side hydraulic connections																				
Cinco (in (out)	°,A,E,N,U	Ø									2"	1/2								
Sizes (in/out)	L	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	-	-

Fans

Fans																					
Size					0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752 0	754 0802	2 080
Fan																					
Type		_	°,A,E,N,U	type									A	xial							
Туре			L	type	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial A	xial -	-
		_	0	no.	-	-	-	-	2	2	2	2	2	2	2	3	3	3	3	3 3	3
		_	Α	no.	-	-	-	-	2	2	2	2	2	2	3	3	3	3	3	3 3	3
Number		_	E	no.	6	6	8	8	2	2	2	2	2	2	3	3	3	3	3	3 3	3
Nullibei		_	L	no.	4	6	6	8	2	2	2	2	2	2	2	3	3	3	3	3 -	-
		_	N	no.	6	6	8	2	2	2	3	3	3	3	3	3	3	3	3	3 3	3
			U	no.	-	-	-	2	2	2	3	3	3	3	3	3	3	3	3	3 3	3
Size			0282	0302	0332	0352	0502	0552	2 0554	060	2 (0604	0652	0654	0682	0702	0704	075	2 0754	0802	080
Fans: °			0202	0302	0332	0332	0302	033.	. 0551			,,,,,	0032	0031		0,02	0,01	0,5	- 0,5		
Fan																					
- Luii	°,A,U	m³/h										_									
	E	m³/h	20469	20469	27112	24667			_			_	_	_	_	_	_	_	_	_	
Air flow rate	<u> </u>	m³/h	15291	20474	22212	27150						_									
	N N	m³/h	22189	22189	24655	-	_					_	_					_			
Sound data calculate	- "		22107	22107	27033																
Journa data carcurate	°,A,U	dB(A)				_	_	_				_	_								
•	E E	dB(A)	73,0	73,5	74,3	74,5		_					_	_						_	
Sound power level		dB(A)	72,4	73,5	73,9	74,5						_									
	N N	dB(A)		73,9	74,3	74,3						_									
(1) Sound power: calc		. ,	73,0		_	co with H	MI EN ICO		ac roquiro		ovent e	ortificat	ion Cour		ro moscui		fold (in	- complian		II EN ISO 27	
•	uiateu oii tiie i	Jasis UI IIIC																			
Size			0282	0302	0332	0352	0502	0552	2 0554	060)2 (0604	0652	0654	0682	0702	0704	075	2 0754	0802	080
Fans: M																					
Without Static press																					
	0	m³/h	-	-	-	-	40400	4040	0 40400	4040	00 4	0400	40400	40400	60600	60600	60600	6060	0 6060	0 60600	6060
	A	m³/h	-	-	-	-	40400	4040	0 40400	4040	00 4	0400	40400	60600	60600	60600	60600	6060	0 6060	0 60600	6060
Air flow rate	E	m³/h	-	-	-	-	26625	2662	5 25488	2549	97 2	5488	25497	40270	40267	38638	38640	3863	8 3864	0 38638	3864
All flow fale	L	m³/h	-	-	-	-	30672	3067	2 29318	293	18 2	9318	29318	28069	46243	44312	44307	7 4431	2 4430	7 -	-
	N	m³/h	-	-	-	26623	25495	2549	5 40269	402	74 4	0269	40274	38640	38634	-	-	-	-	-	-
	U	m³/h	-	-	-	40400	40400	4040	0 60600	606	00 6	0600	60600	60600	60600	-	-	-	-	-	-
	0	dB(A)	-	-	-	-	86,8	87,1	86,2	87,	3	86,6	87,5	86,7	89,0	89,1	88,3	89,6	5 89,5	91,0	90,
	A	dB(A)	-	-	-	-	86,8	87,1	86,2	87,	3	86,6	87,5	88,3	89,0	89,1	88,3	89,6	5 89,5	91,0	90,
	E	dB(A)	-	-	-	-	81,3	82,1	76,1	82,	7	76,7	83,1	77,8	84,2	84,4	78,0	85,6	5 83,6	87,3	86,
Sound power level	L	dB(A)	-	-	-	-	81,3	82,1	76,1	82,	7	76,7	83,1	77,1	84,2	84,4	78,0	85,6	5 84,1	-	-
•	N	dB(A)	-	-	-	80,3	81,3	82,1	76,9	83,	6	77,5	84,0	77,8	84,2	-	-	-	-	-	-
	U	dB(A)	-	-	-	86,5	86,8	87,1		88,		88,3	88,9	88,3	89,0	-	-	-	-	-	-
C:			0202	0202	0222			055	0.0004							0703	0704	075	2 075		000
Size			0282	0302	0332	0352	0502	0552	2 0554	060	12 (0604	0652	0654	0682	0702	0704	075	2 0754	0802	080
Fans: J																					
Inverter fan	0	374					26600	3660	0 25100	251	00 2	F100	25100	22700	FF200	F2100	F210/		0 5310		F21/
		m³/h	-	-	-	-	36600					5100	35100	33700	55200	53100					5310
	A	m³/h	-	-	-	-	35100					3800	33700	53100	53100	51100					511
Air flow rate	E	m³/h	20700	22200	27500	24800	26800					5600	25600	40500	40500	38800					388
	L	m³/h	15200	20700	22200	27500	30900					9500	29500	28300	46500	44600					-
	N	m³/h	22200	27500	24800	26800	25600					0500	40500	38800	38800	52317					523
	U	m³/h	-	-	-	35100	33700	3370	0 53100	5310	00 5	3100	53100	51100	51100	66361	6636	6636	6636	1 66361	663
Sound data calculate	ed in cooling	mode (1)																			
	0	dB(A)	-	-	-	-	85,1	85,6	84,2	85,	9	84,8	86,1	84,9	87,5	87,6	86,5	88,3	88,1	90,1	89
	A	dB(A)	-	-	-		85,1	85,6	84,2	85,	9	84,8	86,1	86,5	87,5	87,6	86,5	88,3	88,1	90,1	89
Cound nower level	E	dB(A)	73,0	73,5	74,3	74,5	81,3	82,1	76,1	82,	7	76,7	83,1	77,8	84,2	84,4	78,0	85,6	5 83,6	87,3	86
Sound power level	L	dB(A)	72,4	73,5	73,9	74,5	81,3	82,1		82,		76,7	83,1	77,1	84,2	84,4	78,0	85,6			-
	N	dB(A)	73,0	73,9	74,3	80,3	81,3	82,1		83,		77,5	84,0	77,8	84,2	89,3	87,4				89,
	II.	dR(A)				84.6	85.1	85.6				26.4	87 A	86.5	87.5	92.3	01 1				97

U dB(A) - - - 84,6 85,1 85,6 85,8 87,2 86,4 87,4 86,5 87,5 92,3 91,1 92,5 91,7 92,7 92,3 (1) Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Dimensions and weights																				
	0	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900
	Α	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
Α	E	mm	1652	1658	1658	1658	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
A	L	mm	1652	1652	1658	1658	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	-	-
	N	mm	1658	1658	1658	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	U	mm	-	-	-	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
	°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
D.	E,N	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
В -	L	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	-	-
	U	mm	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	0	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368
	Α	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
	E	mm	2818	3317	3317	3317	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
	L	mm	2818	2818	3317	3317	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	-	-
	N	mm	3317	3317	3317	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368
	U	mm	-	-	-	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368	4368

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577
www.aermec.com

NRG 0282H-0804H

Reversible air/water heat pump

Cooling capacity 52,5 ÷ 212,0 kW Heating capacity 56,6 ÷ 214,4 kW

- · High efficiency also at partial loads
- · Reduced amount of refrigerant
- Compact dimensions

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15°C outside air temperature in winter, and up to 48 °C in summer. Hot water production up to 60°C (for more details refer to the technical documentation).

Units mono or dual-circuit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

■ The leak detector is supplied as per standard.

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

■ VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Swing HP and LP controls: available for all models with inverter fan or with DCPX. By continuously modulating the fans, they streamline operation of the unit at any work point both in cooling and heating mode. This results in enhanced energy efficiency of the unit at partial loads.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

INTEGRATED SOLUTION

www.aermec.com

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valve.

This solution allowed a variety of new features to be introduced, such as:

431

- Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions;
- DLT control: Control of electronic valve at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range, especially in heating mode.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

GP: Anti-intrusion grid. **VT:** Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
AER485P1 -	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
ACR463PT	E,L		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP -	°,A					•	•	•	•	•	•	•	•	•	•	•	•	•	•
ACRDACE	E,L		•							•									
AERNET -	°,A					•	•	•	•	•	•	•	•	•		•	•	•	•
ACRINCI	E,L		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER EVO -	°,A					•		•	•	•	•	•	•	•		•	•	•	•
MULIICHILLEK_EVO	E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
DCD1	°,A							•	•	•	•	•	•	•	•	•	•		•
PGD1 -	E,L		•	•	•	•		•	•	•	•	•	•	•		•	•		

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Integrated hydronic kit: 00, I1, I2, I3,	14, P1, P2, P3	3, P4																
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT17	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT17	VT17	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
Integrated hydronic kit: 01, 02, 03, 04	4, 05, 06, 07,	08, K1, K2	2, K3, K4,	W1, W2, \	W3, W4													
0	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						
A	-	-	-	-	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT22							
L	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT11	VT11	VT11	VT22						

Condensation control temperature

ver	0202	0302	0332	0332	0302	0332	0334	0002	0004
°,A	-	-	-	-	DCPX146	DCPX146	DCPX146	DCPX146	DCPX146
E,L	DCPX145	DCPX145	DCPX145	DCPX145	As standard				
The accessor	y cannot be fitted on t	he configurations indica	ted with -						
Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
0	DCPX146	DCPX146	DCPX147						
Α	DCPX146	DCPX147							
E,L	As standard								

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°,A	-	-	-	-	GP2 x 2 (1)				
E,L	GP3	GP3	GP4	GP4	GP2 x 2 (1)				

(1) x _ indicates the quantity to buy

The accessory cannot be fitted on the configurations indicated with -

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
°,L	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)						
A,E	GP2 x 2 (1)	GP2 x 3 (1)							

(1) x _ indicates the quantity to buy

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°,A	-	-	DRENRG332N	-	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
E,L	DRENRG282	DRENRG302	DRENRG332N	DRENRG352	DRENRG502	DRENRG552	DRENRG554	DRENRG602	DRENRG604

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
°,A,E,L	DRENRG652	DRENRG654N	DRENRG682	DRENRG702	DRENRG704	DRENRG752	DRENRG754	DRENRG802	DRENRG804

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604
°,A	-	-	RIFNRG332N	-	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604
E,L	RIFNRG282	RIFNRG302	RIFNRG332N	RIFNRG352	RIFNRG502	RIFNRG552	RIFNRG554	RIFNRG602	RIFNRG604

The accessory cannot be fitted on the configurations indicated with

A grey background indicates the accessory must be assembled in the factory

Ver	0652	0654	0682	0702	0704	0752	0754	0802	0804
°,A,E,L	RIFNRG652	RIFNRG654N	RIFNRG682	RIFNRG702	RIFNRG704	RIFNRG752	RIFNRG754	RIFNRG802	RIFNRG804

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
°,A,E,L	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG1	T6NRG2	T6NRG1	T6NRG2	T6NRG1	T6NRG2

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	d	Description
1,2,	.3	NRG
4,5,	6,7	Size 0282, 0302, 0332, 0352, 0502, 0552, 0554, 0602, 0604, 0652, 0654, 0682, 0702, 0704, 0752, 0754, 0802, 0804
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Z	Low temperature electronic thermostatic valve (2)
9		Model
	Н	Heat pump
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (3)
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency (4)
	L	Standard silenced (4)
12		Coils
	0	Copper-aluminium
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
13		Fans
	0	Standard
	J	Inverter
14		Power supply
	0	400V ~ 3N 50Hz with magnet circuit breakers
15,1	16	Integrated hydronic kit
	00	Without hydronic kit
		Kit with storage tank and pump/s
	01	Storage tank with low head pump
	02	Storage tank with low head pump + stand-by pump
	03	Storage tank with high head pump
	04	Storage tank with high head pump + stand-by pump

Field	Description
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (5)
06	Storage tank with holes for heaters and pump low head + stand-by pump (5)
07	Storage tank with holes for heaters and single high head pump (5)
08	Storage tank with holes for heaters and pump high head + stand-by pump (5)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
I1	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter (6)
W2	Double low head pump + Storage tank + variable speed inverter (6)
W3	Single high head pump + Storage tank + variable speed inverter (6)
W4	Double high head pump + Storage tank + variable speed inverter (6)

(1) Water produced from 4 °C ÷ 20 °C
(2) Water produced from 18 °C to -10 °C. The option is not compatible with hydronic kits W1-W2-W3-W4. Not available with desuperheater.
(3) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
(4) The size 0282-0302-0332-0352 are only available in the silenced versions "HL/HE"

(4) The SIZE UZZZ-UZZZ-UZZ-Zare Only advalable in the Sizenced versions. THE/TIE.
(5) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.
(6) Not available with Low temperature electronic thermostatic valve "Z"

PERFORMANCE SPECIFICATIONS

NRG H°

mon																			
Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C (1)																			
Cooling capacity	kW	-	-	-	-	93,7	103,4	114,4	117,5	127,3	127,8	141,4	156,4	175,2	169,8	196,0	190,4	215,2	209,1
Input power	kW	-	-	-	-	34,7	39,1	37,8	43,0	43,9	48,9	50,8	51,6	59,6	58,0	69,0	66,0	79,1	74,5
Cooling total input current	A	-	-	-	-	62,0	66,0	60,0	73,0	80,0	82,0	91,0	87,0	97,0	109,0	111,0	117,0	126,0	126,0
EER	W/W	-	-	-	-	2,70	2,65	3,03	2,73	2,90	2,61	2,78	3,03	2,94	2,93	2,84	2,89	2,72	2,81
Water flow rate system side	l/h	-	-	-	-	16141	17808	19683	20225	21912	22017	24335	26922	30168	29239	33727	32773	37044	35991
Pressure drop system side	kPa	-	-	-	-	31	38	20	34	24	40	25	48	60	36	60	40	72	49
Heating performance 40 °C / 45 °C (2)																			
Heating capacity	kW	-	-	-	-	99,6	108,8	118,2	125,6	132,1	137,6	146,9	162,6	183,1	176,7	203,0	195,8	222,4	214,4
Input power	kW	-	-	-	-	31,5	34,4	35,9	38,0	40,7	42,2	45,2	50,3	57,4	54,5	62,7	59,0	69,8	64,1
Heating total input current	А	-	-	-	-	59,0	62,0	59,0	68,0	79,0	75,0	88,0	87,0	96,0	109,0	105,0	112,0	117,0	116,0
COP	W/W	-	-	-	-	3,16	3,17	3,30	3,31	3,24	3,26	3,25	3,23	3,19	3,24	3,24	3,32	3,19	3,35
Water flow rate system side	l/h	-	-	-	-	17265	18855	20522	21779	22925	23855	25482	28203	31767	30659	35221	33974	38576	37206
Pressure drop system side	kPa	-	-	-	-	36	43	22	40	27	48	28	54	67	41	67	45	80	53

NRG HL

MIGHE																			
Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C (1)																			
Cooling capacity	kW	52,5	60,5	69,3	80,7	91,0	100,0	110,8	113,2	122,9	122,4	135,2	152,6	170,4	165,0	189,1	184,2	205,8	202,2
Input power	kW	20,2	23,0	25,4	30,1	35,2	39,6	38,4	44,3	45,0	50,9	53,2	52,2	61,2	59,1	71,5	67,9	82,7	77,3
Cooling total input current	Α	33,0	42,0	47,0	57,0	60,0	65,0	59,0	72,0	79,0	82,0	92,0	84,0	95,0	107,0	111,0	116,0	128,0	126,0
EER	W/W	2,60	2,63	2,73	2,68	2,59	2,53	2,88	2,55	2,73	2,40	2,54	2,92	2,79	2,79	2,64	2,71	2,49	2,62
Water flow rate system side	l/h	9048	10428	11932	13896	15671	17215	19059	19485	21152	21086	23262	26277	29331	28417	32540	31692	35428	34793
Pressure drop system side	kPa	30	41	31	43	30	36	19	32	23	37	23	46	56	34	56	37	66	45
Heating performance 40 °C / 45 °C (2)																			
Heating capacity	kW	56,6	65,4	74,6	87,5	99,6	108,8	118,2	125,6	132,1	137,6	146,9	162,6	183,1	176,7	203,0	195,8	222,4	214,4
Input power	kW	17,4	20,2	22,3	26,5	31,5	34,4	35,9	38,0	40,7	42,2	45,2	50,3	57,4	54,5	62,7	59,0	69,8	64,1
Heating total input current	Α	29,0	40,0	44,0	54,0	59,0	62,0	59,0	68,0	79,0	75,0	88,0	87,0	96,0	109,0	105,0	112,0	117,0	116,0
COP	W/W	3,26	3,24	3,35	3,30	3,16	3,17	3,30	3,31	3,24	3,26	3,25	3,23	3,19	3,24	3,24	3,32	3,19	3,35
Water flow rate system side	l/h	9816	11328	12928	15158	17265	18855	20522	21779	22925	23855	25482	28203	31767	30659	35221	33974	38576	37206
Pressure drop system side	kPa	37	48	38	51	36	43	22	40	27	48	28	54	67	41	67	45	80	53

NRG HA

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C / 7 °C (1)																			
Cooling capacity	kW	-	-	-	-	96,4	106,6	115,8	122,0	128,8	133,3	146,8	160,1	178,0	170,7	199,5	191,8	219,8	212,0
Input power	kW	-	-	-	-	32,6	36,6	37,2	39,7	43,3	45,5	48,6	49,8	57,4	56,7	66,3	64,4	75,9	72,5
Cooling total input current	Α	-	-	-	-	60,0	64,0	60,0	70,0	80,0	78,0	90,0	85,0	94,0	108,0	108,0	116,0	123,0	124,0
EER	W/W	-	-	-	-	2,95	2,91	3,11	3,07	2,97	2,93	3,02	3,21	3,10	3,01	3,01	2,98	2,90	2,93
Water flow rate system side	l/h	-	-	-	-	16583	18342	19918	21002	22155	22958	25273	27557	30631	29392	34336	33010	37829	36487
Pressure drop system side	kPa	-	-	-	-	23	28	17	29	21	35	28	40	49	33	54	39	66	48
Heating performance 40 °C / 45 °C (2)																			
Heating capacity	kW	-	-	-	-	103,0	113,7	119,7	126,6	133,9	138,9	155,5	162,3	181,1	175,3	200,6	195,0	219,9	213,7
Input power	kW	-	-	-	-	31,0	33,8	35,6	37,4	40,4	41,5	47,0	49,1	55,3	53,3	60,9	57,8	67,5	62,7
Heating total input current	A	-	-	-	-	59,0	61,0	58,0	68,0	79,0	75,0	91,0	86,0	93,0	107,0	103,0	110,0	114,0	114,0
COP	W/W	-	-	-	-	3,32	3,36	3,36	3,39	3,31	3,35	3,31	3,30	3,27	3,29	3,29	3,37	3,26	3,41
Water flow rate system side	l/h	-	-	-	-	17866	19723	20784	21964	23234	24088	26976	28153	31410	30409	34811	33832	38148	37079
Pressure drop system side	kPa	-	-	-	-	27	32	19	32	23	39	31	42	52	35	57	41	68	49

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRG HE

Size		0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Cooling performance 12 °C/7 °C(1)																			
Cooling capacity	kW	55,1	61,1	71,0	82,7	93,8	103,3	111,9	118,0	124,0	128,3	144,2	154,7	173,0	166,6	192,6	186,2	210,5	202,8
Input power	kW	19,3	22,3	24,4	28,6	33,0	37,4	38,2	40,8	44,9	46,7	48,9	50,9	58,9	57,3	68,8	65,7	79,3	75,4
Cooling total input current	Α	32,0	42,0	47,0	56,0	58,0	62,0	60,0	69,0	80,0	78,0	87,0	82,0	93,0	106,0	109,0	114,0	125,0	123,0
EER	W/W	2,85	2,75	2,91	2,89	2,84	2,76	2,93	2,89	2,76	2,75	2,95	3,04	2,94	2,91	2,80	2,83	2,65	2,69
Water flow rate system side	l/h	9484	10522	12223	14246	16136	17773	19250	20314	21332	22097	24814	26647	29783	28680	33149	32040	36227	34901
Pressure drop system side	kPa	20	24	24	33	22	26	16	27	19	32	26	38	47	31	51	36	60	44
Heating performance 40 °C / 45 °C (2)																			
Heating capacity	kW	58,8	65,4	76,6	88,8	103,0	113,7	119,7	126,6	133,9	138,9	155,5	162,3	181,1	175,3	200,6	195,0	219,9	213,7
Input power	kW	17,2	19,7	22,5	26,5	31,0	33,8	35,6	37,4	40,4	41,5	47,0	49,1	55,3	53,3	60,9	57,8	67,5	62,7
Heating total input current	Α	30,0	39,0	45,0	54,0	59,0	61,0	58,0	68,0	79,0	75,0	91,0	86,0	93,0	107,0	103,0	110,0	114,0	114,0
COP	W/W	3,42	3,32	3,40	3,35	3,32	3,36	3,36	3,39	3,31	3,35	3,31	3,30	3,27	3,29	3,29	3,37	3,26	3,41
Water flow rate system side	l/h	10207	11335	13280	15399	17866	19723	20784	21964	23234	24088	26976	28153	31410	30409	34811	33832	38148	37079
Pressure drop system side	kPa	23	28	29	39	27	32	19	32	23	39	31	42	52	35	57	41	68	49

ENERGY DATA - STANDARD/INVERTER FANS

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: °																				
Cooling capacity with low leaving water	temp (UE n°	2016/2281	l)																	
	0	W/W	-	-	-	-	3,92	3,84	3,97	4,00	3,83	3,94	3,88	4,17	4,06	3,87	3,95	3,92	3,82	3,80
SEER	Α	W/W	-	-	-	-	4,21	4,14	4,07	4,34	4,01	4,24	4,10	4,40	4,32	4,14	4,31	4,17	4,12	4,04
SECK	E	W/W	4,40	4,32	4,37	4,33	4,26	4,13	4,03	4,29	3,97	4,10	4,06	4,36	4,21	4,10	4,20	4,13	4,07	4,00
	L	W/W	4,14	4,03	4,22	4,07	3,98	3,89	3,94	4,01	3,80	3,89	3,84	4,12	4,00	3,84	3,91	3,88	3,77	3,77
	0	%	-	-	-	-	154%	151%	156%	157%	150%	155%	152%	164%	160%	152%	155%	154%	150%	149%
nce	Α	%	-	-	-	-	165%	163%	160%	171%	157%	167%	161%	173%	170%	162%	169%	164%	162%	159%
ηςς	E	%	173%	170%	172%	170%	167%	162%	158%	169%	156%	161%	160%	172%	166%	161%	165%	162%	160%	157%
	L	%	163%	158%	166%	160%	156%	153%	155%	157%	149%	153%	151%	162%	157%	150%	153%	152%	148%	148%
Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Size Fans: J			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
	temp (UE n°	2016/2281		0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: J	temp (UE n°.	2016/2281 W/W		0302	0332	0352	0502 4,04	0552 3,96	0554 4,10	0602 4,12	3,96	0652 4,06	0654 4,00	0682 4,30	0702 4,19	3,99	0752 4,07	0754 4,04	3,94	3,91
Fans: J Cooling capacity with low leaving water	temp (UE n°				0332															
Fans: J	temp (UE n° . A E	W/W		- - 4,36	- - 4,41	- - 4,37	4,04	3,96	4,10	4,12	3,96	4,06	4,00	4,30	4,19	3,99	4,07	4,04	3,94	3,91
Fans: J Cooling capacity with low leaving water	temp (UE n°. A E	W/W W/W	-	-	-	-	4,04	3,96 4,26	4,10 4,20	4,12 4,47	3,96 4,13	4,06 4,37	4,00 4,23	4,30 4,54	4,19 4,45	3,99 4,26	4,07 4,43	4,04 4,29	3,94 4,25	3,91 4,17
Fans: J Cooling capacity with low leaving water	temp (UE n°. A E L	W/W W/W W/W	- - 4,45	- - 4,36	- - 4,41	- - 4,37	4,04 4,33 4,38	3,96 4,26 4,25	4,10 4,20 4,16	4,12 4,47 4,42	3,96 4,13 4,09	4,06 4,37 4,22	4,00 4,23 4,19	4,30 4,54 4,49	4,19 4,45 4,34	3,99 4,26 4,22	4,07 4,43 4,33	4,04 4,29 4,25	3,94 4,25 4,20	3,91 4,17 4,13
Fans: J Cooling capacity with low leaving water SEER	A E L	W/W W/W W/W	- - 4,45	- - 4,36	- - 4,41	- - 4,37 4,10	4,04 4,33 4,38 4,10	3,96 4,26 4,25 4,01	4,10 4,20 4,16 4,06	4,12 4,47 4,42 4,12	3,96 4,13 4,09 3,92	4,06 4,37 4,22 4,01	4,00 4,23 4,19 3,96	4,30 4,54 4,49 4,25	4,19 4,45 4,34 4,13	3,99 4,26 4,22 3,95	4,07 4,43 4,33 4,03	4,04 4,29 4,25 4,00	3,94 4,25 4,20 3,89	3,91 4,17 4,13 3,88
Fans: J Cooling capacity with low leaving water	A E L	W/W W/W W/W W/W	- - 4,45	- - 4,36	- - 4,41	- - 4,37 4,10	4,04 4,33 4,38 4,10 159%	3,96 4,26 4,25 4,01 155%	4,10 4,20 4,16 4,06 161%	4,12 4,47 4,42 4,12 162%	3,96 4,13 4,09 3,92 155%	4,06 4,37 4,22 4,01 159%	4,00 4,23 4,19 3,96 157%	4,30 4,54 4,49 4,25 169%	4,19 4,45 4,34 4,13 164%	3,99 4,26 4,22 3,95 157%	4,07 4,43 4,33 4,03 160%	4,04 4,29 4,25 4,00 158%	3,94 4,25 4,20 3,89 155%	3,91 4,17 4,13 3,88 154%

⁽¹⁾ Data EN 14511:2022; Beat exchanger water (services side) 12°C / 1°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ENERGY DATA - STANDARD/INVERTER FANS (35°C)

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Fans: °																				
Performance in average ambient condition	ons (average) - 35 °C (1)																	
	0	kW	-	-	-	-	88	97	103	109	115	119	128	141	159	154	178	171	193	188
Pdesignh	Α	kW	-	-	-	-	91	101	105	110	117	121	136	141	158	153	176	170	191	187
ruesigiiii	E	kW	52	58	68	78	91	101	105	110	117	121	136	141	158	153	176	170	191	187
	L	kW	50	58	66	77	88	97	103	109	115	119	128	141	159	154	178	171	193	188
	0	W/W	-	-		-	3,50	3,55	3,36	3,55	3,33	3,61	3,32	3,47	3,57	3,23	3,54	3,32	3,41	3,36
SCOP	Α	W/W	-	-	-	-	3,59	3,69	3,43	3,69	3,42	3,70	3,38	3,59	3,65	3,33	3,66	3,42	3,56	3,44
SCOF	E	W/W	4,06	4,00	4,02	3,91	3,59	3,69	3,43	3,69	3,42	3,70	3,38	3,59	3,65	3,33	3,66	3,42	3,56	3,44
	L	W/W	3,91	3,86	3,87	3,83	3,50	3,55	3,36	3,55	3,33	3,61	3,32	3,47	3,57	3,23	3,54	3,32	3,41	3,36
	0	%	-	-	-	-	135%	139%	131%	139%	130%	141%	130%	135%	139%	126%	139%	130%	134%	131%
nch	A	%	-	-		-	141%	145%	134%	145%	134%	145%	132%	141%	143%	130%	143%	134%	140%	134%
ηsh	E	%	159%	157%	158%	154%	141%	145%	134%	145%	134%	145%	132%	141%	143%	130%	143%	134%	140%	134%
	L	%	153%	151%	152%	150%	135%	139%	131%	139%	130%	141%	130%	135%	139%	126%	139%	130%	134%	131%
Efficiency energy class	°,A		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	E,L		A+	A+	A+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fans: J																				
Performance in average ambient condition	ons (average) - 35 °C (1)																	
	0	kW	-	-	-	-	88	97	103	109	115	119	128	141	159	154	178	171	193	188
Pdesignh	A	kW	-	-		-	91	101	105	110	117	121	136	141	158	153	176	170	191	187
ruesigiiii	E	kW	52	58	68	78	91	101	105	110	117	121	136	141	158	153	176	170	191	187
	L	kW	50	58	66	77	88	97	103	109	115	119	128	141	159	154	178	171	193	188
		W/W	-	-	-	-	3,61	3,66	3,53	3,66	3,49	3,71	3,49	3,57	3,68	3,42	3,65	3,52	3,52	3,56
SCOP	Α	W/W	-	-	-	-	3,70	3,80	3,60	3,80	3,59	3,81	3,59	3,70	3,76	3,53	3,77	3,63	3,67	3,64
Stor	E	W/W	4,10	4,04	4,06	3,99	3,70	3,80	3,60	3,80	3,59	3,81	3,59	3,70	3,76	3,53	3,77	3,63	3,67	3,64
	L	W/W	3,95	3,90	3,91	3,91	3,61	3,66	3,53	3,66	3,49	3,71	3,49	3,57	3,68	3,42	3,65	3,52	3,52	3,56
	0	%	-	-	-	-	141%	143%	138%	143%	137%	146%	136%	140%	144%	134%	143%	138%	138%	139%
nch	A	%	-	-	-	-	145%	149%	141%	149%	141%	149%	141%	145%	147%	138%	148%	142%	144%	143%
ηsh	E	%	161%	159%	159%	157%	145%	149%	141%	149%	141%	149%	141%	145%	147%	138%	148%	142%	144%	143%
	L	%	155%	153%	153%	153%	141%	143%	138%	143%	137%	146%	136%	140%	144%	134%	143%	138%	138%	139%
Efficiency energy class	°,A		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
chiclency energy class	E,L		A+	A+	A+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ENERGY DATA - STANDARD/INVERTER FANS (55°C)

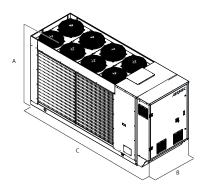
Size			0282	0302	0332	0352	0502	0552	0602	0652	0682	0702	0752	0802
Fans: °														
Performance in average ambient co	onditions (average)	- 55 °C (1)												
	0	kW	-	-	-	-	88	98	109	120	139	155	178	-
Distant	A	kW	-	-	-	-	91	103	110	122	139	154	175	187
Pdesignh	E	kW	52	58	68	78	91	103	110	122	139	154	175	187
	L	kW	50	57	65	77	88	98	109	120	139	155	178	-
	0	W/W	-	-	-	-	2,84	2,94	2,93	3,00	2,84	2,84	2,84	-
CCOD	A	W/W	-	-	-	-	2,91	3,05	3,03	3,04	2,93	2,89	2,92	2,84
SCOP	E	W/W	3,13	3,10	3,11	3,06	2,91	3,05	3,03	3,04	2,93	2,89	2,92	2,84
	L	W/W	3,05	3,03	3,03	3,01	2,84	2,94	2,93	3,00	2,84	2,84	2,84	-
	0	%	-	-	-	-	111%	115%	114%	117%	111%	111%	111%	-
1	A	%	-	-	-	-	113%	119%	118%	119%	114%	113%	114%	110%
ηsh	E	%	122%	121%	122%	119%	113%	119%	118%	119%	114%	113%	114%	110%
	L	%	119%	118%	118%	117%	111%	115%	114%	117%	111%	111%	111%	-
F##	°,A		-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	E,L		A++	A++	A++	-	-	-	-	-	-	-	-	-
Fans: J														
Performance in average ambient co	onditions (average)	- 55 °C (1)												
	0	kW	-	-	-	-	88	98	109	120	139	155	178	-
Distant	A	kW	-	-	-	-	91	103	110	122	139	154	175	187
Pdesignh	E	kW	52	58	68	78	91	103	110	122	139	154	175	187
	L	kW	50	57	65	77	88	98	109	120	139	155	178	-
	0	W/W	-	-	-	-	2,92	3,02	3,02	3,09	2,93	2,93	2,93	-
ccon	A	W/W	-	-	-	-	2,99	3,13	3,12	3,13	3,02	2,98	3,01	2,92
SCOP	E	W/W	3,16	3,12	3,14	3,12	2,99	3,13	3,12	3,13	3,02	2,98	3,01	2,92
	L	W/W	3,08	3,06	3,06	3,07	2,92	3,02	3,02	3,09	2,93	2,93	2,93	-
	۰	%	-	-	-	-	114%	118%	118%	120%	114%	114%	114%	-
1	A	%	-	-	-	-	117%	122%	122%	122%	118%	116%	117%	114%
ηsh	E	%	123%	122%	123%	122%	117%	122%	122%	122%	118%	116%	117%	114%
	L	%	120%	119%	119%	120%	114%	118%	118%	120%	114%	114%	114%	-
F	°,A		-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	E,L		A++	A++	A++									

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

ELECTRIC DATA																				
Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Electric data																				
	0	Α	-	-	-	-	73,5	79,1	88,3	97,4	111,5	122,6	139,4	156,1	80,5	97,2	113,5	132,7	144,0	155,3
Maximum current (FLA)	A	Α	-	-	-	-	73,5	79,1	88,3	97,4	111,5	122,6	139,4	156,1	80,5	97,2	111,4	132,7	144,0	155,3
Maximum current (FLA)	E	Α	41,6	49,9	56,9	67,6	73,5	79,1	88,3	97,4	111,5	122,6	139,4	156,1	80,5	97,2	111,4	132,7	144,0	155,3
	L	Α	40,2	49,9	58,1	67,6	73,5	79,1	88,3	97,4	111,5	122,6	139,4	156,1	80,5	97,2	113,5	132,7	144,0	155,3
	0	Α	-	-	-	-	276,8	282,5	329,5	338,6	396,5	407,7	601,7	618,4	200,8	221,3	268,5	287,7	347,4	358,7
Dook surrent (LDA)	A	Α	-	-	-	-	276,8	282,5	329,5	338,6	396,5	407,7	601,7	618,4	200,8	221,3	226,7	287,7	347,4	358,7
Peak current (LRA)	E	Α	161,9	174,0	172,3	222,6	276,8	282,5	329,5	338,6	396,5	407,7	601,7	618,4	200,8	221,3	226,7	287,7	347,4	358,7
	L	А	160,5	174,0	213,0	222,6	276,8	282,5	329,5	338,6	396,5	407,7	601,7	618,4	200,8	221,3	268,5	287,7	347,4	358,7

Data calculated without hydronic kit and accessories.


GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Compressor																				
Туре	°,A,E,L	type									Sc	roll								
Compressor regulation	°,A,E,L	Туре									0n	-Off								
Number	°,A,E,L	no.	2	2	2	2	2	2	4	2	4	2	4	2	2	4	2	4	2	4
Circuits	°,A,E,L	no.	1	1	1	1	1	1	2	1	2	1	2	1	1	2	1	2	1	2
Refrigerant	°,A,E,L	type									R	32								
	0	kg	-	-	-	-	9,5	9,5	6,8	12,2	7,1	12,2	7,1	17,7	17,7	8,1	17,7	9,0	17,7	9,0
-	А	kg	-	-	-	-	12,8	13,3	7,4	13,3	7,7	13,3	8,7	18,2	18,2	8,3	18,4	10,0	18,4	9,5
Refrigerant load circuit 1 (1)	E	kg	6,8	8,3	11,2	11,1	12,8	13,3	7,4	13,3	7,7	13,3	8,7	18,2	18,2	8,3	18,4	10,0	18,4	9,5
_	L	kg	6,5	6,8	7,4	7,4	9,5	9,5	6,8	12,2	7,1	12,2	7,1	17,7	17,7	8,1	17,7	9,0	17,7	9,0
D.C: (1.1: 12.70)	°,L	kg	-	-	-	-	-	-	6,8	-	7,1	-	7,1	-	-	8,1	-	9,0	-	9,0
Refrigerant load circuit 2 (1)	A,E	kg	-	-	-	-	-	-	7,4	-	7,7	-	8,7	-	-	8,3	-	10,0	-	9,5
Potential global heating	°,A,E,L	GWP									675kc	cO,eq								
System side heat exchanger																				
Туре	°,A,E,L	type									Braze	d plate								
Number	°,A,E,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fan																				
Туре	°,A,E,L	type									A	cial								
	0	no.	-	-	-	-	2	2	2	2	2	2	2	3	3	3	3	3	3	3
Al	А	no.	-	-	-	-	2	2	2	2	2	2	3	3	3	3	3	3	3	3
Number -	E	no.	6	6	8	8	2	2	2	2	2	2	3	3	3	3	3	3	3	3
_	L	no.	4	6	6	8	2	2	2	2	2	2	2	3	3	3	3	3	3	3
	0	m³/h	-	-	-	-	42831	42819	40170	41067	40170	41067	38299	62024	62022	60681	62022	60681	62022	60681
A:- G	Α	m³/h	-	-	-	-	41097	41097	38299	39483	38299	39483	60681	59734	59721	57995	59721	57995	59721	57995
Air flow rate -	E	m³/h	21224	21224	28177	25805	31035	31035	28870	29848	28870	29848	45978	45211	45211	43804	45211	43804	45211	43804
_	L	m³/h	15552	21229	22716	28186	32592	32592	30388	31000	30388	31000	28869	47029	47029	45980	47029	45980	47029	45980
Sound data calculated in cooling mode (2)																			
	0	dB(A)	-	-	-	-	87,2	87,5	86,5	87,7	87,1	87,9	87,1	89,4	89,5	88,8	90,0	90,1	90,1	90,0
-	Α	dB(A)	-	-	-	-	87,2	87,5	86,5	87,7	87,1	87,9	88,8	89,4	89,5	88,8	90,0	90,1	90,1	90,0
Sound power level –	E	dB(A)	73,6	74,1	74,9	75,1	82,8	83,5	76,6	83,9	77,3	84,3	78,4	85,5	85,6	78,6	86,7	84,6	87,3	86,2
_	L	dB(A)	73,0	74,1	74,5	75,1	82,8	83,5	76,6	83,9	77,3	84,3	77,7	85,5	85,6	78,6	86,7	84,6	87,3	86,2
Sound data calculated in heating mode (2	2)																			
	0	dB(A)	-	-	-	-	87,2	87,5	86,5	87,7	87,1	87,9	87,1	89,4	89,5	88,8	90,0	90,1	90,1	90,0
	А	dB(A)	-	-	-	-	87,2	87,5	86,5	87,7	87,1	87,9	88,8	89,4	89,5	88,8	90,0	90,1	90,1	90,0
Sound power level -	E	dB(A)	73,6	74,1	74,9	75,1	87,2	87,5	86,5	87,7	87,1	87,9	88,8	89,4	89,5	88,8	90,0	90,1	90,1	90,0
-		dB(A)	73,0	74,1	74,5	75,1	87,2	87,5	86,5	87,7	87,1	87,9	87.1	89,4	89,5	88,8	90,0	90,1	90,1	90,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0554	0602	0604	0652	0654	0682	0702	0704	0752	0754	0802	0804
Dimensions and weights																				
	٥	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900
A	А	mm	-	-	-	-	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
A	E	mm	1652	1658	1658	1658	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900	1900
	L	mm	1652	1652	1658	1658	1907	1907	1907	1907	1907	1907	1907	1900	1900	1900	1900	1900	1900	1900
D	°,A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
В	E,L	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
	0	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368
•	A	mm	-	-	-	-	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
C	E	mm	2818	3317	3317	3317	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368	4368
	L	mm	2818	2818	3317	3317	3567	3567	3567	3567	3567	3567	3567	4368	4368	4368	4368	4368	4368	4368

NRGI 151-602

Air-water chiller

Cooling capacity 31.0 ÷ 132.2 kW

- · High efficiency also at partial loads
- High modulation capacity
- Continuous modulation of the cooling capacity
- Compressors and fans with Inverter
- Reduced amount of refrigerant
- Stable temperature control of the outlet water

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas.

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger and **standard electronic expansion valve.**

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 50°C external air temperature. Unit can produce chilled water up to -10 $^{\circ}\text{C}$.

For more information refer to the selection program and to to the dedicated documentation.

High efficiency

These are flexible and reliable units which adapt to the most diverse load conditions thanks to the precise design and **the use of steady speed compressors together with inverter-controlled variable speed compressors** guaranteeing a high energy efficiency level both at full and partial load.

Inverter compressor + On-Off

They can be configured with a single variable speed compressor or two in tandem configuration, one steady and one variable speed. This pair guarantees high efficiency both with partial and full loads.

Sizes 151-281 have a single variable speed compressor. Sizes 302-602 have two compressors in tandem configuration.

This solution gets the best value out of the particularities and advantages of each compressor, enhancing the efficiency of each load condition and allowing for

— High seasonal efficiency

- steady and precise modulation of the chilling demand
- The stability of the outlet water temperature.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

Single-compressor units have a standard electronic expansion valve, while units with tandem compressors have two.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Fans

www.aermec.com

Inverter: standard from size 151 to size 352, available as an optional for the other sizes.

Boosted, asynchronous with phase cutting: standard from size 382 to size 602.

Both types of fan permit:

- Steady air flow rate adjustment
- Low consumption and reduced sound level at partial loads
- Operation with low outdoor air temperatures
- Precise condensation control for an extended operating range.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

439

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: this function can be activated in all the units, to optimise unit operation at any point by continuously modulating the fan speed. In addition, the use of inverter fans allows increased energy efficiency with partial loads.
- **Night Mode:** it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

INTEGRATED SOLUTION

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valves.

This solution allowed a variety of new features to be introduced, such

- **Low Superheat Control**: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions;
- **DLT control**: Control of electronic valves at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

GP: Anti-intrusion grid. **VT:** Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	151	201	281	302	332	352	382	502	552	602
AER485P1	A,E	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E	•	•	•	•		•		•	•	•
PGD1	A,E								•	•	•

Antivibration

Ver	151	201	281	302	332	352	382	502	552	602
Integrated hydronic kit: 00, I1, I2, I3,	14, P1, P2, P3, P4									
A,E	VT17	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22
Integrated hydronic kit: 01, 02, 03, 04	, 05, 06, 07, 08, 09,	K1, K2, K3, K4, W	1, W2, W3, W4							
A,E	VT13	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22

Anti-intrusion arid

Ver	151	201	281	302	332	352	382	502	552	602
A,E	GP3	GP4	GP4	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)

⁽¹⁾ x _ indicates the quantity to buy

Device for peak current reduction

Ver	151	201	281	302	332	352	382	502	552	602
A.F	-	-	-	DRFNRGI302	DRFNRGI332	DRFNRGI352	DRFNRGI382	DRFNRGI502	DRFNRGI552	DRFNRGI602

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	151	201	281	302	332	352	382	502	552	602
A,E	T6NRG1									

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

		GUNATUR
Field	_	Description
1,2,3	3,4	NRGI
5,6,7	7	Size
		151, 201, 281, 302, 332, 352, 382, 502, 552, 602
8		Operating field (1)
	X	Electronic thermostatic expansion valve
9		Model
	0	Cooling only
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (2)
11		Version
	Α	High efficiency
	Ε	Silenced high efficiency
12		Coils
	0	Copper-aluminium
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
13		Fans
	J	Inverter
	М	Boosted with phase cutting (3)
14		Power supply
	0	400V ~ 3N 50Hz with magnet circuit breakers
15,1	6	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
		Kit with storage tank and pump/s
	01	Storage tank with low head pump
	02	Storage tank with low head pump + stand-by pump
	03	Storage tank with high head pump
	04	Storage tank with high head pump + stand-by pump
		Kit with pump/s and storage tank with holes for heaters

Field	Description
05	Storage tank with holes for heaters and single low head pump (4)
06	Storage tank with holes for heaters and pump low head + stand-by pump (4)
07	Storage tank with holes for heaters and single high head pump (4)
08	Storage tank with holes for heaters and pump high head + stand-by pump (4)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
I1	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter
W2	Double low head pump + Storage tank + variable speed inverter
W3	Single high head pump + Storage tank + variable speed inverter
W4	Double high head pump + Storage tank + variable speed inverter

- (1) Water produced from -10 °C ÷ 20 °C. Double electronic thermostatic valve from size 302 to 602.

 (2) Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection program

 (3) Only for 382 − 502 − 552 − 602 sizes

 (4) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRGI - A

mior /i											
Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	39,2	52,6	58,2	69,4	77,7	83,2	93,2	103,3	114,0	132,2
Input power	kW	11,8	15,2	17,5	20,8	23,3	25,6	27,6	31,4	35,1	39,1
Cooling total input current	A	18,0	23,0	26,0	37,0	41,0	46,0	43,0	49,0	53,0	60,0
EER	W/W	3,31	3,47	3,32	3,33	3,34	3,25	3,37	3,29	3,24	3,38
Water flow rate system side	l/h	6746	9067	10028	11960	13388	14335	16031	17775	19616	22750
Pressure drop system side	kPa	18	33	40	35	44	50	24	23	28	29

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRGI - E

Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	31,0	40,1	46,4	61,7	70,1	75,6	84,9	91,3	101,8	119,6
Input power	kW	8,9	11,0	13,1	17,9	20,2	22,5	24,6	26,9	30,8	34,2
Cooling total input current	A	13,0	17,0	19,0	32,0	36,0	41,0	39,0	43,0	47,0	53,0
EER	W/W	3,49	3,63	3,55	3,45	3,46	3,36	3,45	3,39	3,31	3,50
Water flow rate system side	l/h	5326	6900	7994	10624	12066	13021	14607	15705	17509	20576
Pressure drop system side	kPa	11	19	25	27	35	41	20	18	22	24

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: J												
SEER - 12/7 (EN14825: 2018) (1)												
SEER	Α	W/W	5,19	5,32	5,37	5,04	5,07	5,22	5,33	5,36	5,18	5,33
SEER	E	W/W	5,23	5,36	5,42	5,08	5,11	5,26	5,37	5,40	5,23	5,37
Caranal officiana	Α	%	204,40	209,80	211,90	198,40	199,70	205,70	210,00	211,40	204,30	210,00
Seasonal efficiency	E	%	206,00	211,50	213,60	200,00	201,30	207,30	211,80	213,10	206,00	211,70
SEER - 23/18 (EN14825: 2018) (2)												
SEER	Α	W/W	6,35	6,45	6,33	5,81	5,79	5,89	6,21	6,21	5,94	6,11
DEEK	E	W/W	6,52	6,75	6,58	5,93	5,84	5,91	6,31	6,32	6,00	6,21
	А	%	250,90	254,90	250,20	229,50	228,40	232,40	245,20	245,30	234,60	241,50
Seasonal efficiency	E	%	257,90	266,80	260,30	234,20	230,40	233,40	249,40	249,80	237,10	245,40
SEPR - (EN 14825: 2018) (2)												
SEPR	А	W/W	7,10	7,60	7,50	7,10	7,30	7,40	7,10	7,10	6,50	6,50
SERK	E	W/W	7,10	7,50	7,40	7,20	7,40	7,40	7,10	7,20	6,60	6,60
Fans: M												
SEER - 12/7 (EN14825: 2018) (1)												
CLED	A	W/W	-	-	-	-	-	-	5,33	5,36	5,18	5,33
SEER	E	W/W	-	-	-	-	-	-	5,37	5,40	5,23	5,37
	А	%	-	-	-	-	-	-	210,00	211,40	204,30	210,00
Seasonal efficiency	E	%	-	-	-	-	-	-	211,80	213,10	206,00	211,70
SEER - 23/18 (EN14825: 2018) (2)												
CEED	A	W/W	-	-	-	-	-	-	6,21	6,21	5,94	6,11
SEER	E	W/W	-	-	-	-	-	-	6,31	6,32	6,00	6,21
Constant of the constant	А	%	-	-	-	-	-	-	245,20	245,30	234,60	241,50
Seasonal efficiency	E	%	-	-	-	-	-	-	249,40	249,80	237,10	245,40
SEPR - (EN 14825: 2018) (2)												
CEDD	А	W/W	-	-	-	-	-	-	7,10	7,10	6,50	6,50
SEPR	E	W/W	-	-	-	-	-	-	7,10	7,20	6,60	6,60

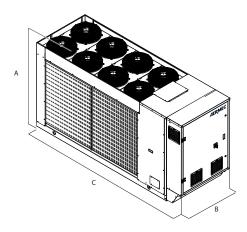
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			151	201	281	302	332	352	382	502	552	602
Electric data												
Maximum current (FLA)	A,E	Α	23,8	31,6	34,9	47,6	52,8	58,1	60,1	68,8	74,4	87,5
Peak current (LRA)	A,E	A	30,3	43,0	43,0	142,8	167,1	201,1	174,4	211,8	278,6	329,2

[■] Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA


Size			151	201	281	302	332	352	382	502	552	602
Compressor												
Туре	A,E	type					Sc	roll				
Compressor regulation	A,E	Туре			1	1+I	1+I	1+I	1+1	1+1	1+l	1+1
Number	A,E	no.	1	1	1	2	2	2	2	2	2	2
Circuits	A,E	no.	1	1	1	1	1	1	1	1	1	1
Refrigerant	A,E	type					R	32				
System side heat excha	anger											
Туре	A,E	type					Braze	d plate				
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1

FANS DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: J												
Fan												
Туре	A,E	type					A	rial				
Fan motor	A,E	type					Inve	erter				
Number	A,E	no.	4	6	6	8	8	8	2	2	2	3
Air flow rate	A	m³/h	16669	24469	24476	30793	28649	28662	36174	36174	36149	54601
Air now rate	E	m³/h	14488	21255	21255	26704	24966	24966	26850	26850	26781	40488
Sound data calculated in cooling mod	e (1)											
S	A	dB(A)	81,8	84,6	85,9	82,2	85,0	85,1	85,4	86,5	87,7	88,1
Sound power level	E	dB(A)	79,3	82,8	83,3	80,9	81,3	81,7	82,8	83,0	85,4	85,5
C	A	dB(A)	50,0	52,7	54,1	50,3	53,2	53,3	53,5	54,5	55,8	56,0
Sound pressure level (10 m)	E	dB(A)	47,5	51,0	51,4	49,0	49,5	49,8	50,8	51,1	53,5	53,5
(1) Sound power: calculated on the basis	of measurements	made in accord	ance with UNI E	N ISO 9614-2, a	as required for E	urovent certific	ation. Sound p	ressure measur	ed in free field	(in compliance	with UNI EN IS	3744).
Size			151	201	281	302	332	352	382	502	552	602
Fans: M												
Increased fan												
iller cube a ruit												
Туре	A,E	type					A	rial				
	A,E A,E	type type						cial with phase cut				
Туре			-	-	-	-			2	2	2	3
Type Fan motor Number	A,E	type	-	- -	-	-	Asynchronous		2 36174	2 36174	2 36149	3 54601
Type Fan motor	A,E A,E	type no.	- - -	- -		- - -	Asynchronous -					
Type Fan motor Number	A,E A,E A E	type no. m³/h	-	- - -			Asynchronous - -	with phase cut - -	36174	36174	36149	54601
Type Fan motor Number Air flow rate Sound data calculated in cooling mod	A,E A,E A E	type no. m³/h	-				Asynchronous - -	with phase cut - -	36174	36174	36149	54601
Type Fan motor Number Air flow rate	A,E A,E A E	type no. m³/h m³/h	-		-	-	Asynchronous - - -	with phase cut - -	36174 26850	36174 26850	36149 26781	54601 40488
Type Fan motor Number Air flow rate Sound data calculated in cooling mod	A,E A,E A E	type no. m³/h m³/h	-	-	-	-	Asynchronous	with phase cut - - - -	36174 26850 85,4	36174 26850 86,5	36149 26781 87,7	54601 40488 88,1

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			151	201	281	302	332	352	382	502	552	602
Dimensions and weights												
A	A,E	mm	1652	1652	1652	1652	1652	1652	1907	1907	1907	1900
В	A,E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
C	A,E	mm	2873	3372	3372	3372	3372	3372	3623	3623	3623	4373
Size			151	201	281	302	332	352	382	502	552	602
Integrated hydronic kit: 00												
Weights												
Weight empty + packaging	A,E	kg	826	899	899	986	1027	1028	1093	1101	1123	1313
Weight functioning	A,E	kg	795	867	867	955	996	997	1062	1072	1094	1284

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRGI 151H-602H

Reversible air/water heat pump

Cooling capacity 28.9 ÷ 123.7 kW Heating capacity 31.6 ÷ 133.9 kW

- · High efficiency also at partial loads
- High modulation capacity
- Continuous modulation of the cooling capacity
- Compressors and fans with Inverter
- · Reduced amount of refrigerant
- Stable temperature control of the outlet water

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas.

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger and **standard electronic expansion valve.**

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency **E** Silenced high efficiency

FEATURES

Operating field

Working at full load up to -15 °C outside air temperature in winter, and up to 49 °C in summer. Hot water production up to 60 °C

For more information refer to the selection program and to to the dedicated documentation.

High efficiency

These are flexible and reliable units which adapt to the most diverse load conditions thanks to the precise design and **the use of steady speed compressors together with inverter-controlled variable speed compressors** guaranteeing a high energy efficiency level both at full and partial load.

Inverter compressor + On-Off

They can be configured with a single variable speed compressor or two in tandem configuration, one steady and one variable speed. This pair guarantees high efficiency both with partial and full loads.

Sizes 151-281 have a single variable speed compressor. Sizes 302-602 have two compressors in tandem configuration.

This solution gets the best value out of the particularities and advantages of each compressor, enhancing the efficiency of each load condition and allowing for

- High seasonal efficiency
- steady and precise modulation of the chilling demand
- The stability of the outlet water temperature.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

The leak detector is supplied as per standard.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

Single-compressor units have a standard electronic expansion valve, while units with tandem compressors have two.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Inverter fans

All of the units are equipped as per standard with high-efficiency inverter-controlled axial fans which provide:

- Steady air flow rate adjustment
- Low consumption and reduced sound level at partial loads
- Operation with low outdoor air temperatures
- Precise condensation control for an extended operating range.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed or variable pumps also inverter.

■ VARIABLE FLOW RATE: Correctly adjust the speed of the inverter-controlled pumps according to the load demand of the system, in order to reduce power consumption.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Swing HP and LP controls: available for all models. By continuously modulating the fans, they streamline operation of the unit at any work point both in cooling and heating mode. This results in enhanced energy efficiency of the unit at partial loads.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

INTEGRATED SOLUTION

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valves.

This solution allowed a variety of new features to be introduced, such as:

 Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions; DLT control: Control of electronic valves at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range, especially in heating mode.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

GP: Anti-intrusion grid. **VT:** Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	151	201	281	302	332	352	382	502	552	602
AER485P1	A,E	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E	•	•		•	•	•	•	•	•	•
PGD1	ΔF										

Antivibration

151	201	281	302	332	352	382	502	552	602
4, P1, P2, P3, P4									
VT17	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22
05, 06, 07, 08, 09, 1	K1, K2, K3, K4, W	1, W2, W3, W4							
VT13	VT13	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT22
	4, P1, P2, P3, P4 VT17 05, 06, 07, 08, 09,	4, P1, P2, P3, P4 VT17 VT13 05, 06, 07, 08, 09, K1, K2, K3, K4, W	4, P1, P2, P3, P4 VT17 VT13 VT13 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W4	4, P1, P2, P3, P4 VT17 VT13 VT13 VT13 VT13 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W4	4, P1, P2, P3, P4 VT17 VT13 VT13 VT13 VT13 VT13 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W4	4, P1, P2, P3, P4 VT17 VT13 VT13 VT13 VT13 VT13 VT13 VT13 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W4	4, P1, P2, P3, P4 VT17 VT13 VT13 VT13 VT13 VT13 VT11 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W4	4, P1, P2, P3, P4 VT17 VT13 VT13 VT13 VT13 VT13 VT11 VT11 05, 06, 07, 08, 09, K1, K2, K3, K4, W1, W2, W3, W 4	4, P1, P2, P3, P4 VT17 VT13 VT13 VT13 VT13 VT13 VT11 VT11 VT11

Anti-intrusion grid

Ver	151	201	281	302	332	352	382	502	552	602
A,E	GP3	GP4	GP4	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)

⁽¹⁾ x_i indicates the quantity to buy

Device for peak current reduction

Ver	151	201	281	302	332	352	382	502	552	602
A.E	-	-	-	DRENRGI302	DRENRGI332	DRENRGI352	DRENRGI382	DRENRGI502	DRENRGI552	DRENRGI602

The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	151	201	281	302	332	352	382	502	552	602
A,E	T6NRG1									

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

CONFIGURATOR

		GUNATUR
Fiel	d	Description
1,2,	3,4	NRGI
5,6,	7	Size 151, 201, 281, 302, 332, 352, 382, 502, 552, 602
8		Operating field (1)
	Χ	Electronic thermostatic expansion valve
9		Model
	Н	Heat pump
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (2)
11		Version
	Α	High efficiency
	Ε	Silenced high efficiency
12		Coils
	0	Copper-aluminium
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
13		Fans
	0	Standard with phase cut
	J	Inverter
14		Power supply
	0	400V ~ 3N 50Hz with magnet circuit breakers
15,1	16	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
		Kit with storage tank and pump/s
	01	Storage tank with low head pump
	02	Storage tank with low head pump + stand-by pump
	03	Storage tank with high head pump
	04	Storage tank with high head pump + stand-by pump

ield	Description
	Kit with pump/s and storage tank with holes for heaters
05	Storage tank with holes for heaters and single low head pump (3)
06	Storage tank with holes for heaters and pump low head + stand-by pump (3)
07	Storage tank with holes for heaters and single high head pump (3)
08	Storage tank with holes for heaters and pump high head + stand-by pump (3)
	Double loop
09	Double loop
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
Р3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
l1	Single low head pump + fixed speed inverter
12	Single low head pump with fixed speed inverter + stand-by pump
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K1	Single low head pump + storage tank + fixed speed inverter
K2	Storage tank and low head pump with fixed speed inverter + stand-by pump
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and variable speed inverter pump/s
W1	Single low head pump + Storage tank + variable speed inverter
W2	Double low head pump + Storage tank + variable speed inverter
W3	Single high head pump + Storage tank + variable speed inverter
W4	Double high head pump + Storage tank + variable speed inverter

- (1) Water produced from -10 °C ÷ 20 °C. Double electronic thermostatic valve from size 302 to 602.
 (2) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (3) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRGI - HA

Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C/7 °C											
Cooling capacity	kW	36,5	48,9	54,2	64,1	72,1	77,3	87,0	95,7	106,0	123,7
Input power	kW	12,1	15,6	18,1	21,5	23,9	26,3	28,4	32,3	36,1	39,1
Cooling total input current	A	18,0	24,0	27,0	38,0	42,0	47,0	44,0	51,0	55,0	60,0
EER	W/W	3,00	3,13	3,00	2,98	3,02	2,94	3,06	2,96	2,93	3,16
Water flow rate system side	l/h	6280	8416	9328	11028	12414	13315	14969	16471	18246	21290
Pressure drop system side	kPa	15	28	34	28	35	41	19	18	23	25
Heating performance 40 °C / 45 °C											
Heating capacity	kW	39,6	53,4	59,0	69,9	78,1	84,1	94,7	104,8	115,7	133,9
Input power	kW	11,6	15,4	17,3	20,3	23,0	24,9	29,4	32,2	34,6	40,6
Heating total input current	A	18,0	24,0	27,0	38,0	42,0	46,0	46,0	52,0	54,0	64,0
COP	W/W	3,42	3,46	3,42	3,45	3,40	3,37	3,22	3,25	3,34	3,30
Water flow rate system side	l/h	6869	9260	10228	12113	13544	14563	16431	18188	20074	23220
Pressure drop system side	kPa	18	33	40	34	42	49	23	22	27	29

NRGI - HE

Size		151	201	281	302	332	352	382	502	552	602
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	28,9	37,0	42,6	56,7	64,9	70,1	78,8	84,0	94,0	111,3
Input power	kW	9,1	11,4	13,5	18,4	20,8	23,2	25,3	27,6	31,6	34,1
Cooling total input current	A	13,0	17,0	20,0	33,0	36,0	41,0	39,0	44,0	49,0	53,0
EER	W/W	3,17	3,25	3,15	3,07	3,12	3,03	3,12	3,04	2,97	3,26
Water flow rate system side	l/h	4974	6363	7326	9764	11165	12069	13554	14451	16179	19152
Pressure drop system side	kPa	10	16	21	22	29	33	16	14	18	20
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	31,6	41,2	47,5	62,3	70,4	76,5	87,0	93,3	104,4	122,0
Input power	kW	9,1	11,8	13,6	18,0	20,3	22,2	27,0	28,5	31,2	36,8
Heating total input current	А	15,0	20,0	22,0	35,0	38,0	43,0	43,0	47,0	50,0	59,0
COP	W/W	3,49	3,49	3,49	3,47	3,47	3,44	3,23	3,27	3,35	3,32
Water flow rate system side	l/h	5484	7151	8247	10814	12215	13253	15103	16186	18126	21177
Pressure drop system side	kPa	12	20	26	27	34	40	20	18	22	24

ENERGY DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: °			151	201	201	302	332	332	302	502	332	
Performance in average ambient conc	ditions (average)	- 35 °C (1)										
	A	. ,	A++	A++	A++	A++	A++	-	-	-	-	-
Efficiency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Ddarianh	A	kW	34	46	51	61	67	73	82	91	100	116
Pdesignh	E	kW	27	35	41	54	61	66	75	81	90	105
SCOP	A	W/W	4,10	4,20	4,13	4,28	4,15	4,22	4,14	4,13	4,01	3,90
SCOP	E	W/W	4,15	4,20	4,15	4,30	4,18	4,25	4,17	4,16	4,04	3,93
nch	A	%	161,00	165,00	162,00	168,00	163,00	165,73	162,63	162,06	157,32	152,89
ηsh	E	%	163,00	165,00	163,00	169,00	164,00	167,00	163,96	163,38	158,60	154,14
Performance in average ambient conc	ditions (average)	- 55 °C (2)										
Efficiency energy class	A		A++	A++	A++	A++	A++	-	-	-	-	-
Efficiency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Pdesignh	A	kW	35	48	53	62	69	73	83	92	102	117
- uesigiiii	E	kW	28	37	43	55	62	67	76	82	92	106
SCOP	A	W/W	3,20	3,30	3,28	3,28	3,30	3,38	3,18	3,30	3,25	3,17
	E	W/W	3,23	3,30	3,28	3,28	3,30	3,38	3,29	3,27	3,26	3,18
nch	A	%	125,00	129,00	128,00	128,00	129,00	132,30	124,20	128,80	126,90	123,80
ηsh	E	%	126,00	129,00	128,00	128,00	129,00	132,00	128,40	127,70	127,20	124,10
Fans: J												
Performance in average ambient conc	ditions (average)	- 35 °C (1)										
Efficiency energy class	A		A++	A++	A++	A++	A++	-	-	-	-	-
Efficiency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Pdesignh	A	kW	34	46	51	61	67	73	82	91	100	116
	E	kW	27	35	41	54	61	66	75	81	90	105
SCOP	A	W/W	4,25	4,33	4,25	4,40	4,29	4,35	4,27	4,25	4,13	4,02
	E	W/W	4,28	4,35	4,28	4,43	4,33	4,38	4,30	4,29	4,17	4,05
ηsh	A	%	167,00	170,00	167,10	173,00	168,40	170,95	167,75	167,17	162,28	157,71
1311	E	%	168,00	171,00	168,00	174,00	170,00	172,00	169,12	168,53	163,60	159,00
Performance in average ambient conc	ditions (average)	- 55 °C (2)										
Efficiency energy class	A		A++	A++	A++	A++	A++	-	-	-	-	-
Linciency energy class	E		A++	A++	A++	A++	A++	A++	-	-	-	-
Pdesignh	A	kW	35	48	53	62	69	73	83	92	102	117
	E	kW	28	37	43	55	62	67	76	82	92	106
SCOP	A	W/W	3,31	3,40	3,38	3,38	3,43	3,49	3,28	3,35	3,35	3,27
	E	W/W	3,33	3,40	3,38	3,38	3,40	3,48	3,39	3,37	3,36	3,28
ηsh	A	%	129,40	133,00	132,10	132,00	134,00	136,50	128,10	130,80	130,90	127,70
	E	%	130,00	133,00	132,00	132,00	133,00	136,00	132,50	131,80	131,20	128,00
(1) Efficiencies for low temperature application(2) Efficiencies for average temperature a)										
Size			151	201	281	302	332	352	382	502	552	602
SEER - (EN14825:2018) 12/7 with inver	rter fans (1)											
SEER	A	W/W	4,67	4,96	4,89	4,62	4,74	4,68	4,79	4,84	4,90	5,09
JEEN	E	W/W	4,71	5,00	4,93	4,66	4,78	4,72	4,83	4,88	4,94	5,13
Concornal officioness	A	%	183,90	195,27	192,49	181,84	186,68	184,20	188,75	190,52	192,91	200,54
Seasonal efficiency	E	%	185,40	196,86	194,06	183,31	188,19	185,69	190,29	192,07	194,48	202,17
SEER - 12/7 (EN14825:2018) with stand	dard fans (1)											
CEED	A	W/W	4,49	4,76	4,69	4,44	4,55	4,49	4,60	4,64	4,70	4,88
SEER	E	W/W	4,52	4,80	4,73	4,47	4,59	4,53	4,64	4,68	4,74	4,92
(1) Calculation performed with FIXED was	ter flow rate and \	/ΔRIΔRI F outlet										

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size			151	201	281	302	332	352	382	502	552	602
Cassanal officianas	Α	%	176,43	187,34	184,67	174,44	179,09	176,71	181,08	182,78	185,08	192,40
Seasonal efficiency	E	%	177,86	188,86	186,17	175,86	180,55	178,15	182,56	184,26	186,58	193,96

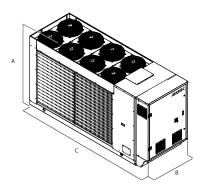
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

ELECTRIC DATA

Size			151	201	281	302	332	352	382	502	552	602
Electric data												
Maximum current (FLA)	A,E	A	23,8	31,6	34,9	47,6	52,8	58,1	60,1	68,8	74,4	87,5
Deals surrent (LDA)	А	А	30,3	43,0	43,0	142,8	167,1	201,1	174,4	211,8	278,6	329,2
Peak current (LRA)	F	A	30.3	43.0	43.0	136.2	160.5	194.5	166.6	204.0	270.8	317.5

Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA


Size			151	201	281	302	332	352	382	502	552	602
Compressor												
Туре	A,E	type					Sc	roll				
Compressor regulation	A,E	Туре	Inverter	Inverter	Inverter	Inverter+0n/0ff						
Number	A,E	no.	1	1	1	2	2	2	2	2	2	2
Circuits	A,E	no.	1	1	1	1	1	1	1	1	1	1
Refrigerant	A,E	type					R	32				
System side heat excha	anger											
Туре	A,E	type					Braze	d plate				
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1
Sound data calculated	in cooling n	node (1)										
Cound navier level	A	dB(A)	81,8	84,6	86,0	82,2	85,0	85,1	85,4	86,5	87,8	88,1
Sound power level —	E	dB(A)	79,3	82,8	83,3	80,9	81,3	81,7	82,8	83,0	85,4	85,6

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

Size			151	201	281	302	332	352	382	502	552	602
Fans: J												
Fan												
Туре	A,E	type					A	rial				
Fan motor	A,E	type					Inve	erter				
Number	A,E	no.	4	6	6	8	8	8	2	2	2	3
A:- 0	A	m³/h	16896	24887	24891	31613	29660	29659	36859	36859	36859	55733
Air flow rate	E	m³/h	14667	21591	21591	27379	25774	25774	27308	27308	27307	41430

DIMENSIONS

Size			151	201	281	302	332	352	382	502	552	602
Dimensions and weights												
A	A,E	mm	1652	1652	1652	1652	1652	1652	1907	1907	1907	1900
В	A,E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
C	A,E	mm	2873	3372	3372	3372	3372	3372	3623	3623	3623	4373
Size			151	201	281	302	332	352	382	502	552	602
Integrated hydronic kit: 00												
Weights												
Weight empty + packaging	A,E	kg	856	929	929	1019	1063	1064	1131	1137	1159	1365
Weight functioning	A,E	kg	825	897	897	988	1032	1033	1099	1108	1130	1336

NRG 0800-2400

Air-water chiller

Cooling capacity 225,7 ÷ 725,0 kW

- · High efficiency also at partial loads
- · Reduced amount of refrigerant
- Night mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas axial fan, microchannel batteries and plate exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 49°C external air temperature. Unit can produce chilled water up to -10 °C in some versions.

For more information refer to the selection program and to to the dedicated documentation.

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It's available in various configurations, with storage tank or pumps.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or with DCPX which allows unit operation to be optimised at any operating point through continuous modulation of the fan speed. In addition, the use of inverter fans ensures an increase in energy efficiency at partial loads.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

Fiel	d	Description
1,2,		NRG
		Size
4,5,	6,/	0800, 0900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Z	Low temperature electronic thermostatic valve (2)
9		Model
	0	Cooling only
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (3)
	T	With total recovery (4)
11		Version
	•	Standard
	A	High efficiency
	E	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12	0	Coils
		Aluminium microchannel
	<u> </u>	Copper-aluminium Costed aluminium microchannel
	0 D	Coated aluminium microchannel
	R	Copper-copper Tipped copper
	<u>S</u> V	Tinned copper Copper-painted alumimium
13	V	Fans
13	J	Inverter
	M	Oversized
14	IVI	Power supply
14	0	400V ~ 3 50Hz with magnet circuit breakers
15,1	16	Integrated hydronic kit
15,	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (5)
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (5)
		Kit with storage tank and n° 1 pump
	AA	Storage tank and pump A
	AB	Storage tank and pump B
	AC	Storage tank and pump C
	AD	Storage tank and pump D
	AE	Storage tank and pump E
	AF	Storage tank and pump F
	AG	Storage tank and pump G
	AH	Storage tank and pump H
	Al	Storage tank and pump I
	AJ	Storage tank and pump J (5)
	F.1	Kit with storage tank and n° 1 pump + stand-by pump
	BA	Storage tank with pump A + stand-by pump
	BB	Storage tank with pump B + stand-by pump
	BC	Storage tank with pump C + stand-by pump

Field	Description
BD	Storage tank with pump D + stand-by pump
BE	Storage tank with pump E + stand-by pump
BF	Storage tank with pump F + stand-by pump
BG	Storage tank with pump G + stand-by pump
BH	Storage tank with pump H + stand-by pump
BI	Storage tank with pump I + stand-by pump
BJ	Storage tank with pump J + stand-by pump (5)
נט	Kit with n° 1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed (6)
IG	Pump G equipped with inverter device to work at fixed speed (6)
IH	Pump H equipped with inverter device to work at fixed speed (6)
II.	Pump I equipped with inverter device to work at fixed speed (6)
IJ	Pump J equipped with inverter device to work at fixed speed (7)
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (6)
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed (6)
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed (6)
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed (6)
JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (7)
	Kit with storage tank and n° 1 inverter pump to fixed speed
CA	Buffer tank + pump A, equipped with inverter to work at fixed speed
СВ	Buffer tank + pump B, equipped with inverter to work at fixed speed
CC	Buffer tank + pump C, equipped with inverter to work at fixed speed
CD	Buffer tank + pump D, equipped with inverter to work at fixed speed
EC	Buffer tank + pump E, equipped with inverter to work at fixed speed
CF	Buffer tank + pump F, equipped with inverter to work at fixed speed (6)
CG	Buffer tank + pump G, equipped with inverter to work at fixed speed (6)
CH	Buffer tank + pump H, equipped with inverter to work at fixed speed (6)
Cl	Buffer tank + pump I, equipped with inverter to work at fixed speed (6)
CJ	Buffer tank + pump J, equipped with inverter to work at fixed speed (6)
	Kit with storage tank and n° 1 pump + stand-by pump to fixed speed
KA	Buffer tank+pump A+stand-by pump, both with inverter to work at fixed speed
KB	Buffer tank+pump B+stand-by pump, both with inverter to work at fixed speed
KC	Buffer tank+pump C+stand-by pump, both with inverter to work at fixed speed
KD	Buffer tank+pump D+stand-by pump, both with inverter to work at fixed speed
KE	Buffer tank+pump E+stand-by pump, both with inverter to work at fixed speed
KF	Buffer tank+pump F+stand-by pump, both with inverter to work at fixed speed (6)
KG	Buffer tank+pump G+stand-by pump, both with inverter to work at fixed speed (6)
КН	Buffer tank+pump H+stand-by pump, both with inverter to work at fixed speed (6)
KI	Buffer $tank+pump\ l+stand-by\ pump,\ both\ with\ inverter\ to\ work\ at\ fixed\ speed\ (6)$
KJ	Buffer tank+pump J+stand-by pump, both with inverter to work at fixed speed (7)

⁽¹⁾ Water produced from 4 °C ÷ 20 °C
(2) Water produced from 8 °C ÷ -10 °C
(3) Warning: on the recovery side, a minimum input temperature of 35°C must always be guaranteed on the heat exchanger. For more information about the unit operating range, refer to the Magellano selection

heat exchanger. For more information about the unit operating range, refer to the magenano selection program

(4) None of the hydronic kits (from PA to KJ) are compatible with the following sizes and with versions with heat recovery T. 0800 - 0900 - 1100 version *, 0800 - 0900 version A; 0800 - 0900 version L. None of the hydronic kits with pump(s) and storage tank (AA - AJ, BA-BJ, CA-CJ, KA-KJ) are compatible with all the sizes and with versions with heat recovery T

(5) For all configurations including pump J please contact the factory.

(6) Hydronic kit not available with sizes 0800 version */L/A, 0900 version */L/A, 1000 version *, 1100 version */L/A, 1000 version */L/A, 10

⁽⁷⁾ For all possible configurations which include the "J" pump please be in touch with Aermec. Hydronic kit is not available with sizes 0800 version °/L/A, 0900 version °/L/A, 1000 version °, 1100 version °.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
AER485P1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L,N,U		•	•	•	•		•	•	•	•	
FL	°,A,E,L,N,U				•	•		•	•	•		•
MULTICHILLER_EVO	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L,N,U			•		•	•	•		•		•

Antivibration

Americación											
Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit: 00)										
0	AVX1125	AVX1125	AVX1125	AVX1125	AVX1127	AVX1127	AVX1127	AVX1129	AVX1130	AVX1130	AVX1138
A,L	AVX1125	AVX1125	AVX1127	AVX1127	AVX1127	AVX1143	AVX1143	AVX1138	AVX1138	AVX1150	AVX1150
E,U	AVX1127	AVX1127	AVX1127	AVX1143	AVX1143	AVX1148	AVX1148	AVX1136	AVX1139	AVX1139	AVX1141
N	AVX1143	AVX1143	AVX1143	AVX1148	AVX1148	AVX1148	AVX1136	AVX1139	AVX1141	AVX1141	AVX1145
Integrated hydronic kit: A	A, AB, AC, AD, AE, AF,	AG, AH, AI, AJ, B	A, BB, BC, BD, BI	E, BF, BG, BH, BI,	BJ, CA, CB, CC, C	D, CE, CF, CG, CH,	CI, CJ, KA, KB, K	, KD, KE, KF, KG,	KH, KI, KJ		
0	AVX1126	AVX1126	AVX1126	AVX1126	AVX1128	AVX1128	AVX1128	AVX1131	AVX1131	AVX1131	AVX1135
A,L	AVX1126	AVX1126	AVX1128	AVX1128	AVX1128	AVX1147	AVX1147	AVX1135	AVX1135	AVX1137	AVX1137
E,U	AVX1128	AVX1128	AVX1128	AVX1147	AVX1147	AVX1135	AVX1135	AVX1137	AVX1140	AVX1140	AVX1142
N	AVX1147	AVX1147	AVX1147	AVX1135	AVX1135	AVX1135	AVX1137	AVX1140	AVX1142	AVX1142	AVX1146
Integrated hydronic kit: D/	A, DB, DC, DD, DE, DF,	DG, DH, DI, DJ, I	A, IB, IC, ID, IE, I	F, IG, IH, II, IJ, JA	, JB, JC, JD, JE, JF	, JG, JH, JI, JJ, PA	, PB, PC, PD, PE,	PF, PG, PH, PI, P	J		
0	AVX1125	AVX1125	AVX1125	AVX1125	AVX1126	AVX1126	AVX1126	AVX1132	AVX1132	AVX1132	AVX1133
A,L	AVX1125	AVX1125	AVX1126	AVX1126	AVX1126	AVX1144	AVX1144	AVX1134	AVX1138	AVX1150	AVX1150
E,U	AVX1126	AVX1126	AVX1126	AVX1144	AVX1144	AVX1149	AVX1149	AVX1136	AVX1139	AVX1139	AVX1141
N	AVX1144	AVX1144	AVX1144	AVX1149	AVX1149	AVX1149	AVX1136	AVX1139	AVX1141	AVX1141	AVX1145

Condensation control temperature

Comacin	sation contro	rtemperature	•								
Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: M											
0	DCPX160	DCPX160	DCPX161	DCPX161	DCPX163	DCPX163	DCPX163	DCPX165	DCPX165	DCPX165	DCPX167
Α	DCPX161	DCPX161	DCPX162	DCPX162	DCPX162	DCPX164	DCPX164	DCPX166	DCPX166	DCPX168	DCPX168
E,L,N	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard
U	DCPX162	DCPX162	DCPX162	DCPX164	DCPX164	DCPX166	DCPX166	DCPX168	DCPX170	DCPX170	DCPX172

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
°,A,E,L,N,U	DRENRG0800	DRENRG0900	DRENRG1000	DRENRG1100	DRENRG1200	DRENRG1400	DRENRG1600	DRENRG1800	DRENRG2000	DRENRG2200	DRENRG2400

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
°,A,E,L,N,U	RIFNRG0800	RIFNRG0900	RIFNRG1000	RIFNRG1100	RIFNRG1200	RIFNRG1400	RIFNRG1600	RIFNRG1800	RIFNRG2000	RIFNRG2200	RIFNRG2400

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
0	GP2VN	GP2VN	GP2VN	GP2VN	GP3G	GP3G	GP3G	GP4G	GP4G	GP4G	GP5G
A,L	GP2VN	GP2VN	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5G	GP5G	GP6G	GP6G
E,U	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP5GM	GP5GM	GP6G	GP7G	GP7G	GP8G
N	GP4GM	GP4GM	GP4GM	GP5GM	GP5GM	GP5GM	GP6G	GP7G	GP8G	GP8G	GP9G

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

■ GP2VN becomes GP2VNA if configured with a type A or B hydronic kit

Double safety valves

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
°,A,E,L,N,U	T6NRGLS1	T6NRGLS2	T6NRGLS3	T6NRGLS3	T6NRGLS3						

A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

NRG - °

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	kW	229,0	251,4	278,2	314,5	372,4	399,7	459,4	532,8	593,5	635,8	698,1
Input power	kW	70,6	80,3	90,1	107,8	118,6	129,5	152,5	170,8	197,3	212,9	226,5
Cooling total input current	Α	122,0	138,0	156,0	182,0	198,0	222,0	248,0	282,0	325,0	353,0	366,0
EER	W/W	3,24	3,13	3,09	2,92	3,14	3,09	3,01	3,12	3,01	2,99	3,08
Water flow rate system side	l/h	39392	43247	47863	54104	64061	68767	79015	91640	102081	109354	120062
Pressure drop system side	kPa	36	44	54	51	60	62	42	57	62	62	64

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - L

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	225,7	247,6	279,0	317,6	360,5	410,2	451,3	526,9	590,3	640,5	679,3
Input power	kW	70,6	80,3	88,3	106,0	121,5	133,0	151,3	171,3	200,0	209,3	224,5
Cooling total input current	А	121,0	138,0	148,0	174,0	201,0	216,0	243,0	277,0	323,0	337,0	364,0
EER	W/W	3,20	3,09	3,16	3,00	2,97	3,08	2,98	3,08	2,95	3,06	3,03
Water flow rate system side	l/h	38832	42603	47996	54644	62004	70568	77616	90617	101513	110161	116806
Pressure drop system side	kPa	36	43	42	48	47	53	41	49	53	62	39

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - A

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	230,4	253,6	287,0	328,9	374,1	424,3	468,8	542,9	608,8	663,3	702,9
Input power	kW	69,3	78,3	86,3	100,7	116,2	127,9	144,7	163,4	187,9	202,4	217,9
Cooling total input current	A	123,0	139,0	151,0	174,0	197,0	215,0	238,0	275,0	317,0	334,0	358,0
EER	W/W	3,33	3,24	3,33	3,27	3,22	3,32	3,24	3,32	3,24	3,28	3,23
Water flow rate system side	l/h	39642	43624	49381	56584	64350	72980	80631	93379	104697	114081	120866
Pressure drop system side	kPa	37	45	44	52	52	56	44	53	58	67	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - E

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	229,7	256,5	280,7	330,9	378,2	424,6	466,3	542,7	617,8	652,1	705,8
Input power	kW	68,3	77,4	86,8	100,0	116,7	128,4	144,7	165,0	186,7	203,2	214,1
Cooling total input current	A	116,0	132,0	149,0	167,0	191,0	208,0	231,0	268,0	302,0	327,0	343,0
EER	W/W	3,37	3,32	3,24	3,31	3,24	3,31	3,22	3,29	3,31	3,21	3,30
Water flow rate system side	l/h	39530	44119	48278	56919	65043	73027	80200	93338	106248	112132	121358
Pressure drop system side	kPa	38	35	38	48	39	38	44	47	59	45	37

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - U

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	234,8	263,0	288,8	339,2	389,3	435,6	479,7	558,1	634,0	671,3	725,0
Input power	kW	68,2	76,5	85,2	99,1	114,3	126,8	142,5	163,7	185,1	200,1	212,0
Cooling total input current	A	121,0	135,0	151,0	171,0	193,0	212,0	233,0	272,0	308,0	330,0	349,0
EER	W/W	3,44	3,44	3,39	3,42	3,41	3,44	3,37	3,41	3,43	3,35	3,42
Water flow rate system side	l/h	40397	45241	49677	58351	66957	74921	82502	95984	109036	115443	124657
Pressure drop system side	kPa	40	36	41	50	40	39	47	49	62	48	39

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRG - N

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Cooling performance 12 °C / 7 °C (1)												
Cooling capacity	kW	235,0	262,1	290,7	339,2	389,2	430,7	481,8	556,2	627,9	670,3	719,8
Input power	kW	67,2	76,1	85,1	98,7	113,4	126,5	141,8	163,9	184,6	198,3	212,1
Cooling total input current	A	115,0	129,0	145,0	164,0	185,0	208,0	225,0	262,0	297,0	320,0	338,0
EER	W/W	3,50	3,44	3,42	3,44	3,43	3,40	3,40	3,39	3,40	3,38	3,39
Water flow rate system side	l/h	40430	45090	50006	58350	66941	74070	82857	95663	107988	115265	123768
Pressure drop system side	kPa	41	38	41	50	41	38	42	49	61	47	39

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J													
SEER - 12/7 (EN14825: 2018) (1)													
	0	W/W	4,46	4,43	4,34	4,36	4,47	4,40	4,62	4,62	4,56	4,58	4,59
	A	W/W	4,66	4,67	4,66	4,64	4,66	4,64	4,72	4,77	4,77	4,76	4,77
CEED	E	W/W	4,76	4,82	4,75	4,76	4,79	4,89	4,87	4,98	4,95	4,89	4,88
SEER	L	W/W	4,60	4,58	4,65	4,62	4,61	4,77	4,69	4,81	4,83	4,78	4,81
	N	W/W	4,83	4,86	4,88	4,87	4,88	5,00	4,97	5,05	5,01	4,95	4,93
	U	W/W	4,72	4,74	4,75	4,75	4,76	4,73	4,78	4,85	4,82	4,83	4,82
	0	%	175.5%	174.3%	170.5%	171.3%	175.9%	173.0%	161.6%	181.8%	179.5%	180.0%	180.6%
	A	%	183.4%	183.8%	183.2%	182.7%	183.2%	182.4%	185.7%	187.8%	187.7%	187.5%	187.6%
Concernal officiency	E	%	187.5%	189.6%	187.0%	187.4%	188.5%	192.6%	191.6%	196.3%	195.0%	192.7%	192.0%
Seasonal efficiency	L	%	180.8%	180.1%	183.0%	181.6%	181.2%	187.9%	184.6%	189.2%	190.3%	188.0%	189.5%
	N	%	190.1%	191.2%	192.2%	191.8%	192.1%	196.9%	195.9%	198.8%	197.3%	194.8%	194.3%
	U	%	185.8%	186.7%	187.1%	186.8%	187.4%	186.2%	188.3%	191.0%	189.7%	190.1%	189.6%
SEER - 23/18 (EN14825: 2018) (2)													
	0	W/W	5,09	4,99	4,86	4,89	5,02	4,91	5,16	5,17	5,09	5,06	5,08
	A	W/W	5,35	5,28	5,31	5,23	5,19	5,17	5,28	5,34	5,32	5,25	5,39
CLLD	E	W/W	5,43	5,48	5,38	5,36	5,38	5,54	5,44	5,56	5,44	5,45	5,48
SEER	L	W/W	5,29	5,19	5,26	5,17	5,11	5,29	5,25	5,32	5,32	5,24	5,37
	N	W/W	5,54	5,57	5,55	5,50	5,52	5,63	5,59	5,63	5,52	5,55	5,59
	U	W/W	5,46	5,48	5,43	5,39	5,41	5,37	5,38	5,46	5,38	5,45	5,51
	0	%	200,7%	196,5%	191,5%	192,4%	197,6%	193,2%	203,5%	203,7%	200,4%	199,2%	200,4%
	Α	%	211,0%	208,4%	209,3%	206,1%	204,6%	203,7%	208,1%	210,5%	209,8%	207,1%	212,7%
	E	%	214,2%	216,2%	212,0%	211,4%	212,1%	218,6%	214,4%	219,3%	214,5%	215,2%	216,4%
Seasonal efficiency	L	%	208,6%	204,8%	207,2%	203,8%	201,5%	208,6%	206,9%	209,8%	209,9%	206,5%	211,9%
	N	%	218,4%	219,8%	219,1%	217,2%	217,7%	222,3%	220,4%	222,3%	217,9%	218,9%	220,5%
	U	%	215,4%	216,2%	214,2%	212,5%	213,5%	211,9%	212,2%	215,5%	212,2%	214,9%	217,4%
Fans: M			.,	.,	,	,		,	,		,	,	
SEER - 12/7 (EN14825: 2018) (1)													
	0	W/W	4,35	4,33	4,25	4,29	4,15	4,22	- (3)	- (3)	- (3)	- (3)	- (3)
	Α	W/W	4,43	4,45	4,45	4,45	4,47	4,60	4,63	4,63	4,63	4,57	4,58
cern.	E	W/W	4,51	4,58	4,56	4,57	4,59	4,66	4,67	4,70	4,68	4,65	4,66
SEER	L	W/W	4,39	4,39	4,47	4,44	4,43	4,61	4,60	4,62	4,62	4,57	4,59
	N	W/W	4,57	4,62	4,69	4,67	4,68	4,76	4,78	4,75	4,72	4,70	4,72
	U	W/W	4,48	4,52	4,54	4,56	4,58	4,69	4,70	4,71	4,68	4,64	4,64
	0	%	171.1%	170.0%	167.1%	168.5%	163.1%	165.8%	- (3)	- (3)	- (3)	- (3)	- (3)
	A	%	174.0%	174.8%	174.8%	175.1%	175.9%	180.8%	182.2%	182.3%	182.1%	179.6%	180.2%
	E	%	177.5%	180.1%	179.4%	179.6%	180.6%	183.4%	183.9%	184.8%	184.0%	182.8%	183.4%
Seasonal efficiency		%	172.6%	172.4%	175.7%	174.6%	174.2%	181.3%	181.0%	181.8%	181.8%	179.9%	180.7%
	N	%	179.9%	181.7%	184.4%	183.7%	184.0%	187.5%	188.0%	187.0%	185.9%	184.8%	185.6%
	U	%	176.3%	177.7%	178.5%	179.2%	180.1%	184.7%	184.8%	185.5%	184.2%	182.4%	182.4%
SEER - 23/18 (EN14825: 2018) (2)		70	17 015 70		17 013 70	,	1001170	10 117 70	10 110 70	1031370	10 112/0	1021170	
	0	W/W	4,97	4,87	4,77	4,81	4,65	4,71	4,85	4,98	4,90	4,89	4,86
	A	W/W	5,08	5,04	5,07	5,02	4,98	5,13	5,18	5,20	5,17	5,06	5,12
	E	W/W	5,18	5,22	5,17	5,15	5,14	5,29	5,23	5,26	5,15	5,20	5,26
SEER		W/W	5,06	4,98	5,05	4,97	4,92	5,12	5,15	5,13	5,10	5,03	5,15
	N N	W/W	5,25	5,30	5,33	5,28	5,28	5,38	5,37	5,33	5,24	5,29	5,36
	U	W/W	5,19	5,23	5,19	5,17	5,20	5,33	5,28	5,32	5,24	5,26	5,32
	0	%	195,9%	191,9%	187,8%	189,3%	183,1%	185,6%	191,2%	196,2%	192,8%	192,7%	191,3%
	A	%	200,4%	198,5%	199,9%	197,9%	196,0%	202,0%	204,3%	204,9%	203,7%	199,5%	201,8%
	A		200,4%	206,0%	203,6%	202,9%	202,7%	202,0%	204,3%	204,9%	203,7%	205,0%	207,4%
Seasonal efficiency	L		199,3%	196,3%	199,1%	196,0%	193,8%	200,5%	203,0%	202,3%	200,9%	198,2%	207,4%
	L N		207,1%	209,1%				212,1%		210,3%	200,9%	208,7%	
	NU				210,4%	208,2%	208,4%		211,8%				211,4%
(1) Calandation marks and with FIVED water		/ADIADI F	204,7%	206,1%	204,6%	204,0%	205,0%	210,2%	208,4%	209,8%	206,4%	207,4%	209,8%

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J													
SEPR - (EN 14825: 2018) (1)													
	0	W/W	5,84	5,73	5,82	5,67	5,95	6,14	6,27	6,31	6,09	6,12	6,30
	A	W/W	6,12	6,09	6,21	6,13	6,12	6,35	6,41	6,46	6,38	6,45	6,48
CEDD	E	W/W	6,24	6,26	6,28	6,23	6,14	6,72	6,72	6,78	6,73	6,64	6,62
SEPR	L	W/W	6,10	6,05	6,16	6,08	5,87	6,54	6,44	6,56	6,54	6,50	6,43
	N	W/W	6,36	6,35	6,37	6,38	6,43	6,82	6,80	6,93	6,85	6,78	6,71
	U	W/W	6,38	6,36	6,36	6,25	6,30	6,55	6,63	6,55	6,50	6,59	6,64
Fans: M													
SEPR - (EN 14825: 2018) (1)													
	0	W/W	5,68	5,58	5,70	5,58	5,60	5,96	5,95	6,10	5,92	5,97	6,07
	A	W/W	5,79	5,78	5,93	5,95	5,87	6,34	6,27	6,33	6,32	6,30	6,31
CEDD	E	W/W	5,94	5,94	6,04	6,00	5,89	6,41	6,41	6,47	6,44	6,36	6,42
SEPR	L	W/W	5,85	5,77	5,93	5,84	5,63	6,29	6,29	6,35	6,28	6,26	6,21
	N	W/W	6,03	6,02	6,12	6,13	6,17	6,49	6,50	6,60	6,52	6,50	6,49
	U	W/W	6,04	6,05	6,04	6,02	6,07	6,49	6,50	6,41	6,37	6,42	6,46

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Electric data													
	0	Α	158,2	176,5	198,8	226,7	262,4	290,3	318,1	371,7	417,5	445,4	481,1
Maximum aumant (FLA)	A,L	Α	162,2	180,5	200,6	228,5	256,4	290,1	317,9	369,5	415,3	449,0	476,9
Maximum current (FLA)	E,U	Α	164,0	182,3	200,6	234,3	262,2	295,9	323,7	375,3	426,9	454,8	488,5
	N	Α	169,8	188,1	206,4	240,1	268,0	295,9	329,5	381,1	432,7	460,6	494,3
Peak current (LRA)	°,A,E,L,N,U	Α	350,0	406,1	424,4	673,4	701,3	729,2	757,0	802,9	848,7	876,5	904,4

[■] Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

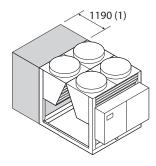
Compressors

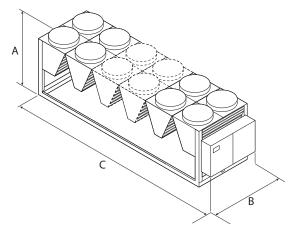
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Compressor													
Туре	°,A,E,L,N,U	type						Scroll					
Compressor regulation	°,A,E,L,N,U	Туре						0n/0ff					
Number	°,A,E,L,N,U	no.	4	4	4	4	4	4	4	5	6	6	6
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type						R32					
	0	kg	10,5	10,9	11,3	12,0	15,4	15,8	15,8	20,6	20,6	20,6	24,4
D. C	A,L	kg	11,3	12,0	15,0	16,5	15,8	16,9	18,4	20,6	24,0	24,4	26,3
Refrigerant load circuit 1 (1)	E,U	kg	15,4	15,0	16,1	19,9	19,9	19,9	23,3	25,9	28,1	33,8	30,8
	N	kg	19,5	19,5	20,3	22,1	26,3	26,3	30,8	30,0	37,5	34,1	34,1
	0	kg	10,5	10,9	11,3	12,0	15,4	15,8	15,8	20,6	20,6	20,6	24,4
D. C	A,L	kg	11,3	12,0	15,0	16,5	15,8	16,9	18,4	20,6	24,0	24,4	26,3
Refrigerant load circuit 2 (1)	E,U	kg	15,4	15,0	16,1	19,9	19,9	19,9	23,3	25,9	28,1	33,8	30,8
	N	kg	19,5	19,5	20,3	22,1	26,3	26,3	30,8	30,0	37,5	34,1	34,1
Potential global heating	°,A,E,L,N,U	GWP			•			675kgCO ₂ eq		•			

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

System side heat exchanger

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
System side heat exchanger													
Туре	°,A,E,L,N,U	type	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed plate					
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit: 00													
Hydraulic connections													
Connections (in/out)	°,A,E,L,N,U	Туре						Grooved joints	;				
	٥	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"
Sizes (in/out)	A,L	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"
	E,N,U	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"


In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.


Fans

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: M													
Increased fan													
Туре	°,A,E,L,N,U	type						axials					
Fan motor	°,A,U	type						Asynchronous					
rali illotoi	E,L,N	type					Asynchi	ronous with ph	ase cut				
		no.	4	4	4	4	6	6	6	8	8	8	10
Number	A,L	no.	4	4	6	6	6	8	8	10	10	12	12
Nulliper	E,U	no.	6	6	6	8	8	10	10	12	14	14	16
	N	no.	8	8	8	10	10	10	12	14	16	16	18
Without Static pressure													
	•	m³/h	76740	76740	76744	76744	115121	115121	115121	153480	153480	153480	191819
	A	m³/h	76743	76743	115110	115110	115110	153480	153480	191850	191850	230220	230220
Air flow rate	E	m³/h	74973	74973	74973	99978	99978	124970	124970	149950	174934	174934	199932
All How late	L	m³/h	62605	62605	74978	74978	74978	99996	99996	124953	124953	149882	149882
	N	m³/h	99973	99973	99973	124966	124966	124966	149960	174953	199946	199946	224939
	U	m³/h	115110	115110	115110	153480	153480	191850	191850	230220	268590	268590	306960
		dB(A)	89,2	89,2	90,5	90,6	92,4	92,5	92,6	93,7	93,8	93,8	94,8
	A	dB(A)	90,5	90,5	90,5	90,8	91,1	92,0	92,3	93,1	93,4	94,2	94,3
Sound power level	E	dB(A)	84,4	84,5	84,5	85,8	86,5	87,6	88,1	88,6	89,0	89,7	90,2
Soulid power level	L	dB(A)	85,1	85,1	84,5	85,1	85,4	86,6	87,2	87,7	88,4	89,1	89,5
	N	dB(A)	85,3	85,4	85,4	86,9	87,5	88,1	89,0	89,4	89,8	90,5	91,0
	U	dB(A)	90,8	90,8	90,8	92,2	92,4	93,5	93,6	94,3	94,9	95,0	95,6
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Fans: J													
Inverter fan													
Туре	CAFLMIII												
	°,A,E,L,N,U	type						Axial					
Fan motor	°,A,E,L,N,U °,A,E,L,N,U	type type						Axial Inverter					
Fan motor			4	4	4	4	6		6	8	8	8	10
	°,A,E,L,N,U	type	4	4 4	4 6	4 6	6	Inverter	6 8	8 10	8 10	8 12	10 12
	°,A,E,L,N,U	type no.						Inverter 6					
	°,A,E,L,N,U ° A,L E,U N	type no. no. no.	4	4	6	6	6	Inverter 6 8	8	10	10	12	12
	°,A,E,L,N,U	type no. no. no. no. mo. mo.	4 6	4 6	6	6 8	6 8	Inverter 6 8 10	8 10	10 12	10 14	12 14	12 16
	°,A,E,L,N,U ° A,L E,U N	type no. no. no. no. m³/h m³/h	4 6 8	4 6 8	6 6 8	6 8 10	6 8 10	6 8 10 10	8 10 12	10 12 14	10 14 16	12 14 16	12 16 18
Number	°,A,E,L,N,U ° A,L E,U N °	type no. no. no. no. m³/h m³/h	4 6 8 65555	4 6 8 65555	6 6 8 76744	6 8 10 76744	6 8 10 115121	Inverter 6 8 10 10 115121 131111 124970	8 10 12 115121	10 12 14 153480	10 14 16 153480	12 14 16 153480 196572 174934	12 16 18 191819
Number	°,A,E,L,N,U ° A,L E,U N °	type no. no. no. no. m³/h m³/h m³/h m³/h	4 6 8 65555 76743	4 6 8 65555 76743	6 6 8 76744 98321	6 8 10 76744 98321	6 8 10 115121 98321	10 10 115121 131111	8 10 12 115121 131087	10 12 14 153480 163789	10 14 16 153480 163789	12 14 16 153480 196572	12 16 18 191819 196572
Number	A,L E,U N A E L	type no. no. no. mo. m³/h m³/h m³/h m³/h	4 6 8 65555 76743 74973	4 6 8 65555 76743 74973	6 8 76744 98321 74973	6 8 10 76744 98321 99978	6 8 10 115121 98321 99978	Inverter 6 8 10 10 115121 131111 124970	8 10 12 115121 131087 124970	10 12 14 153480 163789 149950	10 14 16 153480 163789 174934	12 14 16 153480 196572 174934	12 16 18 191819 196572 199932
Number	*,A,E,L,N,U A,L E,U N A E	type no. no. no. no. m³/h m³/h m³/h m³/h	4 6 8 65555 76743 74973 62605	4 6 8 65555 76743 74973 62605	6 8 76744 98321 74973 74978	6 8 10 76744 98321 99978 74978	6 8 10 115121 98321 99978 74978	10 10 115121 131111 124970 99996	8 10 12 115121 131087 124970 99996	10 12 14 153480 163789 149950 124953	10 14 16 153480 163789 174934 124953	12 14 16 153480 196572 174934 149882	12 16 18 191819 196572 199932 149882
Number Air flow rate	*A,E,L,N,U A,L E,U N A E U	type no. no. no. no. m³/h m³/h m³/h m³/h m³/h	4 6 8 65555 76743 74973 62605 99973	4 6 8 65555 76743 74973 62605 99973	6 8 76744 98321 74973 74978 99973	6 8 10 76744 98321 99978 74978 124966 131139	6 8 10 115121 98321 99978 74978 124966	10 10 115121 131111 124970 99996 124966	8 10 12 115121 131087 124970 99996 149960	10 12 14 153480 163789 149950 124953 174953	10 14 16 153480 163789 174934 124953 199946	12 14 16 153480 196572 174934 149882 199946	12 16 18 191819 196572 199932 149882 224939 262164
Number Air flow rate	*A,E,L,N,U A,L E,U N A E L N U	type no. no. no. mo. m³/h m³/h m³/h m³/h	4 6 8 65555 76743 74973 62605 99973	4 6 8 65555 76743 74973 62605 99973	6 8 76744 98321 74973 74978 99973	6 8 10 76744 98321 99978 74978 124966	6 8 10 115121 98321 99978 74978 124966	10 10 115121 131111 124970 99996 124966	8 10 12 115121 131087 124970 99996 149960	10 12 14 153480 163789 149950 124953 174953	10 14 16 153480 163789 174934 124953 199946	12 14 16 153480 196572 174934 149882 199946	12 16 18 191819 196572 199932 149882 224939
Number Air flow rate	*A,E,L,N,U A,L E,U N A E U	type no. no. no. no. m³/h m³/h m³/h m³/h m³/h dB(A)	4 6 8 65555 76743 74973 62605 99973 98320	4 6 8 65555 76743 74973 62605 99973 98320 87,1 91,7	6 8 76744 98321 74973 74978 99973 98320	6 8 10 76744 98321 99978 74978 124966 131139	6 8 10 115121 98321 99978 74978 124966 131139	Inverter 6 8 10 10 115121 131111 124970 99996 124966 163815	8 10 12 115121 131087 124970 99996 149960 163815	10 12 14 153480 163789 149950 124953 174953 196680	10 14 16 153480 163789 174934 124953 199946 229462	12 14 16 153480 196572 174934 149882 199946 229462	12 16 18 191819 196572 199932 149882 224939 262164
Fan motor Number Air flow rate Sound data calculated in cooling mode	*A,E,L,N,U A,L E,U N A E U (1)	type no. no. no. no. m³/h m³/h m³/h m³/h dB(A)	4 6 8 65555 76743 74973 62605 99973 98320	4 6 8 65555 76743 74973 62605 99973 98320	6 8 76744 98321 74973 74978 99973 98320	6 8 10 76744 98321 99978 74978 124966 131139	6 8 10 115121 98321 99978 74978 124966 131139	Inverter 6 8 10 10 115121 131111 124970 99996 124966 163815	8 10 12 115121 131087 124970 99996 149960 163815	10 12 14 153480 163789 149950 124953 174953 196680	10 14 16 153480 163789 174934 124953 199946 229462	12 14 16 153480 196572 174934 149882 199946 229462	12 16 18 191819 196572 199932 149882 224939 262164 95,9 92,5 90,2
Number Air flow rate	*A,E,L,N,U A,L E,U N A E U (1)	type no. no. no. no. m³/h m³/h m³/h m³/h m³/h dB(A)	4 6 8 65555 76743 74973 62605 99973 98320 87,1 91,7	4 6 8 65555 76743 74973 62605 99973 98320 87,1 91,7	6 8 76744 98321 74973 74978 99973 98320	6 8 10 76744 98321 99978 74978 124966 131139 91,8 88,7	6 8 10 115121 98321 99978 74978 124966 131139	Inverter 6 8 10 10 115121 131111 124970 99996 124966 163815	8 10 12 115121 131087 124970 99996 149960 163815	10 12 14 153480 163789 149950 124953 174953 196680	10 14 16 153480 163789 174934 124953 199946 229462	12 14 16 153480 196572 174934 149882 199946 229462	12 16 18 191819 196572 199932 149882 224939 262164
Number Air flow rate Sound data calculated in cooling mode	*A,E,L,N,U A,L E,U N A E U (1)	type no. no. no. no. m³/h m³/h m³/h m³/h m³/h dB(A) dB(A)	4 6 8 65555 76743 74973 62605 99973 98320 87,1 91,7	4 6 8 65555 76743 74973 62605 99973 98320 87,1 91,7 84,5	6 8 76744 98321 74973 74978 99973 98320 91,7 88,1 84,5	6 8 10 76744 98321 99978 74978 124966 131139 91,8 88,7 85,8	6 8 10 115121 98321 99978 74978 124966 131139 93,6 89,2 86,5	Inverter 6 8 10 10 115121 131111 124970 99996 124966 163815 93,7 89,9 87,6	8 10 12 115121 131087 124970 99996 149960 163815 93,8 90,2 88,1	10 12 14 153480 163789 149950 124953 174953 196680 94,9 90,9 88,6	10 14 16 153480 163789 174934 124953 199946 229462 94,9 91,5	12 14 16 153480 196572 174934 149882 199946 229462 95,0 92,3 89,7	12 16 18 191819 196572 199932 149882 224939 262164 95,9 92,5 90,2

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: NRG 0800°, 0900°, 1000°, 1100° NRG 0800L, 0900L NRG 0800A, 0900A

Ci			0000	0000	1000	1100	1200	1400	1/00	1000	2000	2200	2400
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit:	00												
Dimensions and weights													
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	٥	mm	2780	2780	2780	2780	3970	3970	3970	5160	5160	5160	6350
(A,L	mm	2780	2780	3970	3970	3970	5160	5160	6350	6350	7540	7540
· ·	E,U	mm	3970	3970	3970	5160	5160	6350	6350	7540	8730	8730	9920
	N	mm	5160	5160	5160	6350	6350	6350	7540	8730	9920	9920	11110

■ The units 0800°, 0900°, 1000°, 1100°; 0800L, 0900L; and 0800A, 0900A with the "storage tank" option, are 3970mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400
Integrated hydronic kit: 00													
Weights													
	0	kg	2140	2140	2150	2150	2850	2960	3180	3830	4030	4210	4740
- -	A,L	kg	2160	2160	2580	2730	2870	3440	3650	4250	4460	4960	5070
Empty weight -	E,U	kg	2580	2590	2600	3220	3430	3930	4070	4660	4960	5400	5990
	N	kg	3050	3070	3080	3630	3850	3990	4470	5110	5750	5880	6370

NRG 0800H-3600H

Reversible air/water heat pump

Cooling capacity 194,9 ÷ 962,3 kW Heating capacity 209,6 ÷ 991,9 kW

- · High efficiency also at partial loads
- · Reduced amount of refrigerant
- Night mode

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15 $^{\circ}$ C outside air temperature in winter, and up to 49 $^{\circ}$ C in summer. Hot water production up to 60 $^{\circ}$ C (for more details refer to the technical documentation).

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO_2 values.

■ The leak detector is supplied as per standard.

Use refrigerant fluid R32, whose classification according to ISO 817 is A2L (non-toxic, odourless and slightly flammable refrigerant).

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed pumps also inverter.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with an inverter fan or DCPX. Thanks to continuous fan modulation, unit operation is optimised in every working position in cooling mode. The result is enhanced machine energy efficiency with partial loads.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

INTEGRATED SOLUTION

The "integrated solution" concept has been implemented in the system architecture, consisting in an integrated and streamlined control of compressors and electronic valve.

This solution allowed a variety of new features to be introduced, such as:

 Low Superheat Control: Progressive superheating reduction in conditions of stability. This allows to increase energy performance: both in modulation and in full load conditions; DLT control: Control of electronic valve at discharge temperature in certain operating conditions. This is demonstrated in an enhanced reliability of the control and a considerable expansion of the machine's operating range, especially in heating mode.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP. SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
AER485P1	°,A,E,L	•	•	•	•		•			•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L	•	•				•		•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L	•	•						•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,A,E,L	•	•				•		•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L	•							•	•	•	•	•	•	•			•

Condensation control temperature

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
0	DCPX161	DCPX161	DCPX161	DCPX163	DCPX163	DCPX163	DCPX163	DCPX165	DCPX167	DCPX167	DCPX167	DCPX174	DCPX174	DCPX175	DCPX175	DCPX175	DCPX175
A	DCPX161	DCPX163	DCPX163	DCPX163	DCPX165	DCPX165	DCPX165	DCPX167	DCPX167	DCPX169	DCPX169	DCPX174	DCPX175	DCPX175	DCPX175	DCPX176	DCPX176
E1	As																
E,L	standard																

Antivibration

7 III CI TI CI CI CI CI																	
Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
0	AVX1151	AVX1151	AVX1151	AVX1153	AVX1153	AVX1153	AVX1153	AVX1154	AVX1163	AVX1163	AVX1163	AVX1167	AVX1167	AVX1171	AVX1171	AVX1171	AVX1171
A,L	AVX1151	AVX1153	AVX1153	AVX1153	AVX1154	AVX1154	AVX1154	AVX1156	AVX1156	AVX1159	AVX1159	AVX1167	AVX1171	AVX1171	AVX1171	AVX1169	AVX1169
E	AVX1153	AVX1154	AVX1154	AVX1154	AVX1156	AVX1156	AVX1159	AVX1161	AVX1161	AVX1165	AVX1165	AVX1169	AVX1173	AVX1173	AVX1173	AVX1175	AVX1175
Integrated hydronic kit: AA, A	B, AC, AD, A	E, AF, AG, I	AH, AI, AJ, I	BA, BB, BC,	BD, BE, BI	, BG, BH, E	SI, BJ, CA, C	B, CC, CD, (CE, CF, CG, C	CH, CI, CJ, K	A, KB, KC,	KD, KE, KF,	KG, KH, KI	, KJ			
0	AVX1152	AVX1152	AVX1152	AVX1152	AVX1152	AVX1152	AVX1152	AVX1155	AVX1157	AVX1157	AVX1157	AVX1168	AVX1168	AVX1172	AVX1172	AVX1172	AVX1172
A,L	AVX1152	AVX1152	AVX1152	AVX1152	AVX1155	AVX1155	AVX1155	AVX1157	AVX1157	AVX1160	AVX1160	AVX1168	AVX1172	AVX1172	AVX1172	AVX1170	AVX1170
E	AVX1152	AVX1155	AVX1155	AVX1155	AVX1157	AVX1157	AVX1160	AVX1162	AVX1162	AVX1166	AVX1166	AVX1170	AVX1174	AVX1174	AVX1174	AVX1176	AVX1176
Integrated hydronic kit: DA, D	B, DC, DD, [DE, DF, DG,	DH, DI, DJ,	IA, IB, IC, I	D, IE, IF, IG	, IH, II, IJ, .	JA, JB, JC, J	D, JE, JF, JG	i, JH, JI, JJ,	PA, PB, PC	, PD, PE, PI	F, PG, PH, F	PI, PJ				
0	AVX1151	AVX1151	AVX1151	AVX1153	AVX1153	AVX1153	AVX1153	AVX1154	AVX1163	AVX1163	AVX1163	AVX1167	AVX1167	AVX1171	AVX1171	AVX1171	AVX1171
A,L	AVX1151	AVX1153	AVX1153	AVX1153	AVX1154	AVX1154	AVX1158	AVX1156	AVX1156	AVX1164	AVX1164	AVX1167	AVX1171	AVX1171	AVX1171	AVX1169	AVX1169
E	AVX1153	AVX1154	AVX1154	AVX1154	AVX1156	AVX1156	AVX1159	AVX1161	AVX1161	AVX1165	AVX1165	AVX1169	AVX1173	AVX1173	AVX1173	AVX1175	AVX1175

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000
°,A,E,L	DRENRG0800	DRENRG0900	DRENRG1000	DRENRG1100	DRENRG1200	DRENRG1400	DRENRG1600	DRENRG1800	DRENRG2000
A grey background indicates the accessory	/ must be assembled in t	ne factory							
Ver	2200	2400	2600	2800		3000	3200	3400	3600
°,A,E,L	DRENRG2200	DRENRG2400	DRENRG2600	D DRENRG2	800 DRE	NRG3000	DRENRG3200	DRENRG3400	DRENRG3600

A grey background indicates the accessory must be assembled in the factory

Power factor correction

ver	0800	0900	1000	1100	1200	1400	1000	1800	2000
°,A,E,L	RIFNRG0800	RIFNRG0900	RIFNRG1000	RIFNRG1100	RIFNRG1200	RIFNRG1400	RIFNRG1600	RIFNRG1800	RIFNRG2000
A grey background indicates the accessory n	nust be assembled in 1	he factory							
Ver	2200	2400	2600	2800		3000	3200	3400	3600

 Ver
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600

 °;A,E,L
 RIFNRG200
 RIFNRG2400
 RIFNRG2600
 RIFNRG3000
 RIFNRG3200
 RIFNRG3400
 RIFNRG3600

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
0	GP2VN	GP2VN	GP2VN	GP3G	GP3G	GP3G	GP3G	GP4G	GP5G	GP5G	GP5G	GP11G	GP10G	GP12G	GP12G	GP12G	GP12G
A,L	GP2VN	GP3G	GP3G	GP3G	GP4GM	GP4GM	GP4GM	GP5G	GP5G	GP6G	GP6G	GP11G	GP12G	GP12G	GP12G	GP13G	GP13G
E	GP3G	GP4GM	GP4GM	GP4GM	GP5GM	GP5GM	GP6G	GP7G	GP7G	GP8G	GP8G	GP13G	GP14G	GP14G	GP14G	GP15G	GP15G

A grey background indicates the accessory must be assembled in the factory $\,$

■ GP2VN becomes GP2VNA if configured with a type A or B hydronic kit

Ver	0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
°AFI	TANRGI S1	T6NRGI S1	TANRGI S1	TANRGI S1	T6NRGI S1	T6NRGI S1	TANRGI S1	TANRGI S	2 TANRGI S	TANRGI S	TANRGI S3	TANRGI S	R TANRGI SA	4 TANRGI S	TANRGI SS	TANRGI SS	TANRGI SS

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

CONFIGURATOR

Fiel	d	Description
1,2,	3	NRG
		Size
4,5,	6,7	0800, 0900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800 3000, 3200, 3400, 3600
8		Operating field
	Х	Electronic thermostatic expansion valve (1)
	Z	Low temperature electronic thermostatic valve (2)
9		Model
	Н	Heat pump
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (3)
11	0	Version
		Standard
	Α	High efficiency
	<u>E</u>	Silenced high efficiency
	L	Standard silenced
12		Coils
	0	Copper-aluminium -
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	V	Copper pieps-Coated aluminium fins
13	0	Fans
		Standard
	J	Inverter
14	0	Power supply
		400V ~ 3 50Hz with magnet circuit breakers
15,1		Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (4)
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (4)
	۸۸	Kit with storage tank and n° 1 pump Storage tank and pump A
	AA AR	
	AB	Storage tank and pump 6
	AC	Storage tank and pump C
	AD	Storage tank and pump D
	AΕ	Storage tank and pump E
	AF	Storage tank and pump F
	AG	Storage tank and pump G
	АН	Storage tank and pump H
	AH Al	Storage tank and pump I
	АН	

Field	Description
BB	Storage tank with pump B + stand-by pump
ВС	Storage tank with pump C + stand-by pump
BD	Storage tank with pump D + stand-by pump
BE	Storage tank with pump E + stand-by pump
BF	Storage tank with pump F + stand-by pump
BG	Storage tank with pump G + stand-by pump
BH	Storage tank with pump H + stand-by pump
BI	Storage tank with pump I + stand-by pump
BJ	Storage tank with pump J + stand-by pump (4)
	Kit with n° 1 inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF.	Pump F equipped with inverter device to work at fixed speed (5)
IG	Pump G equipped with inverter device to work at fixed speed (5)
— IH	Pump H equipped with inverter device to work at fixed speed (5)
	Pump I equipped with inverter device to work at fixed speed (5)
	Pump J equipped with inverter device to work at fixed speed (6)
	Kit with n° 1 inverter pump + stand-by pump to fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump F+stand-by pump, both equipped with inverter to work at fixed speed (5)
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed (5)
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed (5)
	Pump I+stand-by pump, both equipped with inverter to work at fixed speed (5)
	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (6)
	Kit with storage tank and n° 1 inverter pump to fixed speed
CA	Buffer tank + pump A, equipped with inverter to work at fixed speed
СВ	Buffer tank + pump B, equipped with inverter to work at fixed speed
СС	Buffer tank + pump C, equipped with inverter to work at fixed speed
CD	Buffer tank + pump D, equipped with inverter to work at fixed speed
EC	Buffer tank + pump E, equipped with inverter to work at fixed speed
CF	Buffer tank + pump F, equipped with inverter to work at fixed speed (5)
CG	Buffer tank + pump G, equipped with inverter to work at fixed speed (5)
CH	Buffer tank + pump H, equipped with inverter to work at fixed speed (5)
CI	Buffer tank + pump I, equipped with inverter to work at fixed speed (5)
CJ	Buffer tank + pump J, equipped with inverter to work at fixed speed (6)
	Kit with storage tank and n° 1 pump + stand-by pump to fixed speed
KA	Buffer tank+pump A+stand-by pump, both with inverter to work at fixed speed
KB	Buffer tank+pump B+stand-by pump, both with inverter to work at fixed speed
KC	Buffer tank+pump C+stand-by pump, both with inverter to work at fixed speed
KD	Buffer tank+pump D+stand-by pump, both with inverter to work at fixed speed
KE	Buffer tank+pump E+stand-by pump, both with inverter to work at fixed speed
KF	Buffer tank+pump F+stand-by pump, both with inverter to work at fixed speed (5)
KG	Buffer tank+pump G+stand-by pump, both with inverter to work at fixed speed (5)
KH	Buffer tank+pump H+stand-by pump, both with inverter to work at fixed speed (5)
KI	Buffer tank+pump I+stand-by pump, both with inverter to work at fixed speed (5)
KJ	Buffer tank+pump J+stand-by pump, both with inverter to work at fixed speed (6)

- (1) Water produced from 4 °C ÷ 20 °C
 (2) Water produced from 8 °C ÷ -10 °C
 (3) This option is not available with the Z operating field. The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (4) For all configurations including pump J please contact the factory.
 (5) Hydronic kit not available with sizes 0800 version °/L/A, 0900 version °, 1000 version °, 1800 version °.
 (6) For all possible configurations which include the "J" pump please be in touch with Aermec. Hydronic kit is not available with sizes 0800 version °/L/A, 0900 version °, 1000 version °, 1800 version °.

PERFORMANCE SPECIFICATIONS

NRG H°

	0800	0900	4000														
	0000	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
kW	200,5	220,2	238,5	292,2	325,7	353,6	381,6	456,8	531,9	561,5	591,1	705,6	749,2	824,6	859,3	895,1	925,3
kW	72,8	83,7	95,6	107,5	123,5	144,5	160,8	179,5	199,4	219,3	239,1	249,8	277,9	299,4	317,7	334,1	354,4
Α	127,0	144,0	163,0	182,0	207,0	238,0	268,0	300,0	333,0	362,0	391,0	424,0	485,0	506,0	527,0	567,0	597,0
W/W	2,75	2,63	2,49	2,72	2,64	2,45	2,37	2,55	2,67	2,56	2,47	2,83	2,70	2,75	2,70	2,68	2,61
l/h	34503	37880	41031	50268	56029	60821	65615	78560	91483	96570	101650	121347	128839	141815	147773	153929	159128
kPa	25	30	35	45	45	47	29	42	50	49	47	53	60	69	73	75	79
kW	212,2	235,2	256,2	310,2	348,1	384,0	416,2	492,2	568,3	603,5	638,4	729,6	782,6	858,4	896,3	931,7	966,8
kW	66,1	73,5	80,8	98,1	109,5	123,5	129,7	153,3	175,5	186,3	198,1	232,9	252,2	275,3	288,2	299,7	312,5
Α	120,0	133,0	145,0	173,0	190,0	210,0	221,0	263,0	303,0	319,0	337,0	395,0	430,0	471,0	490,0	506,0	524,0
W/W	3,21	3,20	3,17	3,16	3,18	3,11	3,21	3,21	3,24	3,24	3,22	3,13	3,10	3,12	3,11	3,11	3,09
l/h	36823	40823	44470	53838	60421	66654	72264	85444	98663	104778	110847	126695	135884	149044	155628	161773	167874
kPa	29	36	42	53	54	58	37	52	60	60	58	58	66	76	81	83	88
	kW A W/W I/h kPa kW kW A W/W I/h	kW 72,8 A 127,0 W/W 2,75 I/h 34503 kPa 25 kW 212,2 kW 66,1 A 120,0 W/W 3,21 I/h 36823	kW 72,8 83,7 A 127,0 144,0 W/W 2,75 2,63 I/h 34503 37880 kPa 25 30 kW 212,2 235,2 kW 66,1 73,5 A 120,0 133,0 W/W 3,21 3,20 I/h 36823 40823	kW 72,8 83,7 95,6 A 127,0 144,0 163,0 W/W 2,75 2,63 2,49 I/h 34503 37880 41031 kPa 25 30 35 kW 212,2 235,2 256,2 kW 66,1 73,5 80,8 A 120,0 133,0 145,0 W/W 3,21 3,20 3,17 I/h 36823 40823 44470	kW 72,8 83,7 95,6 107,5 A 127,0 144,0 163,0 182,0 W/W 2,75 2,63 2,49 2,72 I/h 34503 37880 41031 50268 kPa 25 30 35 45 kW 212,2 235,2 256,2 310,2 kW 66,1 73,5 80,8 98,1 A 120,0 133,0 145,0 173,0 W/W 3,21 3,20 3,17 3,16 I/h 36823 40823 44470 53838	kW 72,8 83,7 95,6 107,5 123,5 A 127,0 144,0 163,0 182,0 207,0 W/W 2,75 2,63 2,49 2,72 2,64 I/h 34503 37880 41031 50268 56029 kPa 25 30 35 45 45 kW 212,2 235,2 256,2 310,2 348,1 kW 66,1 73,5 80,8 98,1 109,5 A 120,0 133,0 145,0 173,0 190,0 W/W 3,21 3,20 3,17 3,16 3,18 I/h 36823 40823 44470 53838 60421	kW 72,8 83,7 95,6 107,5 123,5 144,5 A 127,0 144,0 163,0 182,0 207,0 238,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 I/h 34503 37880 41031 50268 56029 60821 kPa 25 30 35 45 45 47 kW 212,2 235,2 256,2 310,2 348,1 384,0 kW 66,1 73,5 80,8 98,1 109,5 123,5 A 120,0 133,0 145,0 173,0 190,0 210,0 W/W 3,21 3,20 3,17 3,16 3,18 3,11 I/h 36823 40823 44470 53838 60421 66654	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 I/h 34503 37880 41031 50268 56029 60821 65615 kPa 25 30 35 45 45 47 29 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 A 120,0 133,0 145,0 173,0 190,0 210,0 221,0 W/W 3,21 3,20 3,17 3,16 3,18 3,11 3,21 I/h 36823 40823 44470 53838 60421 66654 72264	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 I/h 34503 37880 41031 50268 56029 60821 65615 78560 kPa 25 30 35 45 45 47 29 42 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 153,3 A 120,0 133,0 145,0 173,0 190,0 210,0 221,0 263,0 W/W 3,21 3,20 3,17 3,16 3,18 3,11 3,21 3,21 I/h 36823 40823 44470 53838 60421 66654 72264 85444	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 I/h 34503 37880 41031 50268 56029 60821 65615 78560 91483 kPa 25 30 35 45 45 47 29 42 50 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 153,3 175,5 A 120,0 133,0 145,0 173,0 190,0 210,0 221,0 263,0 303,0 W/W 3,21 3,20 3,17 3,16 3,18 3,11 3,21 3,21 3,24 I/h 36823 40823 44470 53838	kW 72,8 83,7 95,6 107,5 123,5 144,5 16,8 179,5 199,4 219,3 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 30,0 333,0 362,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 I/h 34503 37880 41031 50268 56029 60821 65615 78560 91483 96570 kPa 25 30 35 45 45 47 29 42 50 49 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 153,3 175,5 186,3 A 120,0 133,0 145,0 173,0 190,0 210,0 221,0 263,0 </td <td>kW 72,8 83,7 95,6 107,5 123,5 144,5 16,8 179,5 199,4 219,3 239,1 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 30,0 333,0 362,0 391,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 kPa 25 30 35 45 45 47 29 42 50 49 47 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 153,3 175,5 186,3 198,1 A 120,0</td> <td>kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 A 177,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91433 96570 101650 121347 kPa 25 30 35 45 45 47 29 42 50 49 47 53 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 729,6 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 153,</td> <td>kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 27,9 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 128839 kPa 25 30 35 45 45 47 29 42 50 49 47 53 60 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 729,6 782,6 kW 66,1 73,5<</td> <td>kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 277,9 299,4 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 506,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 2,75 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 12839 141815 kPa 25 30 35 45 45 47 29 42 50 49 47 53 60 69 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4</td> <td>kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 277,9 299,4 317,7 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 506,0 527,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 2,75 2,70 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 12839 141815 147773 kPa 25 30 35 45 45 47 29 42 50 49 47 53 60 69 73 kW 212,2 235,2 256,2 310,2 348,1 384,0 416</td> <td>kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 277,9 299,4 317,7 34,1 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 506,0 527,0 567,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 2,75 2,68 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 12839 141815 147773 153929 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 729,6 782,6 858,4 896,3 931,7 kW 66,1<</td>	kW 72,8 83,7 95,6 107,5 123,5 144,5 16,8 179,5 199,4 219,3 239,1 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 30,0 333,0 362,0 391,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 kPa 25 30 35 45 45 47 29 42 50 49 47 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 153,3 175,5 186,3 198,1 A 120,0	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 A 177,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91433 96570 101650 121347 kPa 25 30 35 45 45 47 29 42 50 49 47 53 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 729,6 kW 66,1 73,5 80,8 98,1 109,5 123,5 129,7 153,	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 27,9 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 128839 kPa 25 30 35 45 45 47 29 42 50 49 47 53 60 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 729,6 782,6 kW 66,1 73,5<	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 277,9 299,4 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 506,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 2,75 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 12839 141815 kPa 25 30 35 45 45 47 29 42 50 49 47 53 60 69 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 277,9 299,4 317,7 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 506,0 527,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 2,75 2,70 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 12839 141815 147773 kPa 25 30 35 45 45 47 29 42 50 49 47 53 60 69 73 kW 212,2 235,2 256,2 310,2 348,1 384,0 416	kW 72,8 83,7 95,6 107,5 123,5 144,5 160,8 179,5 199,4 219,3 239,1 249,8 277,9 299,4 317,7 34,1 A 127,0 144,0 163,0 182,0 207,0 238,0 268,0 300,0 333,0 362,0 391,0 424,0 485,0 506,0 527,0 567,0 W/W 2,75 2,63 2,49 2,72 2,64 2,45 2,37 2,55 2,67 2,56 2,47 2,83 2,70 2,75 2,68 I/h 34503 3780 41031 50268 56029 60821 65615 78560 91483 96570 101650 121347 12839 141815 147773 153929 kW 212,2 235,2 256,2 310,2 348,1 384,0 416,2 492,2 568,3 603,5 638,4 729,6 782,6 858,4 896,3 931,7 kW 66,1<

NRG HL

MIGHE																		
Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C (1)																		
Cooling capacity	kW	194,9	231,4	252,7	283,9	335,9	367,7	399,5	467,1	515,0	568,3	599,3	684,6	752,3	804,8	836,8	889,9	919,8
Input power	kW	73,7	78,6	88,8	107,7	118,0	136,6	154,7	175,4	203,9	213,7	232,1	255,0	275,5	305,5	325,1	334,6	353,5
Cooling total input current	Α	125,0	136,0	153,0	179,0	196,0	222,0	249,0	285,0	331,0	346,0	374,0	420,0	457,0	506,0	528,0	540,0	568,0
EER	W/W	2,65	2,94	2,85	2,64	2,85	2,69	2,58	2,66	2,53	2,66	2,58	2,69	2,73	2,63	2,57	2,66	2,60
Water flow rate system side	l/h	33540	39819	43473	48838	57788	63245	68702	80332	88566	97728	103054	117728	129370	138391	143907	153027	158170
Pressure drop system side	kPa	23	33	34	39	45	47	33	39	41	49	35	51	59	64	67	75	70
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	209,6	244,9	268,8	305,3	357,3	394,2	431,7	502,3	558,0	611,4	647,2	717,8	788,1	844,0	880,6	933,5	969,8
Input power	kW	64,6	76,2	83,3	95,6	111,1	123,9	131,4	152,8	170,0	186,9	199,5	227,5	249,8	267,9	280,7	297,4	310,8
Heating total input current	Α	115,0	134,0	147,0	165,0	188,0	207,0	219,0	257,0	288,0	313,0	333,0	378,0	416,0	447,0	466,0	491,0	512,0
COP	W/W	3,24	3,22	3,23	3,19	3,22	3,18	3,29	3,29	3,28	3,27	3,24	3,15	3,16	3,15	3,14	3,14	3,12
Water flow rate system side	l/h	36369	42513	46657	52988	62021	68420	74962	87217	96884	106143	112386	124645	136849	146552	152908	162100	168406
Pressure drop system side	kPa	28	39	40	47	53	56	40	47	51	60	42	57	66	71	75	84	80

NRG HA

111101111																		
Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	200,5	236,4	258,7	292,2	344,0	378,0	412,2	480,7	532,0	584,8	618,3	700,8	768,8	824,7	859,0	911,3	943,6
Input power	kW	71,4	78,5	88,2	105,8	117,2	134,5	151,4	172,4	196,2	210,0	227,1	245,1	271,0	296,0	314,1	327,9	345,4
Cooling total input current	А	127,0	141,0	157,0	182,0	201,0	226,0	251,0	289,0	333,0	351,0	377,0	424,0	462,0	509,0	529,0	545,0	571,0
EER	W/W	2,81	3,01	2,93	2,76	2,94	2,81	2,72	2,79	2,71	2,78	2,72	2,86	2,84	2,79	2,73	2,78	2,73
Water flow rate system side	l/h	34505	40669	44506	50268	59178	65028	70879	82668	91485	100578	106317	120517	132216	141823	147725	156722	162264
Pressure drop system side	kPa	24	33	34	39	45	47	33	39	42	50	35	53	61	67	70	79	74
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	214,2	249,2	273,9	311,8	364,1	404,2	439,5	510,6	568,3	624,2	661,5	726,3	796,9	854,6	892,3	944,8	982,2
Input power	kW	65,5	76,7	84,1	96,3	111,6	125,5	132,9	153,9	171,9	189,2	201,7	229,0	250,4	268,2	280,9	299,3	312,3
Heating total input current	Α	119,0	139,0	152,0	170,0	195,0	215,0	227,0	265,0	298,0	325,0	344,0	389,0	428,0	458,0	477,0	506,0	526,0
COP	W/W	3,27	3,25	3,25	3,24	3,26	3,22	3,31	3,32	3,31	3,30	3,28	3,17	3,18	3,19	3,18	3,16	3,15
Water flow rate system side	l/h	37179	43255	47538	54127	63192	70158	76308	88642	98663	108366	114875	126116	138372	148390	154943	164062	170550
Pressure drop system side	kPa	29	40	41	49	55	58	41	49	53	62	44	58	67	73	77	86	82

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRG HE

Size		0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C (1)																		
Cooling capacity	kW	210,2	241,4	265,0	301,3	349,5	385,3	433,9	499,0	555,3	602,8	639,1	718,4	790,6	846,2	879,4	924,9	962,3
Input power	kW	68,8	76,7	85,7	101,9	115,0	130,8	142,8	165,0	189,0	202,2	217,7	241,7	264,6	289,3	308,3	320,7	337,3
Cooling total input current	Α	120,0	135,0	150,0	173,0	192,0	215,0	234,0	272,0	312,0	332,0	355,0	390,0	433,0	474,0	493,0	512,0	536,0
EER	W/W	3,05	3,15	3,09	2,96	3,04	2,94	3,04	3,02	2,94	2,98	2,94	2,97	2,99	2,93	2,85	2,88	2,85
Water flow rate system side	l/h	36167	41535	45585	51820	60126	66279	74616	85811	95491	103665	109890	123535	135965	145529	151221	159049	165476
Pressure drop system side	kPa	24	33	34	40	45	47	33	40	42	50	35	56	62	70	74	71	74
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	220,6	251,8	277,3	320,3	367,5	407,1	456,1	525,1	586,9	634,6	674,7	737,8	806,3	867,9	904,3	951,9	991,9
Input power	kW	67,2	77,5	84,8	98,3	110,5	122,3	137,5	158,0	176,7	191,9	204,0	230,9	251,4	270,6	283,3	299,9	313,6
Heating total input current	Α	119,0	137,0	150,0	170,0	189,0	207,0	229,0	266,0	299,0	321,0	340,0	384,0	419,0	452,0	470,0	497,0	516,0
COP	W/W	3,28	3,25	3,27	3,26	3,33	3,33	3,32	3,32	3,32	3,31	3,31	3,20	3,21	3,21	3,19	3,17	3,16
Water flow rate system side	l/h	38284	43702	48137	55596	63813	70679	79187	91172	101894	110186	117170	128108	140013	150692	157019	165295	172243
Pressure drop system side	kPa	31	35	39	45	36	35	44	45	55	47	39	60	65	75	79	77	81

ENERGY INDEX

ENERGY INDEX																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: °																			
SEER - 12/7 (EN14825: 2018) (1)																			
		W/W	3,82	3,93	3,69	3,95	3,76	3,66	3,63	3,77	3,94	-	-	-	-	-	-	-	-
SEER	A	W/W	3,92	4,26	4,03	4,04	4,31	4,05	4,14	4,16	4,14	-	-	-	-	-	-	-	-
JLLIN	E	W/W	4,24	4,47	4,46	4,30	4,49	4,23	4,54	4,48	4,30	-	-	-	-	-	-	-	-
	L	W/W	3,89	4,20	4,14	4,07	4,32	4,14	4,09	4,16	4,05	-	-	-	-	-	-	-	-
	•	%	149,69	154,31	144,66	154,85	147,58	143,34	142,18	147,82	154,74	-	-	-	-	-	-	-	-
Seasonal efficiency	A	%	153,94	167,22	158,24	158,70	169,32	159,16	162,42	163,51	162,60	-	-	-	-	-	-	-	-
ocasonal efficiency	E	%	166,62	175,64	175,43	169,12	176,71	166,29	178,62	176,32	169,05	-						-	-
	L	%	152,78	164,88	162,52	159,98	169,62	162,45	160,44	163,31	158,98	-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) (2)																			
		W/W	4,42	4,52	4,23	4,46	4,31	4,17	4,16	4,25	4,43	4,56	4,55	4,84	4,69	4,70	4,61	4,69	4,57
SEER	A	W/W	4,58	4,90	4,67	4,63	4,86	4,60	4,69	4,68	4,62	4,60	4,67	4,94	4,94	4,95	4,95	4,95	4,95
SEEN	E	W/W	4,95	5,13	5,09	4,90	5,03	4,78	5,13	5,04	4,80	4,95	5,00	5,15	5,16	5,15	5,07	5,09	5,03
	L	W/W	4,65	4,84	4,73	4,62	4,81	4,64	4,62	4,66	4,56	4,64	4,67	4,81	4,84	4,80	4,79	4,81	4,79
		%	173,96	177,67	166,01	175,30	169,38	163,98	163,39	167,16	174,39	179,50	179,00	190,59	184,41	185,05	181,49	184,72	179,79
Seasonal efficiency	A	%	180,39	193,01	183,69	182,32	191,25	180,93	184,52	184,13	181,81	180,84	183,73	194,77	194,67	194,96	194,98	195,10	194,96
Seasonal efficiency	E	%	194,99	202,37	200,52	193,16	198,13	188,06	202,21	198,68	189,12	194,99	196,98	203,18	203,49	202,94	199,98	200,57	198,18
	L	%	182,93	190,46	186,38	181,81	189,53	182,80	181,68	183,24	179,38	182,56	183,91	189,59	190,78	188,98	188,76	189,33	188,66
UE 813/2013 performance in average a		ions (aver																	
		kW	185	206	225	271	306	341	372	346	394	533	566	645	691	757	791	822	859
Pdesignh	A	kW	186	215	237	273	317	354	387	352	394	547	583	637	698	748	781	827	866
. 465.9	E	kW	190	216	239	278	318	355	397	355	398	553	591	643	702	755	787	829	870
	L	kW	182	212	233	267	312	347	381	349	391	537	572	631	693	742	773	819	852
		W/W	3,70	3,66	3,70	3,62	3,63	3,64	3,78	3,78	3,84	3,84	3,87	3,78	3,72	3,72	3,70	3,71	3,68
SCOP	A	W/W	3,86	3,75	3,80	3,83	3,80	3,84	3,96	3,92	4,00	3,97	4,03	3,93	3,92	3,90	3,87	3,86	3,82
	E	W/W	3,82	3,74	3,79	3,80	3,78	3,86	3,96	3,93	3,99	3,96	4,02	3,90	3,88	3,86	3,82	3,81	3,79
	L	W/W	3,75	3,71	3,77	3,73	3,72	3,81	3,90	3,89	3,95	3,88	3,95	3,83	3,82	3,81	3,79	3,78	3,76
		%	144,95	143,51	145,03	141,70	142,39	142,72	148,37	148,22	150,74	150,57	151,99	148,07	145,75	145,71	145,18	145,33	144,35
ηsh	A	%	151,26	147,10	148,95	150,09	148,92	150,73	155,38	153,74	157,11	156,00	158,37	154,40	153,86	153,03	151,98	151,25	149,80
•	E	%	149,60	146,63	148,74	148,95	148,14	151,30	155,26	154,27	156,73	155,51	157,88	152,82	152,24	151,22	149,93	149,22	148,54
UF 042 /2042	L	. ,	146,96	145,41	147,82		145,93	149,25	152,96	152,42	155,05	152,28	154,95	150,34	149,82	149,41	148,61	148,12	147,48
UE 813/2013 performance in average a	mbient condit				-			244	275	246	204	52.4	F.CO.		603	760	704	025	054
		kW	185	207	228	272	308	344	375	346	394	534	569	646	693	760	794	825	856
Pdesignh	A	kW	187	214	237	273	316	354	386	352	394	545	581	634	696	746	779	825	857
-	E	kW	189	215	238	277	316	352	393	355	398	548	585	637	697	750	781	822	857
	L	kW	183	212	234	269	311	347	382	349	391	537	573	631	693	742	774	820	852
		W/W	3,08	3,05	3,08	3,05	3,03	3,00	3,03	3,06	3,21	3,18	3,18	3,12	3,09	3,11	3,11	3,11	3,06
SCOP	A	W/W	3,18	3,15	3,17	3,19	3,16	3,16	3,17	3,17	3,29	3,27	3,25	3,23	3,24	3,24	3,23	3,23	3,14
	E	W/W	3,19	3,14	3,17	3,17	3,13	3,15	3,20	3,19	3,32	3,26	3,26	3,24	3,24	3,24	3,22	3,20	3,14
	L	W/W	3,09	3,10	3,14	3,10	3,08	3,12	3,11	3,13	3,23	3,18	3,17	3,14	3,14	3,15	3,14	3,15	3,12
		%	120,10	119,16	120,24	118,86	118,20	117,16	118,26	119,46	125,22	124,15	124,36	121,80	120,53	121,33	121,20	121,49	119,23
ηsh	A	%	124,31	122,92	123,79	124,47	123,37	123,50	123,70	123,68	128,55	127,96	127,17	126,29	126,72	126,55	126,01	126,19	122,60
.de.:	E	%	124,44	122,64	123,96	123,61	122,14	122,87	125,09	124,79	129,60	127,34	127,57	126,53	126,49	126,53	125,75	124,86	122,72
	L	%	120,43	121,14	122,52	120,80	120,36	121,82	121,38	122,19	126,39	124,30	123,94	122,40	122,78	122,90	122,56	122,90	121,88

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for low temperature applications (35 °C)
(4) Efficiencies for average temperature applications (55 °C)

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Seasonal efficiency IRA % 18,98 20,258 12,029 19,029 19,029 18,039 18,039 18,039 18,039 18,039 19,	3400	3400	J400	J700	J700	J401		J200	2000	4000	4000	4700	4400	2000	1000	1000	1700	1400	1100	IVUU	U 7 U U	UUUU			
Separa																									
Series	5,51	5 51	5 51	5 51	5 51	5 51	_	5 51	5 52	5 52	5 51	5 11	5 27	5 20	5 11	5.00	5 11	5.01	5 11	1 22	5.03	V 03	W/W	0	LFR - (LN 14023. 2010) (2)
Family F	5,53																							Δ	-
Terms : 1 Fig. 12 (NIM 2) 19 1	5,56																								EPR -
Section Parish	5,51																								_
SEER 1.7 (RIN4825: 2018) (1) *** 10	3,31	3,31	3,31	7,51	١٥١٦	ا درد				JJZ	3,31	3,30	3,03	3,777	3,03	3,33	3,01	3,10	3,31	3,11	3,10	3,17	11/11		ans: I
SEER 14 10 11 11 11 11 11 11 11 11 11 11 11 11																									
Fig. 1 (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	-		_	-	_	_				-				4.10	3.92	3.72	3.74	3.91	4.01	3.76	4.03	3.91	W/W	0	12,7 (2111102512010) (1)
Fig. 1 (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	4,55	4.55	4.55	4.55	4.55	4.55		4.55	4.56	4.55	4.56	4.58												A	
No. 1.0	4,69																								EER -
Part	4,57								_																-
Part	-	-	-	-	-	-		-,	-,	-	-	-	-											0	
Part	179,12	179,12	179.12	179,12	179.12	179,1	1 1	179,11	179.25	179.05	179.30	180.02	179,84											A	-
Part	184,64																							E	easonal efficiency –
SEER-35/18 (EN14825: 2018) (2) *** No. *** No	179,67					_																			-
SEER R	,	,	,	,	,	,-		,	,	,	,	,	,	,	,	,	,	,	,	,	,	,			EER - 23/18 (EN14825: 2018) (2)
SEER A W/W 4,82 5,14 4,88 4,83 5,05 4,68 4,77 4,78 4,70 4,71 5,12 5,22 5,23 5,23 5,23 5,20 5,11 5,20 5,20 5,10 5,20 5,10 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 5,00 1,0	5,04	5.04	5.04	5.04	5.04	5.04		4,95	5.05	5.04	5.20	4.67	4.68	4,53	4.36	4.26	4.26	4,48	4,53	4,30	4.62	4,53	W/W	0	
Fig. 1 (1) (1) (2) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	5,33												_											A	
Part	5,40			_	-																5,39	5,22	W/W	Е	EER -
Seam of the fine part	5,10	5,10	5,10	5,10	5,10	5,10	- 1						_							4,92		4,86	W/W	L	-
Seasonalefficiency IRA 8 18/8 18/8 18/2 19/2	198,65	198,65	198,6	198,65	198,65	198,6) 1	195,09	198,95	198,46	205,12	183,60	184,08	178,15	171,54	167,32	167,49	176,17	178,03	169,18	181,99	178,23	%	0	
Part See		210,33	210,3	210,33	210,33	210,3) 2	210,50		209,61		189,27				187,89		199,05		192,30		189,87	%	А	-
Part		213,20						212,50							_									Е	easonal efficiency –
Peteign Peteiggn Peteign Peteign Peteign Peteign Peteign Peteign Peteign Pet	201,14	201,14	201,14	201,14	201,14	201,1	3 20	200,73	201,03	203,21	201,98	190,57	189,25	185,81	189,15	185,11		196,81	188,82	193,92	198,67	191,27	%	L	_
Presign										,											C - Pdesi	ge) - 35 °	ns (avera	ient conditi	E 813/2013 performance in average amb
Feedstand Feed	822	822	822	822	822	822		791	757	691	645	566	533	394	346	372	341	306	271	225	206	185	kW	0	
Fig. Ref	827	827	827	827	827	827		781	748	698	637	584	547	394	352	387	354	317	273	237	215	186	kW	Α	-
Scope **** ******	829	829	829	829	829	829		787	755	702	643	591	553	398	355	397	355	318	278	239	216	190	kW	Е	designn –
SCOP A WW 3,75 3,72 3,74 3,05 3,82 3,89 3,80	819	819	819	819	819	819		773	742	693	631	573	538	391	349	381	347	312	267	233	212	182	kW	L	_
Storp	3,78	3,78	3,78	3,78	3,78	3,78	- 7	3,78	3,79	3,79	3,85	3,98	3,92	3,90	3,87	3,84	3,69	3,72	3,65	3,74	3,72	3,75	W/W	0	
F W/W 3,94 3,86 3,89 3,90 3,88 4,00 4,05 4,08 4,09 4,09 4,13 3,91 3,96 3,93 3,90 3,89 3,90 3,88 4,00 4,05 4,08 4,09 4,09 4,13 3,91 3,90 3,90 3,90 3,89 3,89 3,89 3,80	3,93	3,93	3,93	3,93	3,93	3,93	-	3,95	3,98	4,00	4,01	4,13	4,08	4,08	4,03	4,04	3,93	3,89	3,92	3,91	3,87	3,98	W/W	А	- COD
Probability of the probability	3,88	3,88	3,88	3,88	3,88	3,88		3,90	3,93	3,96	3,97	4,13	4,09	4,09	4,08	4,05	4,00	3,88	3,90	3,89	3,86	3,94	W/W	Е	LUP -
Height Probability (17.10) (17	3,85	3,85	3,85	3,85	3,85	3,85	- :	3,87	3,89	3,90	3,91	4,06	3,99	4,02	3,98	3,94	3,87	3,85	3,82	3,86	3,81	3,85	W/W	L	_
F % 154,67 51,25 52,53 52,86 152,0	148,30	148,30	148,30	148,30	148,30	148,3	1 1/	148,14	148,69	148,73	151,09	156,25	153,82	152,83	151,86	150,61	144,64	145,88	143,12	146,78	145,69	147,19	%	0	
F 50 151,15 152,25 152,26	154,33	154,33	154,33	154,33	154,33	154,3	7 1/	155,07	156,15	157,00	157,54	162,27	160,11	160,03	158,12	158,78	154,02	152,61	153,96	153,29	151,63	156,18	%	А	
UE 813/2013 performance in average ambient conditions (average) - 55 °C - Polesignh ≤ VR 185 207 225 272 306 341 372 346 394 535 566 645 691 757 791 Pdesignh R kW 187 215 237 273 317 354 387 352 397 355 398 553 591 643 702 755 787 E kW 190 216 239 278 318 355 397 355 398 355 397 355 398 553 591 643 702 755 787 L kW 183 212 233 267 312 347 382 349 391 538 573 631 693 742 773 MW 3,13 3,11 3,12 3,08 3,11 3,12 3,08 3,11 3,05 3,08 3,15 3,26 3,26 3,26 3,28 3,27 3,17 3,17 SCOP A W/W 3,31 3,25 3,27 3,26 3,28 3,28 3,29 3,38 3,29 3,38 3,37 3,30 3,30 3,30 3,30 3,28 3,2	152,26	152,26	152,20	152,26	152,26	152,2	1:	152,99	154,31	155,35	155,93	162,33	160,54	160,74	160,06	159,16	156,84	152,04	152,86	152,53	151,25	154,67	%	E	sn –
Pdesignh A kW 185 207 225 272 306 341 372 346 394 535 566 645 691 757 791	151,15	151,15	151,15	151,15	151,15	151,1	5 1.	151,65	152,46	152,88	153,41	159,42	156,44	157,80	156,17	154,77	151,92	151,00	149,80	151,53	149,30	151,15	%	L	_
Pdesignh A kW 187 215 237 273 317 354 387 352 394 547 582 637 698 748 781 E kW 190 216 239 278 318 355 397 355 398 553 591 643 702 755 787 L kW 183 212 233 267 312 347 382 349 391 538 573 631 693 742 773 M WW 3,13 3,11 3,12 3,08 3,11 3,05 3,08 3,15 3,26 3,29 3,18 3,17 3,17 3,17 A W/W 3,30 3,26 3,28 3,25 3,24 3,24 3,26 3,26 3,29 3,31 3,25 3,21 3,26 3,22 3,28 3,29 3,31 3,20 3,28 3,22 3,28 3,22																		.)	00 kW (4	gnh ≤ 4	C - Pdesi	ge) - 55 °	ns (avera	ient conditi	E 813/2013 performance in average amb
Result Include the least of th	822	822	822	822	822	822		791	757	691	645	566	535	394	346	372	341	306	272	225	207	185	kW	0	_
KW 190 216 239 2/8 318 355 391 355 391 643 7/02 755 78/ L kW 183 212 233 267 312 347 382 349 391 538 573 631 693 742 773 SCOP A W/W 3,13 3,11 3,12 3,08 3,11 3,05 3,08 3,15 3,26 3,29 3,18 3,15 3,17 3,17 SCOP A W/W 3,30 3,26 3,28 3,28 3,24 3,24 3,26 3,26 3,29 3,18 3,15 3,17 3,17 SCOP E W/W 3,31 3,25 3,27 3,26 3,22 3,28 3,29 3,33 3,42 3,8 3,37 3,30 3,30 3,30 3,28 L W/W 3,19 3,20 3,28 3,20 3,19 3,15 <td>827</td> <td>827</td> <td>827</td> <td>827</td> <td>827</td> <td>827</td> <td></td> <td>781</td> <td>748</td> <td>698</td> <td>637</td> <td>582</td> <td>547</td> <td>394</td> <td>352</td> <td>387</td> <td>354</td> <td>317</td> <td>273</td> <td>237</td> <td>215</td> <td>187</td> <td>kW</td> <td>Α</td> <td>docianh</td>	827	827	827	827	827	827		781	748	698	637	582	547	394	352	387	354	317	273	237	215	187	kW	Α	docianh
SCOP W/W 3,13 3,11 3,12 3,08 3,11 3,05 3,08 3,15 3,26 3,26 3,29 3,18 3,15 3,17 3,17 SCOP A W/W 3,30 3,26 3,28 3,28 3,25 3,24 3,24 3,26 3,36 3,37 3,35 3,30 3,31 3,30 3,29 E W/W 3,31 3,25 3,27 3,26 3,22 3,28 3,29 3,33 3,42 3,8 3,37 3,30 3,30 3,30 3,28 L W/W 3,19 3,20 3,23 3,18 3,20 3,19 3,15 3,22 3,31 3,28 3,28 3,20 3,21 3,20	829	829	829	829	829	829		787	755	702	643	591	553	398	355	397	355	318	278	239	216	190	kW	E	aesignin
SCOP M/W 3,13 3,11 3,12 3,08 3,11 3,12 3,08 3,11 3,05 3,08 3,15 3,26 3,26 3,26 3,27 3,26 3,27 3,26 3,27 3,26 3,27 3,26 3,27 3,26 3,27 3,	819	819	819	819	819	819		773	742	693	631	573	538	391	349	382	347	312	267	233	212	183	kW	L	
E W/W 3,31 3,25 3,27 3,26 3,22 3,28 3,29 3,33 3,42 3,38 3,37 3,30 3,30 3,30 3,28 L W/W 3,19 3,20 3,23 3,18 3,20 3,19 3,15 3,22 3,31 3,28 3,28 3,20 3,21 3,21 3,20	3,17	3,17	3,17	3,17	3,17	3,17		3,17	3,17	3,15	3,18	3,29	3,26	3,26	3,15	3,08	3,05	3,11	3,08	3,12	3,11	3,13	W/W	0	_
E W/W 3,31 3,25 3,27 3,26 3,22 3,28 3,29 3,33 3,42 3,38 3,37 3,30 3,30 3,30 3,30 3,28 L W/W 3,19 3,20 3,23 3,18 3,20 3,19 3,15 3,22 3,31 3,28 3,28 3,20 3,21 3,21 3,20	3,29	3,29	3,29	3,29	3,29	3,29		3,29	3,30	3,31	3,30	3,35	3,37	3,36	3,26	3,24	3,24	3,25	3,28	3,28	3,26	3,30	W/W	Α	COD -
	3,26	3,26	3,26	3,26	3,26	3,26		3,28	3,30	3,30	3,30	3,37	3,38	3,42	3,33	3,29	3,28	3,22	3,26	3,27	3,25	3,31	W/W	E	COP =
0 0/ 433 77 434 30 434 00 430 27 430 04 430 37 433 00 437 47 43 03 43 43 43 43 43 43 43 43 43 43 43 43 43	3,21	3,21	3,21	3,21	3,21	3,21				3,21	3,20	3,28	3,28	3,31	3,22	3,15	3,19	3,20	3,18	3,23	3,20	3,19	W/W		
<u> </u>	123,98	123,98	123,98	123,98	123,98	123,9	1.	123,69	123,82	123,00	124,30	128,67	127,29	127,46	122,90	120,35	119,01	121,59	120,26	121,95	121,29	122,27	%	0	
nch A % 129,05 127,35 128,02 128,24 126,95 126,45 126,66 127,60 131,34 131,91 130,84 128,88 129,31 129,14 128,59	128,77	128,77	128,7	128,77	128,77	128,7	1.	128,59	129,14	129,31	128,88	130,84	131,91	131,34	127,60	126,66	126,45	126,95	128,24	128,02	127,35	129,05	%	Α	ch -
ηsh E % 129,38 127,17 127,67 127,41 125,90 128,13 128,78 130,27 133,70 132,16 131,79 129,12 129,08 129,12 128,32	127,41	127,41	127,4	127,41	127,41	127,4	1.	128,32	129,12	129,08	129,12	131,79	132,16	133,70	130,27	128,78	128,13	125,90	127,41	127,67	127,17	129,38	%	E	JII
L % 124,44 124,94 126,12 124,20 125,05 124,58 123,06 125,71 129,24 128,27 128,14 124,91 125,29 125,42 125,07	125,42	125,42	125,42	125,42	125,42	125,4	1.	125,07	125,42	125,29	124,91	128,14	128,27	129,24	125,71	123,06	124,58	125,05	124,20	126,12	124,94	124,44	%	L	
SEPR - (EN 14825: 2018) (2)																									EPR - (EN 14825: 2018) (2)
° W/W 5,05 5,15 4,98 5,20 5,21 5,23 5,12 5,31 5,49 5,45 5,37 5,51 5,52 5,52 5,51	5,51	5,51	5,51	5,51	5,51	5,51	!	5,51	5,52	5,52	5,51	5,37	5,45	5,49	5,31	5,12	5,23	5,21	5,20	4,98	5,15	5,05	W/W	0	
SEPR A W/W 5,34 5,76 5,59 5,54 5,85 5,69 5,67 5,79 5,66 5,85 5,87 5,52 5,53 5,53 5,53	5,53	5,53	5,53	5,53	5,53	5,53		5,53	5,53	5,53	5,52	5,87	5,85	5,66	5,79	5,67	5,69	5,85	5,54	5,59	5,76	5,34	W/W	A	-
E W/W 5,91 6,15 6,16 5,82 6,03 6,22 6,44 6,48 6,24 6,31 6,25 5,56 5,57 5,57 5,56	5,56	5,56	5,56	5,56	5,56	5,56		5,56	5,57	5,57	5,56		6,31	6,24	6,48	6,44	6,22	6,03	5,82	6,16	6,15	5,91	W/W	E	LITN =
L W/W 5,38 5,72 5,70 5,51 5,69 5,87 5,66 5,85 5,69 5,96 5,88 5,51 5,52 5,52 5,51	5,51																						W/W	L	_

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for low temperature applications (35 °C)
(4) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

LLLC I KIC DAIA																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Electric data																			
	0	А	162,2	180,5	198,8	234,5	262,4	290,3	318,1	371,7	425,3	453,2	481,1	542,5	588,3	641,9	669,8	697,7	725,5
Maximum current (FLA)	A,L	А	162,2	188,3	206,6	234,5	270,2	298,1	325,9	379,5	425,3	461,0	488,9	542,5	596,1	641,9	669,8	705,5	733,3
	E	Α	170,0	196,1	214,4	242,3	278,0	305,9	341,5	395,1	440,9	476,6	504,5	558,1	611,7	657,5	685,4	721,1	748,9
	٥	А	350,0	406,1	424,4	673,4	701,3	729,2	757,0	802,9	848,7	876,5	904,4	1004,8	1050,6	1104,2	1132,1	1160,0	1187,8
Peak current (LRA)	A,L	Α	350,0	406,1	424,4	673,4	701,3	729,2	757,0	802,9	848,7	876,5	904,4	1004,8	1058,4	1104,2	1132,1	1167,8	1195,6
	E	А	350,0	406,1	424,4	673,4	701,3	729,2	757,0	802,9	848,7	876,5	904,4	1020,4	1074,0	1119,8	1147,7	1183,4	1211,2

Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

Compressors

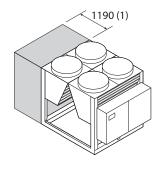
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	°,A,E,L	type									Scroll								
Compressor regulation	°,A,E,L	Туре									0n-0ff								
Number	°,A,E,L	no.	4	4	4	4	4	4	4	5	6	6	6	7	8	9	9	9	9
Circuits	°,A,E,L	no.	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3
Refrigerant	°,A,E,L	type									R32								
	٥	kg	16,5	16,5	22,5	20,0	23,3	22,5	22,5	30,4	30,8	36,0	36,0	34,4	35,1	35,4	35,4	38,9	38,9
Deficiency at least singuist 1 (1)	A	kg	13,0	22,0	24,0	20,0	24,8	28,0	29,3	37,1	43,9	43,9	44,6	34,4	39,6	44,1	44,1	44,1	44,6
Refrigerant load circuit 1 (1)	E	kg	21,8	28,5	29,3	28,5	29,3	34,9	42,0	51,0	53,6	56,3	51,8	48,9	48,9	50,6	50,6	52,4	53,4
	L	kg	16,5	22,0	24,0	20,0	28,0	28,0	29,3	37,1	43,9	43,9	44,6	34,4	39,6	44,1	44,1	44,1	44,6
	0	kg	16,5	16,5	22,5	20,0	23,3	22,5	22,5	30,4	30,8	36,0	36,0	34,4	35,1	35,4	35,4	38,9	38,9
Deficiency at least singuist 2 (1)	A	kg	13,0	22,0	24,0	20,0	24,8	28,0	29,3	37,1	43,9	43,9	44,6	34,4	39,6	44,1	44,1	44,1	44,6
Refrigerant load circuit 2 (1)	E	kg	21,8	28,5	29,3	28,5	29,3	34,9	42,0	51,0	53,6	56,3	51,8	48,9	48,9	50,6	50,6	52,4	53,4
	L	kg	16,5	22,0	24,0	20,0	28,0	28,0	29,3	37,1	43,9	43,9	44,6	34,4	39,6	44,1	44,1	44,1	44,6
Potential global heating	°,A,E,L	GWP								6	75kgCO ₂ e	:q							

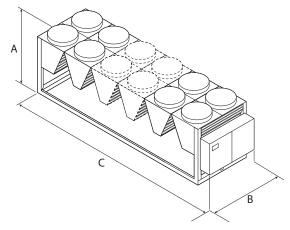
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

System side heat exchanger

System side nedt exchanger																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
System side heat exchanger																			
Туре	°,A,E,L	type								В	Brazed pla	te							
Number	°,A,E,L	no.	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Hydraulic connections																			
Connections (in/out)	°,A,E,L	Туре								Gı	rooved joi	nts							
	0	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	A,L	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"
-	E	Ø	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"	5"	5"

Fans																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Fans: °																			
Fan																			
Туре	°,A,E,L	type									Axial								
	0	no.	4	4	4	6	6	6	6	8	10	10	10	14	14	16	16	16	16
Number	A,L	no.	4	6	6	6	8	8	8	10	10	12	12	14	16	16	16	18	18
	E	no.	6	8	8	8	10	10	12	14	14	16	16	18	20	20	20	22	22
Fan	°,A	type								As	synchrono	us							
Fan motor	E,L	type								Asynchroi	nous with	phase cu	t						
	0	m³/h	82398	82398	82424	123596	123596	123561	123561	164866	205969	205969	205969	288399	288399	329594	329594	329598	329598
A:	A	m³/h	82403	123609	123609	123605	164779	164779	164779	205996	205998	247152	247152	288414	329556	329556	329556	370819	370819
Air flow rate	E	m³/h	102378	136491	136491	136491	170613	170613	204757	238871	238871	272982	272982	315634	349835	349835	349835	383943	383943


Sound data


Journa data																			
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Sound data calculated in cooling mode (1)																		
	0	dB(A)	90,5	90,5	90,5	92,3	92,4	92,5	92,6	93,8	94,7	94,7	94,8	96,5	96,6	97,1	97,1	97,2	97,3
Carrad marrian larval	А	dB(A)	90,5	92,2	92,2	92,3	93,6	93,6	93,7	94,6	94,7	95,4	95,5	96,5	97,1	97,1	97,1	97,6	97,7
Sound power level	E	dB(A)	85,2	86,2	86,2	87,0	88,3	88,8	89,7	90,1	90,2	90,9	91,2	92,2	92,5	92,6	92,8	93,3	93,5
	L	dB(A)	83,5	84,7	84,8	85,8	87,2	87,8	88,3	88,9	89,0	89,8	90,1	91,0	91,3	91,4	91,7	92,2	92,4
	0	dB(A)	58,4	58,4	58,4	60,0	60,1	60,2	60,4	61,3	62,1	62,2	62,2	63,7	63,7	64,1	64,2	64,3	64,3
Sound procesure lovel (10 m)	Α	dB(A)	58,4	59,9	59,9	60,0	61,2	61,2	61,3	62,1	62,1	62,8	62,8	63,7	64,1	64,1	64,2	64,6	64,6
Sound pressure level (10 m)	E	dB(A)	52,9	53,8	53,8	54,6	55,7	56,3	57,0	57,3	57,4	57,9	58,2	59,1	59,3	59,4	59,7	60,0	60,2
	L	dB(A)	51,4	52,5	52,5	53,5	54,8	55,4	55,9	56,4	56,5	57,1	57,4	58,2	58,4	58,5	58,8	59,1	59,4

m³/h 68237 102348 102348 102356 136528 136528 136528 170617 170614 204825 204825 238801 273004 273004 273004 307010 307010

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: NRG 0800H°, 0900H°, 1000H° NRG 0800HL NRG 0800HA

Cina			0000	0000	1000	1100	1200	1400	1/00	1000	2000	2200	2400	2600	2000	2000	2200	2400	3600
Size			0800	0900	1000	1100	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 0	00																		
Dimensions and weights	0 A F I		2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
A	°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
(mm	2780	2780	2780	3970	3970	3970	3970	5160	6350	6350	6350	8730	8730	9920	9920	9920	9920
(A,L	mm	2780	3970	3970	3970	5160	5160	5160	6350	6350	7540	7540	8730	9920	9920	9920	11110	11110
w ·	E	mm	3970	5160	5160	5160	6350	6350	7540	8730	8730	9920	9920	11110	12300	12300	12300	13490	13490
Weights	0																		
		kg	2350	2385	2385	3040	3185	3335	3585	4425	5200	5430	5540	7035	7310	8070	8185	8410	8520
Empty weight	A,L	kg	2350	2850	2860	3045	3770	3930	4170	4905	5230	5850	5880	7035	7800	8105	8220	8840	8930
	E	kg	2835	3460	3465	3650	4405	4405	4995	5800	6100	6795	6915	7980	8810	9090	9200	9845	9970
Integrated hydronic kit: A		ID, AE,	AF, AG	G, AH,	AI, AJ	, BA, I	BB, BC	, BD, I	BE, BF	, BG, B	SH, BI,	BJ, C	А, СВ,	CC, CD), CE, C	F, CG,	CH, C	I, CJ, I	(A,
KB, KC, KD, KE, KF, KG, KH Dimensions and weights	, KI, KJ																		
Δ Millensions and weights	°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
R	°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
<u>D</u>	,,,,,,,	mm	3970	3970	3970	3970	3970	3970	3970	5160	6350	6350	6350	8730	8730	9920	9920	9920	9920
C	A,L	mm	3970	3970	3970	3970	5160	5160	5160	6350	6350	7540	7540	8730	9920	9920	9920	11110	11110
	F	mm	3970	5160	5160	5160	6350	6350	7540	8730	8730	9920	9920	11110	12300	12300	12300	13490	13490
Weights	L	111111	3710	3100	3100	3100	0330	0330	7370	0730	0730	7720	7720	11110	12300	12300	12300	טלדנו	וועדכו
reigno	0	ka	3350	3380	3380	3770	3915	4065	4315	5185	6000	6230	6345	7725	8005	8760	8875	9100	9210
Empty weight	A,L	kg	3330	3585	3595	3780	4530	4685	4925	5710	6035	6810	6840	7725	8005	8760	8875	9100	9210
	F	ka	3570	4215	4225	4180	5165	5165	5955	6765	7110	7680	7800	8875	9705	9985	10100	10745	10865
Integrated hydronic kit: [DA. DB. DC. I																		
PE, PF, PG, PH, PI, PJ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,	, , , ,	٠, ٥	,, .	,, .	,,	,,	,,	,,	,	,,,,,,	-, , .	-, 5.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,	, , .	٥, ١ ٩,	,
Dimensions and weights																			
A	°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	2780	2780	2780	3970	3970	3970	3970	5160	6350	6350	6350	8730	8730	9920	9920	9920	9920
C	A,L	mm	2780	3970	3970	3970	5160	5160	5160	6350	6350	7540	7540	8730	9920	9920	9920	11110	11110
	E	mm	3970	5160	5160	5160	6350	6350	7540	8730	8730	9920	9920	11110	12300	12300	12300	13490	13490
Weights																			
	0	kg	2780	2810	2810	3465	3610	3760	4010	4790	5560	5795	5905	7420	7695	8450	8565	8790	8900
Empty weight	A,L	kg	2780	3280	3285	3475	4135	4290	4535	5270	5595	6210	6245	7420	8185	8485	8600	9220	9310
	E	ka	3200	3825	3830	4015	4770	4770	5360	6165	6465	7160	7280	8360	9190	9470	9585	10230	10350
		,																	

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0800-3600

Air-water chiller

Cooling capacity 217 ÷ 1049 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- HP floating: ESEER +7% with inverter fans

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

They are outdoor units with axial fan scroll compressors, microchannel batteries and plate exchangers.

In the unit with desuperheater, it is also possible to produce free-hot

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 51° C external air temperature. Unit can produce chilled water (up to -10° C of water produced in some versions).

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 3600.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

466 www.aermec.com NRB-0800-3600-CO_Y_CE50_11

CONFIGURATOR

Configuration options

Cor	ıfigu	ration options
Fiel	d	Description
1,2,	.3	NRB
4,5,	6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406, 2600, 2800 3000, 3200, 3400, 3600
8		Operating field
	0	Standard mechanic thermostatic valve (1)
	X	Electronic thermostatic expansion valve (1)
	Υ	Low temperature mechanic thermostatic valve (2)
	Z	Low temperature electronic thermostatic valve (2)
9		Model
	0	Cooling only
	C	Motocondensing unit (3)
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (4)
	T	With total recovery (5)
11		Version
	0	Standard
	Α	High efficiency
	E	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12	0	Coils
		Aluminium microchannel
	<u> </u>	Copper-aluminium
	0	Coated aluminium microchannel
	R	Copper-copper
_	S	Tinned copper
	V	Copper-painted alumimium
13		Fans
	J	Inverter
	М	Oversized
14	0	Power supply
		400V ~ 3 50Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
_	DA	Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
_	PD	Pump D
_	PE	Pump E
	PF	Pump F
_	PG	Pump G

Field	Description
PH	Pump H
PI	Pump I
PJ	Pump J (6)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump (7)
DB	Pump B + stand-by pump (7)
DC	Pump C + stand-by pump (7)
DD	Pump D + stand-by pump (7)
DE	Pump E + stand-by pump (7)
DF	Pump F + stand-by pump (7)
DG	Pump G + stand-by pump (7)
DH	Pump H + stand-by pump (7)
DI	Pump I + stand-by pump (7)
DJ	Pump J + stand-by pump (8)
	Kit with storage tank and n° 1 pump
AA	Storage tank and pump A
AB	Storage tank and pump B
AC	Storage tank and pump C
AD	Storage tank and pump D
AE	Storage tank and pump E
AF	Storage tank and pump F
AG	Storage tank and pump G
AH	Storage tank and pump H
AI	Storage tank and pump l
AJ	Storage tank and pump J (6)
	Kit with storage tank and n° 1 pump + stand-by pump
BA	Storage tank with pump A + stand-by pump (7)
BB	Storage tank with pump B + stand-by pump (7)
BC	Storage tank with pump C + stand-by pump (7)
BD	Storage tank with pump D + stand-by pump (7)
BE	Storage tank with pump E + stand-by pump (7)
BF	Storage tank with pump F + stand-by pump (7)
BG	Storage tank with pump G + stand-by pump (7)
ВН	Storage tank with pump H + stand-by pump (7)
BI	Storage tank with pump I + stand-by pump (7)
BJ	Storage tank with pump J + stand-by pump (8)

- (1) Water produced from 4 °C ÷ 18 °C (2) Processed water from 4°C to -8°C for the °-L versions, and from 4°C to -10°C for A E U N versions (3) Condensing units "C" are not compatible with the Y,X/Z/T/D option (4) The temperature of the water in the heat exchanger inlet must never drop below 35°C. (5) None of the hydronic kits (from PA to BJ) are compatible with the following sizes and with versions with heat recovery T: 0800 0900 1000 1100 version °; 0800 0900 version A; 0800 0900 version L. None of the hydronic kits with pump(s) and storage tank (from AA to BJ) are compatible with all the sizes and with versions with heat recovery T (6) For all configurations including pump J please contact the factory. (7) None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805 versions °-L-A, 2006-2206 version °. (8) For all combinations with pump J, please contact our head office. None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805 versions °-L-A, 2006-2206 version °.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the $\label{eq:AERAPP} \begin{tabular}{ll} AERAPP application is available both for Android and iOS systems. \end{tabular}$

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

XLA: The Kit, which consists of resistances for the electric power board and "J" inverter fans, allows the outdoor air temperature operating range to be extended from -10° C to -20° C outdoor air.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
AER485P1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L,N,U	•	•			•			•	•	•	•	•	•	•	•	•	•
AERLINK	°,A,E,L,N,U	•							•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L,N,U	•	•			•			•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L,N,U	•	•	•	•				•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,A,E,L,N,U	•	•			•			•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L,N,U	•	•	•	•				•	•	•	•	•	•	•	•	•	•

Condensation control temperature

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
Fans: M									
0	DCPX130	DCPX130	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX155	DCPX155
A	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131	DCPX132	DCPX155	DCPX156
E,L,N	As standard								
U	DCPX131	DCPX131	DCPX131	DCPX132	DCPX132	DCPX132	DCPX133	DCPX134	DCPX134
Ver	2206	2406	2600	2800		3000	3200	3400	3600
Fans: M									
0	DCPX155	DCPX156	DCPX133	DCPX134	1 [CPX134	DCPX134	DCPX135	DCPX135
A	DCPX156	DCPX134	DCPX135	DCPX135	5 [)CPX135	DCPX136	DCPX136	DCPX136
E,L,N	As standard	As standard	As standard	As standar	rd As	standard	As standard	As standard	As standard
U	DCPX135	DCPX135	DCPX136	DCPX136	i	OCPX137	DCPX138	DCPX138	DCPX138

Antivibration																	
Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
0	AVX805	AVX805	AVX805	AVX805	AVX808	AVX808	AVX808	AVX810	AVX810	AVX810	AVX809	AVX815	AVX819	AVX819	AVX819	AVX818	AVX818
A,L	AVX805	AVX805	AVX806	AVX808	AVX808	AVX808	AVX810	AVX810	AVX809	AVX809	AVX863	AVX813	AVX818	AVX818	AVX816	AVX816	AVX816
E,U	AVX806	AVX806	AVX808	AVX807	AVX807	AVX810	AVX809	AVX863	AVX863	AVX813	AVX813	AVX816	AVX816	AVX817	AVX820	AVX820	AVX820
N	AVX807	AVX807	AVX807	AVX809	AVX809	AVX809	AVX863	AVX812	AVX812	AVX814	AVX814	AVX817	AVX817	AVX820	AVX821	AVX821	AVX821
Integrated hydronic kit: AA, AB, AC,	AD, AE, AF, AG,	AH, AI, AJ,	BA, BB, B	C, BD, BE,	BF, BG, BI	1											
0	AVX844	AVX844	AVX844	AVX844	AVX844	AVX848	AVX848	AVX845	AVX845	AVX845	AVX847	AVX853	AVX857	AVX859	AVX859	AVX858	AVX858
A,L	AVX844	AVX844	AVX844	AVX844	AVX844	AVX848	AVX845	AVX845	AVX847	AVX847	AVX849	AVX854	AVX858	AVX858	AVX861	AVX861	AVX861
E,U	AVX844	AVX844	AVX844	AVX845	AVX845	AVX845	AVX847	AVX849	AVX849	AVX851	AVX851	AVX855	AVX855	AVX856	AVX860	AVX860	AVX860
N	AVX845	AVX845	AVX845	AVX847	AVX847	AVX847	AVX849	AVX850	AVX851	AVX852	AVX852	AVX856	AVX856	AVX860	AVX862	AVX862	AVX862
Integrated hydronic kit: BI, BJ																	
0	AVX844	AVX844	AVX844	AVX844	AVX846	AVX848	AVX848	AVX845	AVX845	AVX845	AVX847	AVX853	AVX857	AVX859	AVX859	AVX858	AVX858
A,L	AVX844	AVX844	AVX846	AVX846	AVX846	AVX848	AVX845	AVX845	AVX847	AVX847	AVX849	AVX854	AVX858	AVX858	AVX861	AVX861	AVX861
E,U	AVX844	AVX844	AVX846	AVX845	AVX845	AVX845	AVX847	AVX849	AVX849	AVX851	AVX851	AVX855	AVX855	AVX856	AVX860	AVX860	AVX860
N	AVX845	AVX845	AVX845	AVX847	AVX847	AVX847	AVX849	AVX850	AVX851	AVX852	AVX852	AVX856	AVX856	AVX860	AVX862	AVX862	AVX862
Integrated hydronic kit: DA, DB, DC,	, PA, PB, PC, PD,	PE, PF, PC	i, PH														
0	AVX822	AVX822	AVX822	AVX822	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX828	AVX834	AVX839	AVX839	AVX839	AVX840	AVX840
A,L	AVX822	AVX822	AVX825	AVX825	AVX825	AVX825	AVX826	AVX826	AVX828	AVX828	AVX830	AVX835	AVX840	AVX840	AVX842	AVX842	AVX842
E,U	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX828	AVX830	AVX830	AVX832	AVX832	AVX836	AVX836	AVX837	AVX841	AVX841	AVX841
N	AVX826	AVX826	AVX826	AVX828	AVX828	AVX828	AVX830	AVX831	AVX831	AVX833	AVX833	AVX837	AVX837	AVX841	AVX843	AVX843	AVX843
Integrated hydronic kit: DD, DE, DF,	DG, DH, PI, PJ																
0	AVX823	AVX823	AVX823	AVX823	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX829	AVX834	AVX839	AVX839	AVX839	AVX840	AVX840
A,L	AVX823	AVX823	AVX825	AVX825	AVX825	AVX825	AVX826	AVX826	AVX829	AVX829	AVX830	AVX835	AVX840	AVX840	AVX842	AVX842	AVX842
E,U	AVX825	AVX825	AVX825	AVX826	AVX826	AVX826	AVX829	AVX830	AVX830	AVX832	AVX832	AVX836	AVX836	AVX838	AVX841	AVX841	AVX841
N	AVX826	AVX826	AVX826	AVX829	AVX829	AVX829	AVX830	AVX831	AVX831	AVX833	AVX833	AVX838	AVX838	AVX841	AVX843	AVX843	AVX843

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: DI, DJ																	
0	AVX864	AVX864	AVX829	AVX864	AVX825	AVX825	AVX827	AVX827	AVX827	AVX827	AVX829	AVX834	AVX839	AVX839	AVX839	AVX840	AVX840
A,L	AVX864	AVX864	AVX825	AVX825	AVX825	AVX825	AVX827	AVX827	AVX829	AVX829	AVX830	AVX835	AVX840	AVX840	AVX842	AVX842	AVX842
E,U	AVX825	AVX825	AVX825	AVX827	AVX827	AVX827	AVX829	AVX830	AVX830	AVX832	AVX832	AVX836	AVX836	AVX838	AVX841	AVX841	AVX841
N	AVX827	AVX827	AVX827	AVX829	AVX829	AVX829	AVX830	AVX831	AVX831	AVX833	AVX833	AVX838	AVX838	AVX841	AVX843	AVX843	AVX843

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
°.A.E.L.N.U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2600	2800	3000	3200	3400	3600
°,A,E,L,N,U	DRENRB2206 (1)	DRENRB2406 (1)	-	-	-	-	-	-

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
٥	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	RIFNRB1600	RIFNRB1805	RIFNRB2006
A,L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	RIFNRB1601	RIFNRB1805	RIFNRB2006
E,U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016

A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2600	2800	3000	3200	3400	3600
0	RIFNRB2206	RIFNRB2406	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600
A,L	RIFNRB2206	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600
E,N,U	RIFNRB2216	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
0	GP2VN	GP2VN	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP4G	GP4G	GP4G	GP5G	GP5VN	GP6V	GP6V	GP6V	GP7V	GP7V
A,L	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4G	GP5G	GP5G	GP6V	GP7V	GP7V	GP7V	GP8V	GP8V	GP8V
E,U	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP10V	GP10V	GP10V
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN	GP10V	GP11V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

■ GP2VN becomes GP2VNA if configured with a type A or B hydronic

Double safety valves

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
o	T6NRB13	T6NRB13	T6NRB13	T6NRB13	T6NRB15						
A,L	T6NRB13	T6NRB13	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB16
E,U	T6NRB14	T6NRB14	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB15	T6NRB17	T6NRB16	T6NRB19	T6NRB19
N	T6NRB14	T6NRB14	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB18	T6NRB19	T6NRB19	T6NRB20	T6NRB20

A grey background indicates the accessory must be assembled in the factory

Kit for low temperature

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
0	-	-	-	-	-	-	-	XLA (1)									
A,L	-	-	-	-	-	-	XLA (1)										
E,U	-	-	-	XLA (1)													
N	XLA (1)																

(1) With the accessory XLA do not use the DCPX. The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

NRB - °

4																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	221,5	244,5	270,3	299,7	353,1	404,9	439,0	511,2	560,9	598,2	675,8	721,6	786,8	830,6	880,2	945,8	998,2
Input power	kW	73,3	83,1	94,1	110,3	117,5	135,4	155,1	175,7	194,0	216,6	236,5	256,0	270,3	292,6	314,7	329,4	355,2
Cooling total input current	А	128,3	143,1	160,0	185,5	201,6	229,9	260,8	299,7	329,8	366,5	404,6	434,0	459,4	498,2	534,6	562,9	606,0
EER	W/W	3,02	2,94	2,87	2,72	3,00	2,99	2,83	2,91	2,89	2,76	2,86	2,82	2,91	2,84	2,80	2,87	2,81
Water flow rate system side	l/h	38117	42077	46498	51565	60733	69640	75512	87913	96469	102883	116222	124100	135305	142813	151332	162608	171611
Pressure drop system side	kPa	46	55	38	45	44	39	46	40	47	53	52	58	60	36	39	46	43

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - L

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	216,9	237,7	272,7	307,7	343,9	391,0	438,4	498,2	555,4	608,2	666,2	727,2	770,0	834,2	886,6	952,6	1004,1
Input power	kW	73,0	85,9	92,0	107,4	122,7	139,0	151,9	173,3	191,6	213,6	233,8	246,8	270,1	284,5	307,5	323,1	347,9
Cooling total input current	Α	122,8	142,3	154,5	179,0	203,4	231,8	250,8	289,7	318,6	359,2	390,2	412,6	448,8	478,6	512,6	544,6	585,4
EER	W/W	2,97	2,77	2,97	2,87	2,80	2,81	2,89	2,87	2,90	2,85	2,85	2,95	2,85	2,93	2,88	2,95	2,89
Water flow rate system side	l/h	37323	40891	46905	52926	59137	67243	75381	85669	95498	104586	114564	125029	132382	143408	152424	163777	172632
Pressure drop system side	kPa	25	20	27	24	29	23	30	28	37	36	44	28	31	30	34	39	43

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - A

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	224,1	252,2	283,7	326,1	361,2	411,7	462,2	519,2	576,0	633,3	697,6	757,5	805,8	867,0	928,7	980,8	1026,8
Input power	kW	70,6	80,9	90,2	104,7	115,3	131,8	147,6	166,3	183,5	203,1	223,3	240,5	256,5	277,0	297,0	314,4	330,3
Cooling total input current	A	123,9	139,9	158,8	181,8	198,2	224,1	252,4	283,8	316,2	348,7	386,3	417,6	441,6	475,9	513,3	541,6	567,7
EER	W/W	3,17	3,12	3,15	3,12	3,13	3,12	3,13	3,12	3,14	3,12	3,12	3,15	3,14	3,13	3,13	3,12	3,11
Water flow rate system side	l/h	38561	43394	48802	56076	62118	70789	79487	89271	99048	108894	119965	130236	138537	149048	159671	168622	176531
Pressure drop system side	kPa	27	22	30	27	32	25	34	30	39	39	48	30	34	32	38	41	45

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - E

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	219,2	248,3	275,0	321,4	358,7	403,2	455,0	514,5	569,0	637,2	688,3	741,1	794,3	857,9	911,7	965,1	1019,4
Input power	kW	69,6	79,4	88,5	102,2	114,9	129,8	144,5	164,7	183,0	203,4	221,4	236,5	255,5	274,7	290,6	310,5	327,8
Cooling total input current	Α	119,5	134,7	148,8	172,1	192,6	215,7	240,1	275,1	306,1	342,6	372,8	397,0	425,9	459,5	487,5	520,6	549,0
EER	W/W	3,15	3,13	3,11	3,15	3,12	3,11	3,15	3,12	3,11	3,13	3,11	3,13	3,11	3,12	3,14	3,11	3,11
Water flow rate system side	l/h	37710	42726	47303	55271	61679	69338	78240	88465	97841	109550	118323	127417	136570	147496	156744	165934	175268
Pressure drop system side	kPa	19	23	20	27	21	27	26	33	33	22	25	30	34	33	38	41	46

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - U

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C (1)																		
Cooling capacity	kW	227,6	257,6	286,5	329,6	369,8	414,6	466,9	529,2	594,0	655,1	716,9	765,5	815,3	879,0	940,9	999,7	1049,5
Input power	kW	68,8	77,7	86,8	99,5	111,7	126,1	140,9	159,5	179,0	197,8	215,3	229,4	248,9	265,7	282,3	302,5	319,5
Cooling total input current	Α	124,3	138,5	152,9	176,0	195,6	218,0	244,0	278,3	311,7	347,7	377,4	401,2	431,5	463,1	493,9	527,9	556,4
EER	W/W	3,30	3,31	3,30	3,31	3,31	3,28	3,31	3,32	3,32	3,31	3,33	3,34	3,28	3,31	3,33	3,30	3,28
Water flow rate system side	l/h	39151	44308	49294	56689	63596	71302	80286	91003	102137	112618	123250	131616	140179	151126	161768	171875	180443
Pressure drop system side	kPa	20	25	21	29	23	28	27	35	36	23	27	32	36	35	40	44	49

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - N

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	227,7	260,4	284,7	327,7	367,7	412,3	466,1	521,6	579,1	645,7	702,6	749,4	804,7	866,4	926,7	973,5	1029,9
Input power	kW	68,5	78,9	86,4	98,5	111,9	125,4	140,4	157,8	176,0	194,6	212,9	229,0	246,7	263,5	282,7	301,1	319,3
Cooling total input current	Α	118,2	135,1	146,9	166,9	188,6	209,4	234,0	264,2	295,4	328,9	360,0	385,3	412,5	442,0	475,2	506,2	536,4
EER	W/W	3,32	3,30	3,30	3,33	3,29	3,29	3,32	3,31	3,29	3,32	3,30	3,27	3,26	3,29	3,28	3,23	3,23
Water flow rate system side	l/h	39166	44792	48972	56365	63234	70905	80151	89691	99569	111009	120789	128849	138355	148961	159328	167377	177077
Pressure drop system side	kPa	20	25	21	28	23	28	27	34	34	23	26	30	35	34	39	42	47

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size ENERGY INDICES (REG.		81 EU	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Fans: J							00			.505								2.00	
SEER - 12/7 (EN14825: 2018) (1)																			
	0	W/W	4,44	4,33	4,27	4,25	4,39	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,65	4,55	4,66	4,70	4,69	4,73	4,76	4,64	4,64	4,62	4,61	4,68	4,66	4,66	4,68	4,64	4,63
SEER	E	W/W	4,75	4,67	4,63	4,81	4,82	4,76	4,88	4,73	4,67	4,70	4,74	4,69	4,71	4,74	4,80	4,72	4,73
JEH	L	W/W	4,56	4,42	4,50	4,51	4,58	4,59	4,67	4,56	4,56	4,58	4,57	4,61	4,56	4,57	4,58	4,62	4,56
	N	W/W	4,85	4,79	4,83	4,96	4,93	4,97	5,03	4,93	4,82	4,89	4,83	4,89	4,80	4,84	4,83	4,73	4,73
	U	W/W	4,76	4,75	4,71	4,89	4,85	4,86	4,91	4,84	4,77	4,82	4,78	4,87	4,81	4,85	4,92	4,83	4,81
		%	174,60	170,10	167,60	167,10	172,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A E	%	182,80	179,10	183,40	185,00	184,70	186,20	187,30	182,70	182,40	181,70	181,50	184,20	183,50	183,30	184,00	182,70	182,00
Seasonal efficiency		<u>%</u> %	187,00 179,20	183,70 173,80	182,00 177,00	189,30 177,50	189,60 180,10	187,50 180,40	192,30 183,90	186,20 179,50	183,90 179,40	184,80 180,10	186,40 179,60	184,70 181,30	185,30 179,40	186,40 179,90	189,10 180,30	185,80 181,60	186,10 179,30
	L		191,10	188,40	190,30	195,40	194,20	195,90	198,10	194,10	189,90	192,40	190,00	192,70	189,10	190,60	190,20	186,30	186,20
	U	%	187,40	187,10	185,20	192,50	191,00	191,30	193,30	190,70	187,70	189,60	188,10	191,90	189,40	191,10	193,80	190,00	189,40
SEER - 23/18 (EN14825: 2018) (3)		/0	107,10	107,10	103,20	172,30	171,00	171,30	173,30	170,70	107,70	107,00	100,10	171,70	102,10	171,10	173,00	170,00	102,10
2211 25, 10 (2111 10251 2010) (5)	0	W/W	5,28	5,16	5,07	4,96	5,40	5,44	5,18	5,07	5,13	4,77	5,07	5,09	5,09	4,98	4,92	5,09	5,01
	A	W/W	5,50	5,35	5,50	5,51	5,55	5,55	5,63	5,34	5,44	5,30	5,42	5,41	5,43	5,38	5,43	5,36	5,40
crep.	E	W/W	5,62	5,53	5,46	5,70	5,69	5,63	5,77	5,50	5,52	5,48	5,59	5,47	5,41	5,47	5,77	5,50	5,51
SEER	L	W/W	5,34	5,14	5,35	5,33	5,37	5,34	5,47	5,26	5,32	5,20	5,26	5,35	5,20	5,25	5,21	5,32	5,23
	N	W/W	5,92	5,71	5,76	5,91	5,88	5,91	5,99	5,75	5,74	5,71	5,75	5,74	5,55	5,62	5,64	5,54	5,54
	U	W/W	5,65	5,67	5,59	5,82	5,76	5,80	5,83	5,67	5,69	5,61	5,68	5,77	5,59	5,66	5,85	5,70	5,69
	•	%	208,10	203,40	199,80	195,40	212,90	214,50	204,10	199,90	202,10	187,80	199,60	200,40	200,40	196,10	193,90	200,40	197,40
	A	%	217,00	210,90	217,00	217,50	219,10	219,10	222,10	210,50	214,60	209,10	213,60	213,40	214,20	212,00	214,30	211,50	213,00
Seasonal efficiency	E	%	221,90	218,30	215,30	224,90	224,50	222,20	227,70	216,80	217,70	216,00	220,60	215,70	213,40	215,60	227,90	216,80	
seasonal emelency	L	%	210,40	202,70	211,00	210,20	211,60	210,40	215,80	207,40	209,70	205,10	207,50	211,00	204,80	206,90	205,40	209,90	206,20
	N	%	229,90	225,30	227,50	233,50	232,10	233,40	236,40	226,80	226,40	225,50	227,10	226,40	219,10	221,60	222,40	218,40	218,50
4000 (0044000 0040)(0)	U	%	222,80	223,70	220,70	229,90	227,50	228,80	230,20	223,80	224,50	221,50	224,00	227,80	220,60	223,40	231,00	225,00	224,40
SEPR - (EN 14825: 2018) (3)	0	141.041	F 20	5.22	F 47	5.03	5.24	F F4	F F2		5.53	F F4		F F2	5.53			F F4	
		W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51	5,52	5,53	5,54	5,55	5,51	5,53
	A	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55	5,54	5,59	5,55	5,59	5,56	5,56
SEPR	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55	5,56	5,53	5,55	5,53	5,51	5,55
	L	W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54	5,54	5,54	5,52	5,54	5,52	5,53
	N	W/W W/W	5,69 5,67	5,55 5,54	5,67 5,66	5,60 5,54	5,64	5,62 5,59	5,66	5,57 5,55	5,67 5,55	5,60 5,58	5,64	5,61 5,74	5,51 5,60	5,63 5,70	5,69	5,51 5,71	5,63 5,58
Fans: M		VV / VV	3,07	J,J4	3,00	3,34	3,00	3,37	3,03	رد,د	3,33	3,30	3,12	3,/4	3,00	3,70	3,07	J,/ I	
SEER - 12/7 (EN14825: 2018) (1)																			
JEER 12/7 (ER14023: 2010) (1)	0	W/W	4,23	4,13	4,10	4,11	4,19	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,41	4,34	4,39	4,45	4,48	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	E	W/W	4,47	4,40	4,40	4,54	4,54	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEER	L	W/W	4,31	4,17	4,25	4,27	4,31	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	W/W	4,61	4,56	4,58	4,72	4,68	4,72	4,78	4,66	4,58	4,61	4,62	4,64	4,59	4,62	4,60	4,59	4,62
	U	W/W	4,51	4,51	4,51	4,63	4,64	4,65	4,70	4,61	4,56	4,57	4,59	4,58	4,56	4,59	4,57	4,56	4,56
		%	166,00	162,30	161,00	161,20	164,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	173,50	170,60	172,40	174,90	176,00	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	175,60	173,10	173,10	178,70	178,50	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Scasonar emelency	L	%	169,40	163,60	166,80	167,60	169,20	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	%		179,30	180,00	185,70		185,90	188,20	183,40	180,30	181,50	181,60	182,70	180,60	181,70		180,60	
4000 pp (40 (0)) 4 (0)	U	%	177,20	177,40	177,20	182,10	182,50	183,10	184,80	181,40	179,20	179,90	180,50	180,30	179,30	180,60	179,70	179,50	179,30
SEER - 23/18 (EN14825: 2018) (3)	0	111011																	
		W/W	5,08	4,98	4,92	4,82	5,20	5,26	5,03	4,91	4,97	4,63	4,91	4,84	4,86	4,77	4,73	4,85	4,81
	A	W/W	5,29	5,15	5,25	5,28	5,35	5,37	5,42	5,15	5,22	5,09	5,22	5,30	5,18	5,15	5,17	5,13	5,13
SEER	E	W/W	5,36	5,24	5,28	5,40	5,43	5,37	5,54	5,21	5,22	5,21	5,30	5,33	5,14	5,17	5,22	5,17	5,21
	L	W/W	5,06	4,87	5,07	5,08	5,05	5,10	5,19	5,02	5,02	4,92	4,99	5,21	4,94	5,03	4,99	5,06	5,07
	N	W/W	5,57	5,47	5,50	5,66	5,61	5,65	5,73	5,48	5,48	5,44	5,54	5,48	5,32	5,37	5,37	5,29	5,32
	U	W/W 06	5,41	5,44	5,41	5,58	5,56	5,60 207,30	5,63	5,46	5,49	5,39	5,50	5,57	5,29	5,35	5,48	5,36	5,38
		%	200,10	196,00	193,60	189,90	205,10 211,10		198,30	193,30	195,70	182,00	193,50	190,60	191,50	187,90	186,00	191,00	
	A E	%	208,40	203,00	206,80					203,10		200,60	205,60		204,00	203,00		202,10	
Seasonal efficiency	t	<u>%</u> %	211,40 199,40		208,30 199,70	213,00	199,10	211,80		197,70	205,70 197,60	205,30 193,90	208,90 196,40	210,30 205,20	202,40 194,50	203,90 198,00	205,90 196,40	203,70 199,50	
	N N			215,80						216,00			218,40			211,60		208,50	
	N										216,40					211,00		211,40	
(1) Calculation performed with FIXED water				_	۷۱۵٫۵۷	220,00	Z 17,JU	441,00	222,20	213,30	410,40	£ 12,JU	210,70	417,10	200,70	411,10	210,10	411,40	212,00

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
SEPR - (EN 14825: 2018) (3)																			
	0	W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51	5,52	5,53	5,54	5,55	5,51	5,53
	A	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55	5,54	5,59	5,55	5,59	5,56	5,56
SEPR	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55	5,56	5,53	5,55	5,53	5,51	5,55
SERK	L	W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54	5,54	5,54	5,52	5,54	5,52	5,53
	N	W/W	5,69	5,55	5,67	5,60	5,64	5,62	5,66	5,57	5,63	5,60	5,64	5,61	5,51	5,63	5,69	5,51	5,63
	U	W/W	5,67	5,54	5,66	5,54	5,68	5,59	5,69	5,55	5,55	5,58	5,72	5,74	5,60	5,70	5,67	5,71	5,58

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(3) Calculation performed with FIXED water flow rate.

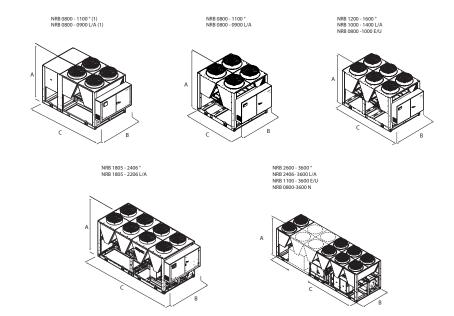
ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Electric data																			
	0	Α	164,3	180,7	197,0	226,4	262,1	291,1	320,1	371,3	416,0	445,0	480,4	529,4	568,6	609,5	650,4	697,7	738,6
Maximum surrent (FLA)	A,L	Α	177,1	193,4	222,5	251,8	281,2	310,2	351,9	396,7	454,2	483,2	530,8	592,5	625,4	666,3	719,9	760,8	801,8
Maximum current (FLA)	E,U	Α	189,8	206,1	222,5	264,5	293,9	322,9	364,6	428,0	472,8	514,5	543,5	605,2	638,1	691,7	745,4	786,3	827,2
	N	Α	202,5	218,8	235,2	277,3	306,6	335,6	383,2	440,7	485,5	527,2	556,2	617,9	650,8	704,4	758,1	799,0	839,9
	0	Α	352,9	408,1	424,4	477,1	512,8	625,3	654,3	705,5	750,3	779,3	814,6	798,7	837,9	878,8	919,7	967,0	1007,9
Dook surrent (LDA)	A,L	Α	365,6	420,8	449,9	502,5	531,9	644,4	686,1	730,9	788,4	817,4	865,0	861,8	894,6	935,6	989,2	1030,1	1071,0
Peak current (LRA)	E,U	Α	378,3	433,5	449,9	515,3	544,6	657,1	698,8	762,2	807,0	848,7	877,7	874,5	907,4	961,0	1014,6	1055,6	1096,5
	N	Α	391,1	446,2	462,6	528,0	557,3	669,8	717,4	774,9	819,7	861,4	890,4	887,2	920,1	973,7	1027,4	1068,3	1109,2

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	°,A,E,L,N,U	type									Scroll								
Compressor regulation	°,A,E,L,N,U	Туре								A	synchrono	us							
Number	°,A,E,L,N,U	no.	4	4	4	4	4	4	4	5	6	6	6	5	6	6	6	6	6
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type									R410A								
	0	kg	14,0	14,5	15,0	16,0	20,5	21,0	21,0	26,0	26,0	26,0	31,0	30,0	41,0	45,0	41,0	48,0	48,0
Refrigerant load	A,L	kg	15,0	16,0	20,0	22,0	21,0	22,5	23,5	25,0	30,0	31,0	32,5	42,0	49,0	59,0	65,0	56,0	52,0
circuit 1 (1)	E,U	kg	20,5	20,0	21,5	26,0	25,0	26,0	30,0	32,0	36,0	44,5	56,0	62,0	53,0	70,0	78,0	78,0	78,0
	N	kg	25,0	26,5	26,5	29,0	28,0	35,0	42,0	38,0	43,0	62,0	42,0	67,0	55,0	76,0	84,0	84,0	84,0
	0	kg	14,0	14,5	15,0	16,0	20,5	21,0	21,0	29,0	29,0	29,0	34,0	40,0	48,0	50,0	41,0	55,0	55,0
Refrigerant load	A,L	kg	15,0	16,0	20,0	22,0	21,0	22,5	25,5	30,0	34,0	34,0	37,5	54,0	55,0	59,0	65,0	66,0	64,0
circuit 2 (1)	E,U	kg	20,5	20,0	21,5	27,0	28,0	27,0	32,0	37,0	39,0	45,5	56,0	62,0	63,0	70,0	78,0	78,0	78,0
·	N	kg	25,0	26,5	26,5	30,0	31,0	35,0	42,0	42,0	47,0	62,0	49,0	67,0	67,0	76,0	84,0	84,0	84,0
Potential global	0.4.5.1.11.11	CIVID									20001 60								
heating	°,A,E,L,N,U	GWP								4	2088kgCO₂e	eq.							
System side heat exc	hanger																		
Туре	°,A,E,L,N,U	type								-	Brazed plat	e							
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connection	ıs																		
Connections (in/out)	°,A,E,L,N,U	Туре								G	rooved join	nts							
Hydraulic connection	s without hyd	ronic kit																	
Sizes (in/out)	°,A,E,L,N,U	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Hydraulic connection	s with hydron	ic kit																	
Sizes (in/out)	°,A,E,L,N,U	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
(2) = 1 1 1 1 1																			

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

Fans

From From 1962	Fans																			
From the property of the prope	Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Part	Fans: M																			
Marche 1.0 1	<u>Fan</u>																			
Marke	Туре		type									Axial								
Hanks (1.14 1.	Fan motor		type																	
Markato (type								Asynchror		phase cu							
Ministripension Ref			no.	4	4	4	4	6	6	6	8	8	8	10	10		12	12	14	14
With time series and the series of the serie	Number		no.				6						10				14	16	16	16
With time should be should	Hullibel	E,U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
Part		N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
Ar have also in the series of	With static pressure																			
Fig. 16 19 19 19 19 19 19 19												128000			160000	192000	192000	192000		
The section				64000	64000	96000	96000	96000	96000	128000	128000	160000	160000	192000	224000	224000	224000	256000	256000	288000
Part	Air flow rate	E		69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000	184000	184000	207000	230000	230000	230000
Part	All How face	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000	161000	161000	161000	184000	184000	208000
Maria plane		N		92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000	207000	207000	230000	253000	253000	253000
Window Part		U	m³/h	96000	96000	96000	128000	128000	128000	160000	192000	192000	224000	224000	256000	256000	288000	320000	320000	320000
Without Static pressure	High static procesure	°,A,U	Pa	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Part	nigh static pressure	E,L,N	Pa	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
Part	Without Static pressure																			
Arthorials and the properties of the properties		0	m³/h	72000	72000	72000	72000	108000	108000	108000	144000	144000	144000	180000	180000	216000	216000	216000	252000	252000
Friendly Reference (1 1 1971) 1970 1970 1970 1970 1970 1970 1970 1970		A	m³/h	72000	72000	108000	108000	108000	108000	144000	144000	180000	180000	216000	252000	252000	252000	288000	288000	288000
Mary	Air flauurata	E	m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000	184000	184000	207000	230000	230000	230000
Millestiatic pressure 1	All HOW fale	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000	161000	161000	161000	184000	184000	184000
Ministrik pressure		N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000	207000	207000	230000	253000	253000	253000
With statiopersions of the state of the stat		U	m³/h	108000	108000	108000	144000	144000	144000	180000	216000	216000	252000	252000	288000	288000	324000	360000	360000	360000
With statiopersions of the state of the stat	High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Section Part																				
Mathematical Health	·	0	dB(A)	87.8	87.8	87.8	87.8	90.0	90.0	90.0	92.0	92.5	93.0	94.7	94.7	95.6	95.6	95.6	96.5	96.5
Fig.		Α	. ,																	
Mathematic Mat			. ,																	
Minimary	Sound power level	<u> </u>																		
Without Static pressure 1		N	. ,																	
Without Static pressure *** of Ikila** 87			. ,																	
Mathematical Part	Without Static pressure		uD(/1)	70,0	70,0	70,0	7175	71,5	71,5	72,1	71,2	71,1	70,0	70,5)1 ,L	71,12	71,0	70,1	70,1	70,1
Sund power level Rei	Without Static pressure	0	dR(A)	80 7	20 7	20 7	20 7	91 7	91 7	91 7	03.4	03.7	03.5	Q/I Q	0/10	95 g	95.8	05 g	96.6	96.6
Part		Δ	. ,																	
Sometimentage																				
Name	Sound power level		. ,																	
Size		L	. ,																	
Signature Sign																				
Fam: Fine		U	ub(A)	72,3	72,3	72,3	73,0	73,0	73,0	24,0	73,1	73,3	70,3	70,0	נ, ול	נ, ול	20,0	70,5	70,5	70,3
Page	Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Mariantoria M.E.I.N. Mye 1	Fans: J																			
Number Number Name Nam	Fan																			
Number Nu	Туре		type									Axial								
Number Mail	Fan motor		type									Inverter								
Number Nu			no.	4	4	4	4	6	6	6	8	8	8	10	10		12	12	14	14
Interior	Number	A,L	no.	4	4	6	6	6	6	8	8	10	10	12	14	14	14	16	16	16
Name	Nullibei	E,U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
Part		N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
Air flowrate Ring Water Park R	Inverter fan																			
Air flowrate Air f		•		64000	64000	64000	64000	96000	96000	96000	128000	128000	128000	160000	160000	192000	192000	192000	224000	224000
N N N N N N N N N N		A	m³/h	64000	64000	96000	96000	96000	96000	128000	128000	160000	160000	192000	224000	224000	224000	256000	256000	288000
N m ² /h down down down down down down down down	Air flour rato	E	m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000	184000	184000	207000	230000	230000	230000
N m³/h 9200 9200 9200 1500 1500 1500 1800 1800 161000 16100 16100 161000 16100 16100 16100 16100 16100 16100 161000 16100	MII HOW Idle	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000	161000	161000	161000	184000	184000	208000
Pa 120		N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000	207000	207000	230000	253000	253000	253000
Pa 120		U	m³/h	96000	96000	96000	128000	128000	128000	160000	192000	192000	224000	224000	256000	256000	288000	320000	320000	320000
High static pressure A Pa 120 120 120 120 120 120 120 120 120 120		0																		
High static pressure F.N Pa 20 20 20 20 20 20 20 2		A		-							-									
L Pa 200 200 200 200 200 200 200 200 200 20	High static pressure																			
V Pa 120 1	• 1																			
Sound data calculated in cooling mode (1) **Notation** *																				
Sound power level dB(A) 87,8 87,8 87,8 87,8 87,8 90,0 90,0 90,0 92,0 92,5 93,0 94,7 94,7 95,6 95,6 95,6 96,5 97,2 <td>Sound data calculated in cooling mode</td> <td></td> <td></td> <td>120</td>	Sound data calculated in cooling mode			120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
A dB(A) 87,8 87,8 97,0 90,0 90,0 90,0 91,5 92,0 93,7 94,2 95,6 96,5 96,5 96,5 97,2 97,2 97,2 97,2 97,2 97,2 97,2 97,2	mout	. ,	dR(A)	87.8	87.8	87.8	87.8	90.0	90.0	90.0	92.0	92.5	93.0	94.7	94.7	95.6	95.6	95.6	96.5	96.5
Sound power level E dB(A) 84,8 84,8 84,8 84,8 84,8 86,3 86,3 86,3 87,5 89,0 89,5 90,8 91,3 92,0 92,0 92,6 93,2 93,2 93,2 93,2 93,2 93,2 93,2 93,2		Α																		
Sound power level L dB(A) 82,7 82,7 84,8 84,8 84,8 85,6 86,3 87,7 88,5 89,8 90,5 91,3 91,3 92,1 92,0 92,8 92,8 N dB(A) 86,3 86,3 86,3 87,5 87,5 87,5 87,5 88,5 89,8 90,3 91,5 92,0 92,6 92,6 93,2 93,7 93,7 93,7 U dB(A) 90,0 90,0 90,0 91,5 91,5 91,5 92,7 94,2 94,7 96,0 96,5 97,2 97,2 97,8 98,4 98,4 98,4 98,4																				
N dB(A) 86,3 86,3 86,3 87,5 87,5 87,5 87,5 88,5 89,8 90,3 91,5 92,0 92,6 92,6 93,2 93,7 93,7 93,7 U dB(A) 90,0 90,0 90,0 91,5 91,5 91,5 92,7 94,2 94,7 96,0 96,5 97,2 97,2 97,8 98,4 98,4 98,4	Sound power level	I																		
U dB(A) 90,0 90,0 90,0 91,5 91,5 91,5 92,7 94,2 94,7 96,0 96,5 97,2 97,2 97,8 98,4 98,4 98,4		L																		
	(1) Carried a conservation of the desired at the des							_								- ,				

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: 0800° , 0900° , 1000° , 1100° 0800L, 0900L 0800A, 0900A

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Dimensions and weights																			
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	2780	2780	2780	2780	3970	3970	3970	5160	5160	5160	6350	5950	7140	7140	7140	8330	8330
	A,L	mm	2780	2780	3970	3970	3970	3970	4760	5160	6350	6350	7140	8330	8330	8330	9520	9520	9520
C	E,U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330	9520	9520	10710	11900	11900	11900
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520	10710	10710	11900	13090	13090	13090

■ The units 0800°, 0900°, 1000°, 1100°; 0800L, 0900L; and 0800A, 0900A with the "storage tank" option, are 3970mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Weights																			
	0	kg	2240	2280	2350	2390	2880	2930	2960	3660	3830	3870	4360	4500	5150	5390	5470	6000	6150
- -	A,L	kg	2260	2320	2800	2870	2910	2970	3490	3710	4280	4360	4780	5510	5760	5910	6390	6520	6600
Empty weight -	E,U	kg	2720	2760	2840	3370	3440	3460	3940	4490	4700	5350	5390	5910	6160	6700	7140	7220	7300
	N	kg	3220	3270	3340	3770	3840	3870	4290	4940	5160	5750	5790	6310	6560	7010	7540	7620	7700

■ The weights are for standard units with plate heat exchangers and no hydronic kit.

NRB 0800-3600

Air-water chiller with shell and tube heat exchanger

Cooling capacity 217 ÷ 1049 kW

- Microchannel coil
- · Shell and tube heat exchanger
- Night mode
- Operation up to 50 °C outdoor air
- HP floating: ESEER +7% with inverter fans

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

They are outdoor units with axial fan scroll compressors, microchannel coils and Shell and tube exchangers.

In the unit with desuperheater, it is also possible to produce free-hot

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50°C external air temperature. Unit can produce chilled water (up to -10°C of water produced in some versions).

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 3600.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

CONFIGURATOR

Field	Description
1,2,3	NRB
4,5,6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406, 2600, 2800, 3000, 3200, 3400, 3600
8	Operating field
0	Standard mechanic thermostatic valve (1)
Х	Electronic thermostatic expansion valve (1)
Υ	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (2)
9	Model
Q	Cooling only with shell and tube heat exchanger
10	Heat recovery
0	Without heat recovery
D	With desuperheater (3)
T	With total recovery (4)
11	Version
0	Standard
Α	High efficiency
E	Silenced high efficiency
L	Standard silenced
N	Silenced very high efficiency
U	Very high efficiency
12	Coils
0	Aluminium microchannel
- 1	Copper-aluminium Copper-aluminium
0	Coated aluminium microchannel
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
13	Fans
J	Inverter
М	Oversized

Field	Description
14	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
	Without hydronic kit (5)
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump

- (1) Water produced from 4 °C \div 18 °C
- (2) Processed water from 4°C to -8°C for the °-L versions, and from 4°C to -10°C for A E U N versions (3) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
- (4) For compatibility with total recovery see table below.(5) For compatibility with the hydronic kit, see the table below.

Compatible with total recovery

Version		800	900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
standard	0	-	-	-	-	-	-	-	-	-	-	•	•	•	•	•	•	•
Standard silenced	L	-	-	-	-	-	-	-	-	•	•	•	•	•	•	•	•	•
High efficiency	Α	-	-	-	-	-	-	-	-			•	•	•	•	•	•	•
Silenced high efficiency	E	-	-	-	-	-	-	•	•				•	•	•	•	•	•
Very high efficiency	U	-	-	-	-	-	-	•		•					•			•
Silenced very high efficiency	N	-	-	-	•	•	•	•	•	•	•	•	•	•		•	•	•

Compatibility of models with hydronic units available with a configurator

Version		800	900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
standard	0	-	-	-	-	•	-	-	•	•	•	•	•	•		•	•	•
Standard silenced	L	-	-	•	-	-	-	•	•	•	•	•	•	•	•	•	•	•
High efficiency	A	-	-	•	-	-	-	•				•	•	•	•	•	•	•
Silenced high efficiency	E	•	•	-	•	•	•	•	•	•	•			•	•	•	•	•
Very high efficiency	U	•	•	-	•	•	•	•	•	•					•	•	•	•
Silenced very high efficiency	N						•				•							•

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
AER485P1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
AERBACP	°,A,E,L,N,U	•	•						•	•	•	•	•	•	•	•	•	•
AERLINK	°,A,E,L,N,U	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L,N,U	•							•	•	•	•	•	•	•	•	•	•
FL	°,A,E,L,N,U	•	•						•	•	•	•	•	•	•		•	•
MULTICHILLER_EVO	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
Fans: M									
0	DCPX130	DCPX130	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX155	DCPX155
A	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131	DCPX132	DCPX155	DCPX156
E,L,N	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard	As standard
U	DCPX131	DCPX131	DCPX131	DCPX132	DCPX132	DCPX132	DCPX133	DCPX134	DCPX134
Ver	2206	2406	2600	2800		3000	3200	3400	3600
Ver Fans: M	2206	2406	2600	2800		3000	3200	3400	3600
	2206 DCPX155	2406 DCPX156	2600 DCPX133	2800 DCPX134	. [3000 CPX134	3200 DCPX134	3400 DCPX135	3600 DCPX135
Fans: M									
Fans: M	DCPX155	DCPX156	DCPX133	DCPX134		CPX134	DCPX134	DCPX135	DCPX135

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
0	AVX1107	AVX1107	AVX1107	AVX1107	AVX1108	AVX1108	AVX1108	AVX1109	AVX1109	AVX1109	AVX1110	AVX1112	AVX1114	AVX1114	AVX1114	AVX1106	AVX1106
A,L	AVX1107	AVX1107	AVX1108	AVX1108	AVX1108	AVX1108	AVX1109	AVX1109	AVX1110	AVX1110	AVX1111	AVX1105	AVX1105	AVX1105	AVX1102	AVX1102	AVX1102
E,U	AVX1108	AVX1108	AVX1108	AVX1109	AVX1109	AVX1109	AVX1110	AVX1111	AVX1111	AVX1105	AVX1105	AVX1102	AVX1102	AVX1113	AVX1103	AVX1103	AVX1103
N	AVX1109	AVX1109	AVX1109	AVX1110	AVX1110	AVX1110	AVX1111	AVX1105	AVX1105	AVX1102	AVX1102	AVX1113	AVX1113	AVX1103	AVX1104	AVX1104	AVX1104
Integrated hydronic kit: DA, DB, DC, DD,	DE, DF, DG,	DH, DI, D.	J, PA, PB, F	PC, PD, PE,	PF, PG, PI	l, PI, PJ											
o .	-	-	-	-	AVX1108	-	-	AVX1109	AVX1109	AVX1109	AVX1110	AVX1112	AVX1114	AVX1114	AVX1114	AVX1106	AVX1106
A,L	-	-	AVX1108	-	-	-	AVX1109	AVX1109	AVX1110	AVX1110	AVX1111	AVX1105	AVX1105	AVX1105	AVX1102	AVX1102	AVX1102
E,U	AVX1108	AVX1108	-	AVX1109	AVX1109	AVX1109	AVX1110	AVX1111	AVX1111	AVX1105	AVX1105	AVX1102	AVX1102	AVX1113	AVX1103	AVX1103	AVX1103
N	AVX1109	AVX1109	AVX1109	AVX1110	AVX1110	AVX1110	AVX1111	AVX1105	AVX1105	AVX1102	AVX1102	AVX1113	AVX1113	AVX1103	AVX1104	AVX1104	AVX1104

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
°,A,E,L,N,U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2600	2800	3000	3200	3400	3600
°,A,E,L,N,U	DRENRB2206 (1)	DRENRB2406 (1)	-	-	-	-	-	-

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

The accessory cannot be fitted on the configurations indicated with -A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
0	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	RIFNRB1600	RIFNRB1805	RIFNRB2006
A,L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	RIFNRB1601	RIFNRB1805	RIFNRB2006
E,U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016

A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2600	2800	3000	3200	3400	3600
٥	RIFNRB2206	RIFNRB2406	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600
A,L	RIFNRB2206	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600
E,N,U	RIFNRB2216	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
0	GP2VN	GP2VN	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V	GP6V	GP7V	GP7V
A,L	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP7V	GP7V	GP7V	GP8V	GP8V	GP8V
E,U	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP10V	GP10V	GP10V
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP4VN	GP9VN	GP9VN	GP10V	GP11V	GP11V	GP11V
Integrated hydronic kit: DA, DB, DC, D	D, DE, DF, DG,	DH, DI, D.	I, PA, PB, I	PC, PD, PE,	PF, PG, PI	H, PI, PJ											
o	-	-	-	-	GP3VN	-	-	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V	GP6V	GP7V	GP7V
A,L	-	-	GP3VN	-	-	-	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP7V	GP7V	GP7V	GP8V	GP8V	GP8V
E,U	GP3VN	GP3VN	-	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP10V	GP10V	GP10V
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP4VN	GP9VN	GP9VN	GP10V	GP11V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

Kit for low temperature

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
0	-	-	-	-	-	-	-	XLA (1)									
A,L	-	-	-	-	-	-	XLA (1)										
E,U	-	-	-	XLA (1)													
N	XLA (1)																

PERFORMANCE SPECIFICATIONS

NRB - °

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	221,5	244,5	270,3	299,7	353,1	404,9	439,0	511,2	560,9	598,2	675,8	721,6	786,8	830,6	880,2	945,8	998,2
Input power	kW	73,3	83,1	94,1	110,3	117,5	135,4	155,1	175,7	194,0	216,6	236,5	256,0	270,3	292,6	314,7	329,4	355,2
Cooling total input current	Α	128,3	143,1	160,0	185,5	201,6	229,9	260,8	299,7	329,8	366,5	404,6	434,0	459,4	498,2	534,6	562,9	606,0
EER	W/W	3,02	2,94	2,87	2,72	3,00	2,99	2,83	2,91	2,89	2,76	2,86	2,82	2,91	2,84	2,80	2,87	2,81
Water flow rate system side	l/h	38117	42077	46498	51565	60733	69640	75512	87913	96469	102883	116222	124100	135305	142813	151332	162608	171611
Pressure drop system side	kPa	46	55	38	45	44	39	46	40	47	53	52	58	60	36	39	46	43

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - L

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)		0000	0,00	1000	1100	1200	1100	1000	1005	2000	2200	2100	2000	2000	3000	3200	3100	3000
Cooling capacity	kW	216,9	237,7	272,7	307,7	343,9	391,0	438,4	498,2	555,4	608,2	666,2	727,2	770,0	834,2	886,6	952,6	1004,1
Input power	kW	73,0	85,9	92,0	107,4	122,7	139,0	151,9	173,3	191,6	213,6	233,8	246,8	270,1	284,5	307,5	323,1	347,9
Cooling total input current	A	122,8	142,3	154,5	179,0	203,4	231,8	250,8	289,7	318,6	359,2	390,2	412,6	448,8	478,6	512,6	544,6	585,4
EER	W/W	2,97	2,77	2,97	2,87	2,80	2,81	2,89	2,87	2,90	2,85	2,85	2,95	2,85	2,93	2,88	2,95	2,89
Water flow rate system side	l/h	37323	40891	46905	52926	59137	67243	75381	85669	95498	104586	114564	125029	132382	143408	152424	163777	172632
Pressure drop system side	kPa	25	20	27	24	29	23	30	28	37	36	44	28	31	30	34	39	43

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - A

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	224,1	252,2	283,7	326,1	361,2	411,7	462,2	519,2	576,0	633,3	697,6	757,5	805,8	867,0	928,7	980,8	1026,8
Input power	kW	70,6	80,9	90,2	104,7	115,3	131,8	147,6	166,3	183,5	203,1	223,3	240,5	256,5	277,0	297,0	314,4	330,3
Cooling total input current	Α	123,9	139,9	158,8	181,8	198,2	224,1	252,4	283,8	316,2	348,7	386,3	417,6	441,6	475,9	513,3	541,6	567,7
EER	W/W	3,17	3,12	3,15	3,12	3,13	3,12	3,13	3,12	3,14	3,12	3,12	3,15	3,14	3,13	3,13	3,12	3,11
Water flow rate system side	l/h	38561	43394	48802	56076	62118	70789	79487	89271	99048	108894	119965	130236	138537	149048	159671	168622	176531
Pressure drop system side	kPa	27	22	30	27	32	25	34	30	39	39	48	30	34	32	38	41	45

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - E

	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
kW	219,2	248,3	275,0	321,4	358,7	403,2	455,0	514,5	569,0	637,2	688,3	741,1	794,3	857,9	911,7	965,1	1019,4
kW	69,6	79,4	88,5	102,2	114,9	129,8	144,5	164,7	183,0	203,4	221,4	236,5	255,5	274,7	290,6	310,5	327,8
А	119,5	134,7	148,8	172,1	192,6	215,7	240,1	275,1	306,1	342,6	372,8	397,0	425,9	459,5	487,5	520,6	549,0
W/W	3,15	3,13	3,11	3,15	3,12	3,11	3,15	3,12	3,11	3,13	3,11	3,13	3,11	3,12	3,14	3,11	3,11
l/h	37710	42726	47303	55271	61679	69338	78240	88465	97841	109550	118323	127417	136570	147496	156744	165934	175268
kPa	19	23	20	27	21	27	26	33	33	22	25	30	34	33	38	41	46
	kW A W/W I/h	kW 219,2 kW 69,6 A 119,5 W/W 3,15 I/h 37710	kW 219,2 248,3 kW 69,6 79,4 A 119,5 134,7 W/W 3,15 3,13 I/h 37710 42726	kW 219,2 248,3 275,0 kW 69,6 79,4 88,5 A 119,5 134,7 148,8 W/W 3,15 3,13 3,11 I/h 37710 42726 47303	kW 219,2 248,3 275,0 321,4 kW 69,6 79,4 88,5 102,2 A 119,5 134,7 148,8 172,1 W/W 3,15 3,13 3,11 3,15 I/h 37710 42726 47303 55271	kW 219,2 248,3 275,0 321,4 358,7 kW 69,6 79,4 88,5 102,2 114,9 A 119,5 134,7 148,8 172,1 192,6 W/W 3,15 3,13 3,11 3,15 3,12 I/h 37710 42726 47303 55271 61679	kW 219,2 248,3 275,0 321,4 358,7 403,2 kW 69,6 79,4 88,5 102,2 114,9 129,8 A 119,5 134,7 148,8 172,1 192,6 215,7 W/W 3,15 3,13 3,11 3,15 3,12 3,11 I/h 37710 42726 47303 55271 61679 69338	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 I/h 37710 42726 47303 55271 61679 69338 78240	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 I/h 37710 42726 47303 55271 61679 69338 78240 88465	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 I/h 37710 42726 47303 55271 61679 69338 78240 88465 97841	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,13 I/h 37710 42726 47303 55271 61679 69338 78240 88465 97841 109550	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 <td>kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,13 3,11 3,13 I/h 37710 42726 47303 55271 61679 69338 78240 88465 97841 109550 118323 12747</td> <td>kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,11 3,13 3,11 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,13 3,11 3,13 3,11 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,13 3,</td> <td>kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 459,5 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 <td< td=""><td>kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 911,7 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 290,6 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 487,5 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,14 <</td><td>kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 911,7 965,1 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 290,6 310,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 459,5 487,5 520,6 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,14 3,11 3,13 3,11 3,12 3,14 3,11 3,13 3,11 3,12 3,14 3,11 I/h 3770 42726 47303 55271 61679 69338 78240 88465 97841</td></td<></td>	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,13 3,11 3,13 I/h 37710 42726 47303 55271 61679 69338 78240 88465 97841 109550 118323 12747	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,11 3,13 3,11 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,13 3,11 3,13 3,11 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,13 3,	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 459,5 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 3,11 3,12 <td< td=""><td>kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 911,7 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 290,6 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 487,5 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,14 <</td><td>kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 911,7 965,1 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 290,6 310,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 459,5 487,5 520,6 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,14 3,11 3,13 3,11 3,12 3,14 3,11 3,13 3,11 3,12 3,14 3,11 I/h 3770 42726 47303 55271 61679 69338 78240 88465 97841</td></td<>	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 911,7 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 290,6 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 487,5 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,14 <	kW 219,2 248,3 275,0 321,4 358,7 403,2 455,0 514,5 569,0 637,2 688,3 741,1 794,3 857,9 911,7 965,1 kW 69,6 79,4 88,5 102,2 114,9 129,8 144,5 164,7 183,0 203,4 221,4 236,5 255,5 274,7 290,6 310,5 A 119,5 134,7 148,8 172,1 192,6 215,7 240,1 275,1 306,1 342,6 372,8 397,0 425,9 459,5 487,5 520,6 W/W 3,15 3,13 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,12 3,11 3,15 3,14 3,11 3,13 3,11 3,12 3,14 3,11 3,13 3,11 3,12 3,14 3,11 I/h 3770 42726 47303 55271 61679 69338 78240 88465 97841

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NRB - U

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	227,6	257,6	286,5	329,6	369,8	414,6	466,9	529,2	594,0	655,1	716,9	765,5	815,3	879,0	940,9	999,7	1049,5
Input power	kW	68,8	77,7	86,8	99,5	111,7	126,1	140,9	159,5	179,0	197,8	215,3	229,4	248,9	265,7	282,3	302,5	319,5
Cooling total input current	А	124,3	138,5	152,9	176,0	195,6	218,0	244,0	278,3	311,7	347,7	377,4	401,2	431,5	463,1	493,9	527,9	556,4
EER	W/W	3,30	3,31	3,30	3,31	3,31	3,28	3,31	3,32	3,32	3,31	3,33	3,34	3,28	3,31	3,33	3,30	3,28
Water flow rate system side	l/h	39151	44308	49294	56689	63596	71302	80286	91003	102137	112618	123250	131616	140179	151126	161768	171875	180443
Pressure drop system side	kPa	20	25	21	29	23	28	27	35	36	23	27	32	36	35	40	44	49

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

⁽¹⁾ With the accessory XLA do not use the DCPX.
The accessory cannot be fitted on the configurations indicated with A grey background indicates the accessory must be assembled in the factory

NRB - N

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	227,7	260,4	284,7	327,7	367,7	412,3	466,1	521,6	579,1	645,7	702,6	749,4	804,7	866,4	926,7	973,5	1029,9
Input power	kW	68,5	78,9	86,4	98,5	111,9	125,4	140,4	157,8	176,0	194,6	212,9	229,0	246,7	263,5	282,7	301,1	319,3
Cooling total input current	Α	118,2	135,1	146,9	166,9	188,6	209,4	234,0	264,2	295,4	328,9	360,0	385,3	412,5	442,0	475,2	506,2	536,4
EER	W/W	3,32	3,30	3,30	3,33	3,29	3,29	3,32	3,31	3,29	3,32	3,30	3,27	3,26	3,29	3,28	3,23	3,23
Water flow rate system side	l/h	39166	44792	48972	56365	63234	70905	80151	89691	99569	111009	120789	128849	138355	148961	159328	167377	177077
Pressure drop system side	kPa	20	25	21	28	23	28	27	34	34	23	26	30	35	34	39	42	47

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 FII)

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Fans: J			- 0000	0,00	1000	1100	1200	1400	1000	1003	2000	2200	2700	2000	2000	3000	3200	3400	3000
SEER - 12/7 (EN14825: 2018) (1)																			
	0	W/W	4,44	4,33	4,27	4,25	4,39	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,65	4,55	4,66	4,70	4,69	4,73	4,76	4,64	4,64	4,62	4,61	4,68	4,66	4,66	4,68	4,64	4,63
CEED	E	W/W	4,75	4,67	4,63	4,81	4,82	4,76	4,88	4,73	4,67	4,70	4,74	4,69	4,71	4,74	4,80	4,72	4,73
SEER	L	W/W	4,56	4,42	4,50	4,51	4,58	4,59	4,67	4,56	4,56	4,58	4,57	4,61	4,56	4,57	4,58	4,62	4,56
	N	W/W	4,85	4,79	4,83	4,96	4,93	4,97	5,03	4,93	4,82	4,89	4,83	4,89	4,80	4,84	4,83	4,73	4,73
	U	W/W	4,76	4,75	4,71	4,89	4,85	4,86	4,91	4,84	4,77	4,82	4,78	4,87	4,81	4,85	4,92	4,83	4,81
		%	174,60	170,10	167,60	167,10	172,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	182,80	179,10	183,40	185,00	184,70	186,20	187,30	182,70	182,40	181,70	181,50	184,20	183,50	183,30	184,00	182,70	182,00
Seasonal efficiency	E	%	187,00	183,70	182,00	189,30	189,60	187,50	192,30	186,20	183,90	184,80	186,40	184,70	185,30	186,40	189,10	185,80	186,10
ocasonal enterency	L	%	179,20	173,80	177,00	177,50	180,10	180,40	183,90	179,50	179,40	180,10	179,60	181,30	179,40	179,90	180,30	181,60	179,30
	N	%	191,10	188,40	190,30	195,40	194,20	195,90	198,10	194,10	189,90	192,40	190,00	192,70	189,10	190,60	190,20	186,30	186,20
	U	%	187,40	187,10	185,20	192,50	191,00	191,30	193,30	190,70	187,70	189,60	188,10	191,90	189,40	191,10	193,80	190,00	189,40
SEER - 23/18 (EN14825: 2018) (3)																			
	0	W/W	5,28	5,16	5,07	4,96	5,40	5,44	5,18	5,07	5,13	4,77	5,07	5,09	5,09	4,98	4,92	5,09	5,01
	A	W/W	5,50	5,35	5,50	5,51	5,55	5,55	5,63	5,34	5,44	5,30	5,42	5,41	5,43	5,38	5,43	5,36	5,40
SEER	E	W/W	5,62	5,53	5,46	5,70	5,69	5,63	5,77	5,50	5,52	5,48	5,59	5,47	5,41	5,47	5,77	5,50	5,51
	L	W/W	5,34	5,14	5,35	5,33	5,37	5,34	5,47	5,26	5,32	5,20	5,26	5,35	5,20	5,25	5,21	5,32	5,23
	N	W/W	5,92	5,71	5,76	5,91	5,88	5,91	5,99	5,75	5,74	5,71	5,75	5,74	5,55	5,62	5,64	5,54	5,54
	U	W/W	5,65	5,67	5,59	5,82	5,76	5,80	5,83	5,67	5,69	5,61	5,68	5,77	5,59	5,66	5,85	5,70	5,69
		%	208,10	203,40	199,80	195,40	212,90	214,50	204,10	199,90	202,10	187,80	199,60	200,40	200,40	196,10	193,90	200,40	197,40
	A	%	217,00	210,90	217,00	217,50	219,10	219,10	222,10	210,50	214,60	209,10	213,60	213,40	214,20	212,00	214,30	211,50	213,00
Seasonal efficiency	E	%	221,90	218,30	215,30	224,90	224,50	222,20	227,70	216,80	217,70	216,00	220,60	215,70	213,40	215,60	227,90	216,80	217,20
	L N	%	210,40	202,70	211,00	210,20	211,60	210,40	215,80	207,40	209,70	205,10	207,50	211,00	204,80	206,90	205,40	209,90	206,20
	N	% %	222,80	223,70	220,70	233,50	232,10	228,80	230,20	226,80	224,50	221,50	224,00	226,40 227,80	220,60	223,40	231,00	218,40	218,50 224,40
SEPR - (EN 14825: 2018) (3)	U	70	222,00	223,70	220,70	229,90	227,30	220,00	230,20	223,00	224,30	221,30	224,00	227,00	220,00	223,40	231,00	223,00	224,40
3EI N (EN 14023, 2010) (3)	0	W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51	5,52	5,53	5,54	5,55	5,51	5,53
	Α	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55	5,54	5,59	5,55	5,59	5,56	5,56
	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55	5,56	5,53	5,55	5,53	5,51	5,55
SEPR		W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54	5,54	5,54	5,52	5,54	5,52	5,53
	N	W/W	5,69	5,55	5,67	5,60	5,64	5,62	5,66	5,57	5,67	5,60	5,64	5,61	5,51	5,63	5,69	5,51	5,63
	U	W/W	5,67	5,54	5,66	5,54	5,68	5,59	5,69	5,55	5,55	5,58	5,72	5,74	5,60	5,70	5,67	5,71	5,58
Fans: M			,	,			,			,			,		,		,		,
SEER - 12/7 (EN14825: 2018) (1)																			
	0	W/W	4,23	4,13	4,10	4,11	4,19	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,41	4,34	4,39	4,45	4,48	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEER	E	W/W	4,47	4,40	4,40	4,54	4,54	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
DEEN	L	W/W	4,31	4,17	4,25	4,27	4,31	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	W/W	4,61	4,56	4,58	4,72	4,68	4,72	4,78	4,66	4,58	4,61	4,62	4,64	4,59	4,62	4,60	4,59	4,62
	U	W/W	4,51	4,51	4,51	4,63	4,64	4,65	4,70	4,61	4,56	4,57	4,59	4,58	4,56	4,59	4,57	4,56	4,56
		%	166,00	162,30	161,00	161,20	164,70	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	173,50	170,60	172,40	174,90		- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
Seasonal efficiency	E	%	175,60					- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
ocasonal enterery	L	%	169,40		166,80	167,60	169,20	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	N	%			180,00		184,10		188,20	183,40	180,30	181,50	181,60	182,70	180,60	181,70		180,60	181,70
	U	%	177,20	177,40	177,20	182,10	182,50	183,10	184,80	181,40	179,20	179,90	180,50	180,30	179,30	180,60	179,70	179,50	179,30
SEER - 23/18 (EN14825: 2018) (3)																			
	•	W/W	5,08	4,98	4,92	4,82	5,20	5,26	5,03	4,91	4,97	4,63	4,91	4,84	4,86	4,77	4,73	4,85	4,81
	A	W/W	5,29	5,15	5,25	5,28	5,35	5,37	5,42	5,15	5,22	5,09	5,22	5,30	5,18	5,15	5,17	5,13	5,13
SEER	E	W/W	5,36	5,24	5,28	5,40	5,43	5,37	5,54	5,21	5,22	5,21	5,30	5,33	5,14	5,17	5,22	5,17	5,21
	L	W/W	5,06	4,87	5,07	5,08	5,05	5,10	5,19	5,02	5,02	4,92	4,99	5,21	4,94	5,03	4,99	5,06	5,07
	N	W/W	5,57	5,47	5,50	5,66	5,61	5,65	5,73	5,48	5,48	5,44	5,54	5,48	5,32	5,37	5,37	5,29	5,32
	U	W/W	5,41	5,44	5,41	5,58	5,56	5,60	5,63	5,46	5,49	5,39	5,50	5,57	5,29	5,35	5,48	5,36	5,38

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
	0	%	200,10	196,00	193,60	189,90	205,10	207,30	198,30	193,30	195,70	182,00	193,50	190,60	191,50	187,90	186,00	191,00	189,20
	Α	%	208,40	203,00	206,80	208,00	211,10	211,60	213,60	203,10	205,70	200,60	205,60	209,10	204,00	203,00	203,60	202,10	202,10
Consonal officiones	E	%	211,40	206,40	208,30	213,00	214,00	211,80	218,50	205,50	205,70	205,30	208,90	210,30	202,40	203,90	205,90	203,70	205,50
Seasonal efficiency	L	%	199,40	191,90	199,70	200,10	199,10	200,80	204,40	197,70	197,60	193,90	196,40	205,20	194,50	198,00	196,40	199,50	199,80
	N	%	219,70	215,80	216,80	223,40	221,50	223,00	226,20	216,00	216,30	214,60	218,40	216,30	209,60	211,60	211,80	208,50	209,70
	U	%	213,40	214,40	213,30	220,00	219,50	221,00	222,20	215,30	216,40	212,50	216,90	219,70	208,70	211,10	216,10	211,40	212,00
SEPR - (EN 14825: 2018) (3)																			
	0	W/W	5,39	5,22	5,17	5,03	5,36	5,51	5,52	5,58	5,52	5,51	5,51	5,52	5,53	5,54	5,55	5,51	5,53
	Α	W/W	5,64	5,29	5,58	5,30	5,55	5,52	5,56	5,56	5,57	5,55	5,55	5,54	5,59	5,55	5,59	5,56	5,56
SEPR	E	W/W	5,56	5,22	5,47	5,25	5,52	5,56	5,58	5,54	5,53	5,55	5,55	5,56	5,53	5,55	5,53	5,51	5,55
DELK	L	W/W	5,32	5,05	5,31	5,04	5,18	5,05	5,53	5,53	5,53	5,52	5,54	5,54	5,54	5,52	5,54	5,52	5,53
	N	W/W	5,69	5,55	5,67	5,60	5,64	5,62	5,66	5,57	5,63	5,60	5,64	5,61	5,51	5,63	5,69	5,51	5,63
	U	W/W	5,67	5,54	5,66	5,54	5,68	5,59	5,69	5,55	5,55	5,58	5,72	5,74	5,60	5,70	5,67	5,71	5,58

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

ELECTRIC DATA																			
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Electric data																			
	0	Α	164,3	180,7	197,0	226,4	262,1	291,1	320,1	371,3	416,0	445,0	480,4	529,4	568,6	609,5	650,4	697,7	738,6
Maximum current (FLA)	A,L	Α	177,1	193,4	222,5	251,8	281,2	310,2	351,9	396,7	454,2	483,2	530,8	592,5	625,4	666,3	719,9	760,8	801,8
Maximum current (FLA)	E,U	Α	189,8	206,1	222,5	264,5	293,9	322,9	364,6	428,0	472,8	514,5	543,5	605,2	638,1	691,7	745,4	786,3	827,2
	N	Α	202,5	218,8	235,2	277,3	306,6	335,6	383,2	440,7	485,5	527,2	556,2	617,9	650,8	704,4	758,1	799,0	839,9
	0	Α	352,9	408,1	424,4	477,1	512,8	625,3	654,3	705,5	750,3	779,3	814,6	798,7	837,9	878,8	919,7	967,0	1007,9
Peak current (LRA)	A,L	Α	365,6	420,8	449,9	502,5	531,9	644,4	686,1	730,9	788,4	817,4	865,0	861,8	894,6	935,6	989,2	1030,1	1071,0
reak current (LKA)	E,U	Α	378,3	433,5	449,9	515,3	544,6	657,1	698,8	762,2	807,0	848,7	877,7	874,5	907,4	961,0	1014,6	1055,6	1096,5
	N	Α	391,1	446,2	462,6	528,0	557,3	669,8	717,4	774,9	819,7	861,4	890,4	887,2	920,1	973,7	1027,4	1068,3	1109,2

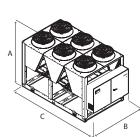
GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	°,A,E,L,N,U	type									Scroll								
Compressor regulation	°,A,E,L,N,U	Type									0n/0ff								
Number	°,A,E,L,N,U	no.	4	4	4	4	4	4	4	5	6	6	6	5	6	6	6	6	6
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Partialisation of the unit with mechanical thermostatic valve	°,A,E,L,N,U	%	25%	25%	25%	25%	25%	25%	25%	17%	17%	17%	17%	20%	17%	17%	17%	17%	17%
Partialisation of the unit with electronic thermostatic expansion valve	°,A,E,L,N,U	%	25%	25%	25%	25%	25%	25%	25%	17%	17%	17%	17%	20%	17%	17%	17%	17%	17%
Refrigerant	°,A,E,L,N,U	type									R410A								
	0	kg	28,0	29,0	30,0	32,0	41,0	42,0	42,0	55,0	55,0	55,0	65,0	70,0	89,0	95,0	82,0	103,0	103,0
D. (:	A,L	kg	30,0	32,0	40,0	44,0	42,0	45,0	49,0	55,0	64,0	65,0	70,0	96,0	104,0	118,0	130,0	122,0	116,0
Refrigerant charge (1)	E,U	kg	41,0	40,0	43,0	53,0	53,0	53,0	62,0	69,0	75,0	90,0	112,0	124,0	116,0	140,0	156,0	156,0	156,0
	N	kg	50,0	53,0	53,0	59,0	59,0	70,0	84,0	80,0	90,0	124,0	91,0	134,0	122,0	152,0	168,0	168,0	168,0
Oil	°,A,E,L,N,U	Туре																	
Oil charge circuit 1	°,A,E,L,N,U	kg	9,3	11,5	13,6	13,1	12,6	12,6	12,6	16,6	24,9	24,9	12,6	18,6	27,9	27,9	27,9	27,9	27,9
Oil charge circuit 2	°,A,E,L,N,U	kg	9,3	11,5	13,6	13,1	12,6	12,6	12,6	24,9	24,9	24,9	24,9	24,9	27,9	27,9	27,9	27,9	27,9
System side heat exchanger																			
Туре	°,A,E,L,N,U	type								Sh	nell and tu	be							
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																			
Connections (in/out)	°,A,E,L,N,U	Туре								Gı	rooved joi	nts							
Hydraulic connections without hydronic	: kit																		
	٥	Ø	5"	5"	5"	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"
Sizes (in/out)	A,L	Ø	5"	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"
	E,N,U	Ø	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"
Hydraulic connections with hydronic kit																			
		Ø	-	-	-	-	3"	-	-	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	A,L	Ø	-	-	3"	-	-	-	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Sizes (III/Out)	E,U	Ø	3"	3"	-	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
	N	Ø	3"	3"	3"	3"	3"	3″	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"

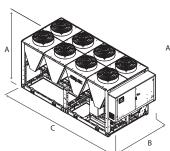
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

Water filter not supplied. Installation is mandatory or the guarantee will void.

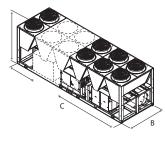
Fans


From From 1962	Fans																			
From the property of the prope	Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Part	Fans: M																			
Marche 1.0 1	<u>Fan</u>																			
Marke	Туре		type									Axial								
Hanks (1.14 1.	Fan motor		type																	
Markato (type								Asynchror		phase cu							
Ministripension Ref			no.	4	4	4	4	6	6	6	8	8	8	10	10		12	12	14	14
With time series and the series of the serie	Number		no.				6						10				14	16	16	16
With time should be should	Hullibel	E,U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
Part		N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
Ar have also in the series of	With static pressure																			
Fig. 16 19 19 19 19 19 19 19												128000			160000	192000	192000	192000		
The section				64000	64000	96000	96000	96000	96000	128000	128000	160000	160000	192000	224000	224000	224000	256000	256000	288000
Part	Air flow rate	E		69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000	184000	184000	207000	230000	230000	230000
Part	All How face	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000	161000	161000	161000	184000	184000	208000
Maria plane		N		92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000	207000	207000	230000	253000	253000	253000
Window Part		U	m³/h	96000	96000	96000	128000	128000	128000	160000	192000	192000	224000	224000	256000	256000	288000	320000	320000	320000
Without Static pressure	High static procesure	°,A,U	Pa	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Part	nigh static pressure	E,L,N	Pa	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
Part	Without Static pressure																			
Arthorials and the properties of the properties		0	m³/h	72000	72000	72000	72000	108000	108000	108000	144000	144000	144000	180000	180000	216000	216000	216000	252000	252000
Friendly Reference (1 1 1971) 1970 1970 1970 1970 1970 1970 1970 1970		A	m³/h	72000	72000	108000	108000	108000	108000	144000	144000	180000	180000	216000	252000	252000	252000	288000	288000	288000
Mary	Air flauurata	E	m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000	184000	184000	207000	230000	230000	230000
Millestiatic pressure 1	All HOW fale	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000	161000	161000	161000	184000	184000	184000
Ministrik pressure		N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000	207000	207000	230000	253000	253000	253000
With statiopersions of the state of the stat		U	m³/h	108000	108000	108000	144000	144000	144000	180000	216000	216000	252000	252000	288000	288000	324000	360000	360000	360000
With statiopersions of the state of the stat	High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Section Part																				
Mathematical Health	·	0	dB(A)	87.8	87.8	87.8	87.8	90.0	90.0	90.0	92.0	92.5	93.0	94.7	94.7	95.6	95.6	95.6	96.5	96.5
Fig.		Α	. ,																	
Mathematic Mat			. ,																	
Minimary	Sound power level	<u> </u>																		
Without Static pressure 1		N	. ,																	
Without Static pressure *** of Ikila** 87			. ,																	
Mathematical Part	Without Static pressure		uD(/1)	70,0	70,0	70,0	7175	71,5	71,5	72,1	71,2	71,1	70,0	70,5)1 ,L	71,12	71,0	70,1	70,1	70,1
Sund power level Rei	Without Static pressure	0	dR(A)	80 7	20 7	20 7	20 7	91 7	91 7	91 7	03.4	03.7	03.5	Q/I Q	0/10	95 g	95.8	05 g	96.6	96.6
Part		Δ	. ,																	
Sometimentage																				
Name	Sound power level		. ,																	
Size		L	. ,																	
Signature Sign																				
Fam: Fine		U	ub(A)	72,3	72,3	72,3	73,0	73,0	73,0	24,0	73,1	73,3	70,3	70,0	נ, ול	נ, ול	20,0	70,5	70,5	70,3
Page	Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Mariantoria M.E.I.N. Mye 1	Fans: J																			
Number Number Name Nam	Fan																			
Number Nu	Туре		type									Axial								
Number Mail	Fan motor		type									Inverter								
Number Nu			no.	4	4	4	4	6	6	6	8	8	8	10	10		12	12	14	14
Interior	Number	A,L	no.	4	4	6	6	6	6	8	8	10	10	12	14	14	14	16	16	16
Name	Nullibei	E,U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
Part		N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
Air flowrate Ring Water Park R	Inverter fan																			
Air flowrate Air f		•		64000	64000	64000	64000	96000	96000	96000	128000	128000	128000	160000	160000	192000	192000	192000	224000	224000
N N N N N N N N N N		A	m³/h	64000	64000	96000	96000	96000	96000	128000	128000	160000	160000	192000	224000	224000	224000	256000	256000	288000
N m ² /h down down down down down down down down	Air flour rato	E	m³/h	69000	69000	69000	92000	92000	92000	115000	138000	138000	161000	161000	184000	184000	207000	230000	230000	230000
N m³/h 9200 9200 9200 1500 1500 1500 1800 1800 161000 16100 16100 161000 16100 16100 16100 16100 16100 16100 161000 16100	MII HOW Idle	L	m³/h	46000	46000	69000	69000	69000	69000	92000	92000	115000	115000	138000	161000	161000	161000	184000	184000	208000
Pa 120		N	m³/h	92000	92000	92000	115000	115000	115000	138000	161000	161000	184000	184000	207000	207000	230000	253000	253000	253000
Pa 120		U	m³/h	96000	96000	96000	128000	128000	128000	160000	192000	192000	224000	224000	256000	256000	288000	320000	320000	320000
High static pressure A Pa 120 120 120 120 120 120 120 120 120 120		0																		
High static pressure F.N Pa 20 20 20 20 20 20 20 2		A		-							-									
L Pa 200 200 200 200 200 200 200 200 200 20	High static pressure																			
V Pa 120 1	• 1																			
Sound data calculated in cooling mode (1) **Notation** *																				
Sound power level dB(A) 87,8 87,8 87,8 87,8 87,8 90,0 90,0 90,0 92,0 92,5 93,0 94,7 94,7 95,6 95,6 95,6 96,5 97,2 <td>Sound data calculated in cooling mode</td> <td></td> <td></td> <td>120</td>	Sound data calculated in cooling mode			120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
A dB(A) 87,8 87,8 97,0 90,0 90,0 90,0 91,5 92,0 93,7 94,2 95,6 96,5 96,5 96,5 97,2 97,2 97,2 97,2 97,2 97,2 97,2 97,2	mout	. ,	dR(A)	87.8	87.8	87.8	87.8	90.0	90.0	90.0	92.0	92.5	93.0	94.7	94.7	95.6	95.6	95.6	96.5	96.5
Sound power level E dB(A) 84,8 84,8 84,8 84,8 84,8 86,3 86,3 86,3 87,5 89,0 89,5 90,8 91,3 92,0 92,0 92,6 93,2 93,2 93,2 93,2 93,2 93,2 93,2 93,2		Α																		
Sound power level L dB(A) 82,7 82,7 84,8 84,8 84,8 85,6 86,3 87,7 88,5 89,8 90,5 91,3 91,3 92,1 92,0 92,8 92,8 N dB(A) 86,3 86,3 86,3 87,5 87,5 87,5 87,5 88,5 89,8 90,3 91,5 92,0 92,6 92,6 93,2 93,7 93,7 93,7 U dB(A) 90,0 90,0 90,0 91,5 91,5 91,5 92,7 94,2 94,7 96,0 96,5 97,2 97,2 97,8 98,4 98,4 98,4 98,4																				
N dB(A) 86,3 86,3 86,3 87,5 87,5 87,5 87,5 88,5 89,8 90,3 91,5 92,0 92,6 92,6 93,2 93,7 93,7 93,7 U dB(A) 90,0 90,0 90,0 91,5 91,5 91,5 92,7 94,2 94,7 96,0 96,5 97,2 97,2 97,8 98,4 98,4 98,4	Sound power level	I																		
U dB(A) 90,0 90,0 90,0 91,5 91,5 91,5 92,7 94,2 94,7 96,0 96,5 97,2 97,2 97,8 98,4 98,4 98,4		L																		
	(1) Carried a conservation of the desired at the des							_								- ,				

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).


DIMENSIONS

NRB 0800 - 1100 ° NRB 0800 - 0900 L/A


NRB 1200 - 1600 ° NRB 1000 - 1400 L/A NRB 0800 -1000 E/U

NRB 1805 - 2206 ° NRB 1600 - 1805 L/A NRB 1200 - 1400 E/U NRB 0800 - 1000 N

NRB 2406 - 3600 ° NRB 2006- 3600 L/A NRB 1600 - 3600 E/U NRB 1100 -3600 N

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Dimensions and weights without hydron	ic kit																		
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	2780	2780	2780	2780	3970	3970	3970	5160	5160	5160	6350	5950	7140	7140	7140	8330	8330
	A,L	mm	2780	2780	3970	3970	3970	3970	4760	5160	6350	6350	7140	8330	8330	8330	9520	9520	9520
	E,U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330	9520	9520	10710	11900	11900	11900
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520	10710	10710	11900	13090	13090	13090
Dimensions and weights with pump/s																			
	•	mm	-	-	-	-	2450	-	-	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
Λ	A,L	mm	-	-	2450	-	-	-	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	-	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
	N	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
		mm	-	-	-	-	2200	-	-	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
В	A,L	mm	-	-	2200	-	-	-	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
D	E,U	mm	2200	2200	-	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	N	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		mm	-	-	-	-	3970	-	-	5160	5160	5160	6350	5950	7140	7140	7140	8330	8330
r	A,L	mm	-	-	3970	-	-	-	4760	5160	6350	6350	7140	8330	8330	8330	9520	9520	9520
	E,U	mm	3970	3970	-	4760	4760	4760	5950	7140	7140	8330	8330	9520	9520	10710	11900	11900	11900
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520	10710	10710	11900	13090	13090	13090
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Weights																			
	0	kg	2390	2430	2500	2540	3030	3080	3110	3810	3980	4020	4560	4700	5350	5690	5770	6300	6400
Emptywaight	A,L	kg	2410	2470	2950	3020	3060	3120	3640	3910	4480	4560	4980	5810	6060	6160	6640	6820	6900
Empty weight	E,U	kg	2870	2910	2990	3520	3590	3610	4140	4690	4900	5650	5690	6210	6460	6950	7440	7520	7600
	N	kg	3370	3420	3490	3920	3990	4020	4490	5140	5360	6050	6090	6610	6860	7260	7840	7920	8000

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0800H-3600H

Reversible air/water heat pump

Cooling capacity 196 ÷ 971 kW Heating capacity 209 ÷ 1006 kW

- · High efficiency also at partial loads
- Night mode
- HP floating: ESEER +7% with inverter fans
- Also available with Shell and tube heat exchanger

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -15 °C outside air temperature in winter, and up to 50 °C in summer. Hot water production up to 55 °C.

(for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 3600.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, with high or low head and storage tank, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of

some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

ACCESSORIES COMPATIBILITY

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

BRC1: Condensate drip tray. Consider 1 for each V-block.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

Model	V	er er	0800	0900	1000	1100	1200 14	400 160	00 1805	2006	2206	2406	2600 2	800 30	00 320	3400	3600
AER485P1	°,A	l,E,L	•	•	•	•	•		•	•	•	•	•			•	•
AERBACP	°,A	,E,L	•	•	•	•	•		•	•	•	•	•		•	•	•
AERLINK	°,A	,E,L	•	•	•				•	•	•	•	•			•	•
AERNET	°,A	l,E,L	•	•	•	•			•	•	•	•	•			•	•
FL	°,A	I,E,L	•	•		•	•		•	•	•	•	•			•	•
MULTICHILLER_EVO	°,A	ı,E,L	•	•	•	•	•		•	•	•	•	•		•	•	•
PGD1	°,A	,E,L	•	•	•	•	•		•	•	•	•	•		•	•	•
A -1 11 -11																	
Antivibration																	
Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
0	AVX1000	AVX1000	AVX1004	AVX1004	AVX1004					AVX1010	AVX1010	AVX1018	711711021	AVX1029	AVX1049	AVX1049	
A,L	AVX1000	AVX1004	AVX1004	AVX1004	AVX1004	AVX100	6 AVX1006	AVX1010	AVX1010	AVX1016	AVX1016	AVX1026	AVX1029	AVX1036	AVX1036	AVX1042	AVX1042
E	AVX1004	AVX1006	AVX1006	AVX1006	AVX1006	AVX101	AVX1013	3 AVX1024	AVX1024	AVX1033	AVX1033	AVX1039	AVX1039	AVX1045	AVX1045	AVX1047	AVX1047
Integrated hydronic kit: AA, AB, AC, AD,	AE, AF, AG,	AH, BA, BE	B, BC														
0	AVX1003	AVX1003	AVX1005	AVX1005	AVX1005	AVX100	5 AVX1005	AVX1005	AVX1008	AVX1012	AVX1012	AVX1020	AVX1023	AVX1031	AVX1031	AVX1031	AVX1031
A,L	AVX1003	AVX1005	AVX1005	AVX1005	AVX1005	AVX100	3 AVX1008	3 AVX1008	AVX1012	AVX1017	AVX1017	AVX1028	AVX1031	AVX1038	AVX1038	AVX1044	AVX1044
E	AVX1005	AVX1008	AVX1008	AVX1008	AVX1008	AVX1012	2 AVX1015	AVX1025	AVX1025	AVX1035	AVX1035	AVX1041	AVX1041	AVX1046	AVX1046	AVX1048	AVX1048
Integrated hydronic kit: AI, AJ, BD, BE, I	BF, BG, BH, I	BI, BJ															
0	AVX1003	AVX1003	AVX1005	AVX1005	AVX1005	AVX100	AVX1005	AVX1008	AVX1008	AVX1012	AVX1012	AVX1020	AVX1023	AVX1031	AVX1031	AVX1031	AVX1031
A,L	AVX1003	AVX1005	AVX1005	AVX1005	AVX1005	AVX100	3 AVX1008	3 AVX1012	AVX1012	AVX1017	AVX1017	AVX1028	AVX1031	AVX1038	AVX1038	AVX1044	AVX1044
E	AVX1005	AVX1008	AVX1008	AVX1008	AVX1008	AVX101.	2 AVX1015	AVX1025	AVX1025	AVX1035	AVX1035	AVX1041	AVX1041	AVX1046	AVX1046	AVX1048	AVX1048
Integrated hydronic kit: DA, DB, DC, PA,	PB, PC, PD,	PE, PF, PG	i, PH														
0	AVX1001	AVX1001	AVX1004	AVX1004	AVX1004	AVX100	4 AVX1004	4 AVX1009	AVX1009	AVX1010	AVX1010	AVX1019	AVX1021	AVX1030	AVX1030	AVX1030	AVX1032
A,L	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX100	9 AVX1009	AVX1010	AVX1010	AVX1016	AVX1016	AVX1027	AVX1030	AVX1037	AVX1037	AVX1043	AVX1043
E	AVX1004	AVX1006	AVX1006	AVX1006	AVX1009	AVX101	AVX1013	AVX1024	AVX1024	AVX1034	AVX1034	AVX1040	AVX1040	AVX1045	AVX1045	AVX1047	AVX1047
Integrated hydronic kit: DD, DE, DF, DG,	DH, PI, PJ																

Integrated hydronic kit: DI, DJ		
٥	X1002 AVX1002 AVX1004 AVX1004 AVX1004 AVX1004 AVX1004 AVX1004 AVX1007 AVX1007 AVX1011 AVX1011 AVX1019 AVX1022 AVX1030 AVX1030 AVX103	0 AVX1032
A,L	IX1002 AVX1004 AVX1004 AVX1004 AVX1004 AVX1007 AVX1007 AVX1011 AVX1011 AVX1016 AVX1016 AVX1027 AVX1030 AVX1037 AVX1037 AVX104	3 AVX1043
E	X1004 AVX1007 AVX1007 AVX1007 AVX1007 AVX1007 AVX1011 AVX1014 AVX1024 AVX1024 AVX1034 AVX1034 AVX1040 AVX1040 AVX1045 AVX1045 AVX1045 AVX1046 AVX1047	7 AVX1047

AVX1001 AVX1001 AVX1004 AVX1004 AVX1004 AVX1004 AVX1004 AVX1004 AVX1009 AVX1009 AVX1009 AVX1011 AVX1011 AVX1019 AVX1022 AVX1030 AVX1030 AVX1030 AVX1032 AVX1001 AVX1004 AVX1004 AVX1004 AVX1004 AVX1004 AVX1009 AVX1009 AVX1011 AVX1011 AVX1016 AVX1027 AVX1030 AVX1037 AVX1037 AVX1037 AVX1043 AVX1043

AVX1004 AVX1007 AVX1007 AVX1007 AVX1009 AVX1011 AVX1014 AVX1024 AVX1024 AVX1034 AVX1034 AVX1040 AVX1040 AVX1045 AVX1045 AVX1047 AVX1047 AVX1047

Condensation control temperature

A.I

Ε

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
Fans: °									
0	DCPX130	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131	DCPX131	DCPX155	DCPX155
Α	DCPX130	DCPX131	DCPX131	DCPX131	DCPX131	DCPX132	DCPX132	DCPX156	DCPX156
E,L	As standard								
Ver	2206	2406	2600	2800		3000	3200	3400	3600
Fans: °									_
0	DCPX156	DCPX156	DCPX134	DCPX134	[OCPX135	DCPX135	DCPX135	DCPX135
Α	DCPX134	DCPX134	DCPX135	DCPX135	[OCPX136	DCPX136	DCPX137	DCPX137
			As standard	As standard		standard	As standard	As standard	As standard

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1805
°,A,E,L	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)	DRENRB1600 (1)	DRENRB1805 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	2006	2206	2406	2600	2800	3000	3200	3400
°,A,E,L	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)	-	-	-	-	-

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
0	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	RIFNRB1600	RIFNRB1805	RIFNRB2006
A,L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1401	RIFNRB1601	RIFNRB1805	RIFNRB2006
E	RIFNRB0800	RIFNRB0900	RIFNRB1001	RIFNRB1001	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016

A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2600	2800	3000	3200	3400	3600
0	RIFNRB2206	RIFNRB2406	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600
A,E,L	RIFNRB2216	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
0	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4G	GP4G	GP5G	GP5G	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V
A,L	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5G	GP5G	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN	GP10V	GP10V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

The units 0800-0900 $\ensuremath{\mbox{H}^{\circ}}$, 0800 HL/HA with the optional "storage tank" are 3970 mm long, and they must mount the GP2VNA grids.

Condensate drip

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206
0	BRC1x2 (1)	BRC1x2 (1)	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)				
A,L	BRC1x2 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)	BRC1x5 (1)	BRC1x6 (1)
E	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

Ver	2406	2600	2800	3000	3200	3400	3600
0	BRC1x5 (1)	BRC1x6 (1)	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x7 (1)
A	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)	BRC1x8 (1)	BRC1x9 (1)	BRC1x9 (1)
E	BRC1x8 (1)	BRC1x9 (1)	BRC1x9 (1)	BRC1x10 (1)	BRC1x10 (1)	BRC1x11 (1)	BRC1x11 (1)
L	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)	BRC1x8 (1)	BRC1x10 (1)	BRC1x10 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fie	ld	Description
1,2		NRB
1,4	,3	Size
4,5	,6,7	0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406, 2600, 2800 3000, 3200, 3400, 3600
8		Operating field
	0	Standard mechanic thermostatic valve
	Χ	Electronic thermostatic expansion valve (1)
9		Model
	Н	Heat pump
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (2)
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency
	L	Standard silenced
12		Coils
	0	Copper-aluminium
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
13		Fans
	0	Standard
	J	Inverter
14		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (3)

Field	Description
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump (4)
DB	Pump B + stand-by pump (4)
DC	Pump C + stand-by pump (4)
DD	Pump D + stand-by pump (4)
DE	Pump E + stand-by pump (4)
DF	Pump F + stand-by pump (4)
DG	Pump G + stand-by pump (4)
DH	Pump H + stand-by pump (4)
DI	Pump I + stand-by pump (4)
DJ	Pump J + stand-by pump (5)
	Kit with storage tank and n° 1 pump
AA	Storage tank and pump A
AB	Storage tank and pump B
AC	Storage tank and pump C
AD	Storage tank and pump D
AE	Storage tank and pump E
AF	Storage tank and pump F
AG	Storage tank and pump G
AH	Storage tank and pump H
Al	Storage tank and pump l
AJ	Storage tank and pump J (3)
	Kit with storage tank and n° 1 pump + stand-by pump
BA	Storage tank with pump A + stand-by pump (4)
BB	Storage tank with pump B + stand-by pump (4)
BC	Storage tank with pump C + stand-by pump (4)
BD	Storage tank with pump D $+$ stand-by pump (4)
BE	Storage tank with pump E + stand-by pump (4)
BF	Storage tank with pump F + stand-by pump (4)
BG	Storage tank with pump G + stand-by pump (4)
ВН	Storage tank with pump H + stand-by pump (4)
BI	Storage tank with pump I + stand-by pump (4)
BJ	Storage tank with pump J + stand-by pump (5)

- (1) Electronic thermostatic as standard from size 1805÷3600.
 (2) The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 (3) For all configurations including pump J please contact the factory.
 (4) None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805-2006 version °.
 (5) For all combinations with pump J, please contact our head office. None of the hydronic kits with twin pump (from DA to DJ and from BA to BJ) are compatible for the following sizes and versions with desuperheater D: 1805-2006 version °.

PERFORMANCE SPECIFICATIONS

NRB H°

MNDII																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	196,4	218,0	251,8	279,2	314,2	353,8	389,0	456,7	501,9	568,7	616,1	654,4	718,3	767,3	805,3	869,8	914,8
Input power	kW	74,1	86,1	91,7	107,9	119,5	141,6	155,6	172,6	193,2	211,2	231,1	253,0	266,2	291,4	315,7	327,9	353,4
Cooling total input current	Α	131,0	150,0	163,0	189,0	207,0	242,0	263,0	296,0	331,0	365,0	398,0	437,0	456,0	504,0	545,0	564,0	606,0
EER	W/W	2,65	2,53	2,74	2,59	2,63	2,50	2,50	2,65	2,60	2,69	2,67	2,59	2,70	2,63	2,55	2,65	2,59
Water flow rate system side	l/h	33794	37515	43314	48020	54046	60853	66910	78531	86311	97783	105939	112529	123524	131922	138449	149552	157281
Pressure drop system side	kPa	34	24	32	26	33	31	37	32	38	37	42	50	48	31	34	37	34
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	215,0	237,4	275,0	306,0	343,9	366,2	412,6	478,4	527,7	592,0	643,2	688,4	749,9	796,0	836,5	906,8	948,0
Input power	kW	70,2	77,7	89,6	99,8	112,3	121,7	137,0	157,3	174,3	193,9	210,7	227,9	245,2	260,8	275,8	295,9	311,8
Heating total input current	Α	125,0	138,0	158,0	175,0	195,0	212,0	236,0	274,0	304,0	340,0	369,0	397,0	427,0	458,0	484,0	519,0	549,0
COP	W/W	3,06	3,06	3,07	3,07	3,06	3,01	3,01	3,04	3,03	3,05	3,05	3,02	3,06	3,05	3,03	3,06	3,04
Water flow rate system side	l/h	37311	41207	47745	53116	59705	63585	71640	83071	91620	102803	111681	119537	130226	138243	145280	157484	164648
Pressure drop system side	kPa	42	28	38	32	40	34	42	36	42	40	46	56	53	33	37	40	37

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

NRB HL

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	197,9	227,9	247,7	275,2	301,1	359,1	392,2	453,8	495,0	552,5	592,9	651,2	681,3	748,5	784,2	848,0	882,7
Input power	kW	75,3	78,6	89,8	106,2	123,2	133,0	153,4	169,0	193,9	208,9	234,1	246,2	269,6	284,8	310,0	326,5	352,4
Cooling total input current	Α	126,0	133,0	150,0	176,0	203,0	220,0	252,0	280,0	321,0	347,0	390,0	409,0	446,0	473,0	515,0	543,0	585,0
EER	W/W	2,63	2,90	2,76	2,59	2,44	2,70	2,56	2,69	2,55	2,64	2,53	2,65	2,53	2,63	2,53	2,60	2,50
Water flow rate system side	l/h	34040	39194	42596	47339	51779	61758	67431	78030	85114	95003	101921	111950	117122	128680	134820	145791	151753
Pressure drop system side	kPa	14	18	15	19	14	20	18	23	23	29	17	21	23	23	25	29	32
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	209,8	250,3	274,3	304,8	334,3	394,3	431,0	497,4	543,0	609,3	654,3	717,5	757,3	825,0	869,1	937,0	980,9
Input power	kW	67,1	79,5	87,1	98,9	108,2	126,2	136,7	158,3	173,1	194,8	208,8	228,3	244,3	265,2	280,3	299,5	317,4
Heating total input current	Α	119,0	139,0	152,0	171,0	187,0	216,0	234,0	272,0	299,0	336,0	363,0	394,0	420,0	457,0	484,0	518,0	549,0
COP	W/W	3,13	3,15	3,15	3,08	3,09	3,12	3,15	3,14	3,14	3,13	3,13	3,14	3,10	3,11	3,10	3,13	3,09
Water flow rate system side	l/h	36429	43447	47619	52924	58032	68469	74854	86379	94306	105817	113644	124618	131534	143298	150956	162747	170364
Pressure drop system side	kPa	15	22	19	23	17	24	21	28	28	35	21	26	29	28	31	36	39

NRB HA

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	206,2	243,8	266,9	297,0	329,2	385,5	425,3	488,4	538,3	601,4	651,3	708,6	745,3	815,1	859,0	928,0	971,4
Input power	kW	71,8	78,2	88,1	102,2	117,2	129,2	147,2	163,7	184,8	201,3	222,3	237,4	257,9	274,4	295,7	312,0	333,6
Cooling total input current	А	127,0	141,0	157,0	179,0	203,0	225,0	254,0	285,0	321,0	352,0	389,0	416,0	448,0	479,0	515,0	546,0	582,0
EER	W/W	2,87	3,12	3,03	2,91	2,81	2,98	2,89	2,98	2,91	2,99	2,93	2,99	2,89	2,97	2,91	2,97	2,91
Water flow rate system side	l/h	35459	41942	45909	51076	56619	66291	73125	83982	92547	103407	111966	121819	128141	140122	147682	159542	167008
Pressure drop system side	kPa	15	21	18	22	17	23	21	27	27	34	21	25	28	28	31	35	38
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	214,3	254,4	279,0	310,5	341,2	400,9	438,9	506,0	553,2	620,0	666,5	730,0	771,1	840,0	885,5	954,2	999,6
Input power	kW	66,6	79,3	86,7	97,1	106,2	124,8	137,1	157,5	171,8	193,5	207,0	226,8	240,1	260,9	275,3	297,4	311,6
Heating total input current	Α	120,0	142,0	155,0	172,0	187,0	219,0	240,0	277,0	303,0	342,0	368,0	401,0	421,0	460,0	485,0	526,0	550,0
COP	W/W	3,22	3,21	3,22	3,20	3,21	3,21	3,20	3,21	3,22	3,20	3,22	3,22	3,21	3,22	3,22	3,21	3,21
Water flow rate system side	l/h	37204	44148	48436	53909	59226	69618	76226	87877	96076	107669	115772	126793	133932	145898	153804	165737	173613
Pressure drop system side	kPa	16	23	20	24	18	25	22	29	29	36	22	26	30	30	33	37	41

NRB HE

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	209,6	241,7	264,7	294,5	326,7	377,8	432,4	489,4	540,5	597,8	647,7	699,1	734,9	798,7	841,0	904,0	944,9
Input power	kW	67,3	77,4	85,0	98,1	112,4	125,3	139,1	157,0	177,4	192,3	215,2	231,2	250,7	269,1	289,6	308,2	327,5
Cooling total input current	Α	115,0	132,0	144,0	164,0	187,0	208,0	230,0	261,0	296,0	322,0	362,0	387,0	417,0	449,0	483,0	515,0	547,0
EER	W/W	3,12	3,12	3,11	3,00	2,91	3,02	3,11	3,12	3,05	3,11	3,01	3,02	2,93	2,97	2,90	2,93	2,89
Water flow rate system side	l/h	36053	41586	45538	50642	56185	64960	74341	84155	92932	102793	111352	120183	126344	137316	144576	155409	162455
Pressure drop system side	kPa	15	20	18	22	16	22	21	27	27	33	21	24	27	27	29	33	36
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	223,4	258,1	283,7	316,7	349,3	403,2	458,7	520,7	571,9	634,1	683,9	741,3	784,2	848,2	895,3	960,1	1006,8
Input power	kW	69,3	80,5	87,9	98,5	109,0	126,1	143,1	162,7	177,1	198,2	211,7	230,0	244,9	264,9	279,5	299,5	315,3
Heating total input current	Α	122,0	140,0	153,0	170,0	188,0	216,0	244,0	278,0	305,0	341,0	367,0	396,0	420,0	456,0	482,0	517,0	544,0
COP	W/W	3,22	3,21	3,23	3,22	3,20	3,20	3,21	3,20	3,23	3,20	3,23	3,22	3,20	3,20	3,20	3,21	3,19
Water flow rate system side	l/h	38791	44787	49248	54989	60660	70010	79655	90422	99327	110122	118791	128748	136201	147319	155503	166760	174868
Pressure drop system side	kPa	17	23	20	25	19	25	24	31	31	38	23	27	31	30	33	38	41

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C/ 17°C; outside air 35°C
(2) Data EN 14511:2022; System side water heat exchanger 40 °C/ 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Electric data																			
	0	Α	168,6	185,0	209,8	239,2	268,5	297,5	326,5	379,8	424,6	462,1	491,1	548,6	581,4	630,9	671,8	712,7	753,6
Maximum current (FLA)	A,L	Α	168,6	193,5	209,8	239,2	268,5	306,0	335,0	388,3	433,1	470,6	499,6	557,1	589,9	639,4	680,3	729,7	770,6
	E	Α	177,1	202,0	218,3	247,7	277,0	314,5	352,0	405,3	450,1	487,6	516,6	574,1	606,9	656,4	697,3	752,6	793,5
	0	Α	357,2	412,4	437,2	489,9	519,2	631,7	660,7	714,0	758,8	796,3	825,3	817,9	850,7	900,2	941,1	982,0	1022,9
Peak current (LRA)	A,L	Α	357,2	420,9	437,2	489,9	519,2	640,2	669,2	722,5	767,3	804,8	833,8	826,4	859,2	908,7	949,6	999,0	1039,9
	E	Α	365,7	429,4	445,7	498,4	527,7	648,7	686,2	739,5	784,3	821,8	850,8	843,4	876,2	925,7	966,6	1021,9	1062,8

ENERGY INDICES (REG. 2016/2281 EU)

NRB H°

MNDII																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient of	onditions	(average	- 35 °C -	Pdesignl	h ≤ 400 k	W (1)												
Pdesignh	kW	203	224	260	289	325	346	296	343	379	425	462	495	539	571	600	651	680
SCOP	W/W	3,65	3,65	3,65	3,68	3,65	3,60	3,73	3,73	3,80	3,73	3,80	3,68	3,80	3,68	3,75	3,88	3,90
ηsh	%	143,00	143,00	143,00	144,00	143,00	141,00	146,00	143,00	149,00	146,00	149,00	144,00	149,00	144,00	147,00	152,00	153,00
SEER - 12/7 (EN14825:2018) with standard fans	EER - 12/7 (EN14825:2018) with standard fans (2) FR W/W 3.79 3.66 3.88 3.81 3.91 3.80 3.89 3.92 3.80 -(3) -(3) -(3) -(3) -(3) -(3) -(3) -(3)																	
SEER	W/W	3,79	3,66	3,88	3,81	3,91	3,80	3,89	3,92	3,80	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	148,40	143,50	152,20	149,50	153,20	149,10	152,70	153,80	149,00	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
EER - (EN14825:2018) 12/7 with inverter fans (2)																		
ER W/W																		
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - 23/18 (EN14825: 2018) with standard far	ıs (4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,67	4,76	4,64	4,70	4,66	4,56	4,66	4,65
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	183,90	187,30	182,40	184,90	183,40	179,30	183,40	182,80
SEER - 23/18 (EN14825: 2018) with inverter fans	;																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,88	5,02	5,07	4,92	4,96	4,96	4,92	4,96
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	192,30	197,70	199,70	193,60	195,30	195,40	193,70	195,30
SEPR - (EN14825: 2018) High temperature with	inverter fa	ns (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,53	5,54	5,52	5,52	5,51	5,51	5,51	5,51
SEPR - (EN14825: 2018) High temperature with	standard 1	ans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,53	5,54	5,52	5,52	5,51	5,51	5,51	5,51
(1) Efficiencies for low temporature applications (2)	۰۰۲۱																	

NRB HL

INND IIL																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient co	nditions	(average) - 35 °C -	Pdesignl	h ≤ 400 k	(W (1)												
Pdesignh	kW	197	235	258	286	314	370	306	353	385	433	464	509	538	586	617	666	697
SCOP	W/W	3,73	3,75	3,75	3,68	3,68	3,73	3,93	3,83	3,95	3,83	3,93	3,88	3,88	3,75	3,85	3,95	3,98
ηsh	%	146,00	147,00	147,00	144,00	144,00	146,00	154,00	150,00	155,00	150,00	154,00	152,00	152,00	147,00	151,00	155,00	156,00
SEER - 12/7 (EN14825:2018) with standard fans (2)																	
SEER	W/W	3,83	4,01	3,92	3,90	3,82	4,05	3,99	4,04	3,87	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	150,30	157,20	153,90	149,60	159,00	156,40	156,60	158,60	151,80	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
EER - (EN14825:2018) 12/7 with inverter fans (2)																		
EER W/W																		
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - 23/18 (EN14825: 2018) with standard fans	(4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,72	4,67	4,79	4,63	4,73	4,67	4,75	4,70
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,70	183,60	188,70	182,30	186,30	183,60	187,00	185,00
SEER - 23/18 (EN14825: 2018) with inverter fans																		
SEER	W/W	-	-	-	-	-	-	-	-	-	5,08	5,11	5,10	4,95	5,04	4,96	5,09	5,02
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	200,30	201,20	201,10	195,00	198,40	195,20	200,40	197,70
SEPR - (EN14825: 2018) High temperature with st	tandard f	fans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51	5,53	5,51	5,52	5,52	5,51	5,51
SEPR - (EN14825: 2018) High temperature with ir	verter fa	ans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51	5,53	5,51	5,52	5,52	5,51	5,51
(1) Eff. :	()																	

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(4) Calculation performed with FIXED water flow rate.

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(4) Calculation performed with FIXED water flow rate.

NRB HA

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient cor	ditions																	
Pdesignh	kW	196	233	255	284	312	367	304	351	384	430	462	506	535	582	614	662	693
SCOP	W/W	3,03	3,08	3,03	3,08	3,03	3,10	3,13	3,08	3,30	3,08	3,15	3,08	3,13	3,03	3,20	3,20	3,15
ηsh	%	118,00	120,00	118,00	120,00	118,00	121,00	122,00	120,00	129,00	120,00	123,00	120,00	122,00	118,00	125,00	125,00	123,00
SEER - 12/7 (EN14825:2018) with standard fans (2)																	
SEER	W/W	3,96	4,13	4,09	4,09	4,07	4,23	4,22	4,22	4,10	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	155,40	162,10	160,40	160,60	159,70	166,10	165,60	165,80	161,0	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
EER (EN14825:2018) 12/7 with inverter fans (2) EER W/W 4.58 4.57 4.60 4.55 4.60 4.56 4.60 4.56																		
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57	4,60	4,55	4,60	4,56	4,60	4,56
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	180,3%	179,6%	180,8%	179,1%	180,8%	179,2%	181,0%	179,2%
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEER - 23/18 (EN14825: 2018) with standard fans	(4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,96	5,01	5,02	4,84	4,92	4,87	4,95	4,94
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	195,30	197,40	197,80	190,50	193,90	191,80	195,00	194,60
SEER - 23/18 (EN14825: 2018) with inverter fans																		
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57	4,60	4,55	4,60	4,54	4,60	4,56
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	180,30	179,60	180,80	179,10	180,80	178,40	181,00	179,20
SEPR - (EN14825: 2018) High temperature with st	andard f	ans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,52	5,51	5,55	5,52	5,51	5,51	5,52
SEPR - (EN14825: 2018) High temperature with in	verter fa	ns (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,52	5,51	5,55	5,52	5,51	5,51	5,52

NRB HE

Size		0800	0000	1000	1100	1200	1400	1600	1005	2006	2206	2406	2600	2000	2000	2200	2400	2600
			0900	1000	1100		1400	1600	1805	2000	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient co	nditions ([average]	- 55 °C -	Pdesignl	1 ≤ 400 k	W (1)												
Pdesignh	kW	204	236	259	290	320	369	318	361	397	440	474	514	544	588	621	666	698
SCOP	W/W	3,05	3,08	3,05	3,10	3,03	3,08	3,13	3,05	3,30	3,08	3,15	3,08	3,13	3,03	3,20	3,20	3,13
ηsh	%	119,00	120,00	119,00	121,00	118,00	120,00	122,00	119,00	129,00	120,00	123,00	120,00	122,00	118,00	125,00	125,00	122,00
SEER - 12/7 (EN14825:2018) with standard fans (2)																	
SEER	W/W	4,16	4,15	4,18	4,19	4,16	4,27	4,39	4,36	4,22	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	163,40	163,00	164,10	164,70	163,40	167,90	172,70	171,40	165,80	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
EER - (EN14825:2018) 12/7 with inverter fans (2)																		
ER W/W 4,71 4,67 4,74 4,66 4,69 4,62 4,71 4,66																		
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,4%	183,7%	186,6%	183,4%	184,6%	181,9%	185,4%	183,4%
SEER - 23/18 (EN14825: 2018) with standard fans	(4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	5,17	5,20	5,16	5,01	5,04	4,99	5,03	5,03
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	203,60	204,90	203,20	197,20	198,60	196,50	198,10	198,10
SEER - 23/18 (EN14825: 2018) with inverter fans																		
SEER	W/W	-	-	-	-	-	-	-	-	-	4,71	4,67	4,74	4,66	4,69	4,62	4,71	4,66
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with st	andard f	ans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54	5,57	5,52	5,54	5,58	5,56	5,55
SEPR - (EN14825: 2018) High temperature with ir	verter fa	ns (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54	5,57	5,52	5,54	5,58	5,56	5,55
(1) F(C :	EE 06)																	

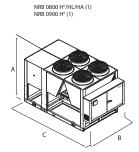
⁽¹⁾ Efficiencies for average temperature applications (55 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(4) Calculation performed with FIXED water flow rate.

⁽¹⁾ Efficiencies for average temperature applications (55 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(4) Calculation performed with FIXED water flow rate.

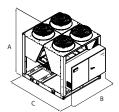
FANS

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Fans: °																			
Fan																			
Туре	°,A,E,L	type									Axial								
Fan motor	°,A	type								As	synchrono	us							
rali illotoi	E,L	type								Asynchroi	nous with	phase cu	t						
	0	no.	4	4	6	6	6	6	6	8	8	10	10	12	12	14	14	14	14
Number	A,L	no.	4	6	6	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	no.	6	8	8	8	8	10	12	14	14	16	16	18	18	20	20	22	22
	0	m³/h	80000	80000	120000	120000	120000	120000	120000	160000	160000	200000	200000	240000	240000	280000	280000	280000	280000
Air flow rate	A	m³/h	80000	120000	120000	120000	120000	160000	160000	200000	200000	240000	240000	280000	280000	320000	320000	360000	360000
All flow fale	E	m³/h	90000	120000	120000	120000	120000	150000	180000	210000	210000	240000	240000	270000	270000	300000	300000	330000	330000
	L	m³/h	60000	90000	90000	90000	90000	120000	120000	150000	150000	180000	180000	210000	210000	240000	240000	270000	270000

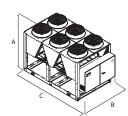
GENERAL TECHNICAL DATA

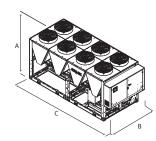

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	°,A,E,L	type									Scroll								
Compressor regulation	°,A,E,L	Туре									On-Off								
Number	°,A,E,L	no.	4	4	4	4	4	4	4	5	6	6	6	5	6	6	6	6	6
Circuits	°,A,E,L	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L	type									R410A								
	0	kg	44,0	44,0	54,0	62,0	62,0	60,0	60,0	81,0	82,0	100,0	95,0	187,0	116,0	130,0	130,0	138,0	138,0
Defrigerant charge (1)	Α	kg	44,0	60,0	64,0	62,0	66,0	81,0	78,0	99,0	102,0	117,0	119,0	149,0	148,0	168,0	170,0	186,0	196,0
Refrigerant charge (1)	E	kg	58,0	76,5	78,0	76,0	78,0	93,0	112,0	136,0	143,0	152,0	152,0	187,0	176,0	200,0	200,0	218,0	218,0
_	L	kg	44,0	60,0	64,0	62,0	66,0	78,0	78,0	104,0	102,0	117,0	117,0	148,0	148,0	160,0	170,0	186,0	196,0
System side heat exchanger																			
Туре	°,A,E,L	type								В	razed plat	te							
Hydraulic connections																			
Connections (in/out)	°,A,E,L	Туре								Gr	ooved joir	nts							
Hydraulic connections without hydronic kir	t																		
Sizes (in/out)	°,A,E,L	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Hydraulic connections with hydronic kit																			
Sizes (in/out)	°,A,E,L	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Sound data calculated in cooling mode (2)																			
	0	dB(A)	89,5	89,5	91,6	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2	95,1	95,1	95,9	95,9	95,9	95,9
Causad manusus laural	А	dB(A)	89,5	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2	95,1	95,1	95,9	95,9	96,6	96,6	97,2	97,2
Sound power level —	E	dB(A)	84,6	86,1	86,1	86,1	86,1	87,2	88,2	89,4	89,9	91,1	91,6	92,2	92,2	92,7	92,7	93,2	93,2
_	L	dB(A)	82,6	84,6	84,6	84,6	84,6	86,1	86,1	87,7	88,2	89,6	90,1	90,9	90,9	91,6	91,6	92,1	92,1
	0	dB(A)	57,4	57,4	59,3	59,3	59,3	59,3	59,3	60,7	60,7	61,7	61,7	62,5	62,5	63,2	63,2	63,2	63,2
	Α	dB(A)	57,4	59,3	59,3	59,3	59,3	60,7	60,7	61,6	61,6	62,5	62,5	63,2	63,2	63,7	63,7	64,2	64,2
Sound pressure level (10 m) —	E	dB(A)	52,4	53,7	53,7	53,7	53,7	54,7	55,5	56,7	57,2	58,2	58,7	59,2	59,2	59,6	59,6	60,0	60,0
_		dB(A)	50,5	52,4	52,4	52,4	52,4	53,8	53,8	55,2	55.7	57.0	57,5	58,2	58,2	58,7	58,7	59,1	59,1

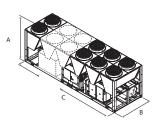
In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


DIMENSIONS


NRB 0800 H°/HL/HA NRB 0900 H°


NRB 0800 HE NRB 0900-1200 HL/HA NRB 1000-1600 H°

NRB 1805-2406 H° NRB 1805-2006 HL/HA

NRB 2600-3600 H° NRB 1400-1600 HL/HA NRB 2206-3600 HL-HA NRB 0900-3600 HE

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: NRB 0800H°, 0900H° NRB 0800 HL/HA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Dimensions and weights without hydron	ic kit																		
A	°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	2780	2780	3970	3970	3970	3970	3970	5160	5160	6350	6350	7140	7140	8330	8330	8330	8330
(A,L	mm	2780	3970	3970	3970	3970	4760	4760	6350	6350	7140	7140	8330	8330	9520	9520	10710	10710
	E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330	9520	9520	10710	10710	11900	11900	13090	13090

■ The units 0800-0900 H°, 0800 HL/HA with the optional "storage tank" are 3970 mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Weights																			
	0	kg	2520	2580	3160	3210	3250	3310	3340	4200	4370	4990	5030	5640	5930	6740	6820	6920	7070
Empty weight	A,L	kg	2550	3130	3200	3240	3320	3970	4040	4780	4990	5490	5730	6410	6660	7340	7420	8040	8120
	E	kg	3080	3770	3840	3870	3950	4510	5020	5860	6080	6610	6800	7420	7670	8300	8380	9010	9090

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRB 0800H-3600H

Reversible air/water heat pump with shell and tube heat exchanger

Cooling capacity 196 ÷ 971 kW Heating capacity 209 ÷ 1006 kW

- Shell and tube heat exchanger
- · High efficiency also at partial loads
- Night mode
- HP floating: ESEER +7% with inverter fans

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

They are outdoor units with axial fan scroll compressors and Shell and tube exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

FEATURES

Operating field

Working at full load up to -10 °C outside air temperature in winter, and up to 50 °C in summer. Hot water production up to 55 °C.

(for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

It is standard in all sizes from 1805 to 3600.

Option integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Together with continuous fan modulation, it optimises unit operation in any working point, enhancing energy efficiency with partial loads. ESEER up to +7% with inverter fans.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP. SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected

is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

BRC1: Condensate drip tray. Consider 1 for each V-block.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
AER485P1	°,A,E,L	•			•					•	•	•	•		•			•
AERBACP	°,A,E,L	•							•	•	•	•	•	•	•		•	•
AERLINK	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L	•	•			•	•	•	•	•	•	•	•	•	•		•	•
FL	°,A,E,L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,A,E,L								•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E,L	•									•							•

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
0	AVX1001	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1004	AVX1123	AVX1123	AVX1124	AVX1124	AVX1115	AVX1119	AVX1117	AVX1121	AVX1121	AVX1121
A,L	AVX1001	AVX1004	AVX1004	AVX1004	AVX1004	AVX1123	AVX1123	AVX1124	AVX1124	AVX1115	AVX1115	AVX1117	AVX1117	AVX1116	AVX1116	AVX1118	AVX1118
E	AVX1004	AVX1123	AVX1123	AVX1123	AVX1123	AVX1124	AVX1119	AVX1117	AVX1117	AVX1116	AVX1116	AVX1118	AVX1118	AVX1120	AVX1120	AVX1118	AVX1122
Integrated hydronic kit: DA, DB, DC, DD, I	DE, DF, DG,	DH, DI, D.	, PA, PB, I	PC, PD, PE,	PF, PG, PI	I, PI, PJ											
0	-	-	AVX1004	AVX1004	AVX1004	-	-	AVX1123	AVX1123	AVX1124	AVX1124	AVX1115	AVX1119	AVX1117	AVX1121	AVX1121	AVX1121
A,L	-	AVX1004	-	-	-	AVX1123	AVX1123	AVX1124	AVX1124	AVX1115	AVX1115	AVX1117	AVX1117	AVX1116	AVX1116	AVX1118	AVX1118
E	AVX1004	AVX1123	AVX1123	AVX1123	AVX1123	AVX1124	AVX1119	AVX1117	AVX1117	AVX1116	AVX1116	AVX1118	AVX1118	AVX1120	AVX1120	AVX1118	AVX1122

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1805
°,A,E,L	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)	DRENRB1600 (1)	DRENRB1805 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

À grey background indicates the accessory must be assembled in the factory

Ver	2006	2206	2406	2600	2800	3000	3200	3400
°,A,E,L	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)	-	-	-	-	-

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
0	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	RIFNRB1600	RIFNRB1805	RIFNRB2006
A,L	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1401	RIFNRB1600	RIFNRB1805	RIFNRB2006
E	RIFNRB0800	RIFNRB0900	RIFNRB1001	RIFNRB1100	RIFNRB1200	RIFNRB1401	RIFNRB1600	RIFNRB1815	RIFNRB2016
A grey background indicates the access	orv must he assembled in	the factory							

Ver	2206	2406	2600	2800	3000	3200	3400	3600
٥	RIFNRB2206	RIFNRB2406	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600
A,E,L	RIFNRB2216	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
۰	GP2VN	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V
A	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5VN	GP4VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP4VN	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN	GP10V	GP10V	GP11V	GP11V
L	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP5VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN
Integrated hydronic kit: DA, DB, DC, D	D, DE, DF, DG	, DH, DI, D	J, PA, PB, I	PC, PD, PE,	PF, PG, PI	H, PI, PJ											
0	-	-	GP3VN	GP3VN	GP3VN	-	-	GP4VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V
A	-	GP3VN	-	-	-	GP4VN	GP4VN	GP5VN	GP4VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP4VN	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN	GP10V	GP10V	GP11V	GP11V
L	-	GP3VN	-	-	-	GP5VN	GP4VN	GP5VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN

A grey background indicates the accessory must be assembled in the factory

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Condensate drip

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206
0	BRC1x2 (1)	BRC1x2 (1)	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)				
A,L	BRC1x2 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)	BRC1x5 (1)	BRC1x6 (1)
E	BRC1x3 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x4 (1)	BRC1x5 (1)	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

Ver	2406	2600	2800	3000	3200	3400	3600
0	BRC1x5 (1)	BRC1x6 (1)	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x7 (1)
A	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)	BRC1x8 (1)	BRC1x9 (1)	BRC1x9 (1)
E	BRC1x8 (1)	BRC1x9 (1)	BRC1x9 (1)	BRC1x10 (1)	BRC1x10 (1)	BRC1x11 (1)	BRC1x11 (1)
L	BRC1x6 (1)	BRC1x7 (1)	BRC1x7 (1)	BRC1x8 (1)	BRC1x8 (1)	BRC1x10 (1)	BRC1x10 (1)

(1) Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	d	Description
	-	
1,2,	,3	NRB
4,5,	,6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406, 2600, 2800, 3000, 3200, 3400, 3600
8		Operating field
	0	Standard mechanic thermostatic valve
	Χ	Electronic thermostatic expansion valve
9		Model
	W	Heat pump with shell and tube heat exchanger
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (1)
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency
	L	Standard silenced
12		Coils
	0	Copper-aluminium
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
13		Fans
	0	Standard
	J	Inverter

Field	Description
14	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump

⁽¹⁾ The desuperheater can only be used with cold running.

Compatibility of models with hydronic units available with a configurator

companionity or mou		•					,	•										
Version		800	900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
standard	Н°	-	-	•	•	•	-	-	•	•	•	•	•	•	•	•	•	•
Standard silenced	HL	-	•	-	-	-	•			•	•	•	•	•	•	•	•	•
High efficiency	HA	-	•	-	-	-	•		•			•	•	•	•	•	•	•
Silenced high efficiency	HE																	•

NRB-0800-3600-HP-T_Y_CE50_08 494 www.aermec.com

PERFORMANCE SPECIFICATIONS

NRB H°

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	196,4	218,0	251,8	279,2	314,2	353,8	389,0	456,7	501,9	568,7	616,1	654,4	718,3	767,3	805,3	869,8	914,8
Input power	kW	74,1	86,1	91,7	107,9	119,5	141,6	155,6	172,6	193,2	211,2	231,1	253,0	266,2	291,4	315,7	327,9	353,4
Cooling total input current	Α	131,0	150,0	163,0	189,0	207,0	242,0	263,0	296,0	331,0	365,0	398,0	437,0	456,0	504,0	545,0	564,0	606,0
EER	W/W	2,65	2,53	2,74	2,59	2,63	2,50	2,50	2,65	2,60	2,69	2,67	2,59	2,70	2,63	2,55	2,65	2,59
Water flow rate system side	l/h	33794	37515	43314	48020	54046	60853	66910	78531	86311	97783	105939	112529	123524	131922	138449	149552	157281
Pressure drop system side	kPa	34	24	32	26	33	31	37	32	38	37	42	50	48	31	34	37	34
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	215,0	237,4	275,0	306,0	343,9	366,2	412,6	478,4	527,7	592,0	643,2	688,4	749,9	796,0	836,5	906,8	948,0
Input power	kW	70,2	77,7	89,6	99,8	112,3	121,7	137,0	157,3	174,3	193,9	210,7	227,9	245,2	260,8	275,8	295,9	311,8
Heating total input current	Α	125,0	138,0	158,0	175,0	195,0	212,0	236,0	274,0	304,0	340,0	369,0	397,0	427,0	458,0	484,0	519,0	549,0
COP	W/W	3,06	3,06	3,07	3,07	3,06	3,01	3,01	3,04	3,03	3,05	3,05	3,02	3,06	3,05	3,03	3,06	3,04
Water flow rate system side	l/h	37311	41207	47745	53116	59705	63585	71640	83071	91620	102803	111681	119537	130226	138243	145280	157484	164648
Pressure drop system side	kPa	42	28	38	32	40	34	42	36	42	40	46	56	53	33	37	40	37

NRB HL

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	197,9	227,9	247,7	275,2	301,1	359,1	392,2	453,8	495,0	552,5	592,9	651,2	681,3	748,5	784,2	848,0	882,7
Input power	kW	75,3	78,6	89,8	106,2	123,2	133,0	153,4	169,0	193,9	208,9	234,1	246,2	269,6	284,8	310,0	326,5	352,4
Cooling total input current	Α	126,0	133,0	150,0	176,0	203,0	220,0	252,0	280,0	321,0	347,0	390,0	409,0	446,0	473,0	515,0	543,0	585,0
EER	W/W	2,63	2,90	2,76	2,59	2,44	2,70	2,56	2,69	2,55	2,64	2,53	2,65	2,53	2,63	2,53	2,60	2,50
Water flow rate system side	l/h	34040	39194	42596	47339	51779	61758	67431	78030	85114	95003	101921	111950	117122	128680	134820	145791	151753
Pressure drop system side	kPa	14	18	15	19	14	20	18	23	23	29	17	21	23	23	25	29	32
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	209,8	250,3	274,3	304,8	334,3	394,3	431,0	497,4	543,0	609,3	654,3	717,5	757,3	825,0	869,1	937,0	980,9
Input power	kW	67,1	79,5	87,1	98,9	108,2	126,2	136,7	158,3	173,1	194,8	208,8	228,3	244,3	265,2	280,3	299,5	317,4
Heating total input current	Α	119,0	139,0	152,0	171,0	187,0	216,0	234,0	272,0	299,0	336,0	363,0	394,0	420,0	457,0	484,0	518,0	549,0
COP	W/W	3,13	3,15	3,15	3,08	3,09	3,12	3,15	3,14	3,14	3,13	3,13	3,14	3,10	3,11	3,10	3,13	3,09
Water flow rate system side	l/h	36429	43447	47619	52924	58032	68469	74854	86379	94306	105817	113644	124618	131534	143298	150956	162747	170364
Pressure drop system side	kPa	15	22	19	23	17	24	21	28	28	35	21	26	29	28	31	36	39

NRB HA

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C/7 °C(1)																		
Cooling capacity	kW	206,2	243,8	266,9	297,0	329,2	385,5	425,3	488,4	538,3	601,4	651,3	708,6	745,3	815,1	859,0	928,0	971,4
Input power	kW	71,8	78,2	88,1	102,2	117,2	129,2	147,2	163,7	184,8	201,3	222,3	237,4	257,9	274,4	295,7	312,0	333,6
Cooling total input current	Α	127,0	141,0	157,0	179,0	203,0	225,0	254,0	285,0	321,0	352,0	389,0	416,0	448,0	479,0	515,0	546,0	582,0
EER	W/W	2,87	3,12	3,03	2,91	2,81	2,98	2,89	2,98	2,91	2,99	2,93	2,99	2,89	2,97	2,91	2,97	2,91
Water flow rate system side	l/h	35459	41942	45909	51076	56619	66291	73125	83982	92547	103407	111966	121819	128141	140122	147682	159542	167008
Pressure drop system side	kPa	15	21	18	22	17	23	21	27	27	34	21	25	28	28	31	35	38
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	214,3	254,4	279,0	310,5	341,2	400,9	438,9	506,0	553,2	620,0	666,5	730,0	771,1	840,0	885,5	954,2	999,6
Input power	kW	66,6	79,3	86,7	97,1	106,2	124,8	137,1	157,5	171,8	193,5	207,0	226,8	240,1	260,9	275,3	297,4	311,6
Heating total input current	Α	120,0	142,0	155,0	172,0	187,0	219,0	240,0	277,0	303,0	342,0	368,0	401,0	421,0	460,0	485,0	526,0	550,0
COP	W/W	3,22	3,21	3,22	3,20	3,21	3,21	3,20	3,21	3,22	3,20	3,22	3,22	3,21	3,22	3,22	3,21	3,21
Water flow rate system side	l/h	37204	44148	48436	53909	59226	69618	76226	87877	96076	107669	115772	126793	133932	145898	153804	165737	173613
Pressure drop system side	kPa	16	23	20	24	18	25	22	29	29	36	22	26	30	30	33	37	41

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C /7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40°C / 45°C; Outside air 7°C d.b. / 6°C w.b.

NRB HE

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling performance 12 °C / 7 °C (1)																		
Cooling capacity	kW	209,6	241,7	264,7	294,5	326,7	377,8	432,4	489,4	540,5	597,8	647,7	699,1	734,9	798,7	841,0	904,0	944,9
Input power	kW	67,3	77,4	85,0	98,1	112,4	125,3	139,1	157,0	177,4	192,3	215,2	231,2	250,7	269,1	289,6	308,2	327,5
Cooling total input current	Α	115,0	132,0	144,0	164,0	187,0	208,0	230,0	261,0	296,0	322,0	362,0	387,0	417,0	449,0	483,0	515,0	547,0
EER	W/W	3,12	3,12	3,11	3,00	2,91	3,02	3,11	3,12	3,05	3,11	3,01	3,02	2,93	2,97	2,90	2,93	2,89
Water flow rate system side	l/h	36053	41586	45538	50642	56185	64960	74341	84155	92932	102793	111352	120183	126344	137316	144576	155409	162455
Pressure drop system side	kPa	15	20	18	22	16	22	21	27	27	33	21	24	27	27	29	33	36
Heating performance 40 °C / 45 °C (2)																		
Heating capacity	kW	223,4	258,1	283,7	316,7	349,3	403,2	458,7	520,7	571,9	634,1	683,9	741,3	784,2	848,2	895,3	960,1	1006,8
Input power	kW	69,3	80,5	87,9	98,5	109,0	126,1	143,1	162,7	177,1	198,2	211,7	230,0	244,9	264,9	279,5	299,5	315,3
Heating total input current	Α	122,0	140,0	153,0	170,0	188,0	216,0	244,0	278,0	305,0	341,0	367,0	396,0	420,0	456,0	482,0	517,0	544,0
COP	W/W	3,22	3,21	3,23	3,22	3,20	3,20	3,21	3,20	3,23	3,20	3,23	3,22	3,20	3,20	3,20	3,21	3,19
Water flow rate system side	l/h	38791	44787	49248	54989	60660	70010	79655	90422	99327	110122	118791	128748	136201	147319	155503	166760	174868
Pressure drop system side	kPa	17	23	20	25	19	25	24	31	31	38	23	27	31	30	33	38	41

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Electric data																			
	0	Α	168,6	185,0	209,8	239,2	268,5	297,5	326,5	423,4	487,6	516,6	570,9	548,6	581,4	630,9	671,8	712,7	753,6
Maximum current (FLA)	A,L	А	168,6	193,5	209,8	239,2	268,5	306,0	335,0	468,1	512,9	561,3	590,3	557,1	589,9	639,4	680,3	729,7	770,6
	E	Α	177,1	202,0	218,3	247,7	277,0	314,5	352,0	487,5	532,3	580,7	609,7	574,1	606,9	656,4	697,3	752,6	793,5
	0	А	357,2	412,4	437,2	489,9	519,2	631,7	660,7	757,6	821,8	850,8	905,1	817,9	850,7	900,2	941,1	982,0	1022,9
Peak current (LRA)	A,L	Α	357,2	420,9	437,2	489,9	519,2	640,2	669,2	802,3	847,1	895,5	924,5	826,4	859,2	908,7	949,6	999,0	1039,9
	E	Α	365,7	429,4	445,7	498,4	527,7	648,7	686,2	821,7	866,5	914,9	943,9	843,4	876,2	925,7	966,6	1021,9	1062,8

ENERGY INDICES (REG. 2016/2281 EU)

NRR H°

NKR H.																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient of	conditions	(average) - 35 °C -	Pdesignl	1 ≤ 400 k	W (1)												
Pdesignh	kW	203	224	260	289	325	346	296	343	379	425	462	495	539	571	600	651	680
SCOP	W/W	3,65	3,65	3,65	3,68	3,65	3,60	3,73	3,73	3,80	3,73	3,80	3,68	3,80	3,68	3,75	3,88	3,90
ηsh	%	143,00	143,00	143,00	144,00	143,00	141,00	146,00	143,00	149,00	146,00	149,00	144,00	149,00	144,00	147,00	152,00	153,00
SEER - 12/7 (EN14825:2018) with standard fans	(2)																	
SEER	W/W	3,79	3,66	3,88	3,81	3,91	3,80	3,89	3,92	3,80	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	148,40	143,50	152,20	149,50	153,20	149,10	152,70	153,80	149,00	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)																		
SEER	W/W	-	-	-	-	-	-	-	-	-	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - 23/18 (EN14825: 2018) with standard far	ıs (4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,67	4,76	4,64	4,70	4,66	4,56	4,66	4,65
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	183,90	187,30	182,40	184,90	183,40	179,30	183,40	182,80
SEER - 23/18 (EN14825: 2018) with inverter fans	s																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,88	5,02	5,07	4,92	4,96	4,96	4,92	4,96
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with	standard 1	fans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,53	5,54	5,52	5,52	5,51	5,51	5,51	5,51
SEPR - (EN14825: 2018) High temperature with	inverter fa	ans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,53	5,54	5,52	5,52	5,51	5,51	5,51	5,51

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C/7°C; outside air 35°C
(2) Data EN 14511:2022; System side water heat exchanger 40 °C/45°C; Outside air 7°C d.b./6°C w.b.

⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C (4) Calculation performed with FIXED water flow rate.

NRB HL

Ci		0000	0000	1000	1100	1200	1400	1600	1005	3006	2206	2404	3600	2000	3000	2200	2400	3600
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient co	nditions	(average)) - 35 °C -	Pdesignl	1 ≤ 400 k	W (1)												
Pdesignh	kW	197	235	258	286	314	370	306	353	385	433	464	509	538	586	617	666	697
SCOP	W/W	3,73	3,75	3,75	3,68	3,68	3,73	3,93	3,83	3,95	3,83	3,93	3,88	3,88	3,75	3,85	3,95	3,98
ηsh	%	146,00	147,00	147,00	144,00	144,00	146,00	154,00	150,00	155,00	150,00	154,00	152,00	152,00	147,00	151,00	155,00	156,00
SEER - 12/7 (EN14825:2018) with standard fans (2	2)																	
SEER	W/W	3,83	4,01	3,92	3,90	3,82	4,05	3,99	4,04	3,87	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	150,30	157,20	153,90	149,60	159,00	156,40	156,60	158,60	151,80	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)																		
SEER	W/W	-	-	-	-	-	-	-	-	-	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - 23/18 (EN14825: 2018) with standard fans	(4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,72	4,67	4,79	4,63	4,73	4,67	4,75	4,70
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,70	183,60	188,70	182,30	186,30	183,60	187,00	185,00
SEER - 23/18 (EN14825: 2018) with inverter fans																		
SEER	W/W	-	-	-	-	-	-	-	-	-	5,08	5,11	5,10	4,95	5,04	4,96	5,09	5,02
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with st	andard f	ans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51	5,53	5,51	5,52	5,52	5,51	5,51
SEPR - (EN14825: 2018) High temperature with in	verter fa	ıns (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,51	5,51	5,53	5,51	5,52	5,52	5,51	5,51

NRB HA

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient cond	ditions (a	verage)	- 55 ℃ -	Pdesignl	1 ≤ 400 k	W (1)												
Pdesignh	kW	196	233	255	284	312	367	304	351	384	430	462	506	535	582	614	662	693
SCOP	W/W	3,03	3,08	3,03	3,08	3,03	3,10	3,13	3,08	3,30	3,08	3,15	3,08	3,13	3,03	3,20	3,20	3,15
ηsh	%	118,00	120,00	118,00	120,00	118,00	121,00	122,00	120,00	129,00	120,00	123,00	120,00	122,00	118,00	125,00	125,00	123,00
SEER - 12/7 (EN14825:2018) with standard fans (2)																		
SEER	W/W	3,96	4,13	4,09	4,09	4,07	4,23	4,22	4,22	4,10	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	155,40	162,10	160,40	160,60	159,70	166,10	165,60	165,80	161,0	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2) SEER W/W 4,58 4,57 4,60 4,55 4,60 4,56 4,60 4,56																		
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57	4,60	4,55	4,60	4,56	4,60	4,56
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	180,3%	179,6%	180,8%	179,1%	180,8%	179,2%	181,0%	179,2%
SEER - 23/18 (EN14825: 2018) with standard fans (4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	4,96	5,01	5,02	4,84	4,92	4,87	4,95	4,94
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	195,30	197,40	197,80	190,50	193,90	191,80	195,00	194,60
SEER - 23/18 (EN14825: 2018) with inverter fans																		
SEER	W/W	-	-	-	-	-	-	-	-	-	4,58	4,57	4,60	4,55	4,60	4,54	4,60	4,56
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with sta	ndard fa	ns (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,52	5,51	5,55	5,52	5,51	5,51	5,52
SEPR - (EN14825: 2018) High temperature with inv	erter fan	ıs (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,52	5,51	5,55	5,52	5,51	5,51	5,52

⁽¹⁾ Efficiencies for low temperature applications (35 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(4) Calculation performed with FIXED water flow rate.

⁽¹⁾ Efficiencies for average temperature applications (55 °C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C/7°C
(4) Calculation performed with FIXED water flow rate.

NRB HE

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
UE 813/2013 performance in average ambient con	ditions (average)	- 55 °C -	Pdesignl	1 ≤ 400 k	W (1)												
Pdesignh	kW	204	236	259	290	320	369	318	361	397	440	474	514	544	588	621	666	698
SCOP	W/W	3,05	3,08	3,05	3,10	3,03	3,08	3,13	3,05	3,30	3,08	3,15	3,08	3,13	3,03	3,20	3,20	3,13
ηsh	%	119,00	120,00	119,00	121,00	118,00	120,00	122,00	119,00	129,00	120,00	123,00	120,00	122,00	118,00	125,00	125,00	122,00
SEER - 12/7 (EN14825:2018) with standard fans (2)																	
SEER	W/W	4,16	4,15	4,18	4,19	4,16	4,27	4,39	4,36	4,22	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
Seasonal efficiency	%	163,40	163,00	164,10	164,70	163,40	167,90	172,70	171,40	165,80	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)	- (3)
SEER - (EN14825:2018) 12/7 with inverter fans (2)																		
SEER	W/W	-	-	-	-	-	-	-	-	-	4,71	4,67	4,74	4,66	4,69	4,62	4,71	4,66
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	185,4%	183,7%	186,6%	183,4%	184,6%	181,9%	185,4%	183,4%
SEER - 23/18 (EN14825: 2018) with standard fans	(4)																	
SEER	W/W	-	-	-	-	-	-	-	-	-	5,17	5,20	5,16	5,01	5,04	4,99	5,03	5,03
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	203,60	204,90	203,20	197,20	198,60	196,50	198,10	198,10
SEER - 23/18 (EN14825: 2018) with inverter fans																		
SEER	W/W	-	-	-	-	-	-	-	-	-	4,71	4,67	4,74	4,66	4,69	4,62	4,71	4,66
Seasonal efficiency	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEPR - (EN14825: 2018) High temperature with sta	ndard fa	ans (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54	5,57	5,52	5,54	5,58	5,56	5,55
SEPR - (EN14825: 2018) High temperature with inv	erter fa	ns (4)																
SEPR	W/W	-	-	-	-	-	-	-	-	-	5,52	5,54	5,57	5,52	5,54	5,58	5,56	5,55

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	°,A,E,L	type									Scroll								
Compressor regulation	°,A,E,L	Туре									0n-0ff								
Number	°,A,E,L	no.	4	4	4	4	4	4	4	5	6	6	6	5	6	6	6	6	6
Circuits	°,A,E,L	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Defrimenant	°,A,L	type									R410A								
Refrigerant	E	type																	
	0	kg	41,0	42,0	55,0	56,0	56,0	58,0	58,0	84,0	84,0	100,0	100,0	113,0	116,0	138,0	138,0	138,0	143,0
Refrigerant charge (1)	A,L	kg	43,0	56,0	58,0	58,0	60,0	84,0	87,0	100,0	103,0	116,0	125,0	138,0	138,0	166,0	166,0	183,0	183,0
	E	kg	56,0	80,0	82,0	82,0	84,0	97,0	113,0	137,0	140,0	153,0	162,0	175,0	175,0	203,0	203,0	220,0	220,0
System side heat exchanger																			
Туре	°,A,E,L	type								Sh	nell and tu	be							
Hydraulic connections																			
Connections (in/out)	°,A,E,L	Туре								Gı	rooved joir	nts							
Hydraulic connections with	out hydronic kit																		
Cines (in laut)	0	Ø	5"	5"	5"	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"
Sizes (in/out)	A,E,L	Ø	5"	5"	5"	5"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"	6"
Hydraulic connections with	hydronic kit																		
	0	Ø	-	-	3"	3"	3"	-	-	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Sizes (in/out)	A,L	Ø	-	3"	-	-	-	3″	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
	E	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"

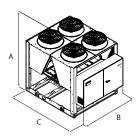
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

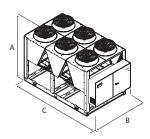
Water filter not supplied. Installation is mandatory or the guarantee will void.

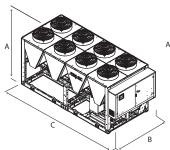
⁽¹⁾ Efficiencies for average temperature applications (55°C)
(2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(3) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(4) Calculation performed with FIXED water flow rate.

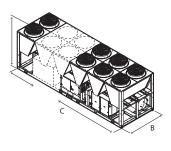
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Fan																			
Туре	°,A,E,L	type									Axial								
Fan master	°,A	type								A	synchrono	us							
Fan motor	E,L	type								Asynchro	nous with	phase cut							
	0	no.	4	4	6	6	6	6	6	8	8	10	10	12	12	14	14	14	14
Number	A,L	no.	4	6	6	6	6	8	8	10	10	12	12	14	14	16	16	18	18
	E	no.	6	8	8	8	8	10	12	14	14	16	16	18	18	20	20	22	22
	0	m³/h	80000	80000	120000	120000	120000	120000	120000	160000	160000	200000	200000	240000	240000	280000	280000	280000	280000
Air flow rate	Α	m³/h	80000	120000	120000	120000	120000	160000	160000	200000	200000	240000	240000	280000	280000	320000	320000	360000	360000
All flow fale	E	m³/h	90000	120000	120000	120000	120000	150000	180000	210000	210000	240000	240000	270000	270000	300000	300000	330000	330000
	L	m³/h	60000	90000	90000	90000	90000	120000	120000	150000	150000	180000	180000	210000	210000	240000	240000	270000	270000
Sound data calculated in coolin	ng mode (1)																		
	٥	dB(A)	89,5	89,5	91,6	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2	95,1	95,1	95,9	95,9	95,9	95,9
Cound namer lavel	Α	dB(A)	89,5	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2	95,1	95,1	95,9	95,9	96,6	96,6	97,2	97,2
Sound power level	E	dB(A)	84,6	86,1	86,1	86,1	86,1	87,2	88,2	89,4	89,9	91,1	91,6	92,2	92,2	92,7	92,7	93,2	93,2
	L	dB(A)	82,6	84,6	84,6	84,6	84,6	86,1	86,1	87,7	88,2	89,6	90,1	90,9	90,9	91,6	91,6	92,1	92,1
	0	dB(A)	57,4	57,4	59,3	59,3	59,3	59,3	59,3	60,7	60,7	61,7	61,7	62,5	62,5	63,2	63,2	63,2	63,2
Cound processes lovel (10 m)	Α	dB(A)	57,4	59,3	59,3	59,3	59,3	60,7	60,7	61,6	61,6	62,5	62,5	63,2	63,2	63,7	63,7	64,2	64,2
Sound pressure level (10 m)	E	dB(A)	52,4	53,7	53,7	53,7	53,7	54,7	55,5	56,7	57,2	58,2	58,7	59,2	59,2	59,6	59,6	60,0	60,0
	L	dB(A)	50,5	52,4	52,4	52,4	52,4	53,8	53,8	55,2	55,7	57,0	57,5	58,2	58,2	58,7	58,7	59,1	59,1

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


DIMENSIONS


NRB 0800 - 0900 ° NRB 0800 L/A


NRB 1000 - 1600 ° NRB 0900 - 1200 L/A NRB 0800 E


NRB 1805 - 2006 ° NRB 1400 - 1600 L/A NRB 0900 - 1200 E

NRB 2206 - 3600 ° NRB 1805 - 3600 L/A NRB 1400 - 3600 E

Size				0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Dimensions and weight	s without hydronic	ckit																		
A		°,A,E,L	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В		°,A,E,L	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		0	mm	2780	2780	3970	3970	3970	3970	3970	5160	5160	6350	6350	7140	7140	8330	8330	8330	8330
C	_	A,L	mm	2780	3970	3970	3970	3970	4760	4760	6350	6350	7140	7140	8330	8330	9520	9520	10710	10710
	_	E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330	9520	9520	10710	10710	11900	11900	13090	13090
Dimensions and weight	s with pump/s																			
		0	mm	-	-	2450	2450	2450	-	-	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
A	_	A,L	mm	-	2450	-	-	-	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
	_	E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
		0	mm	-	-	2200	2200	2200	-	-	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
В	_	A,L	mm	-	2200	-	-	-	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		0	mm	-	-	3970	3970	3970	-	-	5160	5160	6350	6350	7140	7140	8330	8330	8330	8330
(A,L	mm	-	3970	-	-	-	4760	4760	6350	6350	7140	7140	8330	8330	9520	9520	10710	10710
		E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330	9520	9520	10710	10710	11900	11900	13090	13090
Size			0800	0900	1000	1100	1200	1400	1600	180	5 20	06 2	206 2	406	2600	2800	3000	3200	3400	3600
Integrated hydro	onic kit: 00																			
Weights																				
	0	kg	2670	2730	3310	3360	3400	3460	3490	435	0 45	20 5	190 5	5230	5840	6130	7040	7120	7220	7320
Empty weight	A,L	kg	2700	3280	3350	3390	3470	4120	4240	498	0 51	90 5	690 6	5030	6710	6960	7590	7670	8340	8420
. , ,	E	kg	3230	3920	3990	4020	4100	4660	5220	606	0 62	80 6	810 7	7100	7720	7970	8550	8630	9310	9390

 $\label{lem:continuous} Aermec \ reserves \ the \ right \ to \ make \ any \ modifications \ deemed \ necessary.$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

CL 025-200

Air-water chiller

Cooling capacity 5,8 ÷ 41 kW

- Standard version
- Version with Integrated hydronic kit system side
- · Fan Plug-fan

DESCRIPTION

Chillers for indoor installation for chilled water production with scroll compressors, plugfan fans, external copper coils with aluminum louvers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

P With pump

FEATURES

Operating field

Operation at full load up to 46°C external air temperature. Unit can produce chilled water up to -10°C .

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction.

In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Air supply

Horizontal or vertical, adjustable during installation for all sizes. Directional air discharge hood:

- plastic for sizes 050 to 090
- galvanised steel for the other sizes

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

Hot water production

In the configuration with desuperheater, it is also possible to produce free-hot water.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications. The regulation using an outside air temperature sensor allows a dy-

The regulation using an outside air temperature sensor allows a dynamic control of the water temperature produced by increasing the energy efficiency of the system.

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VT: Antivibration supports

CLPA: Galvanised steel plenum to be installed on the condenser coil, facilitates duct installations.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

KR: Anti-freeze electric heater for the plate heat exchanger.

GPCL: Protection grille for the source side exchange coil.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	025	030	050	070	090	100	150	200
AERLINK	°,A,P	•	•	•	•	•	•	•	•
AERSET	°,A,P	•	•	•	•	•	•	•	•
MODU-485BL	°,A,P		•	•	•	•			•
MULTICONTROL	°,A,P	•	•	•	•	•	•	•	•
PR3	°,A,P	•	•	•	•	•	•	•	•
SPLW (1)	°,A,P	•					•		

 $(1) \ \ Probe\ required\ for\ MULTICONTROL\ to\ manage\ the\ secondary\ circuit\ system.$

Antivibration

_									
	Ver	025	030	050	070	090	100	150	200
	°,P	VT9	VT9	VT9	VT9	VT9	VT15	VT15	VT15
	A	VT15A	VT15A	VT15A	VT15A	VT15A	VT15	VT15	VT15

Galvanised steel plenum

Ver	025	030	050	070	090	100	150	200
°,A,P	CLPA1 (1)	CLPA1 (1)	CLPA2 (2)	CLPA2 (2)	CLPA2 (2)	CLPA3	CLPA3	CLPA3

⁽¹⁾ Not compatible with the GPCL1 accessory(2) Not compatible with the GPCL2 accessory

Device for peak current reduction

Ver	025	030	050	070	090	100	150	200
°,A,P	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)				

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Antifreeze electric heater

Ver	025	030	050	070	090	100	150	200
°,A,P	KR2	KR2	KR2	KR2	KR2	KR100	KR100	KR100

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	025	030	050	070	090	100	150	200
°,A,P	GPCL1	GPCL1	GPCL2	GPCL2	GPCL2	GPCL3	GPCL3	GPCL3

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

CONFIGURATOR

Field	Description
1,2	α
3,4,5	Size
3,4,3	025, 030, 050, 070, 090, 100, 150, 200
6	Model
0	Cooling only
7	Execution
0	Standard
8	Version
0	Standard
Α	With storage tank and pump
P	With pump
9	Heat recovery
0	Without heat recovery
D	With desuperheater (1)
10	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
11	Operating field
0	Standard mechanic thermostatic valve (2)
Υ	Low temperature mechanic thermostatic valve (3)
Z	Low temperature electronic thermostatic valve (4)
12	Evaporator
0	Standard
C	Motocondensing unit
13	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers (5)
М	230V ~ 3 50Hz (6)

⁽¹⁾ It is only available in size CL 050 ÷ 200; If the unit is also fitted with one of the low temperature valves in addition to the desuperheater, it is necessary to always guarantee a water temperature of 35°C at the inlet of the desuperheater.

(2) Water produced from 4°C ÷ 18°C

- (3) Water produced from 0 °C ÷ − 10 °C (4) Water produced from 0 °C ÷ 4 °C (5) Only for CL 025 ÷ 200 sizes (6) Only for CL 025 ÷ 030 sizes

PERFORMANCE SPECIFICATIONS

CL °- (version °) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	050	070	090	100	150	200
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	kW	5,8	7,1	12,7	16,3	20,2	26,3	33,0	40,6
Input power	kW	2,2	2,6	4,3	5,5	6,8	8,8	11,3	14,4
Cooling total input current - 400V	А	4,8	5,1	8,4	10,0	13,0	17,0	19,0	25,0
Cooling total input current - 230V	A	10,0	13,0	-	-	-	-	-	-
EER	W/W	2,70	2,72	2,98	3,00	2,98	2,99	2,91	2,82
Water flow rate system side	l/h	1008	1233	2189	2817	3484	4533	5695	7001
Pressure drop system side	kPa	19	26	27	29	29	45	53	72

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

CL ° - (versions A/P) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	050	070	090	100	150	200
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	5,9	7,2	12,8	16,5	20,4	26,5	33,4	41,0
Input power	kW	2,1	2,6	4,2	5,4	6,8	8,9	11,6	14,6
Cooling total input current - 400V	A	5,1	5,4	9,0	11,0	13,0	18,0	21,0	27,0
Cooling total input current - 230V	A	11,0	14,0	-	-	-	-	-	-
EER	W/W	2,76	2,78	3,02	3,04	3,02	2,97	2,87	2,81
Water flow rate system side	l/h	1008	1233	2189	2817	3484	4533	5695	7001
Useful head system side	kPa	71,0	62,0	73,0	66,0	58,0	83,0	131,0	122,0

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

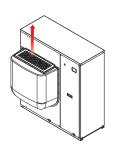
ENERGY DATA

Size			025	030	050	070	090	100	150	200
SEER - 12/7 (EN14825:2018) with	standard fans (1)									
CLLD	0	W/W	4,11	4,11	4,10	4,11	4,12	4,38	4,32	4,10
SEER	A,P	W/W	4,22	4,22	4,17	4,21	4,22	4,21	4,13	4,12
Cassanal afficiency	0	%	161,3%	161,4%	161,1%	161,3%	161,8%	172,0%	169,7%	161,0%
Seasonal efficiency	A,P	%	165,7%	165,7%	163,8%	165,2%	165,6%	165,5%	162,3%	161,8%
SEER - 23/18 (EN14825: 2018) wit	th standard fans (2)									
SEER	٥	W/W	4,72	4,47	4,50	4,44	4,52	5,13	4,99	4,51
DEEK	A,P	W/W	4,86	4,62	4,64	4,58	4,72	4,90	4,65	4,36
Cassanal afficiency	0	%	185,9%	175,9%	176,8%	174,7%	177,7%	202,2%	196,6%	177,2%
Seasonal efficiency	A,P	%	191,2%	181,7%	182,6%	180,0%	185,7%	193,1%	183,0%	171,5%
SEPR - (EN14825: 2018) High tem	perature with standar	d fans (2)								
CEDD	0	W/W	5,38	5,10	5,10	5,03	5,04	5,67	5,59	5,30
SEPR	A,P	W/W	5,49	5,21	5,18	5,13	5,16	5,56	5,37	5,20

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

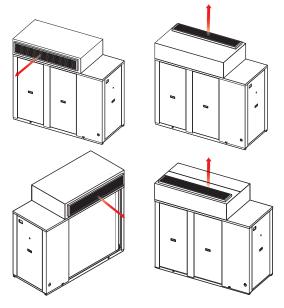
ELECTRIC DATA

EEECTIME DAMA										
Size			025	030	050	070	090	100	150	200
Power supply: °										
Electric data										
Maniana A (FLA)	0	A	11,0	11,6	13,6	15,4	20,4	27,4	30,8	40,8
Maximum current (FLA)	A,P	A	11,4	12,0	14,4	16,1	21,1	29,3	33,8	43,8
DI	0	А	44,6	40,6	77,2	77,2	105,2	90,9	92,6	125,6
Peak current (LRA)	A,P	А	45,0	41,0	77,9	77,9	105,9	92,8	95,6	128,6
Size			025	030	050	070	090	100	150	200
Power supply: M										
Electric data										
Manianana anno 4 (FLA)	0	A	22,0	25,0	-	-	-	-	-	-
Maximum current (FLA)	A,P	A	22,6	25,6	-	-	-	-	-	-
Peak current (LRA)	0	A	67,0	88,0	-	-	-	-	-	-
	A,P	A	67,6	88,6	-	-	-	-	-	-

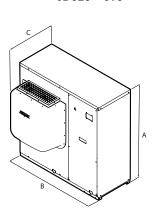

GENERAL TECHNICAL DATA

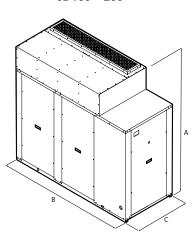

Size			025	030	050	070	090	100	150	200
Compressor										
Туре	°,A,P	type				Sc	roll			
Compressor regulation	°,A,P	Туре				0n	-off			
Number	°,A,P	no.	1	1	1	1	1	2	2	2
Circuits	°,A,P	no.	1	1	1	1	1	1	1	1
Refrigerant	°,A,P	type				R4	10A			
Refrigerant charge (1)	°,A,P	kg	1,5	2,7	4,0	4,0	4,0	5,5	7,5	7,5
System side heat exchanger										
Туре	°,A,P	type				Braze	d plate			
Number	°,A,P	no.	1	1	1	1	1	1	1	1
Hydraulic connections										
Connections (in/out)	°,A,P	Туре				Gas	s - F			
Size (in)	°,A,P	Ø				1	1/4			
Size (out)	°,A,P	Ø				1	1/4			
Fan										
Туре	°,A,P	type				Plug	j-fan			
Fan motor	°,A,P	type				Inve	erter			
Number	°,A,P	no.	1	1	1	1	1	2	2	2
Air flow rate	°,A,P	m³/h	4000	4000	6500	6500	7500	10000	12000	12000
High static pressure	°,A,P	Pa	50	50	50	50	50	50	50	50
Intake plus machine body										
Sound power level	°,A,P	dB(A)	78,0	78,0	73,0	73,0	76,0	74,0	79,0	79,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	41,0	41,0	44,0	42,0	47,0	47,0
Machine exhaust										
Sound power level	°,A,P	dB(A)	78,0	78,0	78,0	78,0	81,0	78,0	83,0	83,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	46,0	46,0	49,0	47,0	52,0	52,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


DISCHARGE HOOD POSSIBLE CONFIGURATIONS

CL 025 ÷ 090


CL 100 ÷ 200


- Air supply Horizontal or vertical, adjustable during installation for all sizes. Directional air discharge hood:
- plastic for sizes 050 to 090— galvanised steel for the other sizes

DIMENSIONS

CL 025 ÷ 090

CL 100 ÷ 200

Size			025	030	050	070	090	100	150	200
Dimensions and weights										
A	°,A,P	mm	1028	1281	1281	1281	1281	1674	1674	1674
D	°,P	mm	1005	1006	1160	1160	1160	1897	1897	1897
D	A	mm	1366	1458	1610	1610	1610	1897	1897	1897
C	°,A,P	mm	702	754	798	798	798	801	801	801
	٥	kg	127	160	208	210	212	469	471	475
Empty weight	A	kg	157	201	252	260	256	532	537	542
	Р	kg	133	166	217	225	221	482	487	492

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

CL 025H-200H

Reversible air/water heat pump

Cooling capacity 6,5 ÷ 50,9 kW Heating capacity 7,7 ÷ 44,8 kW

- Cooling / heating / high-temperature water production even for DHW production.
- Water produced up to 60 °C
- Heating operations with external temperatures down to -15 °C
- Fan Plug-fan

DESCRIPTION

Reversible air/water heat pump for air conditioning systems with cold water production for cooling rooms and hot water for heating and/or domestic hot water services, suitable for connection with small or medium users.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A With storage tank and pump

P With pump

FEATURES

Operating field

Working at full load up to -15 °C outside air temperature in winter, and up to 46 °C in summer. Hot water production up to 60 °C.

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction.

In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Air supply

Horizontal or vertical, adjustable during installation for all sizes. Directional air discharge hood:

- plastic for sizes 050 to 090
- galvanised steel for the other sizes

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

Hot water production

Special attention has been paid to winter operation: compared with traditional heat pumps, the operating limits have been extended thanks to particular technological expedients.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications. The regulation using an outside air temperature sensor allows a dy-

The regulation using an outside air temperature sensor allows a dynamic control of the water temperature produced by increasing the energy efficiency of the system.

ACCESSORIES

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MODU-485BL: RS-485 interface for supervision systems with MODBUS protocol.

MULTICONTROL: Allows the simultaneous control of several units (up to 4), installed in the same hydraulic system.

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

SDHW: Domestic hot water sensor. To be used with a storage tank for the control of water temperature produced.

SPLW: System water temperature sensor. In most cases the loose supplied sensors for each chiller/heat pump are sufficient. In cases of

a common flow/return header this sensor can be used to control the common system supply water temperature for the chillers connected to the header, or it can be used for temperature monitoring

VT: Antivibration supports

BSKW: Electric heaters kit with IP44 panel for remote mounting in a sheltered area.

CLPA: Galvanised steel plenum to be installed on the condenser coil, facilitates duct installations.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

KRB: -

GPCL: Protection grille for the source side exchange coil.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	025	030	040	050	070	080	090	100	150	200
AERLINK	°,A,P	•	•	•	•	•	•	•	•	•	•
AERSET	°,A,P	•	•	•	•	•		•		•	•
MODU-485BL	°,A,P	•	•	•	•	•	•	•	•	•	•
MULTICONTROL	°,A,P	•	•	•		•		•			•
PR3	°,A,P	•	•	•	•	•	•	•	•	•	•
SDHW (1)	°,A,P	•	•			•		•			•
SPLW (2)	°,A,P	•			•	•	•	•	•	•	•

⁽¹⁾ Probe required for MULTICONTROL for managing the domestic hot water system.
(2) Probe required for MULTICONTROL to manage the secondary circuit system.

Antivibration

Ver	025	030	040	050	070	080	090	100	150	200
°,P	VT9	VT15	VT15	VT15						
A	VT15A	VT15	VT15	VT15						

BSKW: Electric heater kit

DOMINI Elective licuter kit										
Ver	025	030	040	050	070	080	090	100	150	200
Power supply: °										
◊ ۸ D	BS6KW400T,									
°,A,P	BS9KW400T									
Power supply: M										
0 A D	BS4KW230M,	BS4KW230M,	BS4KW230M,							_
°,A,P	BS6KW230M	BS6KW230M	BS6KW230M	-	-	-	-	-	-	-

Galvanised steel plenum

Garran	isea steel pielialli										
	Ver	025	030	040	050	070	080	090	100	150	200
	°,A,P	CLPA1 (1)	CLPA1 (1)	CLPA2 (2)	CLPA3	CLPA3	CLPA3				

⁽¹⁾ Not compatible with the GPCL1 accessory(2) Not compatible with the GPCL2 accessory

Device for peak current reduction

Ver	025	030	040	050	070	080	090	100	150	200
Power supply: °										
°,A,P	DRE5 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)	DRE5 x 2 (1)						

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

Electric Heater for the Base

Ver	025	030	040	050	070	080	090	100	150	200
°,A,P	KRB4 (1)	KRB4 (1)	KRB5 (1)	KRB6 (1)	KRB6 (1)	KRB6 (1)				

⁽¹⁾ Incompatible with the condensate collection basin accessory with integrated resistance. A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	025	030	040	050	070	080	090	100	150	200
°,A,P	GPCL1	GPCL1	GPCL2	GPCL2	GPCL2	GPCL2	GPCL2	GPCL3	GPCL3	GPCL3

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

[■] MODU-485BL = Accessory mandatory for the production of domestic hot water

A grey background indicates the accessory must be assembled in the factory

507

CONFIGURATOR

CONTIGOR	
Field	Description
1,2	CL
3,4,5	Size 025, 030, 040, 050, 070, 080, 090, 100, 150, 200
6	Model
Н	Heat pump
7	Execution
0	Standard
8	Version
0	Standard
Α	With storage tank and pump (1)
Р	With pump
9	Heat recovery
0	Without heat recovery
10	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
11	Operating field
0	Standard mechanic thermostatic valve (2)
Υ	Low temperature mechanic thermostatic valve (3)
Z	Low temperature electronic thermostatic valve (4)
12	Evaporator
0	Standard
13	Power supply
0	400V 3N ~ 50Hz (5)
M	230V ~ 50Hz (6)

 ⁽¹⁾ The version with integrated storage tank is not suitable for the production of domestic hot water (DHW).
 (2) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 0 °C ÷ -10 °C

$CL - (H^{\circ}) - (400V 3N \sim 50Hz / 230V \sim 50Hz)$

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	6,4	8,4	10,4	11,9	14,0	15,5	19,0	23,9	31,3	37,6
Input power	kW	2,6	3,1	3,8	4,2	4,8	5,6	6,8	8,2	10,9	14,4
Cooling total input current - 400V	A	5,5	6,3	6,6	7,5	8,3	9,6	13,0	14,0	21,0	26,0
Cooling total input current - 230V	A	13,0	15,0	16,0	-	-	-	-	-	-	-
EER	W/W	2,44	2,73	2,74	2,87	2,90	2,77	2,81	2,93	2,86	2,61
Water flow rate system side	l/h	1104	1441	1785	2054	2411	2676	3272	4122	5388	6477
Pressure drop system side	kPa	13	12	13	11	15	26	26	34	22	43
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	7,9	9,8	12,5	14,4	15,9	18,6	21,0	27,8	34,8	43,8
Input power	kW	2,3	2,9	3,7	4,1	4,7	5,5	6,5	8,1	10,6	14,4
Heating total input current - 400V	Α	5,5	6,2	6,4	7,5	8,1	9,2	13,0	14,0	19,0	26,0
Heating total input current - 230V	A	12,0	14,0	15,0	-	-	-	-	-	-	-
COP	W/W	3,41	3,32	3,40	3,52	3,36	3,40	3,20	3,44	3,27	3,03
Water flow rate system side	l/h	1368	1693	2164	2502	2756	3214	3634	4822	6034	7581
Pressure drop system side	kPa	19	16	18	17	21	32	34	49	30	42

⁽⁴⁾ Water produced from 0 °C \div 4 °C (5) Only for CL 025 \div 200 sizes (6) Only for CL 025 \div 040 sizes

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

⁽¹⁾ Data EN 14511:2022; Beat exchanger water (services side) 12°C/7°C; outside air 35°C
(2) Data EN 14511:2022; System side water heat exchanger 40 °C/45°C; Outside air 7°C d.b./6°C w.b.

CL - (HP/HA) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	6,5	8,4	10,5	12,0	14,1	15,7	19,1	24,2	31,6	38,0
Input power	kW	2,6	3,0	3,7	4,2	4,8	5,6	6,7	8,3	11,3	14,7
Cooling total input current - 400V	А	5,8	6,7	7,0	8,1	8,9	10,0	14,0	15,0	23,0	28,0
Cooling total input current - 230V	A	13,0	16,0	16,0	-	-	-	-	-	-	-
EER	W/W	2,49	2,79	2,79	2,90	2,94	2,82	2,85	2,91	2,81	2,58
Water flow rate system side	l/h	1104	1441	1785	2054	2411	2676	3272	4122	5388	6477
Useful head system side	kPa	76,0	75,0	69,0	92,0	86,0	80,0	64,0	99,0	158,0	145,0
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	7,8	9,7	12,4	14,3	15,8	18,4	20,8	27,6	34,5	43,4
Input power	kW	2,3	2,9	3,6	4,1	4,7	5,4	6,5	8,2	11,0	14,8
Heating total input current - 400V	A	5,9	6,6	6,8	8,1	8,7	9,9	13,0	15,0	21,0	28,0
Heating total input current - 230V	Α	12,0	15,0	16,0	-	-	-	-	-	-	-
COP	W/W	3,42	3,34	3,42	3,50	3,35	3,40	3,21	3,35	3,14	2,92
Water flow rate system side	l/h	1368	1693	2164	2502	2756	3214	3634	4822	6034	7581
Useful head system side	kPa	68,0	67,0	56,0	84,0	78,0	66,0	53,0	72,0	133,0	103,0

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

$CL - (H^{\circ}) - (400V 3N \sim 50Hz / 230V \sim 50Hz)$

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	8,5	11,1	13,8	15,8	18,6	20,6	25,2	31,7	41,6	49,9
Input power	kW	2,8	3,3	4,0	4,4	5,1	6,0	7,2	8,7	11,6	15,4
Cooling total input current - 400V	А	5,8	6,6	6,9	8,0	8,7	10,0	14,0	15,0	22,0	27,0
Cooling total input current - 230V	A	13,0	16,0	17,0	-	-	-	-	-	-	-
EER	W/W	3,05	3,42	3,43	3,59	3,63	3,45	3,50	3,63	3,57	3,24
Water flow rate system side	l/h	1472	1922	2381	2740	3216	3570	4364	5498	7187	8639
Pressure drop system side	kPa	23	21	23	20	27	46	46	60	39	77
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	8,2	10,1	12,9	15,0	16,5	19,2	21,7	28,9	36,1	45,4
Input power	kW	2,0	2,5	3,1	3,5	4,0	4,6	5,5	6,8	9,0	12,4
Heating total input current - 400V	A	4,7	5,3	5,4	6,4	6,8	7,8	11,0	12,0	16,0	22,0
Heating total input current - 230V	A	10,0	12,0	13,0	-	-	-	-	-	-	-
COP	W/W	4,16	4,08	4,15	4,30	4,12	4,17	3,93	4,22	3,99	3,67
Water flow rate system side	l/h	1413	1749	2235	2585	2846	3320	3754	4981	6233	7832
Pressure drop system side	kPa	20	17	19	18	22	34	36	52	32	45

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

CL - (HP/HA) - (400V 3N ~ 50Hz / 230V ~ 50Hz)

Size		025	030	040	050	070	080	090	100	150	200
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	8,6	11,2	13,9	16,0	18,7	20,8	25,4	32,0	41,9	50,3
Input power	kW	2,7	3,2	4,0	4,4	5,1	5,9	7,2	8,9	12,1	15,8
Cooling total input current - 400V	A	6,2	7,0	7,3	8,6	9,4	11,0	15,0	16,0	24,0	30,0
Cooling total input current - 230V	A	14,0	17,0	17,0	-	-	-	-	-	-	-
EER	W/W	3,13	3,50	3,50	3,64	3,69	3,52	3,55	3,58	3,45	3,18
Water flow rate system side	l/h	1472	1922	2381	2740	3216	3570	4364	5498	7187	8639
Useful head system side	kPa	63,0	59,0	48,0	79,0	66,0	55,0	27,0	41,0	81,0	57,0
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	8,1	10,0	12,8	14,8	16,3	19,1	21,6	28,6	35,8	45,0
Input power	kW	1,9	2,4	3,1	3,4	4,0	4,6	5,5	7,0	9,4	12,8
Heating total input current - 400V	A	5,0	5,6	5,8	7,0	7,5	8,5	11,0	13,0	18,0	24,0
Heating total input current - 230V	А	11,0	13,0	14,0	-	-	-	-	-	-	-
COP	W/W	4,18	4,11	4,19	4,30	4,13	4,19	3,94	4,09	3,80	3,52
Water flow rate system side	l/h	1413	1749	2235	2585	2846	3320	3754	4981	6233	7832
Useful head system side	kPa	66,0	65,0	54,0	82,0	76,0	63,0	49,0	65,0	124,0	93,0

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

⁽¹⁾ Data EN 14511:2022; System side water heat exchanger 23 °C/18 °C; External air 35 °C (2) Data EN 14511:2022; System side water heat exchanger 30 °C/35 °C; External air 7 °C d.b. / 6 °C w.b.

ENERGY DATA

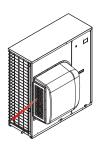
Size			025	030	040	050	070	080	090	100	150	200
Cooling capacity with low leaving w	ater temp (UE n° 20)16/2281)										
CEED	0	W/W	2,93	3,27	3,32	3,45	3,43	3,27	3,39	4,06	4,06	3,66
SEER	A,P	W/W	3,11	3,47	3,53	3,62	3,62	3,46	3,60	4,06	3,85	3,60
	0	%	114,20	127,60	129,60	134,80	134,00	127,80	132,40	159,20	159,20	143,40
ηςς	A,P	%	121,40	135,90	138,00	142,00	141,70	135,30	141,00	159,50	150,80	141,10
UE 811/2013 performance in averag	e ambient conditio	ns (average) -	35 °C - Pdesig	nh ≤ 70 kW (1)							
Ddarianh	0	kW	7	9	11	13	14	16	18	25	31	39
Pdesignh	A,P	kW	7	8	11	12	14	16	18	24	29	37
SCOP	0	W/W	3,35	3,35	3,45	3,58	3,45	3,53	3,30	3,53	3,35	3,23
SCUP	A,P	W/W	3,43	3,43	3,53	3,63	3,50	3,58	3,35	3,45	3,23	3,20
	0	%	131,00	131,00	135,00	140,00	135,00	138,00	129,00	138,00	131,00	126,00
ηsh	A,P	%	134,00	134,00	138,00	142,00	137,00	140,00	131,00	135,00	126,00	125,00
Efficiency energy class	°,A,P		A+	A+	A+	A+	A+	A+	A+	A+	A+	A+

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

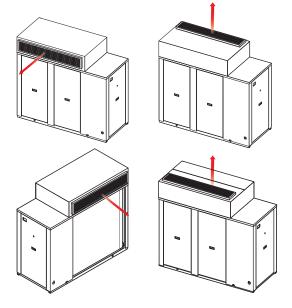
ELECTRIC DATA

		025	030	040	050	070	080	090	100	150	200
0	A	11,0	11,9	11,9	13,5	14,7	15,2	20,4	27,0	30,3	40,8
A,P	A	11,4	12,4	12,3	14,3	15,4	15,9	21,1	29,0	33,4	43,8
0	A	44,6	44,6	57,1	64,2	74,2	94,2	105,2	77,7	109,3	125,6
A,P	А	45,0	45,0	57,6	64,9	74,9	94,9	105,9	79,6	112,4	128,6
		025	030	040	050	070	080	090	100	150	200
0	A	19,0	24,0	24,0	-	-	-	-	-	-	-
A,P	А	19,8	24,7	25,0	-	-	-	-	-	-	-
0	A	86,0	96,0	96,0	-	-	-	-	-	-	-
A,P	А	87.1	96,5	97,1	-	-	-	_	_	-	-
	A,P	A,P A	° A 11,0 A,P A 11,4 ° A 44,6 A,P A 45,0 025 ° A 19,0 A,P A 19,8 ° A 86,0	° A 11,0 11,9 A,P A 11,4 12,4 ° A 44,6 44,6 A,P A 45,0 45,0 ■ 025 030	° A 11,0 11,9 11,9 A,P A 11,4 12,4 12,3 ° A 44,6 44,6 57,1 A,P A 45,0 45,0 57,6 025 030 040 ° A 19,0 24,0 24,0 A,P A 19,8 24,7 25,0 ° A 86,0 96,0 96,0	° A 11,0 11,9 11,9 13,5 A,P A 11,4 12,4 12,3 14,3 ° A 44,6 44,6 57,1 64,2 A,P A 45,0 45,0 57,6 64,9 025 030 040 050	° A 11,0 11,9 11,9 13,5 14,7 A,P A 11,4 12,4 12,3 14,3 15,4 ° A 44,6 44,6 57,1 64,2 74,2 A,P A 45,0 45,0 57,6 64,9 74,9 025 030 040 050 070 ° A 19,0 24,0 24,0 - - A,P A 19,8 24,7 25,0 - - ° A 86,0 96,0 96,0 - -	° A 11,0 11,9 11,9 13,5 14,7 15,2 A,P A 11,4 12,4 12,3 14,3 15,4 15,9 ° A 44,6 44,6 57,1 64,2 74,2 94,2 A,P A 45,0 45,0 57,6 64,9 74,9 94,9 025 030 040 050 070 080 ° A 19,0 24,0 24,0 - - - - A,P A 19,8 24,7 25,0 - - - - ° A 86,0 96,0 96,0 - - - -	° A 11,0 11,9 11,9 13,5 14,7 15,2 20,4 A,P A 11,4 12,4 12,3 14,3 15,4 15,9 21,1 ° A 44,6 44,6 57,1 64,2 74,2 94,2 105,2 A,P A 45,0 45,0 57,6 64,9 74,9 94,9 105,9 025 030 040 050 070 080 090 ° A 19,0 24,0 24,0 - - - - - A,P A 19,8 24,7 25,0 - - - - - ° A 86,0 96,0 96,0 - - - - -	° A 11,0 11,9 11,9 13,5 14,7 15,2 20,4 27,0 A,P A 11,4 12,4 12,3 14,3 15,4 15,9 21,1 29,0 ° A 44,6 44,6 57,1 64,2 74,2 94,2 105,2 77,7 A,P A 45,0 45,0 57,6 64,9 74,9 94,9 105,9 79,6 025 030 040 050 070 080 090 100 ° A 19,0 24,0 24,0 - - - - - - A,P A 19,8 24,7 25,0 - - - - - - - ° A 86,0 96,0 96,0 -	° A 11,0 11,9 11,9 13,5 14,7 15,2 20,4 27,0 30,3 A,P A 11,4 12,4 12,3 14,3 15,4 15,9 21,1 29,0 33,4 ° A 44,6 44,6 57,1 64,2 74,2 94,2 105,2 77,7 109,3 A,P A 45,0 45,0 57,6 64,9 74,9 94,9 105,9 79,6 112,4 025 030 040 050 070 080 090 100 150 ° A 19,0 24,0 24,0 -

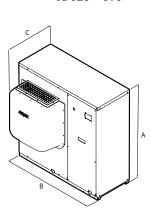
GENERAL TECHNICAL DATA

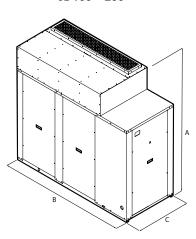

Size			025	030	040	050	070	080	090	100	150	200
Compressor												
Туре	°,A,P	type					Sc	roll				
Compressor regulation	°,A,P	Туре					0n	-off				
Number	°,A,P	no.	1	1	1	1	1	1	1	2	2	2
Circuits	°,A,P	no.	1	1	1	1	1	1	1	1	1	1
Refrigerant	°,A,P	type					R4	10A				
Refrigerant charge (1)	°,A,P	kg	2,7	2,7	4,3	5,6	5,6	5,6	5,7	8,3	8,0	7,5
System side heat exchanger												
Туре	°,A,P	type					Braze	d plate				
Number	°,A,P	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	°,A,P	Туре					Ga	s - F				
Size (in)	°,A,P	Ø					1	1/4				
Size (out)	°,A,P	Ø					1	1/4				
Fan												
Туре	°,A,P	type					Plug	g-fan				
Fan motor	°,A,P	type					Inv	erter				
Number	°,A,P	no.	1	1	1	1	1	1	1	2	2	2
Air flow rate	°,A,P	m³/h	4000	4000	6500	6500	6500	6500	7500	10000	12000	16000
High static pressure	°,A,P	Pa	50	50	50	80	80	80	80	80	100	100
Intake plus machine body												
Sound power level	°,A,P	dB(A)	78,0	78,0	73,0	73,0	73,0	73,0	76,0	74,0	79,0	80,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	41,0	41,0	41,0	41,0	44,0	42,0	47,0	48,0
Machine exhaust												
Sound power level	°,A,P	dB(A)	78,0	78,0	78,0	78,0	78,0	78,0	81,0	78,0	83,0	85,0
Sound pressure level in cooling mode (10 m)	°,A,P	dB(A)	46,0	46,0	46,0	46,0	46,0	46,0	49,0	47,0	52,0	54,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


DISCHARGE HOOD POSSIBLE CONFIGURATIONS

CL 025 ÷ 090


CL 100 ÷ 200


- Air supply Horizontal or vertical, adjustable during installation for all sizes. Directional air discharge hood:
- plastic for sizes 050 to 090— galvanised steel for the other sizes

DIMENSIONS

CL 025 ÷ 090

CL 100 ÷ 200

Size			025	030	040	050	070	080	090	100	150	200
Dimensions and weights												
A	°,A,P	mm	1028	1028	1281	1281	1281	1281	1281	1674	1674	1674
D	°,P	mm	1005	1005	1160	1160	1160	1160	1160	1897	1897	1897
	А	mm	1366	1366	1610	1610	1610	1610	1610	1897	1897	1897
С	°,A,P	mm	702	702	798	798	798	798	798	801	801	801
	۰	kg	142	142	229	229	240	240	234	504	527	515
Empty weight	A	kg	172	172	274	274	284	284	279	567	593	581
	Р	kg	148	148	239	239	250	250	243	517	543	531

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

NLC 0280-1250

Air-water chiller

Cooling capacity 53 ÷ 322 kW

- High efficiency also at partial loads
- · Complete air flow versatility
- EC fan Plug-fan with high performance
- Night mode

DESCRIPTION

Chiller offering chilled/hot water, designed to mit air conditioning needs in residential / commercial complexes or industrial applications. Indoor units with Scroll compressors, centrifugal fans and plate heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 46°C external air temperature. Unit can produce chilled water up to -10°C.

Units mono or dual-circuit

The range includes units with 2 compressors in single circuit and units with 4 compressors divided into two independent circuits.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction. In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

Hot water production

In the configuration with desuperheater or total recovery, it is also possible to produce free-hot water.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible

to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

VT: Antivibration supports **FLG:** Flange for ducts.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

KRQ: Electric heater for the control and electric power board.

KRA: Anti-freeze electric heater for the buffer tank.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
AER485P1	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E	•		•		•	•	•		•	•	•	•	•	•	•
AERLINK	°,A,E	•	•	•	•	•	•	•	•	•		•	•	•	•	•
AERNET	°,A,E	•	•	•	•				•	•	•	•	•	•	•	•
FL	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	°,A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
C-TOUCH	°,A,E	•		•	•					•	•	•	•	•	•	•

FILTROW

Ver	0280	0300	0330	0350	0550	0600	0650	0675
°,A,E	FILTRO W DN50 (1)	FILTRO W DN50 (1)	FILTRO W DN50 (1)	FILTRO W DN50 (1)	FILTRO W DN65 (1)			
(1) Installation is mandatory, contrarily ga	rantee becomes void.							
Ver	0700	0750	0800	09	000	1000	1100	1250
°,A,E	FILTRO W DN65 (1)	FILTRO W DN65 (1) FILTRO W DN	80 (1) FILTRO W	DN80 (1) FILTRO	O W DN80 (1) FI	TRO W DN80 (1)	FILTRO W DN80 (1)

(1) Installation is mandatory, contrarily garantee becomes void.

Flange for ducts

Ver	0280	0300	0330	0350	0550	0600	0650	0675
0	FLG1	FLG1	FLG1	FLG1	FLG1	FLG2 x 2 (1)	FLG2 x 2 (1)	FLG2 x 2 (1)
A,E	FLG1	FLG1	FLG1	FLG1	FLG2 x 2 (1)			

(1) x... indicates the quantity to buy.

Ver	0700	0750	0800	0900	1000	1100	1250
0	FLG1 x 2 (1)	FLG1 + FLG2 x 2 (1)	FLG2 x 4 (1)	FLG1 + FLG2 x 2 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)
A,E	FLG1 x 2 (1)	FLG1 + FLG2 x 2 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)	FLG2 x 4 (1)

(1) x... indicates the quantity to buy.

Antivibration

Ver	0280	0300	0330	0350	0550	0600	0650	0675
Integrated hydronic kit: 00								
°,A,E	VT17	VT17	VT17	VT17	-	-	-	-
Integrated hydronic kit: 01, 02, 03, 0	4, 05, 06, 07, 08							
°,A,E	VT11	VT11	VT11	VT11	-	-	-	-
Integrated hydronic kit: P1, P2, P3, I	P4, P5, P6, P7, P8							
°,A,E	VT13	VT13	VT13	VT13	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Ver	0280	0300	0330	0350	0550	0600	0650	0675
Integrated hydronic kit: 00								
0	-	-	-	-	AVX437	AVX421	AVX421	AVX421
A,E	-	-	-	-	AVX421	AVX421	AVX421	AVX421
Integrated hydronic kit: 01, 02, 03, 0	04, 05, 06, 07, 08							
0	-	-	-	-	AVX439	AVX423	AVX423	AVX423
A,E	-	-	-	-	AVX423	AVX423	AVX423	AVX423
Integrated hydronic kit: P1, P3, P5,	P7							
0	-	-	-	-	AVX438	AVX421	AVX421	AVX421
A,E	-	-	-	-	AVX421	AVX421	AVX421	AVX421
Integrated hydronic kit: P2, P4, P6,	P8							
0	-	-	-	-	AVX438	AVX422	AVX422	AVX422
A,E	-	-	-	-	AVX422	AVX422	AVX422	AVX422

The accessory cannot be fitted on the configurations indicated with -

Ver	0700	0750	0800	0900	1000	1100	1250
tegrated hydronic kit: 00							
0	AVX424	AVX440	AVX440	AVX444	AVX431	AVX431	AVX431
A,E	AVX424	AVX428	AVX431	AVX431	AVX431	AVX431	AVX431
tegrated hydronic kit: 01, 03, 05, 07							
۰	AVX427	AVX441	AVX441	AVX446	AVX435	AVX434	AVX434
A,E	AVX427	AVX430	AVX434	AVX434	AVX434	AVX434	AVX434
tegrated hydronic kit: 02, 04, 06, 08							
0	AVX427	AVX441	AVX441	AVX446	AVX435	AVX436	AVX436
A,E	AVX427	AVX430	AVX435	AVX435	AVX435	AVX436	AVX436
tegrated hydronic kit: P1, P3, P5, P7							
0	AVX425	AVX425	AVX442	AVX445	AVX432	AVX432	AVX432
A,E	AVX425	AVX429	AVX432	AVX432	AVX432	AVX432	AVX432
tegrated hydronic kit: P2, P4, P6, P8							
٥	AVX426	AVX426	AVX443	AVX445	AVX433	AVX433	AVX433
A,E	AVX426	AVX429	AVX433	AVX433	AVX433	AVX433	AVX433
RE: Device for peak current red	duction						
Ver	0280	0300	0330	0350	0550 0600	0650	0675

Ver	0280	0300	0330	0350	0550	0600	0650	0675
°,A,E	DRE275 (1)	DRE275 (1)	DRE300 (1)	DRE350 (1)	DRE552 (1)	DRE602 (1)	DRE652 (1)	DRE675 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	0700	0750	0800	0900	1000	1100	1250
°,A,E	DRE350 x 2	DRE552 x 2	DRE552 x 2	DRE602 x 2	DRE652 x 2	DRE675 x 2	DRE1250 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0280	0300	0330	0350		0600	0650	0675				
°,A,E	RIFNLC1	RIFNLC1	RIFNLC2	RIFNLC3	RIFNLC1 RIFNLC1		RIFNLC1	RIFNLC4				
A grey background indicates the accessory must be assembled in the factory												
Ver	0700	0750	0800	0900	1000		1100	1250				
°,A,E	RIFNLC3 x 2 (1)	RIFNLC3 + RIFNLC2 (1)	RIFNLC1 x 2 (1)	RIFNLC1 x 2 ((2 (1) RIFNLC1 x 2 (1)		RIFNLC4 x 2 (1)	RIFNLC3 x 2 (1)				

(1) x... indicates the quantity to buy.
A grey background indicates the accessory must be assembled in the factory

Anti-condensate electric board resistance

Ver	0280	0300	0330	0350	0550	0600	0650	0675			
°,A,E	KRQ										
A grey background indicates the accessory must be assembled in the factory											
Ver	0700	0750	0800	0900		1000	1100	1250			
0 A E	VDO.	VDO	VDΛ	VDV		VDO	VDO	KDU			

A grey background indicates the accessory must be assembled in the factory

Anti-freeze electric heater for the storage tank

THE TECES CICCLIFE TICATES TO	tire storage tariit							
Ver	0280			0330 0350		0600	0650	0675
Integrated hydronic kit: 01, 02, 03, 04	, 05, 06, 07, 08							
°,A,E	KRA1	KRA1	KRA1	KRA1	KRA2	KRA2	KRA2	KRA2
Integrated hydronic kit: P1, P2, P3, P4	4, P5, P6, P7, P8							
A,E	KRA1	KRA1	KRA1	KRA1	KRA2	KRA2	KRA2	KRA2

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	0700	0750	0800	0900	1000	1100	1250						
Integrated hydronic kit: 01, 02, 03, 04,	05, 06, 07, 08												
°,A,E	KRA2	KRA2	KRA2	KRA2	KRA2	KRA2	KRA2						
Integrated hydronic kit: P1, P2, P3, P4,	Integrated hydronic kit: P1, P2, P3, P4, P5, P6, P7, P8												
A,E	KRA2	KRA2	KRA2	KRA2	KRA2	KRA2	KRA2						

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NLC
4,5,6,7	Size
	0280, 0300, 0330, 0350, 0550, 0600, 0650, 0675, 0700, 0750, 0800, 0900, 1000, 1100, 1250
8	Operating field
0	Standard mechanic thermostatic valve (1)
X	Electronic thermostatic expansion valve (1)
Υ	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (2)
9	Model
•	Cooling only
	Motocondensing unit
10	Heat recovery
0	Without heat recovery
D	With desuperheater (3)
T	With total recovery (4)
11	Version
0	Standard
Α	High efficiency
E	Silenced high efficiency
12	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
13	Fans
J	Inverter
14	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with storage tank and inverter pump/s
05	Storage tank with low-head inverter pump
06	Storage tank with low head inverter pump + stand-by pump
07	Storage tank with high head inverter pump
08	Storage tank with high head inverter pump + stand-by pump
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with pump/s, with inverter speed
P5	Single low head pump + fixed speed inverter (5)
P6	Single low head pump with fixed speed inverter + stand-by pump (5)
P7	Single high head pump + fixed speed inverter (5)
P8	Single high head pump with fixed speed inverter + stand-by pump (5)
	Single riigh nead pump with nixed speed inverter + stand-by pump (3) Hrom 4°C ÷ 18°C

Water produced from 4 °C ÷ 18 °C
 Water produced from 4 °C ÷ -10 °C
 The temperature of the water in the heat exchanger inlet must never drop below 35°C.
 The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.

PERFORMANCE SPECIFICATIONS

NLC - °

Size		0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Cooling performance 12 °C/7 °C (1)																
Cooling capacity	kW	52,1	57,1	62,8	75,4	94,2	112,0	123,0	137,4	151,4	170,2	189,7	220,2	242,6	277,4	306,7
Input power	kW	20,4	23,4	24,3	28,9	39,3	44,3	50,1	53,7	58,6	66,6	79,0	86,4	99,8	107,6	121,3
Cooling total input current	Α	38,0	42,0	46,0	57,0	68,0	77,0	85,0	92,0	113,0	121,0	136,0	148,0	169,0	181,0	208,0
EER	W/W	2,56	2,44	2,59	2,61	2,40	2,53	2,45	2,56	2,58	2,56	2,40	2,55	2,43	2,58	2,53
Water flow rate system side	I/h	8969	9828	10807	12972	16236	19277	21167	23676	26081	29294	32644	37884	41733	47712	52763
Pressure drop system side	kPa	19	22	28	27	43	27	31	43	37	30	38	35	35	41	48

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NLC - A

Size		0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Cooling performance 12 °C / 7 °C (1)																
Cooling capacity	kW	54,0	59,4	66,9	78,6	106,3	119,5	129,2	146,3	157,4	177,9	209,7	233,2	257,6	290,6	319,2
Input power	kW	19,5	21,5	23,4	27,7	37,7	42,9	45,0	52,4	55,3	60,3	75,4	84,8	89,6	105,7	115,9
Cooling total input current	Α	36,0	40,0	43,0	54,0	63,0	71,0	73,0	87,0	107,0	113,0	126,0	139,0	146,0	173,0	198,0
EER	W/W	2,77	2,76	2,85	2,84	2,82	2,78	2,87	2,79	2,85	2,95	2,78	2,75	2,88	2,75	2,75
Water flow rate system side	l/h	9295	10223	11511	13539	18298	20566	22250	25188	27095	30617	36080	40118	44310	49980	54911
Pressure drop system side	kPa	20	24	22	30	25	30	36	36	25	25	33	33	35	37	43

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NLC - E

Size		0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	52,2	58,0	64,2	73,4	102,9	115,6	124,5	142,6	151,1	171,3	201,2	224,8	248,0	282,8	310,6
Input power	kW	19,3	21,5	23,7	27,4	37,6	42,7	45,9	52,5	55,4	60,1	74,9	85,2	90,6	105,8	116,0
Cooling total input current	A	36,0	39,0	43,0	53,0	62,0	69,0	73,0	85,0	106,0	112,0	123,0	138,0	146,0	170,0	197,0
EER	W/W	2,70	2,70	2,71	2,67	2,74	2,71	2,71	2,72	2,73	2,85	2,69	2,64	2,74	2,67	2,68
Water flow rate system side	I/h	8986	9982	11047	12628	17714	19896	21442	24552	25995	29483	34637	38675	42661	48640	53433
Pressure drop system side	kPa	19	23	20	26	23	29	34	34	23	24	31	30	33	35	41

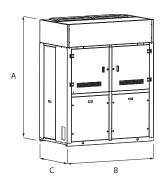
⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

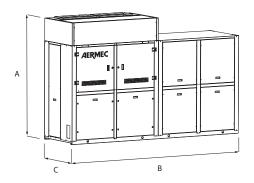
ENERGY INDICES (REG. 2016/2281 EU)

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
SEER - 12/7 (EN14825:2018) with standard	fans (1)																
	0	W/W	5,33	5,02	4,92	4,97	4,25	4,87	4,57	4,73	4,28	4,15	4,10	4,12	4,10	4,15	4,10
SEER	А	W/W	5,79	5,77	5,33	5,34	5,24	5,33	5,15	5,03	4,75	4,93	4,55	4,46	4,63	4,42	4,35
_	Е	W/W	4,83	4,98	4,74	4,80	4,58	4,70	4,53	4,55	4,48	4,63	4,19	4,14	4,31	4,19	4,12
	0	%	210,3%	197,8%	193,9%	195,8%	167,1%	191,6%	179,6%	186,0%	168,2%	162,8%	161,0%	161,9%	161,1%	163,1%	161,0%
Seasonal efficiency	А	%	228,6%	227,6%	210,2%	210,4%	206,7%	210,1%	202,9%	198,3%	186,9%	194,0%	178,8%	175,5%	182,3%	173,9%	171,1%
	E	%	190,3%	196,0%	186,7%	189,0%	180,1%	185,0%	178,3%	179,1%	176,2%	182,1%	164,6%	162,7%	169,2%	164,4%	161,9%
SEER - 23/18 (EN14825: 2018) with standar	rd fans (2	!)															
_	0	W/W	6,25	5,89	5,79	5,84	5,02	5,72	5,37	5,58	5,08	4,91	4,86	4,90	4,86	4,93	4,87
SEER	Α	W/W	6,84	6,82	6,27	6,27	6,17	6,27	6,07	5,93	5,62	5,84	5,39	5,29	5,49	5,25	5,16
	E	W/W	5,68	5,85	5,58	5,64	5,39	5,54	5,35	5,37	5,29	5,46	4,96	4,90	5,10	4,95	4,88
	0	%	246,8%	232,5%	228,5%	230,5%	197,7%	225,8%	211,9%	220,1%	200,0%	193,4%	191,4%	192,8%	191,5%	194,1%	191,6%
Seasonal efficiency	А	%	270,6%	269,7%	247,6%	247,7%	243,6%	247,8%	239,8%	234,3%	221,8%	230,4%	212,4%	208,5%	216,6%	206,9%	203,5%
	E	%	224,2%	230,8%	220,3%	222,7%	212,7%	218,4%	211,0%	211,8%	208,6%	215,5%	195,3%	193,0%	200,9%	195,0%	192,0%
SEPR - (EN14825: 2018) High temperature	with star	dard fans (2)														
_	0	W/W	6,54	6,22	6,12	6,02	5,18	5,73	5,32	5,70	5,45	5,08	5,04	5,25	5,04	5,07	5,03
SEPR	А	W/W	6,87	6,88	6,44	6,47	6,21	6,35	5,98	5,90	5,94	6,32	5,65	5,40	5,72	5,41	5,39
_	E	W/W	5,91	5,92	5,65	5,55	5,14	5,36	5,03	5,15	5,12	5,48	5,09	5,01	5,09	5,05	5,03

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA


ELECTRIC DATA																	
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Electric data																	
Maximum current (FLA)	0	Α	52,0	56,0	62,0	73,0	103,0	111,0	119,0	132,0	146,0	169,0	206,0	222,0	238,0	263,0	289,0
Maximum current (FLA)	A,E	Α	52,0	56,0	62,0	73,0	92,0	111,0	119,0	132,0	146,0	158,0	183,0	210,0	238,0	263,0	289,0
Dook surrent (LDA)	0	Α	128,0	130,0	133,0	216,0	261,0	273,0	281,0	358,0	290,0	346,0	353,0	372,0	400,0	489,0	515,0
Peak current (LRA)	A,E	Α	128,0	130,0	133,0	216,0	273,0	273,0	281,0	358,0	290,0	357,0	376,0	384,0	400,0	489,0	515,0


GENERAL TECHNICAL DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Compressor																	
Туре	°,A,E	type								Scroll							
Compressor regulation	°,A,E	Туре								0n-0ff							
Number	°,A,E	no.	2	2	2	2	2	2	2	2	4	4	4	4	4	4	4
Circuits	°,A,E	no.	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
Refrigerant	°,A,E	type		,						R410A							
	0	kg	7,0	7,0	8,5	9,0	13,7	15,0	18,0	19,0	9,5	8,3	13,8	13,5	15,0	19,1	19,1
Refrigerant load circuit 1 (1)	A	kg	8,7	8,5	9,5	10,0	18,0	18,7	22,0	22,0	10,7	9,5	18,7	19,5	22,0	22,0	22,0
	E	kg	8,7	8,5	9,5	10,0	18,0	18,7	21,0	21,5	10,7	9,5	18,7	19,0	21,1	22,0	22,0
	0	kg	-	-	-	-	-	-	-	-	9,5	12,3	13,8	13,5	15,0	19,1	19,1
Refrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	-	-	-	10,7	17,0	18,7	19,5	22,0	22,0	22,0
	E	kg	-	-	-	-	-	-	-	-	10,7	17,0	18,7	19,0	20,6	22,0	22,0
System side heat exchanger																	
Туре	°,A,E	type							[Brazed plat	e						
Number	°,A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
(1) The load indicated in the table is an	estimated and prel	iminary val	ue. The fina	al value of	the refrige	erant load i	s indicated	on the un	it's technic	cal label. F	or further i	nformatio	n contact t	he office.			
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydronic kit: 0	0																
System side hydraulic connections																	
Connections (in/out)	°,A,E	Туре							G	rooved joir	nts						
Sizes (in/out)	0	Ø	2"	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"
	A,E	Ø	2"	2"	2"	2"	2"1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"
Integrated hydronic kit: 0	1, 02, 03, 04	4, 05, 0	6, 07, 0	8, P1,	P2, P3,	P4, P5	, P6, P	7, P8									
System side hydraulic connections																	
Connections (in/out)	°,A,E	Туре							G	rooved joir	nts						
Sizes (in/out)	°,A,E	Ø	2"	2"	2"	2"	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2" 1/2	3"	3"	3"	3″	3"
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Fan																	
Туре	°,A,E	type								Plug-fun							
Fan motor	°,A,E	type							ECI	nverter mo	otors						
N 1	0	no.	2	2	2	2	2	4	4	4	4	4	4	6	8	8	8
Number	A,E	no.	2	2	2	2	4	4	4	4	4	6	8	8	8	8	8
	ō	m³/h	21600	24000	21150	23600	23200	34050	34050	38200	47150	46750	46350	62150	68100	66650	71750
Air flow rate	A	m³/h	21150	23600	19400	22050	27700	33350	27150	32750	44050	57900	55350	55350	54300	65450	65450
	E	m³/h	15000	18400	14650	16450	14900	22200	14600	21750	32900	41900	29850	29850	29200	43500	43500
Sound power level (expulsion)																	
	0	dB(A)	83,3	85,6	82,9	85,4	87,5	83,9	83,9	86,1	88,4	89,6	90,5	86,9	86,9	89,1	89,1
Sound power level	A	dB(A)	83,6	86,1	81,9	84,5	82,9	85,2	82,9	85,1	87,5	85,8	85,9	88,2	85,9	88,1	88,1
	E	dB(A)	76,7	80,1	76,5	78,3	75,2	78,5	75,2	78,4	81,3	80,0	78,2	81,5	78,2	81,4	81,4
Sound power level (intake + machine	body)																
	٥	dB(A)	80,1	79,2	81,0	83,8	86,4	84,8	85,6	83,9	85,1	86,7	87,7	87,2	89,3	89,3	-
										07.4			00.1			00.4	90,4
Sound power level	Α	dB(A)	78,7	80,1	80,0	81,2	86,1	87,4	86,1	87,1	84,0	86,5	89,1	92,5	89,1	90,1	90,4

516 www.aermec.com NLC-0280-1250-CO_Y_UN50_07

DIMENSIONS

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Dimensions and weights																	
A	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
D	0	mm	1750	1750	1750	1750	1750	3150	3150	3150	3500	3500	3500	4900	6300	6300	6300
В	A,E	mm	1750	1750	1750	1750	3150	3150	3150	3150	3500	4900	6300	6300	6300	6300	6300
C	°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Faranta considerate	0	kg	759	759	787	798	994	1409	1415	1450	1510	1682	1858	2294	2692	2775	2789
Empty weight	A,E	kg	775	775	809	813	1432	1436	1470	1485	1553	2156	2728	2744	2818	2844	2858
Dimensions and weights with pump/s																	
A	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
D	0	mm	2500	2500	2500	2500	2500	3150	3150	3150	4250	4250	4250	4900	6300	6300	6300
В	A,E	mm	2500	2500	2500	2500	3150	3150	3150	3150	4250	4900	6300	6300	6300	6300	6300
C	°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Dimensions and weights with storage ta	nk and pump/	's															
A	°,A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
D.	0	mm	3400	3400	3400	3400	3500	4150	4150	4150	5250	5250	5250	5900	7300	7300	7300
В	A,E	mm	3400	3400	3400	3400	4150	4150	4150	4150	5250	5900	7300	7300	7300	7300	7300
C	°,A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100

NLC 0280H-1250H

Reversible air/water heat pump

Cooling capacity 53 ÷ 322 kW Heating capacity 55 ÷ 342 kW

- High efficiency also at partial loads
- · Complete air flow versatility
- EC fan Plug-fan with high performance
- Night mode

DESCRIPTION

Reversible heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

Indoor units with Scroll compressors, centrifugal fans and plate heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

A High efficiency

E Silenced high efficiency

FEATURES Operating field

Work up to 44°C of outdoor air temperature at full load, depending on size and version. For further details refer to the selection software / technical documentation.

Units mono or dual-circuit

The range includes units with 2 compressors in single circuit and units with 4 compressors divided into two independent circuits.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

EC fan plug-fan

The units are equipped with plug-fans and inverter motors coupled directly with the fan, with the electronic condensation control as standard, which adjusts the air flow according to the actual system requirements, with benefits in terms of consumption and noise reduction. In addition, compared to conventional centrifugal fans, they do not feature belt and pulley transmission, resulting in easy flow adjustment, compactness, versatility, easy maintenance and no vibrations.

Version with Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

VT: Antivibration supports FLG: Flange for ducts.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

KRB: -

KRQ: Electric heater for the control and electric power board.

KRA: Anti-freeze electric heater for the buffer tank.

C-TOUCH: 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
AER485P1	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	A,E	•	•	•	•	•	•	•	•	•		•	•	•	•	•
AERNET	A,E		•	•	•		•	•	•	•	•	•	•	•	•	•
FL	A,E	•	•	•	•		•	•	•	•		•	•	•	•	•
MULTICHILLER_EVO	A,E		•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	A,E	•					•									•

Water filter

Ver	0280	0300	0330	0350	0550	0600	0650	0675
A,E	FILTRO W DN50 (1)	FILTRO W DN65 (1)						

(1) Installation is mandatory, contrarily garantee becomes void.

Ver	0700	0750	0800	0900	1000	1100	1250
A,E	FILTRO W DN80 (1)						

⁽¹⁾ Installation is mandatory, contrarily garantee becomes void.

Flange for ducts

<u>-</u>								
Ver	0280	0300	0330	0350	0550	0600	0650	0675
A,E	FLG1	FLG1	FLG1	FLG1	FLG2	FLG2	FLG2	FLG2
Ver	0700	0750	0800	0900		1000	1100	1250
A,E	FLG1 x 2 (1)	FLG1 + FLG2 (1)	FLG2 x 2 (1)	FLG2 x 2 (1)		FLG2 x 2 (1)	FLG2 x 2 (1)	FLG2 x 2 (1)

⁽¹⁾ x... indicates the quantity to buy.

Antivibration

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydron	ic kit: 00														
A,E	VT17	VT17	VT17	VT17	-	-	-	-	-	-	-	-	-	-	-
Integrated hydron	ic kit: 01, 02, 0	3, 04, 05, 06	, 07, 08												
A,E	VT11	VT11	VT11	VT11	-	-	-	-	-	-	-	-	-	-	-
Integrated hydron	ic kit: P1, P2, F	P3, P4, P5, P	6, P7, P8												
A,E	VT13	VT13	VT13	VT13	-	-	-	-	-	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Integrated hydro	nic kit: 00														
A,E	-	-	-	-	AVX410	AVX410	AVX410	AVX410	AVX410	AVX416	AVX418	AVX418	AVX420	AVX420	AVX420
Integrated hydro	nic kit: 01, 02, (3,04													
A,E	-	-	-	-	AVX412	AVX412	AVX412	AVX412	AVX415	AVX417	AVX419	AVX419	AVX419	AVX419	AVX419
Integrated hydro	nic kit: 05, 06, (7, 08													
Α	-	-	-	-	AVX423	AVX412	AVX412	AVX412	AVX415	AVX417	AVX419	AVX419	AVX419	AVX419	AVX419
E	-	-	-	-	AVX412	AVX412	AVX412	AVX412	AVX415	AVX417	AVX419	AVX419	AVX419	AVX419	AVX419
Integrated hydro	nic kit: P1, P3, I	P5, P7													
A,E	-	-	-	-	AVX410	AVX410	AVX410	AVX410	AVX413	AVX416	AVX418	AVX418	AVX420	AVX420	AVX420
Integrated hydro	nic kit: P2, P4, I	P6, P8	-			-			-		-				
A,E	-	-	-	-	AVX411	AVX411	AVX411	AVX411	AVX414	AVX416	AVX418	AVX418	AVX420	AVX420	AVX420

The accessory cannot be fitted on the configurations indicated with -

DRE: Device for peak current reduction

Ver	0280	0300	0330	0350	0550	0600	0650	0675
A,E	DRE275 (1)	DRE275 (1)	DRE300 (1)	DRE350 (1)	DRE552 (1)	DRE602 (1)	DRE652 (1)	DRE675 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	0700	0750	0800	0900	1000	1100	1250
A,E	DRE350 x 2	DRE552 x 2	DRE552 x 2	DRE602 x 2	DRE652 x 2	DRE675 x 2	DRE1250 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0280	0300	0330	0350	0550	0600	0650	0675
A,E	RIFNLC1	RIFNLC1	RIFNLC2	RIFNLC3	RIFNLC1	RIFNLC1	RIFNLC1	RIFNLC4

A grey background indicates the accessory must be assembled in the factory

Ver	0700	0750	0800	0900	1000	1100	1250
A,E	RIFNLC3 x 2 (1)	RIFNLC3 + RIFNLC2 (1)	RIFNLC1 x 2 (1)	RIFNLC1 x 2 (1)	RIFNLC1 x 2 (1)	RIFNLC4 x 2 (1)	RIFNLC3 x 2 (1)

Anti-condensate electric board resistance

Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
A.E	KRO														

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Anti-freeze electric heater for the storage tank

_																
Ξ	Ver	0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
	A,E	KRA1	KRA1	KRA1	KRA1	KRA2										

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NLC
4,5,6,7	Size 0280, 0300, 0330, 0350, 0550, 0600, 0650, 0675, 0700, 0750, 0800, 0900, 1000, 1100, 1250
8	Operating field (1)
0	Standard mechanic thermostatic valve
Χ	Electronic thermostatic expansion valve
9	Model
Н	Heat pump
10	Heat recovery
0	Without heat recovery
D	With desuperheater (2)
11	Version
Α	High efficiency
E	Silenced high efficiency
12	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
٧	Copper pieps-Coated aluminium fins
13	Fans
J	Inverter
14	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit

Field	Description
00	Without hydronic kit
	Kit with storage tank and pump/s
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with storage tank and inverter pump/s
05	Storage tank with low-head inverter pump
06	Storage tank with low head inverter pump + stand-by pump
07	Storage tank with high head inverter pump
08	Storage tank with high head inverter pump + stand-by pump
	Kit with pump/s
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with pump/s, with inverter speed
P5	Single low head pump + fixed speed inverter (3)
P6	Single low head pump with fixed speed inverter + stand-by pump (3)
P7	Single high head pump + fixed speed inverter (3)
P8	Single high head pump with fixed speed inverter + stand-by pump (3)

520 NLC-0280-1250-HP_Y_UN50_07 www.aermec.com

⁽¹⁾ x... indicates the quantity to buy.
A grey background indicates the accessory must be assembled in the factory

Water produced from 4 °C ÷ 18 °C
 The desuperheater must be intercepted in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
 The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.

PERFORMANCE SPECIFICATIONS

NLC-HA/HE

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Cooling performance 12 °C/7 °C (1)																	
Cooling conscitu	А	kW	54,4	60,4	66,7	78,6	102,5	115,3	126,0	143,4	158,1	181,1	202,0	232,5	252,7	287,1	316,5
Cooling capacity	E	kW	52,1	58,2	63,5	75,0	97,8	110,6	118,5	136,8	150,2	172,1	192,7	223,8	242,2	273,7	305,0
Input namer	A	kW	20,0	22,5	24,4	28,6	37,7	43,4	46,9	54,6	57,4	66,3	74,7	87,1	93,6	108,9	127,4
Input power	E	kW	20,4	23,0	25,5	29,4	40,1	46,0	49,1	56,5	58,8	67,2	79,8	90,2	97,1	112,6	128,0
Cooling total insult assessed	А	Α	36,0	41,0	45,0	56,0	68,0	77,0	81,0	96,0	112,0	121,0	136,0	155,0	162,0	192,0	219,0
Cooling total input current	E	Α	36,0	40,0	45,0	55,0	69,0	77,0	83,0	95,0	111,0	121,0	139,0	153,0	166,0	191,0	218,0
rrp.	А	W/W	2,72	2,69	2,73	2,75	2,72	2,66	2,69	2,63	2,75	2,73	2,70	2,67	2,70	2,64	2,48
EER	E	W/W	2,55	2,53	2,49	2,55	2,44	2,40	2,41	2,42	2,55	2,56	2,42	2,48	2,49	2,43	2,38
Water flammate anatom aida	А	l/h	9368	10396	11480	13535	17638	19855	21700	24691	27213	31158	34751	40001	43480	49382	54436
Water flow rate system side	Е	l/h	8967	10021	10934	12905	16829	19040	20401	23542	25847	29620	33162	38500	41662	47091	52474
Down day was a side	A	kPa	21	25	23	30	24	29	35	35	26	25	34	34	36	38	44
Pressure drop system side	Е	kPa	20	24	20	27	20	25	29	30	24	25	33	35	38	42	53
Heating performance 40 °C / 45 °C (2)																	
Heating capacity	A,E	kW	56,4	63,5	70,7	82,6	109,8	122,4	137,1	156,5	168,5	193,6	218,3	244,7	273,4	312,4	348,1
Input power	A,E	kW	19,1	21,9	24,0	27,8	37,0	41,5	46,4	53,7	55,9	65,1	73,6	82,9	91,5	105,2	118,1
Heating total input current	A,E	Α	36,0	40,0	44,0	54,0	65,0	74,0	78,0	91,0	105,0	114,0	129,0	145,0	153,0	179,0	199,0
COP	A,E	W/W	2,95	2,90	2,95	2,97	2,97	2,95	2,95	2,91	3,01	2,97	2,97	2,95	2,99	2,97	2,95
Water flow rate system side	A,E	l/h	9781	11023	12266	14321	19050	21235	23760	27154	29225	33591	37889	42470	47456	54236	60425
Pressure drop system side	A,E	kPa	22	27	25	32	27	32	40	41	29	28	38	37	41	43	52
(1) D FN 14511 2022 H		1.) 1206 / 7		2506													$\overline{}$

ENERGY DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Cooling capacity with low leaving water t	emp (UE n° 2	2016/2281)															
SEER	Α	W/W	4,48	4,50	4,52	4,71	4,89	4,74	4,65	4,52	4,38	4,33	4,51	4,47	4,36	4,29	4,08
JEER	E	W/W	4,16	4,16	4,08	4,50	4,29	4,23	4,29	4,22	4,20	4,14	3,98	4,21	4,13	3,99	3,86
ncc	Α	%	176,10	177,10	177,80	185,20	192,50	186,40	183,10	177,70	172,20	170,30	177,50	175,80	171,40	168,70	160,00
ηςς	E	%	163,20	163,50	160,30	177,10	168,50	166,00	168,40	165,90	165,00	162,60	156,20	165,30	162,20	156,40	151,40
UE 811/2013 performance in average am	bient conditi	ons (avera	ge) - 35 °C	- Pdesign	h ≤ 70 kV	V (1)											
Pdesignh	A,E	kW	52	59	66	-	-	-	-	-	-	-	-	-	-	-	-
SCOP	A,E	W/W	3,28	3,20	3,28	-	-	-	-	-	-	-	-	-	-	-	-
ηsh	A,E	%	128,00	125,00	128,00	-	-	-	-	-	-	-	-	-	-	-	-
Efficiency energy class	A,E		A+	A+	A+	-	-	-	-	-	-	-	-	-	-	-	-

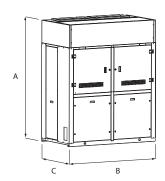
⁽¹⁾ Efficiencies for low temperature applications (35 °C)

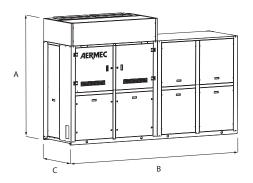
ELECTRICAL DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Electric data																	
Maximum current (FLA)	A,E	Α	52,2	55,6	62,0	71,4	103,0	110,9	118,8	131,8	142,8	167,1	206,0	221,8	237,6	263,6	289,6
Peak current (LRA)	A,E	A	127,9	129,6	132,8	215,4	272,9	272,9	280,8	357,8	286,8	355,6	375,9	383,8	399,6	489,6	515,6

GENERAL TECHNICAL DATA

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Compressor																	
Туре	A,E	type								Scroll							
Compressor regulation	A,E	Туре								On-Off							
Number	A,E	no.	2	2	2	2	2	2	2	2	4	4	4	4	4	4	4
Circuits	A,E	no.	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
Refrigerant	A,E	type								R410A							
Refrigerant charge (1)	A,E	kg	9,2	9,5	11,0	11,0	18,5	20,0	25,0	25,0	23,0	32,0	42,0	42,0	50,0	50,0	50,0
System side heat exchanger																	
Туре	A,E	type							E	Brazed plat	e						
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																	
Connections (in/out)	A,E	Type							G	rooved join	ts						
Sizes (in/out)	A,E	Ø	2"	2"	2"	2"	2"1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"
Fan																	
Туре	A,E	type								Plug-fun							
Fan motor	A,E	type							ECI	nverter mo	tors						
Number	A,E	no.	2	2	2	2	4	4	4	4	4	6	8	8	8	8	8
Air Garranda	Α	m³/h	23000	26500	25000	27500	42000	47000	44000	50000	53000	64500	84000	94000	88400	102000	102000
Air flow rate	E	m³/h	17000	19800	17200	20600	30000	35000	31400	38200	41000	48900	60000	70800	64000	77600	88000
High static pressure	A,E	Pa	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120


⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Sound data calculated in cooling mode (2)																
Cound nouse lovel	Α	dB(A)	84,1	87,9	86,3	88,9	85,2	87,9	86,4	89,5	91,9	86,7	88,2	90,9	89,4	92,5	92,5
Sound power level -	E	dB(A)	77,3	80,5	77,6	81,5	78,5	81,3	79,4	83,2	84,5	79,4	81,5	84,3	82,4	86,2	86,2
Count are count level (10 m)	A	dB(A)	52,4	56,1	54,6	57,1	53,3	56,0	54,5	57,5	59,9	54,5	55,9	58,6	57,1	60,2	60,2
Sound pressure level (10 m)	Е	dB(A)	45.5	48.7	45.8	49.7	46.6	49,4	47.5	51.3	52.5	47,3	49.2	52.0	50,1	53.9	53.9

DIMENSIONS

<u></u>			****			43.54	0550		0450	0475					4000	4400	4250
Size			0280	0300	0330	0350	0550	0600	0650	0675	0700	0750	0800	0900	1000	1100	1250
Dimensions and weights																	
A	A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В	A,E	mm	1750	1750	1750	1750	3150	3150	3150	3150	3500	4900	6300	6300	6300	6300	6300
C	A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Empty weight	A,E	kg	790	790	828	832	1452	1456	1492	1507	1586	2194	2768	2783	2863	2889	2903
Dimensions and weights with pump/s	S																
A	A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В	A,E	mm	2500	2500	2500	2500	3150	3150	3150	3150	4250	4900	6300	6300	6300	6300	6300
C	A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
Dimensions and weights with storage	e tank and pump	/s															
A	A,E	mm	2154	2154	2154	2154	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196	2196
В	A,E	mm	3400	3400	3400	3400	4150	4150	4150	4150	5250	5900	7300	7300	7300	7300	7300
C	A,E	mm	950	950	950	950	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

NSM 1402-9603

Air-water chiller

Cooling capacity 302 ÷ 2100 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- HP floating: ESEER +5% with inverter fans

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger. In the unit with desuperheater, it is also possible to produce free-hot water

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to $51\,^{\circ}\text{C}$ external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Inverter fans

Standard inverter fans for sizes and versions (°) from 2002 to 9603, optional for other sizes and versions. Option for all configurations.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

 As standard from size 5202÷6402 and 8403÷9603, optional for all other sizes.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

www.aermec.com

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: available for all models with inverter fans or with DCPX. Allows, with continuous fan modulation, to optimize the operation of the unit in any operating point, ensuring an increase in the energy efficiency at partial load. ESEER up to +5% with invertor face.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

ACCESSORIES

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 \mathbf{x} \mathbf{n}° **3:** RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
AER485P1 x n° 2 (1)	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L,N,U	•		•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,A,E,L,N,U	•		•	•	•	•	•	•				•	•	•
MULTICHILLER_EVO	°,A,E,L,N,U	•		•	•	•		•	•	•		•	•	•	
PRV3	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Model	Ver	4202	4502	4802	5202	5602	600	2 640)2	6503	6703	6903	7203	8403	9603
AER485P1 x n° 2 (1)	°,A,E,L,N,U	•	•	•	•	•	•	•							
	°,A,L									•	•	•	•	•	•
AER485P1 x n° 3 (1)	E,U										•	•	•		
	N									•					
	°,A,L	•	•	•	•	•	•			•	•	•	•	•	•
AERBACP	E,U	•	•	•	•	•	•			•	•	•	•		
	N	•	•	•	•	•	•			•					
	°,A,L	•	•	•	•	•	•	•		•	•	•	•	•	•
AERNET	E,U	•	•	•	•	•	•			•	•	•	•		
	N	•	•	•	•	•	•	•		•					
	°,A,L	•	•	•	•	•	•			•	•	•	•	•	•
MULTICHILLER_EVO	E,U	•	•	•	•	•	•			•	•	•	•		
	N	•	•	•	•	•	•	•		•					
	°,A,L	•	•	•	•	•	•			•	•	•	•	•	•
PRV3	E,U	•	•	•	•	•	•	•		•	•	•	•		
	N	•	•	•	•	•	•	•		•					
(1) x Indicates the quantity of accesso	ries to match.														
Ver	1402	1602	180)2	2002	2	202	2352		2502		2652	2802		3002
Fans: M															
0	DCPX110	DCPX110	DCPX		DCPX110		PX110	DCPX11		DCPX110		CPX111	DCPX111		DCPX112
A	DCPX111	DCPX111	DCPX	111	DCPX111		PX112	DCPX11		DCPX112	. D	CPX113	DCPX113	}	DCPX113
E,L,N	As standard	As standard	As stan		As standard		tandard	As stand		As standar		standard	As standa		s standard
U	DCPX111	DCPX111	DCPX	112	DCPX112	DCI	PX113	DCPX11	3	DCPX114	L D	CPX114	DCPX114		DCPX114
Ver	3202	3402	360)2	3902	4	202	4502		4802		5202	5602		6002
Fans: M	·														
0	DCPX112	DCPX112	DCPX	112	DCPX113	DCI	PX113	DCPX11	4	DCPX114	D	CPX115	DCPX115	,	DCPX115
A	DCPX113	DCPX114	DCPX	114	DCPX115	DCI	PX115	DCPX11	6	DCPX116	D	CPX116	DCPX117	'	DCPX118

U	DCPX114	DCPX115 DCPX115	DCPX116	DCPX117 DCPX1	17 DCPX118	DCPX119 DCF	X130 DCPX131
Ver	6402	6503	6703	6903	7203	8403	9603
Fans: M							
0	DCPX116	DCPX135+DCPX113	DCPX135+DCPX113	DCPX125+DCPX114	DCPX114+DCPX136	DCPX114+DCPX136	DCPX114+DCPX136
A	DCPX118	DCPX115+DCPX136	DCPX115+DCPX136	DCPX116+DCPX136	DCPX116+DCPX136	DCPX117+DCPX136	-
E	As standard	As standard	As standard	As standard	As standard	-	-
L	As standard	As standard	As standard	As standard	As standard	As standard	-
N	As standard	As standard	-	-	-	-	-
U	DCPX132	DCPX116+DCPX137	DCPX117+DCPX137	DCPX117+DCPX137	DCPX118+DCPX137	-	-

As standard

The accessory cannot be fitted on the configurations indicated with -

As standard

As standard

As standard

As standard

As standard

As standard

F.N

Antivibration

Antivioration														
Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00, DA, DB, DC	, DD, DE, DF, D	G, DH, DI, DJ	, PA, PB, PC,	PD, PE, PF, I	PG, PH, PI, P	J, TF, TG, TH,	TI, TJ							
0	AVX900	AVX900	AVX900	AVX904	AVX904	AVX904	AVX904	AVX904	AVX904	AVX959	AVX959	AVX960	AVX960	AVX911
A,L	AVX901	AVX901	AVX901	AVX904	AVX959	AVX959	AVX959	AVX903	AVX903	AVX903	AVX903	AVX909	AVX909	AVX907
E,U	AVX901	AVX901	AVX959	AVX959	AVX959	AVX903	AVX903	AVX906	AVX906	AVX906	AVX906	AVX907	AVX907	AVX912
N	AVX959	AVX959	AVX903	AVX903	AVX903	AVX906	AVX906	AVX907	AVX907	AVX907	AVX907	AVX912	AVX910	AVX913

4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
, TI, TJ												
AVX911	AVX909	AVX909	AVX907	AVX907	AVX907	AVX912	AVX914	AVX914	AVX915	AVX916	AVX916	AVX916
AVX907	AVX912	AVX912	AVX912	AVX910	AVX913	AVX913	AVX924	AVX924	AVX925	AVX925	AVX927	AVX926
AVX910	AVX910	AVX913	AVX913	AVX920	AVX917	AVX918	AVX925	AVX927	AVX927	AVX928	-	-
AVX913	AVX917	AVX918	AVX919	AVX921	AVX921	AVX921	AVX926	-	-	-	-	-
D, DE, PA, PB, PC	, PD, PE											
AVX911	-	-	-	-	-	-	-	-	-	-	-	-
AVX907	-	-	-	-	-	-	-	-	-	-	-	-
AVX910	-	-	-	-	-	-	-	-	-	-	-	-
AVX913	-	-	-	-	-	-	-	-	-	-	-	-
I, DJ, PF, PG, PH,	PI, PJ											
AVX911	AVX909	AVX909	AVX907	AVX907	AVX907	AVX912	-	-	-	-	-	-
AVX907	AVX912	AVX912	AVX912	AVX910	AVX913	AVX913	-	-	-	-	-	-
AVX910	AVX910	AVX913	AVX913	AVX920	AVX917	AVX918	-	-	-	-	-	-
AVX913	AVX917	AVX918	AVX919	AVX921	AVX921	AVX921	-	-	-	-	-	-
	AVX911 AVX907 AVX910 AVX913 D, DE, PA, PB, PC AVX911 AVX907 AVX910 AVX913 II, DJ, PF, PG, PH, AVX907 AVX910 AVX911 AVX907 AVX911 AVX907 AVX910	AVX911 AVX909 AVX907 AVX912 AVX910 AVX910 AVX913 AVX917 ID, DE, PA, PB, PC, PD, PE AVX911 - AVX907 - AVX910 - AVX913 - IJ, DJ, PF, PG, PH, PI, PJ AVX911 AVX909 AVX907 AVX912 AVX910 AVX910	AVX911 AVX909 AVX909 AVX907 AVX912 AVX912 AVX910 AVX910 AVX913 AVX913 AVX917 AVX918 ID, DE, PA, PB, PC, PD, PE AVX911 AVX907 AVX910 AVX913 IJ, DJ, PF, PG, PH, PI, PJ AVX907 AVX912 AVX912 AVX910 AVX910 AVX913	AVX911 AVX909 AVX909 AVX907 AVX907 AVX912 AVX912 AVX912 AVX910 AVX910 AVX913 AVX913 AVX913 AVX917 AVX918 AVX919 ID, DE, PA, PB, PC, PD, PE AVX911 AVX907 AVX910 AVX913 IJ, DJ, PF, PG, PH, PI, PJ AVX911 AVX909 AVX909 AVX907 AVX907 AVX912 AVX912 AVX910 AVX910 AVX913 AVX913	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX912 AVX912 AVX912 AVX910 AVX910 AVX910 AVX913 AVX913 AVX920 AVX913 AVX917 AVX918 AVX919 AVX921 ID, DE, PA, PB, PC, PD, PE AVX911 AVX907 AVX910 AVX913 AVX913 AVX911 AVX913 AVX913 AVX913 AVX914 AVX915 AVX915 AVX915 AVX916 AVX917 AVX917 AVX917 AVX907 AVX907 AVX907 AVX907 AVX907 AVX910 AVX912 AVX912 AVX910 AVX910 AVX910 AVX913 AVX913 AVX920	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX907 AVX912 AVX912 AVX912 AVX910 AVX913 AVX910 AVX910 AVX913 AVX913 AVX913 AVX920 AVX917 AVX913 AVX917 AVX918 AVX919 AVX921 AVX921 ID, DE, PA, PB, PC, PD, PE AVX911	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX912 AVX907 AVX912 AVX912 AVX912 AVX910 AVX913 AVX913 AVX910 AVX910 AVX913 AVX913 AVX913 AVX913 AVX913 AVX913 AVX917 AVX918 AVX919 AVX921 AVX921 AVX921 ID, DE, PA, PB, PC, PD, PE AVX911 AVX910 - AVX910 - AVX911 AVX907	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX907 AVX912 AVX914 AVX907 AVX912 AVX912 AVX912 AVX910 AVX913 AVX913 AVX924 AVX910 AVX910 AVX913 AVX913 AVX920 AVX917 AVX918 AVX925 AVX913 AVX917 AVX918 AVX919 AVX921 AVX921 AVX921 AVX926 ID, DE, PA, PB, PC, PD, PE AVX911	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX912 AVX914 AVX914 AVX907 AVX912 AVX912 AVX912 AVX910 AVX913 AVX913 AVX924 AVX924 AVX910 AVX910 AVX913 AVX913 AVX913 AVX920 AVX917 AVX918 AVX925 AVX927 AVX913 AVX917 AVX918 AVX919 AVX921 AVX921 AVX921 AVX926 - ID, DE, PA, PB, PC, PD, PE AVX911 AVX907 AVX910 AVX913 AVX913 AVX914 AVX926 II, DJ, PF, PG, PH, PI, PJ AVX917 AVX909 AVX909 AVX907 AVX907 AVX907 AVX912 AVX907 AVX912 AVX912 AVX912 AVX913 AVX913 AVX907 AVX910 AVX910 AVX913 AVX913 AVX913 AVX918	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX912 AVX914 AVX914 AVX915 AVX907 AVX912 AVX912 AVX912 AVX910 AVX913 AVX913 AVX924 AVX924 AVX925 AVX910 AVX910 AVX913 AVX913 AVX913 AVX920 AVX917 AVX918 AVX925 AVX927 AVX927 AVX913 AVX917 AVX918 AVX919 AVX921 AVX921 AVX921 AVX926 ID, DE, PA, PB, PC, PD, PE AVX911 AVX907 AVX910 AVX910	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX907 AVX912 AVX914 AVX914 AVX915 AVX916 AVX907 AVX912 AVX912 AVX912 AVX910 AVX913 AVX913 AVX913 AVX924 AVX924 AVX925 AVX925 AVX910 AVX910 AVX913 AVX913 AVX913 AVX920 AVX917 AVX918 AVX925 AVX927 AVX928 AVX913 AVX917 AVX918 AVX919 AVX921 AVX921 AVX921 AVX926 ID, DE, PA, PB, PC, PD, PE AVX911 AVX907 AVX910 AVX911	AVX911 AVX909 AVX909 AVX907 AVX907 AVX907 AVX907 AVX912 AVX914 AVX914 AVX915 AVX916 AVX916 AVX907 AVX912 AVX912 AVX912 AVX910 AVX913 AVX913 AVX913 AVX924 AVX924 AVX925 AVX925 AVX927 AVX910 AVX910 AVX913 AVX913 AVX913 AVX920 AVX917 AVX918 AVX925 AVX927 AVX928 - AVX913 AVX917 AVX918 AVX919 AVX921 AVX921 AVX921 AVX926 D, DE, PA, PB, PC, PD, PE AVX911 AVX907

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
0	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802Q
A,L	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802C
E	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
N	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802C	RIFNSM2002Q	RIFNSM2202C	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
U	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002C	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
0	RIFNSM3002Q	RIFNSM3202Q	RIFNSM3402Q	RIFNSM3602Q	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
A,E,L,U	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
N	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
°,A,L	RIFNSM5602C	RIFNSM6002C	RIFNSM6402C	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Grids

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
٥	GP3V	GP3V	GP3V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V
A,L	GP4V	GP4V	GP4VN	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V
E,U	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V
N	GP5V	GP5V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V

 ${\bf A}$ grey background indicates the accessory must be assembled in the factory

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
0	GP5V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V	GP8V
A,L	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9V	GP9V	GP9V
E,U	GP7V	GP7V	GP8V	GP8V	GP9V	GP10V	GP10V	GP11V	GP11V
N	GP8V	GP8V	GP9V	GP10V	GP11V	GP11V	GP6V+GP7V	GP7V+GP7V	GP7V+GP8V

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
0	GP8V	GP8V	GP9V	GP9V	GP9V	GP10V	GP11V	GP11V	GP11V
A,L	GP11V	GP11V	GP11V	GP4V+GP8V	GP4V+GP8V	GP5V+GP9V	GP5V+GP9V	GP5V+GP10V	GP6V+GP11V
E,U	GP6V+GP6V	GP6V+GP7V	GP7V+GP7V	GP5V+GP9V	GP5V+GP10V	GP5V+GP10V	GP6V+GP11V	-	-
N N	GP8V+GP8V	GP8V+GP8V	GP8V+GP8V	GP6V+GP11V	-	-	-	-	_

A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
°,A,L	KRS22	KRS22	KRS23						
E,N,U	KRS23								

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
0	KRS23	KRS24	KRS24						
A,E,L	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24
N	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS23+KRS23
U	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS24	KRS24

A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
0	KRS24								
A,L	KRS24	KRS24	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
E,U	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-
N	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	-	-	-	-	-

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	ld	Description
1,2,	,3	NSM
4,5,	,6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403 9603
8		Operating field
	0	Standard mechanic thermostatic valve (1)
	Χ	Electronic thermostatic expansion valve (2)
	Υ	Low temperature mechanic thermostatic valve (3)
	Z	Low temperature electronic thermostatic valve (3)
9		Model
	0	Cooling only
	C	Motocondensing unit (4)
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (5)
	T	With total recovery (6)
11		Version
	0	Standard
	Α	High efficiency
	E	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils
	0	Aluminium microchannel
	-	Copper-aluminium
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	V	Copper pieps-Coated aluminium fins
13		Fans
	J	Inverter
	М	Oversized (7)
14	0	Power supply
		400V~3 50Hz with fuses
	2	230V~3 50Hz with fuses
	4	230V~3 50Hz with magnet circuit breakers
	5	500V~3 50Hz with fuses
	8	400V~3 50Hz with magnet circuit breakers
	9	500V~3 50Hz with magnet circuit breakers

Field	Description
15,16	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump
	Kit with 2 pumps
TF	Double pump F
TG	Double pump G (8)
TH	Double pump H (8)
TI	Double pump I (8)
TJ	Double pump J (8)

- (1) Water produced from 4 °C ÷ 15 °C
 (2) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ -8 °C
 (4) The motor condensing units are not configurable with option D and T, and with the integrated hydronic kit
 (5) The temperature of the water in the heat exchanger inlet must never drop below 35 °C.
 (6) The models 1402° 1602° 1802° cannot have total recovery, which is available for all the other sizes and versions. If it is necessary to have total recovery as well as the hydronic kit, feasibility must be evaluated when ordering.
- when ordering.

 (7) The units from 2652 to 9603 in the version "0" and from 5202 to 6402 and unit 9603 version "L" and "A" are not available with increased fans "M"

 (8) The unit from 5603 to 9603 can only have hydronic kit "TF TG TH-TI TJ"

PERFORMANCE SPECIFICATIONS

NSM - °

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	307,5	348,9	397,0	450,3	489,4	524,7	543,8	577,3	613,8	680,5	725,1	770,1	813,8	906,1
Input power	kW	104,8	121,0	139,0	152,8	166,4	180,6	193,9	210,5	226,5	232,7	247,5	272,1	298,3	316,2
Cooling total input current	А	182,0	207,0	229,0	257,0	281,0	306,0	329,0	356,0	381,0	392,0	414,0	447,0	484,0	520,0
EER	W/W	2,93	2,88	2,86	2,95	2,94	2,91	2,81	2,74	2,71	2,92	2,93	2,83	2,73	2,87
Water flow rate system side	l/h	52881	59999	68270	77459	84185	90223	93509	99261	105543	117009	124685	132413	139916	155801
Pressure drop system side	kPa	27	36	38	49	57	26	28	33	35	39	42	47	38	46

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM°

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	958,5	1051,2	1099,1	1168,1	1195,0	1237,7	1327,6	1393,8	1439,8	1578,6 (2)	1669,7 (2)	1742,2 (2)	1859,9 (2)
Input power	kW	345,9	360,3	388,1	403,4	430,8	453,1	460,3	488,6	517,2	559,8	575,1	659,2	730,6
Cooling total input current	А	573,0	597,0	641,0	668,0	712,0	749,0	766,0	806,0	857,0	927,0	966,0	1103,0	1230,0
EER	W/W	2,77	2,92	2,83	2,90	2,77	2,73	2,88	2,85	2,78	2,82	2,90	2,64	2,55
Water flow rate system side	l/h	164794	180726	188953	200816	205451	212795	228246	239604	247511	271348	287011	299461	319697
Pressure drop system side	kPa	41	48	42	46	48	55	62	44	46	30	33	36	40

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSM - L

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	302,4	344,0	392,7	428,1	490,9	513,8	537,4	583,4	602,8	664,4	709,1	771,0	826,1	908,8
Input power	kW	102,7	117,2	135,7	155,9	167,8	179,4	192,5	202,9	215,3	238,3	261,2	265,4	296,6	316,1
Cooling total input current	A	173,0	196,0	218,0	254,0	277,0	297,0	319,0	336,0	354,0	391,0	426,0	429,0	473,0	509,0
EER	W/W	2,94	2,94	2,89	2,75	2,93	2,86	2,79	2,88	2,80	2,79	2,72	2,91	2,79	2,88
Water flow rate system side	l/h	52016	59162	67531	73600	84402	88342	92402	100313	103652	114244	121903	132545	142018	156242
Pressure drop system side	kPa	27	36	38	18	24	25	28	33	31	36	23	23	25	32

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - L

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	949,7	1032,5	1076,9	1122,7	1183,7	1254,5	1295,6	1395,1	1436,6	1605,1 (2)	1649,4 (2)	1758,0 (2)	1946,7 (2)
Input power	kW	348,7	365,9	395,0	428,8	442,3	453,2	476,4	491,5	523,6	556,9	586,7	660,2	713,5
Cooling total input current	A	567,0	593,0	638,0	693,0	716,0	736,0	776,0	793,0	849,0	914,0	960,0	1067,0	1163,0
EER	W/W	2,72	2,82	2,73	2,62	2,68	2,77	2,72	2,84	2,74	2,88	2,81	2,66	2,73
Water flow rate system side	l/h	163268	177512	185148	193004	203496	215669	222723	239820	246956	275911	283536	302181	334622
Pressure drop system side	kPa	34	44	46	33	36	42	45	33	34	45	47	34	45

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSM - A

	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
kW	315,6	360,2	415,2	461,4	509,5	544,9	576,9	620,9	658,9	699,4	741,7	800,6	884,3	955,2
kW	99,0	113,7	133,7	148,3	161,8	173,6	183,3	197,5	208,3	223,6	237,4	253,4	281,2	303,8
Α	175,0	198,0	223,0	250,0	278,0	298,0	314,0	340,0	355,0	378,0	399,0	421,0	459,0	502,0
W/W	3,19	3,17	3,11	3,11	3,15	3,14	3,15	3,14	3,16	3,13	3,12	3,16	3,15	3,14
l/h	54280	61954	71417	79331	87600	93687	99196	106766	113293	120259	127516	137633	152015	164211
kPa	30	39	43	21	26	28	32	37	37	40	25	25	29	36
	kW A W/W I/h	kW 315,6 kW 99,0 A 175,0 W/W 3,19 I/h 54280	kW 315,6 360,2 kW 99,0 113,7 A 175,0 198,0 W/W 3,19 3,17 l/h 54280 61954	kW 315,6 360,2 415,2 kW 99,0 113,7 133,7 A 175,0 198,0 223,0 W/W 3,19 3,17 3,11 I/h 54280 61954 71417	kW 315,6 360,2 415,2 461,4 kW 99,0 113,7 133,7 148,3 A 175,0 198,0 223,0 250,0 W/W 3,19 3,17 3,11 3,11 I/h 54280 61954 71417 79331	kW 315,6 360,2 415,2 461,4 509,5 kW 99,0 113,7 133,7 148,3 161,8 A 175,0 198,0 223,0 250,0 278,0 W/W 3,19 3,17 3,11 3,11 3,15 I/h 54280 61954 71417 79331 87600	kW 315,6 360,2 415,2 461,4 509,5 544,9 kW 99,0 113,7 133,7 148,3 161,8 173,6 A 175,0 198,0 223,0 250,0 278,0 298,0 W/W 3,19 3,17 3,11 3,11 3,15 3,14 I/h 54280 61954 71417 79331 87600 93687	kW 315,6 360,2 415,2 461,4 509,5 544,9 576,9 kW 99,0 113,7 133,7 148,3 161,8 173,6 183,3 A 175,0 198,0 223,0 250,0 278,0 298,0 314,0 W/W 3,19 3,17 3,11 3,11 3,15 3,14 3,15 I/h 54280 61954 71417 79331 87600 93687 99196	kW 315,6 360,2 415,2 461,4 509,5 544,9 576,9 620,9 kW 99,0 113,7 133,7 148,3 161,8 173,6 183,3 197,5 A 175,0 198,0 223,0 250,0 278,0 298,0 314,0 340,0 W/W 3,19 3,17 3,11 3,11 3,15 3,14 3,15 3,14 I/h 54280 61954 71417 79331 87600 93687 99196 106766	kW 315,6 360,2 415,2 461,4 509,5 544,9 576,9 620,9 658,9 kW 99,0 113,7 133,7 148,3 161,8 173,6 183,3 197,5 208,3 A 175,0 198,0 223,0 250,0 278,0 298,0 314,0 340,0 355,0 W/W 3,19 3,17 3,11 3,11 3,15 3,14 3,15 3,14 3,16 I/h 54280 61954 71417 79331 87600 93687 99196 106766 113293	kW 315,6 360,2 415,2 461,4 509,5 544,9 576,9 620,9 658,9 699,4 kW 99,0 113,7 133,7 148,3 161,8 173,6 183,3 197,5 208,3 223,6 A 175,0 198,0 223,0 250,0 278,0 298,0 314,0 340,0 355,0 378,0 W/W 3,19 3,17 3,11 3,11 3,15 3,14 3,15 3,14 3,16 3,13 I/h 54280 61954 71417 79331 87600 93687 99196 106766 113293 120259	kW 315,6 360,2 415,2 461,4 509,5 544,9 576,9 620,9 658,9 699,4 741,7 kW 99,0 113,7 133,7 148,3 161,8 173,6 183,3 197,5 208,3 223,6 237,4 A 175,0 198,0 223,0 250,0 278,0 298,0 314,0 340,0 355,0 378,0 399,0 W/W 3,19 3,17 3,11 3,11 3,15 3,14 3,15 3,14 3,16 3,13 3,12 I/h 54280 61954 71417 79331 87600 93687 99196 106766 113293 120259 127516	kW 315,6 360,2 415,2 461,4 509,5 544,9 576,9 620,9 658,9 699,4 741,7 800,6 kW 99,0 113,7 133,7 148,3 161,8 173,6 183,3 197,5 208,3 223,6 237,4 253,4 A 175,0 198,0 223,0 250,0 278,0 298,0 314,0 340,0 355,0 378,0 399,0 421,0 W/W 3,19 3,17 3,11 3,11 3,15 3,14 3,15 3,14 3,16 3,13 3,12 3,16 I/h 54280 61954 71417 79331 87600 93687 99196 106766 113293 120259 127516 137633	kW 315,6 360,2 415,2 461,4 509,5 544,9 576,9 620,9 658,9 699,4 741,7 800,6 884,3 kW 99,0 113,7 133,7 148,3 161,8 173,6 183,3 197,5 208,3 223,6 237,4 253,4 281,2 A 175,0 198,0 223,0 250,0 278,0 298,0 314,0 340,0 355,0 378,0 399,0 421,0 459,0 W/W 3,19 3,17 3,11 3,15 3,14 3,15 3,14 3,16 3,13 3,12 3,16 3,15 I/h 54280 61954 71417 79331 87600 93687 99196 106766 113293 120259 127516 137633 152015

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - A

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	1021,7	1084,5	1160,1	1213,2	1275,8	1352,3	1402,7	1462,2	1531,9 (2)	1682,9 (2)	1753,4 (2)	1908,6 (2)	2106,4 (2)
Input power	kW	328,5	347,0	371,7	389,2	410,5	432,6	451,5	466,3	493,4	534,6	560,2	614,3	673,3
Cooling total input current	A	547,0	577,0	614,0	647,0	685,0	725,0	758,0	772,0	821,0	897,0	936,0	1017,0	1132,0
EER	W/W	3,11	3,13	3,12	3,12	3,11	3,13	3,11	3,14	3,10	3,15	3,13	3,11	3,13
Water flow rate system side	l/h	175657	186457	199460	208561	219327	232478	241144	251345	263330	289291	301409	328062	362058
Pressure drop system side	kPa	39	49	53	38	42	49	52	36	39	49	53	41	52

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSM - E

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C/7 °C (1)															
Cooling capacity	kW	319,6	368,5	417,6	472,4	514,2	543,2	579,6	615,2	652,1	695,4	740,6	796,5	881,6	951,8
Input power	kW	101,7	117,4	132,3	150,0	165,4	173,7	186,0	194,8	210,1	224,0	238,6	255,4	283,8	305,7
Cooling total input current	А	171,0	196,0	214,0	245,0	272,0	288,0	309,0	324,0	347,0	367,0	389,0	411,0	450,0	490,0
EER	W/W	3,14	3,14	3,16	3,15	3,11	3,13	3,12	3,16	3,10	3,11	3,10	3,12	3,11	3,11
Water flow rate system side	l/h	54958	63367	71800	81228	88406	93396	99657	105762	112115	119555	127316	136926	151562	163628
Pressure drop system side	kPa	15	14	18	21	24	26	30	24	26	29	26	25	29	36

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - E

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	1018,9	1082,1	1159,1	1206,7	1265,2	1322,0	1389,6	1464,9	1528,1 (2)	1670,1 (2)	1752,6 (2)	-	-
Input power	kW	325,9	347,4	370,9	387,8	405,6	422,2	443,7	469,4	489,0	534,5	563,0	-	-
Cooling total input current	А	529,0	560,0	598,0	628,0	656,0	686,0	724,0	764,0	792,0	861,0	898,0	-	-
EER	W/W	3,13	3,11	3,13	3,11	3,12	3,13	3,13	3,12	3,13	3,12	3,11	-	-
Water flow rate system side	l/h	175173	186051	199271	207449	217481	227238	238869	251810	262683	287098	301260	-	-
Pressure drop system side	kPa	40	49	36	38	24	24	29	35	40	49	45	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSM - U

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	331,0	378,1	432,1	481,7	527,6	564,7	590,5	635,0	675,3	708,2	750,8	811,2	902,5	975,6
Input power	kW	98,6	113,5	128,9	145,7	161,0	169,2	178,4	190,3	204,2	214,1	228,0	245,2	273,3	294,9
Cooling total input current	A	173,0	197,0	218,0	248,0	275,0	292,0	309,0	330,0	352,0	366,0	387,0	410,0	448,0	490,0
EER	W/W	3,36	3,33	3,35	3,31	3,28	3,34	3,31	3,34	3,31	3,31	3,29	3,31	3,30	3,31
Water flow rate system side	l/h	56933	65026	74302	82821	90716	97089	101524	109164	116096	121764	129073	139455	155146	167724
Pressure drop system side	kPa	17	15	19	21	25	28	31	25	28	30	26	26	30	37

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - U

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	1043,4	1104,7	1184,6	1234,0	1301,2	1360,8	1419,5	1505,6 (2)	1579,3 (2)	1693,4 (2)	1772,6 (2)	-	-
Input power	kW	315,2	336,8	357,4	380,5	400,8	418,5	427,8	453,3	472,9	522,1	540,7	-	-
Cooling total input current	A	530,0	562,0	597,0	634,0	671,0	706,0	725,0	762,0	795,0	870,0	896,0	-	-
EER	W/W	3,31	3,28	3,31	3,24	3,25	3,25	3,32	3,32	3,34	3,24	3,28	-	-
Water flow rate system side	l/h	179384	189926	203652	212142	223669	233910	244004	258808	271482	291091	304708	-	-
Pressure drop system side	kPa	42	51	38	40	26	26	31	37	42	51	46	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSM - N

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C/7 °C (1)															
Cooling capacity	kW	329,8	375,3	431,9	474,4	517,0	550,9	578,6	620,4	659,2	701,2	743,2	803,1	879,6	955,4
Input power	kW	98,1	113,1	127,6	144,8	160,4	168,7	178,2	190,1	204,5	217,3	231,1	247,6	270,2	292,6
Cooling total input current	А	165,0	190,0	207,0	237,0	265,0	281,0	297,0	317,0	339,0	358,0	378,0	399,0	429,0	470,0
EER	W/W	3,36	3,32	3,38	3,28	3,22	3,27	3,25	3,26	3,22	3,23	3,22	3,24	3,26	3,27
Water flow rate system side	l/h	56717	64546	74260	81573	88881	94723	99476	106664	113329	120551	127777	138054	151226	164260
Pressure drop system side	kPa	16	15	19	21	24	28	30	25	27	29	26	25	30	37

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSM - N

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C(1)														
Cooling capacity	kW	1014,4	1086,1	1169,7	1219,0	1267,1	1317,0	1367,2	1452,6	-	-	-	-	-
Input power	kW	315,6	332,8	352,6	374,6	396,5	410,4	428,2	450,1	-	-	-	-	-
Cooling total input current	A	513,0	540,0	569,0	605,0	643,0	668,0	700,0	731,0	-	-	-	-	-
EER	W/W	3,21	3,26	3,32	3,25	3,20	3,21	3,19	3,23	-	-	-	-	-
Water flow rate system side	l/h	174394	186718	201086	209575	217799	226384	235022	249705	-	-	-	-	-
Pressure drop system side	kPa	40	35	44	44	26	26	30	37	-	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Increased fan

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: M																
SEPR - (EN 14825: 2018) (1)																
	0	W/W	5,41	5,44	5,37	5,53	5,54	5,51	5,54	5,51	5,53	5,51	5,51	5,52	5,52	5,53
	A	W/W	5,70	5,67	5,57	5,54	5,61	5,60	5,62	5,62	5,65	5,51	5,52	5,53	5,60	5,61
SEPR	E	W/W	5,82	5,76	5,80	5,71	5,66	5,79	5,74	5,77	5,73	5,64	5,60	5,63	5,72	5,74
JEFR	L	W/W	5,62	5,59	5,48	5,54	5,53	5,52	5,56	5,54	5,60	5,52	5,52	5,52	5,55	5,54
	N	W/W	5,94	5,85	5,98	5,79	5,70	5,78	5,75	5,77	5,70	5,63	5,57	5,65	5,73	5,74
	U	W/W	5.91	5,85	5,89	5,81	5,77	5,88	5.84	5,87	5,83	5.75	5,68	5.74	5,82	5,84

Size			4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: M													
SEPR - (EN 14825: 2018) (1)													
	0	W/W	5,53	5,52	5,53	5,52	5,52	5,64	5,51	5,54	5,55	5,51	5,54
	A	W/W	5,60	5,57	5,60	5,60	5,57	5,66	5,61	5,71	5,69	5,62	5,68
CEDD	E	W/W	5,75	5,62	5,60	5,60	5,74	5,85	5,90	5,70	5,77	-	-
SEPR	L	W/W	5,55	5,54	5,56	5,55	5,52	5,64	5,61	5,68	5,66	5,63	5,68
	N	W/W	5,73	5,79	5,65	5,67	5,65	5,79	-	-	-	-	-
	U	W/W	5,85	5,73	5,71	5,72	5,84	5,93	5,98	5,82	5,87	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate.

Inverter fan

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: J																
SEER - 12/7 (EN14825: 2018) (1)																
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	Α	W/W	4,44	4,40	4,55	4,56	4,56	4,56	4,57	4,55	4,56	4,56	4,57	4,57	4,56	4,56
SEER	E	W/W	4,48	4,47	4,57	4,57	4,58	4,58	4,58	4,58	4,58	4,59	4,59	4,59	4,59	4,60
SEEN	L	W/W	4,43	4,39	4,53	4,55	4,56	4,56	4,56	4,55	4,56	4,56	4,56	4,56	4,56	4,56
	N	W/W	4,54	4,51	4,60	4,60	4,61	4,59	4,60	4,61	4,60	4,61	4,60	4,60	4,60	4,60
	U	W/W	4,49	4,48	4,57	4,59	4,60	4,59	4,59	4,59	4,59	4,59	4,59	4,59	4,59	4,60
	0	%	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	Α	%	174,50	172,80	179,00	179,20	179,40	179,40	179,70	179,10	179,50	179,50	179,70	179,60	179,50	179,40
Concornal officional	E	%	176,30	175,60	179,60	179,80	180,20	180,00	180,10	180,00	180,20	180,60	180,40	180,40	180,50	180,80
Seasonal efficiency	L	%	174,00	172,40	178,30	179,00	179,30	179,20	179,20	179,00	179,40	179,20	179,30	179,30	179,30	179,20
	N	%	178,70	177,40	180,80	180,90	181,30	180,70	180,90	181,20	180,90	181,30	181,10	181,10	181,00	181,10
	U	%	176,60	176,10	179,80	180,40	180,90	180,50	180,70	180,60	180,70	180,60	180,60	180,40	180,50	180,90
SEPR - (EN 14825: 2018) (3)																
	0	W/W	5,41	5,44	5,37	5,53	5,54	5,51	5,54	5,51	5,53	5,51	5,51	5,52	5,52	5,53
	A	W/W	5,70	5,67	5,57	5,54	5,61	5,60	5,62	5,62	5,65	5,51	5,52	5,53	5,60	5,61
SEPR	E	W/W	5,82	5,76	5,80	5,71	5,66	5,79	5,74	5,77	5,73	5,64	5,60	5,63	5,72	5,74
DELL	L	W/W	5,62	5,59	5,48	5,54	5,53	5,52	5,56	5,54	5,60	5,52	5,52	5,52	5,55	5,54
	N	W/W	5,94	5,85	5,98	5,79	5,70	5,78	5,75	5,77	5,70	5,63	5,57	5,65	5,73	5,74
	U	W/W	5,91	5,85	5,89	5,81	5,77	5,88	5,84	5,87	5,83	5,75	5,68	5,74	5,82	5,84

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(3) Calculation performed with FIXED water flow rate.

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: J															
SEER - 12/7 (EN14825: 2018) (1)															
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	W/W	4,56	4,56	4,56	4,55	4,57	4,56	4,56	4,56	4,57	4,56	4,56	4,56	4,57
SEER	E	W/W	4,58	4,59	4,59	4,59	4,59	4,59	4,59	4,59	4,60	4,58	4,59	-	
SEEK	L	W/W	4,55	4,56	4,55	4,56	4,56	4,57	4,56	4,57	4,56	4,56	4,56	4,56	4,56
	N	W/W	4,60	4,60	4,60	4,60	4,60	4,61	4,60	4,61	-	-	-	-	-
	U	W/W	4,59	4,59	4,60	4,60	4,60	4,60	4,59	4,60	4,60	4,59	4,59	-	-
	0	%	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	A	%	179,50	179,40	179,40	179,10	179,80	179,40	179,40	179,20	179,60	179,20	179,40	179,50	179,70
Seasonal efficiency	E	%	180,30	180,60	180,70	180,60	180,40	180,40	180,60	180,50	180,90	180,20	180,40	-	-
Seasonal efficiency	L	%	179,00	179,20	179,10	179,20	179,40	179,60	179,40	179,60	179,30	179,20	179,50	179,40	179,50
	N	%	180,80	181,00	181,10	181,00	181,10	181,20	180,80	181,40	-	-	-	-	-
	U	%	180,40	180,60	180,80	180,90	180,90	180,80	180,60	180,80	180,90	180,60	180,60	-	-
SEPR - (EN 14825: 2018) (3)															
		W/W	5,51	5,52	5,53	5,52	5,53	5,52	5,52	5,64	5,51	5,54	5,55	5,51	5,54
	A	W/W	5,56	5,60	5,60	5,57	5,60	5,60	5,57	5,66	5,61	5,71	5,69	5,62	5,68
SEPR	E	W/W	5,75	5,70	5,75	5,62	5,60	5,60	5,74	5,85	5,90	5,70	5,77	-	-
JELU	L	W/W	5,51	5,53	5,55	5,54	5,56	5,55	5,52	5,64	5,61	5,68	5,66	5,63	5,68
	N	W/W	5,71	5,71	5,73	5,79	5,65	5,67	5,65	5,79	-	-	-	-	-
	U	W/W	5,85	5,81	5,85	5,73	5,71	5,72	5,84	5,93	5,98	5,82	5,87	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Non-compliant with 2016/2281 EU regulation for comfort applications 12°C / 7°C
(3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

ELECTRIC DATA																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Electric data																
	0	Α	229,0	257,0	284,0	324,0	357,0	379,0	400,0	433,0	458,0	466,0	466,0	514,0	562,0	619,0
Marrian compant (FLA)	A,L	Α	235,0	263,0	291,0	324,0	364,0	385,0	406,0	437,0	462,0	462,0	462,0	516,0	564,0	619,0
Maximum current (FLA)	E,U	Α	235,0	263,0	297,0	330,0	364,0	391,0	413,0	444,0	468,0	468,0	468,0	523,0	571,0	625,0
	N	Α	242,0	270,0	303,0	337,0	370,0	398,0	419,0	450,0	475,0	475,0	475,0	529,0	583,0	644,0
	0	Α	251,0	292,0	335,0	380,0	403,0	450,0	467,0	502,0	512,0	521,0	521,0	645,0	685,0	814,0
Deals surrent (LDA)	A,L	А	257,0	299,0	342,0	380,0	409,0	456,0	473,0	507,0	517,0	517,0	517,0	647,0	687,0	814,0
Peak current (LRA)	E,U	Α	257,0	299,0	348,0	386,0	409,0	462,0	480,0	513,0	523,0	523,0	523,0	653,0	693,0	821,0
	N	А	263,0	305,0	354,0	392,0	415,0	469,0	486,0	519,0	529,0	529,0	529,0	660,0	706,0	839,0
Size			4202	4502	4802	5202	5602	600)2 6	402	6503	6703	6903	7203	8403	9603
Electric data																
	0	А	667,0	714,0	753,0	805,0	848,0	882	,0 92	24,0	949,0	997,0	1084,0	1137,0	1266,0	1368,0
Mariana (FLA)	A,L	А	667,0	712,0	751,0	813,0	865,0	913	,0 94	47,0	955,0	1003,0	1094,0	1133,0	1268,0	1406,0
Maximum current (FLA)	E,U	Α	679,0	718,0	770,0	813,0	862,0	902	,0 94	13,0	968,0	1022,0	1100,0	1145,0	-	-
	N	Α	692,0	743,0	789,0	838,0	887,0	921	,0 9	55,0	987,0	-	-	-	-	-
	٥	Α	841,0	914,0	936,0	1100,0	1147,0	1259	9,0 12	64,0	038,0	1065,0	1160,0	1197,0	1446,0	1552,0
Deals assument (LDA)	A,L	Α	841,0	911,0	934,0	1108,0	1164,0	1290	0,0 12	87,0 1	044,0	1071,0	1170,0	1193,0	1448,0	1590,0
Peak current (LRA)	E,U	А	854,0	918,0	953,0	1108,0	1161,0	1279	9,0 12	83,0	056,0	1090,0	1176,0	1205,0	-	-
	N	Α	866,0	943,0	972,0	1133,0	1186,0	1298	3,0 12	95,0 1	076,0	-	-	-	-	-

GENERAL TECHNICAL DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802
Compressor											
Туре	°,A,E,L,N,U	type					Screw				
Number	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type					R134a				
	٥	kg	24,0	24,0	24,0	30,0	30,0	35,0	35,0 (2)	35,0	35,0
	A	kg	26,5	34,0 (2)	28,0	28,0	34,0	35,0	38,5	40,5	45,0
Deficiency to a discount 1 /1)	E	kg	28,0	30,0	41,0 (2)	41,0 (2)	46,0 (2)	43,0	41,0	46,0	45,0
Refrigerant load circuit 1 (1)	L	kg	24,0	34,0 (2)	37,0 (2)	28,0	34,0	35,0	38,5	40,0	42,0 (2)
	N	kg	36,0 (2)	38,0 (2)	44,0 (2)	44,0 (2)	49,0 (2)	53,0 (2)	56,0 (2)	60,0 (2)	64,0 (2)
	U	kg	32,0 (2)	34,0 (2)	34,0	35,0	46,0 (2)	49,0 (2)	49,0	46,0 (2)	45,0 (2)
	٥	kg	24,0	25,0	25,0	41,0	33,0	38,0	37,0 (2)	37,5	36,5
	A	kg	28,0	34,0 (2)	29,5	36,0	34,0	49,0	40,5	45,0	47,5
Definement lead singuis 2 (1)	E	kg	30,0	31,5	41,0 (2)	46,0 (2)	46,0 (2)	45,0	46,0	52,0	53,0
Refrigerant load circuit 2 (1)	L	kg	27,0	34,0 (2)	37,0 (2)	36,0	34,0	40,0	40,5	43,0	46,0 (2)
	N	kg	36,0 (2)	38,0 (2)	44,0 (2)	49,0 (2)	49,0 (2)	56,0 (2)	56,0 (2)	64,0 (2)	64,0 (2)
	U	kg	32,0 (2)	34,0 (2)	36,0	41,5	46,0 (2)	53,0 (2)	54,0	52,0 (2)	48,5 (2)
Refrigerant load circuit 3 (1)	°,A,E,L,N,U	kg	-	-	-	-	-	-	-	-	-
System side heat exchanger											
Туре	°,A,E,L,N,U	type					Shell and tube				
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

		rmation contact the office.

Size			3002	3202	3402	3602	3902	4202	4502	4802	5202
Compressor											
Туре	°,A,E,L,N,U	type					Screw				
Number	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type					R134a				
	٥	kg	40,0	46,0	42,5	44,5	51,0	52,0	55,0	55,0 (2)	63,0 (2)
	A	kg	44,0 (2)	47,0	52,0 (2)	55,0	74,0 (2)	62,0	67,0	67,0	70,0
Definement lead singuit 1 (1)	E	kg	45,0 (2)	57,0	54,0 (2)	74,0 (2)	60,0 (2)	70,0	89,0 (2)	80,0 (2)	100,0 (2)
Refrigerant load circuit 1 (1)	L	kg	44,0	47,0	52,0 (2)	54,0	56,0 (2)	62,0	67,0 (2)	67,0	70,0
	N	kg	64,0 (2)	55,0 (2)	72,0 (2)	81,0 (2)	85,0 (2)	92,0 (2)	99,0 (2)	110,0 (2)	114,0 (2)
	U	kg	60,0 (2)	54,5	58,0	58,0	60,0 (2)	70,0	89,0 (2)	80,0	85,0 (2)
	0	kg	50,0	48,0	46,0	46,0	59,0	59,0	64,0	64,0 (2)	70,0 (2)
	Α	kg	52,0 (2)	50,0	55,0 (2)	60,0	81,0 (2)	70,0	78,0	78,0	82,0
Definement lead singuit 2 (1)	E	kg	53,0 (2)	59,0	59,0 (2)	74,0 (2)	77,0 (2)	85,0	96,0 (2)	90,0 (2)	110,0 (2)
Refrigerant load circuit 2 (1)	L	kg	52,0	50,0	55,0 (2)	58,0	72,0 (2)	70,0	79,0 (2)	78,0	82,0
	N	kg	69,0 (2)	57,0 (2)	77,0 (2)	81,0 (2)	92,0 (2)	92,0 (2)	107,0 (2)	110,0 (2)	124,0 (2)
	U	kg	65,0 (2)	59,0	62,0	63,0	77,0 (2)	85,0	96,0 (2)	90,0	103,0 (2)
Refrigerant load circuit 3 (1)	°,A,E,L,N,U	kg	-	-	-	-	-	-	-	-	-
System side heat exchanger											
Туре	°,A,E,L,N,U	type					Shell and tube				
Number	°,A,E,L,U	no.	11	1_	1	1	1	1	1	1	1_
Number	N N	no	1	1	1	1	1	1	2	2	2

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) The refrigerant gas charge is approximate, for more information contact the office.

Size			5602	6002	6402	6503	6703	6903	7203	8403	9603
Compressor											
Туре	°,A,E,L,N,U	type					Screw				
	°,A,L	no.	2	2	2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	3	-	-	-	-	-
	°,A,L	no.	2	2	2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	3	-	-	-	-	-
Refrigerant	°,A,E,L,N,U	type					R134a				
	0	kg	65,0 (2)	62,0	70,0 (2)	67,0 (2)	55,0	78,0 (2)	62,0 (2)	99,0 (2)	112,0 (2)
	A	kg	106,0 (2)	82,0	82,0 (2)	74,0 (2)	81,0 (2)	85,0 (2)	70,0	106,0 (2)	80,0
D. C.:	E	kg	113,0 (2)	86,0	95,0 (2)	77,0 (2)	89,0 (2)	89,0 (2)	100,0 (2)	-	-
Refrigerant load circuit 1 (1)	L	kg	106,0 (2)	82,0	82,0 (2)	74,0 (2)	81,0 (2)	85,0 (2)	70,0 (2)	106,0 (2)	80,0
	N	kg	128,0 (2)	128,0 (2)	138,0 (2)	85,0 (2)	-	-	-	-	-
	U	kg	113,0 (2)	86,0	95,0	77,0 (2)	89,0 (2)	89,0 (2)	100,0 (2)	-	-

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office. (2) The refrigerant gas charge is approximate, for more information contact the office.

Size			5602	6002	6402	6503	6703	6903	7203	8403	9603
	٥	kg	71,0 (2)	73,0	80,0 (2)	74,0 (2)	61,0	85,0 (2)	70,0 (2)	99,0 (2)	112,0 (2)
	Α	kg	106,0 (2)	99,0	99,0 (2)	81,0 (2)	81,0 (2)	92,0 (2)	75,0	106,0 (2)	95,0
Deficiency to a discrete 2 (1)	E	kg	113,0 (2)	98,0	97,0 (2)	85,0 (2)	89,0 (2)	96,0 (2)	100,0 (2)	-	-
Refrigerant load circuit 2 (1)	L	kg	106,0 (2)	99,0	99,0 (2)	81,0 (2)	81,0 (2)	92,0 (2)	75,0 (2)	106,0 (2)	95,0
	N	kg	128,0 (2)	138,0 (2)	138,0 (2)	92,0 (2)	-	-	-	-	-
	U	kg	113,0 (2)	98,0	97,0	85,0 (2)	89,0 (2)	96,0 (2)	100,0 (2)	-	-
	۰	kg	-	-	-	74,0 (2)	65,0	85,0 (2)	80,0 (2)	99,0 (2)	112,0 (2)
	Α	kg	-	-	-	81,0 (2)	81,0 (2)	92,0 (2)	75,0	106,0 (2)	85,0
Refrigerant load circuit 3 (1)	E,U	kg	-	-	-	85,0 (2)	89,0 (2)	96,0 (2)	100,0 (2)	-	-
	L	kg	-	-	-	81,0 (2)	81,0 (2)	92,0 (2)	75,0 (2)	106,0 (2)	85,0
	N	kg	-	-	-	92,0 (2)	-	-	-	-	-
System side heat exchanger											
Туре	°,A,E,L,N,U	type					Shell and tube				
	0	no.	1	1	1	1	1	1	1	1	1
Number	A,L	no.	1	1	1	2	2	2	2	2	2
Nulliber	E,U	no.	2	2	2	2	2	2	2	-	-
	N	no.	2	2	2	2	-	-	-	-	-

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) The refrigerant gas charge is approximate, for more information contact the office.

FANS DATA

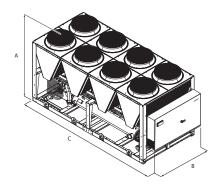
Oversized

Oversized											
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802
Fans: M											
Increased fan											
Туре	°,A,E,L,N,U	type					axials				
Fan motor	°,A,U	type					Asynchronous				
	E,L,N	type				Asyno	thronous with pha	ise cut			
Fan											
	•	no.	6	6	6	8	8	8	8	8	8
Number	A,L	no.	8	8	8	8	10	10	10	12	12
Humber	E,U	no.	8	8	10	10	10	12	12	14	14
	N	no.	10	10	12	12	12	14	14	16	16
With static pressure											
	•	m³/h	96000	96000	96000	128000	128000	128000	128000	144000	144000
	A	m³/h	128000	128000	128000	128000	160000	160000	160000	192000	192000
Air flow rate	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	161000
All HOW Idle	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000
	N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	184000
	U	m³/h	128000	128000	160000	160000	160000	192000	192000	224000	224000
High static accessors	0	Pa	120	120	120	120	120	120	120	75	75
High static pressure	A,E,L,N,U	Pa	120	120	120	120	120	120	120	120	120
Without Static pressure											
•	0	m³/h	108000	108000	108000	144000	144000	144000	144000	144000	144000
	A	m³/h	144000	144000	144000	144000	180000	180000	180000	216000	216000
	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	161000
Air flow rate	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000
	N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	184000
	U	m³/h	144000	144000	180000	180000	180000	216000	216000	252000	252000
High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0
With static pressure	,,,,,,										
	0	dB(A)	97,0	97,0	97,0	98,0	98,0	98,0	98,0	98,0	98,0
	A	dB(A)	97,0	97,0	98,0	98,0	98,0	98,0	98,0	99,0	99,0
	E	dB(A)	89,0	89,0	90,0	90,0	90,0	91,0	91,0	92,0	92,0
Sound power level	<u>-</u>	dB(A)	89,0	89,0	89,0	89,0	90,0	91,0	91,0	91,0	91,0
	N	dB(A)	90,0	90,0	91,0	91,0	91,0	91,0	91,0	92,0	92,0
	<u>U</u>	dB(A)	97,0	97,0	98,0	98,0	98,0	99,0	99,0	99,0	99,0
Without Static pressure	•	uD(//)	71,0	77,0	70,0	70,0	70,0	77,0	77,0	77,0	77,0
Without Static pressure	0	dB(A)	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0
	A	dB(A)	98,0	98,0	99,0	99,0	99,0	99,0	99,0	100,0	100,0
		dB(A)	89,0	89,0	90,0	90,0	90,0	91,0	91,0	92,0	92,0
Sound power level		dB(A)	89,0	89,0	89,0	89,0	90,0	91,0	91,0	91,0	91,0
	L N	dB(A)	90,0	90,0	91,0	91,0	91,0	91,0	91,0	92,0	92,0
	N	dB(A)	98,0	98,0	99,0	99,0	99,0	100,0	100,0	100,0	100,0
	U	ub(A)						,			
Size			3002	3202	3402	3602	3902	4202	4502	4802	5202
Fans: M											
Increased fan											
Туре	°,A,E,L,N,U	type					axials				
Fan motor	^,A,U	type					Asynchronous				
Tall Hiotol	E,L,N	type				Asyno	hronous with pha	ise cut			

Size			3002	3202	3402	3602	3902	4202	4502	4802	5202
Fan					2.72		J,			.,,,,	
r wiii	0	no.	10	10	10	10	12	12	14	14	16
Number	A,L	no.	12	12	14	14	16	16	18	18	18
	E,U	no.	14	14	16	16	18	20	20	22	22
With static pressure	N	no.	16	16	18	20	22	22	26	28	30
mui static pressure	0	m³/h	180000	180000	180000	180000	216000	216000	252000	252000	288000
	A	m³/h	192000	192000	224000	224000	256000	256000	288000	288000	324000
	E	m³/h	161000	161000	184000	184000	207000	230000	230000	253000	253000
Air flow rate	L	m³/h		138000	161000		184000	184000		207000	234000
			138000			161000			207000		
	N	m³/h	184000	184000	207000	230000	253000	253000	299000	322000	345000
	U	m³/h	224000	224000	256000	256000	288000	320000	320000	352000	352000
18.1. 4.2		Pa	75	75	75	75	75	75	75	75	75
High static pressure	A,L	Pa	120	120	120	120	120	120	120	120	75
	E,N,U	Pa	120	120	120	120	120	120	120	120	120
Without Static pressure											
	0	m³/h	180000	180000	180000	180000	216000	216000	252000	252000	288000
	A	m³/h	216000	216000	252000	252000	288000	288000	324000	324000	324000
Air flow rate	E	m³/h	161000	161000	184000	184000	207000	230000	230000	253000	253000
All HOW fate	L	m³/h	138000	138000	161000	161000	184000	184000	207000	207000	234000
	N	m³/h	184000	184000	207000	230000	253000	253000	299000	322000	345000
	U	m³/h	252000	252000	288000	288000	324000	360000	360000	396000	396000
High static pressure	°,A,E,L,N,U	Pa	0	0	0	0	0	0	0	0	0
With static pressure											
	0	dB(A)	99,0	100,0	100,0	100,0	101,0	101,0	101,0	101,0	102,0
	A	dB(A)	99,0	99,0	99,0	99,0	100,0	100,0	100,0	101,0	102,0
	E	dB(A)	92,0	92,0	93,0	93,0	93,0	94,0	94,0	94,0	94,0
Sound power level		dB(A)	91,0	91,0	91,0	91,0	92,0	93,0	93,0	93,0	93,0
	L					-				-	
	N	dB(A)	92,0	92,0	93,0	93,0	93,0	93,0	94,0	94,0	95,0
	U	dB(A)	99,0	99,0	100,0	100,0	100,0	101,0	101,0	101,0	102,0
Without Static pressure											
	•	dB(A)	99,0	99,0	100,0	100,0	101,0	101,0	101,0	101,0	102,0
	A	dB(A)	100,0	100,0	100,0	100,0	101,0	101,0	101,0	102,0	101,0
	E	dB(A)	92,0	92,0	93,0	93,0	93,0	94,0	94,0	94,0	94,0
Cound nowar laval											
Sound power level	L	dB(A)	91,0	91,0	91,0	91,0	92,0	93,0	93,0	93,0	93,0
Sound power level	L N	dB(A) dB(A)	91,0 92,0	91,0 92,0	91,0 93,0	91,0 93,0	92,0 93,0	93,0 93,0	93,0 94,0	93,0 94,0	93,0 95,0
Sound power level	L N U										
		dB(A)	92,0 100,0	92,0	93,0 101,0	93,0 101,0	93,0 101,0	93,0 102,0	94,0	94,0 102,0	95,0 102,0
Size		dB(A)	92,0	92,0	93,0	93,0	93,0	93,0	94,0	94,0	95,0
Size Fans: M		dB(A)	92,0 100,0	92,0	93,0 101,0	93,0 101,0	93,0 101,0	93,0 102,0	94,0	94,0 102,0	95,0 102,0
Size Fans: M Increased fan	U	dB(A) dB(A)	92,0 100,0	92,0	93,0 101,0	93,0 101,0	93,0 101,0 6503	93,0 102,0	94,0	94,0 102,0	95,0 102,0
Size Fans: M	°,A,E,L,N,U	dB(A) dB(A)	92,0 100,0	92,0	93,0 101,0	93,0 101,0	93,0 101,0 6503 axials	93,0 102,0 6703	94,0	94,0 102,0	95,0 102,0
Size Fans: M Increased fan	°,A,E,L,N,U	dB(A) dB(A)	92,0 100,0	92,0	93,0 101,0	93,0 101,0 6402	93,0 101,0 6503 axials Asynchronous	93,0 102,0 6703	94,0	94,0 102,0	95,0 102,0
Size Fans: M Increased fan Type Fan motor	°,A,E,L,N,U	dB(A) dB(A)	92,0 100,0	92,0	93,0 101,0	93,0 101,0 6402	93,0 101,0 6503 axials	93,0 102,0 6703	94,0	94,0 102,0	95,0 102,0
Size Fans: M Increased fan Type	°,A,E,L,N,U °,A,U E,L,N	dB(A) dB(A) type type type	92,0 100,0 5602	92,0	93,0 101,0 6002	93,0 101,0 6402	93,0 101,0 6503 axials Asynchronous	93,0 102,0 6703	94,0	94,0 102,0 6903	95,0 102,0 7203
Size Fans: M Increased fan Type Fan motor	°,A,E,L,N,U °,A,U E,L,N	dB(A) dB(A) type type type no.	92,0 100,0 5602	92,0	93,0 101,0 6002	93,0 101,0 6402 Asy	93,0 101,0 6503 axials Asynchronous nchronous with ph	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903	95,0 102,0 7203
Size Fans: M Increased fan Type Fan motor Fan	°,A,E,L,N,U °,A,U E,L,N ° A,L	type type type no. no.	92,0 100,0 5602	92,0	93,0 101,0 6002	93,0 101,0 6402 Asy	93,0 101,0 6503 axials Asynchronous nchronous with ph	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903 20 28	95,0 102,0 7203
Size Fans: M Increased fan Type Fan motor	°,A,E,L,N,U °,A,U E,L,N ° A,L E,U	type type type no. no.	92,0 100,0 5602	92,0	93,0 101,0 6002 16 22 26	93,0 101,0 6402 Asy 18 22 28	93,0 101,0 6503 axials Asynchronous nchronous with pt	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903 20 28 30	95,0 102,0 7203 22 28 32
Size Fans: M Increased fan Type Fan motor Fan	°,A,E,L,N,U °,A,U E,L,N ° A,L	type type type no. no.	92,0 100,0 5602	92,0	93,0 101,0 6002	93,0 101,0 6402 Asy	93,0 101,0 6503 axials Asynchronous nchronous with ph	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903 20 28	95,0 102,0 7203
Size Fans: M Increased fan Type Fan motor Fan	°,A,E,L,N,U °,A,U E,L,N ° A,L E,U N	type type type no. no. no.	92,0 100,0 5602 16 20 24 32	92,0 100,0	93,0 101,0 6002 16 22 26 32	93,0 101,0 6402 Asy 18 22 28 32	93,0 101,0 6503 axials Asynchronous nchronous with ph 18 24 28 34	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903 20 28 30	95,0 102,0 7203 22 28 32
Size Fans: M Increased fan Type Fan motor Fan	°,A,E,L,N,U °,A,U E,L,N ° A,L E,U	type type type no. no. no.	92,0 100,0 5602	92,0 100,0	93,0 101,0 6002 16 22 26	93,0 101,0 6402 Asy 18 22 28	93,0 101,0 6503 axials Asynchronous nchronous with pt	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903 20 28 30	95,0 102,0 7203 22 28 32
Size Fans: M Increased fan Type Fan motor Fan	°,A,E,L,N,U °,A,U E,L,N ° A,L E,U N	type type type no. no. no.	92,0 100,0 5602 16 20 24 32	92,0 100,0	93,0 101,0 6002 16 22 26 32	93,0 101,0 6402 Asy 18 22 28 32	93,0 101,0 6503 axials Asynchronous nchronous with ph 18 24 28 34	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903 20 28 30	95,0 102,0 7203 22 28 32
Size Fans: M Increased fan Type Fan motor Fan Number	°,A,E,L,N,U °,A,U E,L,N A,L E,U N	type type type no. no. no. m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000	93,0 101,0 6402 Asy 18 22 28 32	93,0 101,0 6503 axials Asynchronous nchronous with pt 18 24 28 34	93,0 102,0 6703 hase cut	94,0	94,0 102,0 6903 20 28 30 -	95,0 102,0 7203 22 28 32 -
Size Fans: M Increased fan Type Fan motor Fan	°,A,E,L,N,U °,A,U E,L,N A,L E,U N	type type type no. no. no. m³/h m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000 360000 276000	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000	93,0 101,0 6503 axials Asynchronous nchronous with ph 18 24 28 34 324000 384000 322000	93,0 102,0 6703 hase cut 18 24 30 324000 384000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 345000	95,0 102,0 7203 22 28 32 - 396000 448000 368000
Size Fans: M Increased fan Type Fan motor Fan Number	°,A,E,L,N,U °,A,U E,L,N A,L E,U N A E	type type type no. no. no. m³/h m³/h m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000 360000 276000 260000	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000	93,0 101,0 6503 axials Asynchronous nchronous with ph 18 24 28 34 324000 384000 322000 276000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 345000	94,0	94,0 102,0 6903 20 28 30 -	95,0 102,0 7203 22 28 32 - 396000 448000
Size Fans: M Increased fan Type Fan motor Fan Number	°,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L	type type type no. no. no. m³/h m³/h m³/h m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000 360000 276000 260000 368000	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 368000	93,0 101,0 6503 axials Asynchronous nchronous with pl 18 24 28 34 32400 384000 384000 276000 391000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 345000 276000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 345000 322000	95,0 102,0 7203 22 28 32 - 396000 448000 368000 322000
Size Fans: M Increased fan Type Fan motor Fan Number	°,A,E,L,N,U °,A,U E,L,N A,L E,U N A E	type type type no. no. no. m³/h m³/h m³/h m³/h m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000 360000 276000 260000 368000 384000	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 368000 448000	93,0 101,0 6503 axials Asynchronous nchronous with ph 18 24 28 34 324000 384000 322000 276000 391000 448000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 345000 322000 - 480000	95,0 102,0 7203 7203 22 28 32 - 396000 448000 368000 322000 - 512000
Size Fans: M Increased fan Type Fan motor Fan Number	°,A,E,L,N,U °,A,U E,L,N ° A,L E,U N ° A E U °	type type type no. no. no. m³/h m³/h m³/h m³/h m³/h p³/h	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 384000 75	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 368000 448000 75	93,0 101,0 6503 axials Asynchronous nchronous with pl 18 24 28 34 32400 384000 384000 376000 391000 448000 75	93,0 102,0 6703 hase cut 18 24 30 - - 324000 384000 276000 - 480000 75	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 345000 322000 - 480000 75	95,0 102,0 7203 7203 22 28 32 - 396000 448000 368000 322000 - 512000 75
Size Fans: M Increased fan Type Fan motor Fan Number	°, A, E, L, N, U °, A, U E, L, N A, L E, U N A E L N U A, L	type type type no. no. no. m³/h m³/h m³/h m³/h m³/h p³/h p³	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 384000 75 75	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 448000 75 75	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 32400 384000 322000 276000 391000 448000 75 120	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 345000 322000 - 480000 75 120	95,0 102,0 7203 7203 22 28 32 - 396000 448000 368000 322000 - 512000 75
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure Air flow rate	°, A, E, L, N, U °, A, U E, L, N A, L E, U N A E L N U A, L E, U S A, L E, U	type type type no. no. no. m³/h m³/h m³/h m³/h m³/h pa Pa	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 384000 75 75	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 75	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 448000 75 75 120	93,0 101,0 6503 axials Asynchronous nchronous with pl 18 24 28 34 324000 384000 322000 276000 391000 448000 75 120 120	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 345000 322000 - 480000 75 120 120	95,0 102,0 7203 7203 22 28 32 - 396000 448000 368000 322000 - 512000 75 120
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure	°, A, E, L, N, U °, A, U E, L, N A, L E, U N A E L N U A, L	type type type no. no. no. m³/h m³/h m³/h m³/h m³/h p³/h p³	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 384000 75 75	92,0 100,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 448000 75 75	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 32400 384000 322000 276000 391000 448000 75 120	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 345000 322000 - 480000 75 120	95,0 102,0 7203 7203 22 28 32 - 396000 448000 368000 322000 - 512000 75
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure Air flow rate	*A,E,L,N,U *A,L E,U *N *** A	type type type no. no. no. m³/h m³/h m³/h m³/h m³/h pa Pa Pa	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 384000 75 75 120	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 120	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 368000 448000 75 75 75 120	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 384000 322000 276000 391000 448000 75 120 120	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120	95,0 102,0 7203 7203 22 28 32 - 396000 448000 322000 - 512000 75 120
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure	°,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N U A A,L E,U N	type type type no. no. no. m³/h m³/h m³/h m³/h pa Pa Pa Pa Pa m³/h	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 75 75 120 120	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 120 120	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 448000 75 75 120 120	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 384000 276000 391000 448000 75 120 120 120	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120 - 324000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120 -	95,0 102,0 7203 7203 22 28 32 396000 448000 322000 512000 75 120 120
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure	*A,E,L,N,U *,A,U *E,L,N A,L *E,U *N A *E *L *N U ** A,L *E,U *N A *L *E,U *N	type type type no. no. no. m³/h m³/h m³/h m³/h pa Pa Pa Pa Pa m³/h m³/h m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 75 75 120 120 288000 360000	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 120 120 288000 396000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 286000 448000 75 75 120 120	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 384000 276000 391000 448000 75 120 120 120 120 432000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120 - 324000 432000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120 - 360000 504000	95,0 102,0 7203 7203 22 28 32 396000 448000 322000 512000 75 120 120
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure Without Static pressure	°,A,E,L,N,U °,A,U E,L,N A,L E,U N A E L N U A A,L E,U N	type type type no. no. no. m³/h m³/h m³/h p² Pa Pa Pa Pa Pa Pa M³/h m³/h m³/h m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 75 75 120 120 288000 360000 276000	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 120 120 288000 396000 299000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 448000 75 75 120 120 324000 396000 322000 322000	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 332000 276000 391000 448000 75 120 120 120 120 324000 432000 332000 332000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120 - 324000 432000 345000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120 - 360000 504000 345000	95,0 102,0 7203 7203 22 28 32 396000 448000 322000 512000 75 120 120 396000 504000 368000
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure	*A,E,L,N,U *,A,U *E,L,N A,L *E,U *N A *E *L *N U ** A,L *E,U *N A *L *E,U *N	dB(A) dB(A) type type type no. no. no. m³/h m³/h m³/h Pa	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 75 75 120 120 288000 360000	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 120 120 288000 396000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 286000 448000 75 75 120 120	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 384000 276000 391000 448000 75 120 120 120 120 432000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120 - 324000 432000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120 - 360000 504000	95,0 102,0 7203 7203 22 28 32 396000 448000 322000 512000 75 120 120
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure Without Static pressure	*A,E,L,N,U *A,L E,U N ** A L E,U N ** A L E,U N ** A A E L N U ** A A L E,U N A A E E L N U ** A A A E E C A A A A A A A A A A A A A A	type type type no. no. no. m³/h m³/h m³/h p² Pa Pa Pa Pa Pa Pa M³/h m³/h m³/h m³/h m³/h	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 75 75 120 120 288000 360000 276000	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 120 120 288000 396000 299000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 448000 75 75 120 120 324000 396000 322000 322000	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 332000 276000 391000 448000 75 120 120 120 120 324000 432000 332000 332000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120 - 324000 432000 345000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120 - 360000 504000 345000	95,0 102,0 7203 7203 22 28 32 396000 448000 322000 512000 75 120 120 396000 504000 368000
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure Without Static pressure	*A,E,L,N,U *,A,U *E,L,N A,L *E,U *N A *E *L *N U ** A,L *E,U *N A *E *L *N U ** A,L *E,U *N A *E *L *N U ** A *L *E,U *N A *L *E,U	dB(A) dB(A) type type type no. no. no. m³/h m³/h m³/h Pa	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 75 75 120 120 288000 276000 260000 260000	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 75 75 120 120 288000 396000 299000 286000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 322000 286000 448000 75 75 120 120 324000 396000 322000 286000 322000 286000	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 324000 276000 391000 448000 75 120 120 120 120 324000 432000 322000 276000 322000 276000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 - 324000 432000 432000 345000 276000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120 - 360000 504000 345000 345000 322000	95,0 102,0 7203 7203 22 28 32 - 396000 448000 322000 - 512000 75 120 120 - 396000 504000 368000 322000
Size Fans: M Increased fan Type Fan motor Fan Number With static pressure High static pressure Without Static pressure	*A,E,L,N,U *,A,U *E,L,N A,L *E,U *N ** A *E *L *N *U ** A,L *E,U *N ** A *E *L *N ** A *E *E *L *N ** A *E *E *L *N ** N *E *	type type type type no. no. no. no. m³/h m³/h m³/h Pa Pa Pa Pa Pa m³/h m³/h m³/h m³/h m³/h m³/h m³/h m³/	92,0 100,0 5602 16 20 24 32 288000 276000 260000 368000 75 75 120 120 288000 276000 260000 360000 276000 260000 368000	92,0	93,0 101,0 6002 16 22 26 32 288000 396000 299000 286000 368000 416000 75 75 120 120 288000 396000 299000 286000 368000	93,0 101,0 6402 Asy 18 22 28 32 324000 396000 368000 448000 75 75 120 120 324000 322000 286000 322000 286000 322000	93,0 101,0 6503 axials Asynchronous with pl 18 24 28 34 324000 332000 276000 391000 448000 75 120 120 120 120 324000 432000 236000 391000 432000 391000 391000 391000	93,0 102,0 6703 hase cut 18 24 30 - 324000 384000 276000 - 480000 75 120 120 - 324000 432000 345000 276000	94,0	94,0 102,0 6903 20 28 30 - 360000 448000 322000 - 480000 75 120 120 - 360000 504000 345000 345000	95,0 102,0 7203 7203 22 28 32 - 396000 448000 322000 - 512000 75 120 120 - 396000 504000 368000 322000

Size		•	5602	6002	6402	6503	6703	6903	7203
With static pressure									
	0	dB(A)	102,0	102,0	102,0	102,0	102,0	103,0	103,0
	A,U	dB(A)	102,0	102,0	102,0	102,0	102,0	102,0	102,0
Sound power level	E	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	95,0
	L	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	94,0
	N	dB(A)	95,0	95,0	95,0	95,0	-	-	-
Without Static pressure									
	٥	dB(A)	102,0	102,0	102,0	102,0	102,0	103,0	103,0
	A	dB(A)	102,0	102,0	102,0	103,0	103,0	103,0	103,0
Country and the second	E	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	95,0
Sound power level	L	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	94,0
	N	dB(A)	95,0	95,0	95,0	95,0	-	-	-
	U	dB(A)	103,0	103,0	103,0	103.0	103,0	103,0	103,0

Inverter


Inverter											
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802
Fans: J											
Fan	0.4.51.1111						* 1				
Туре	°,A,E,L,N,U	type					axials				
Fan motor	°,A,E,L,N,U	type	-	-	-	0	Inverter	0	0	0	0
		no.	6	6	6	8	8	8	8	8	8
Number	A,L	no.	8	8	8	8	10	10	10	12	12
	E,U	no.	8	8	10	10	10	12	12	14	14
	N	no.	10	10	12	12	12	14	14	16	16
Inverter fan	0	3 //	0.000	0.000	0.000	120000	120000	120000	120000	144000	144000
		m³/h	96000	96000	96000	128000	128000	128000	128000	144000	144000
	A	m³/h	128000	128000	128000	128000	160000	160000	160000	192000	192000
Air flow rate	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	161000
	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000
	N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	184000
	U	m³/h	128000	128000	160000	160000	160000	192000	192000	224000	224000
High static pressure	•	Pa	120	120	120	120	120	120	120	75	75
	A,E,L,N,U	Pa	120	120	120	120	120	120	120	120	120
Sound data calculated in cooling r											
	0	dB(A)	97,0	97,0	97,0	98,0	98,0	98,0	98,0	98,0	98,0
	A	dB(A)	97,0	97,0	98,0	98,0	98,0	98,0	98,0	99,0	99,0
Sound power level	E	dB(A)	89,0	89,0	90,0	90,0	90,0	91,0	91,0	92,0	92,0
Journa power rever	L	dB(A)	89,0	89,0	89,0	89,0	90,0	91,0	91,0	91,0	91,0
	N	dB(A)	90,0	90,0	91,0	91,0	91,0	91,0	91,0	92,0	92,0
	U	dB(A)	97,0	97,0	98,0	98,0	98,0	99,0	99,0	99,0	99,0
(1) Sound power: calculated on the b	asis of measurements m	ade in accordar	ce with UNI EN IS	0 9614-2, as re	quired for Eurove	ent certification. S	Sound pressure m	easured in free fi	eld (in complia	nce with UNI EN	ISO 3744).
Size			3002	3202	3402	3602	3902	4202	4502	4802	5202
Fans: J			3002	3202	3102	3002	3702	7202	1302	1002	3202
Fan											
Туре	°,A,E,L,N,U	type					axials				
Fan motor	°,A,E,L,N,U	type					Inverter				
Tall Illotol	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10	10	10	10	12	12	14	14	16
	A,L	no.	12	12	14	14	16	16	18	18	18
Number		no.	14	14	16	16	18	20	20	22	22
	E,U	no.	16	16	18	20	22	22	26	28	30
Invartar for	N	no.	10	10	10	20	22	22	20	20	30
Inverter fan	0	m³/h	100000	100000	100000	100000	31/000	21/000	252000	252000	200000
			180000	180000	180000	180000	216000	216000	252000	252000	288000
	A	m³/h	192000	192000	224000	224000	256000	256000	288000	288000	324000
Air flow rate	E	m³/h	161000	161000	184000	184000	207000	230000	230000	253000	253000
	L	m³/h	138000	138000	161000	161000	184000	184000	207000	207000	234000
	N	m³/h	184000	184000	207000	230000	253000	253000	299000	322000	345000
	U	m³/h	224000	224000	256000	256000	288000	320000	320000	352000	352000
	-	Pa	75	75	75	75	75	75	75	75	75
High static pressure	A,L	Pa	120	120	120	120	120	120	120	120	75
	E,N,U	Pa	120	120	120	120	120	120	120	120	120
Sound data calculated in cooling r											
	0	dB(A)	99,0	100,0	100,0	100,0	101,0	101,0	101,0	101,0	102,0
	A	dB(A)	99,0	99,0	99,0	99,0	100,0	100,0	100,0	101,0	102,0
Cound nawar laval	E	dB(A)	92,0	92,0	93,0	93,0	93,0	94,0	94,0	94,0	94,0
Sound power level	L	dB(A)	91,0	91,0	91,0	91,0	92,0	93,0	93,0	93,0	93,0
	N	dB(A)	92,0	92,0	93,0	93,0	93,0	93,0	94,0	94,0	95,0
	U	dB(A)	99,0	99,0	100,0	100,0	100,0	101,0	101,0	101,0	102,0
(1) Sound power: calculated on the b	oasis of measurements m	ade in accordar	ce with UNI EN IS	0 9614-2, as re	quired for Eurove	ent certification. S	Sound pressure m	easured in free fi	eld (in complia	nce with UNI EN	ISO 3744).
Size			5602		6002	6402	6503	6703		6903	7203
Fans: J			3002			- IVE	0,00	0,03			, 243
Fan											
	°,A,E,L,N,U	type					axials				
lvne		type					Inverter				
		tuno			16	18	18	18		20	22
••	°,A,E,L,N,U	type	16		16		10	10		ZU	
••	°,A,E,L,N,U	no.	16		16			1/		70	
Fan motor	°,A,E,L,N,U ° A,L	no.	20		22	22	24	24		28	28
Type Fan motor Number	°,A,E,L,N,U ° A,L E,U	no. no. no.	20 24		22 26	22 28	24 28	30		30	32
Fan motor Number	°,A,E,L,N,U ° A,L	no.	20		22	22	24				
Fan motor	°,A,E,L,N,U 	no. no. no.	20 24 32		22 26 32	22 28 32	24 28 34	30		30	32
Fan motor Number	°,A,E,L,N,U A,L E,U N	no. no. no. no.	20 24 32 288000		22 26 32	22 28 32 324000	24 28 34 324000	30 - 324000		30 - 860000	32 - 396000
Fan motor Number	°,A,E,L,N,U 	no. no. no. no. m³/h m³/h	20 24 32		22 26 32	22 28 32	24 28 34	30		30	32
Fan motor Number Inverter fan	°,A,E,L,N,U A,L E,U N	no. no. no. m³/h m³/h m³/h	20 24 32 288000) 3	22 26 32	22 28 32 324000	24 28 34 324000	30 - 324000) 4	30 - 860000	32 - 396000
Fan motor Number	°,A,E,L,N,U ° A,L E,U N °	no. no. no. no. m³/h m³/h	20 24 32 288000 360000) 3	22 26 32 388000 396000	22 28 32 324000 396000	24 28 34 324000 384000	30 - 324000 384000) 4	30 - 360000 148000	32 - 396000 448000
Fan motor Number Inverter fan	°,A,E,L,N,U ° A,L E,U N °	no. no. no. m³/h m³/h m³/h	20 24 32 288000 360000 276000) 3) 2) 2	22 26 32 888000 896000	22 28 32 324000 396000 322000	24 28 34 324000 384000 322000	30 - 324000 384000 345000) 4	30 - 360000 148000 345000	32 - 396000 448000 368000

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

Size			5602	6002	6402	6503	6703	6903	7203
	0	Pa	75	75	75	75	75	75	75
High static process	A,L	Pa	75	75	75	120	120	120	120
High static pressure	E,U	Pa	120	120	120	120	120	120	120
	N	Pa	120	120	120	120	-	-	-
Sound data calculated in cooling mode (1)								
	0	dB(A)	102,0	102,0	102,0	102,0	102,0	103,0	103,0
	A,U	dB(A)	102,0	102,0	102,0	102,0	102,0	102,0	102,0
Sound power level	E	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	95,0
	L	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	94,0
	N	dB(A)	95,0	95,0	95,0	95,0	-	-	-

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights																
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	3970	3970	3970	5160	5160	5160	5160	5160	5160	6350	6350	6350	6350	7140
(A,L	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330	9520
	E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520	10710
	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900	13090
Size			4202	4502	4802	5202	5602	600	02	6402	6503	6703	6903	7203	8403	9603
Dimensions and weights																
	°,A,L	mm	2450	2450	2450	2450	2450	245	50	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	245	50	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	245	50	2450	2450	-	-	-	-	-
	°,A,L	mm	2200	2200	2200	2200	2200	220	00	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	220	00	2200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	220	00	2200	2200	-	-	-	-	-
	0	mm	7140	8330	8330	9520	9520	952	20 -	10710	11110	11110	11900	13090	13090	13090
	A,L	mm	9520	10710	10710	10710	11900	130	90	13090	14280	14280	16660	16660	17850	20230
(E,U	mm	11900	11900	13090	13090	14280	154	70	16660	16660	17850	17850	19040	-	-
	N	mm	13090	15470	16660	17850	19040	190	40	19040	20230	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 \mbox{mm} are shipped separately. For more information, please refer to the technical manual and / or installation.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00																
Weights																
	0	kg	3660	3702	3831	4670	5040	5053	5077	5273	5396	5922	5977	6410	6901	7477
-	A,L	kg	4213	4249	4373	4699	5472	5488	5691	6228	6424	6477	6577	7656	8129	8647
Empty weight -	E,U	kg	4373	4394	4840	5431	5785	6333	6356	6805	6896	6914	6953	8149	8660	9431
-	N	kg	4791	4812	5373	5965	6318	6741	6764	7254	7346	7416	7508	8882	9759	10383
	٥	kg	3753	3790	3962	4801	5171	5202	5226	5548	5671	6244	6299	6732	7214	7790
Weight functioning	A,L	kg	4306	4337	4505	4848	5621	5637	5966	6503	6747	6799	6871	8173	8645	9152
Weight functioning	E,U	kg	4505	4543	4989	5753	6107	6655	6679	7118	7209	7279	7352	8718	9177	9936
	N	kg	4923	4962	5522	6287	6641	7063	7086	7567	7659	7729	7802	9399	10276	10888
Size			4202	4502	4802	5202	5602	600	02 64	02	6503	6703	6903	7203	8403	9603
Integrated hydronic kit: 00																
Weights																
	٥	kg	7574	7993	8302	8826	8954	901	17 97	19	11612	11688	12216	12761	13047	13176
-	A,L	kg	8710	9428	9481	9902	10433	3 110	18 110)60	13354	13417	14572	14625	15743	16934
Empty weight -	E,U	kg	9922	9983	10887	11013	11820	122	61 127	701	14514	15005	15119	16034	-	-
	L,U	ĸy	//LL	,,,,												
- -	N N	kg	10456	11646	12355	12989	12721	136	66 137	709	16119	-	-	-	-	-
-	N o				12355 8819	12989 9342	12721 9471				16119 12527	12603	13089	13633	13920	14048
Weight for atting	Ň	kg	10456	11646				952	22 102	224		- 12603 14184	- 13089 15328	13633 15381		14048 18126
- Weight functioning	N °	kg kg	10456 7868	11646 8287	8819	9342	9471	952 7 118	22 102 98 119	224 940	12527				13920	

www.aermec.com

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSMI 1251-6102

Air-water chiller

Cooling capacity 285,6 ÷ 1342,6 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- Low electrical consumption

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger. In the unit with desuperheater, it is also possible to produce free-hot water

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Unit with 1 / 2 cooling circuits

Unit with 1-2 refrigerant circuits.

The single circuit units have the inverter compressor, while the dual-circuit have an asynchronous compressor on/off switch and an inverter, the combination provides both high efficiency at part load and full load.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

Low noise version

Silenced versions "E" feature a special compressor jacket which ensures a further noise reduction of approximately 4dB.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Accessories

Model	Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
AER485P1	A,E	•	•	•												
AER485P1 x n° 2 (1)	A,E				•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

⁽¹⁾ x Indicates the quantity of accessories to match.

Antivibration

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A	AVX991	AVX992	AVX993	AVX996	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX997	AVX998	AVX998	AVX998	AVX998
E	AVX991	AVX992	AVX994	AVX996	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX997	AVX998	AVX998	AVX998	AVX998

Heater exchangers

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A,E	KRS23	KRS24													

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid kit

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A,E	GP4V	GP4V	GP5V	GP5V	GP6V	GP7V	GP7V	GP7V	GP8V	GP9V	GP10V	GP11V	GP11V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3,4	NSMI
5,6,7,8	Size 1251, 1601, 1801, 2352, 2652, 2802, 3202, 3402, 3802, 4102, 4402, 4802, 5202, 5702, 6102
9	Model
0	Cooling only
10	Heat recovery
0	Without heat recovery
D	With desuperheater (1)
11	Version
Α	High efficiency
E	Silenced high efficiency
12	Coils
0	Aluminium microchannel
0	Coated aluminium microchannel
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
٧	Copper pieps-Coated aluminium fins
13	Fans
0	Standard
J	Inverter
14	Power supply
0	400V~3 50Hz with fuses
15,16	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A

Field	Description
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (2)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (2)
	Kit with 2 pumps
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (2)
(1) Minimu	m water temporature of 25 °C must always be ensured at heat eyebanger inlet if working with

⁽¹⁾ Minimum water temperature of 35 °C must always be ensured at heat exchanger inlet if working with low temperatures of water produced in the primary circuit.

(2) For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NSMI - A/E

Size		1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Cooling performance 12 °C/7 °C(1)																
Cooling capacity	kW	285,6	382,0	464,0	519,1	605,4	659,4	725,2	802,4	842,6	948,0	1008,8	1110,4	1204,3	1253,0	1342,6
Input power	kW	91,3	120,2	149,5	167,1	194,3	212,3	232,7	257,5	269,9	304,8	324,7	356,2	397,4	415,9	454,6
Cooling total input current	Α	155,0	200,0	245,0	293,0	337,0	360,0	393,0	431,0	443,0	517,0	547,0	619,0	665,0	728,0	761,0
EER	W/W	3,13	3,18	3,10	3,11	3,12	3,11	3,12	3,12	3,12	3,11	3,11	3,12	3,03	3,01	2,95
Water flow rate system side	l/h	49130	65700	79773	89247	104092	113376	124682	137945	144852	162983	173442	190903	207040	215409	230815
Pressure drop system side	kPa	45	15	21	18	25	28	33	27	30	39	45	38	44	49	55

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
SEER - 12/7 (EN14825:2018) with standar	d fans (1)																
SEER	A,E	W/W	4,75	4,82	4,78	4,90	4,92	4,90	4,91	4,93	4,93	4,90	4,88	4,90	4,85	4,70	4,69
Seasonal efficiency	A,E	%	186,8%	189,7%	188,0%	193,1%	193,9%	193,0%	193,3%	194,2%	194,3%	192,8%	192,2%	192,9%	191,0%	185,1%	184,7%
SEER - (EN14825:2018) 12/7 with inverter	fans (1)																
SEER	A,E	W/W	4,95	5,04	5,00	5,01	5,03	5,01	5,02	5,04	5,04	5,00	4,99	5,00	4,96	4,81	4,80
Seasonal efficiency	A,E	%	194,9%	198,4%	196,8%	197,3%	198,1%	197,2%	197,6%	198,5%	198,5%	197,1%	196,4%	197,1%	195,3%	189,2%	188,8%
SEPR - (EN14825: 2018) High temperature	with standa	ard fans (2)														
SEPR	A,E	W/W	5,70	5,62	5,59	6,56	6,43	6,42	6,77	6,94	7,21	6,96	7,47	6,88	7,21	6,69	7,01
SEPR - (EN14825: 2018) High temperature	with invert	er fans (2)															
SEPR	A,E	W/W	5,70	5,62	5,59	6,56	6,43	6,42	6,77	6,94	7,21	6,96	7,47	6,88	7,21	6,69	7,01

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

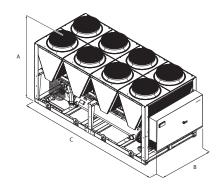
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Electric data																	
Maximum current (FLA)	A,E	Α	251,3	291,3	377,7	442,0	473,0	519,4	519,4	567,4	653,8	708,1	753,5	874,8	917,2	1002,2	1036,2
Peak current (LRA)	A,E	Α	51,3	51,3	57,7	571,7	605,0	651,4	651,4	775,4	861,8	989,1	1059,4	1180,2	1335,2	1420,2	1532,2

GENERAL TECHNICAL DATA

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Compressor																	
Туре	A,E	type								Screw							
Compressor regulation	A,E	Туре	- 1	-	- 1	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+I
Number	A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type								R134a							
Refrigerant charge (1)	A,E	kg	28,0	28,0	30,0	81,0	92,0	110,0	114,0	107,0	131,0	146,0	163,0	183,0	183,0	195,0	195,0
System side heat exchanger																	
Туре	A,E	type							SI	hell and tu	be						
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																	
Connections (in/out)	A,E	Туре							G	rooved joir	nts						
Sizes (in/out)	A,E	Ø	5"	6"	6"	6"	6"	6"	6"	8"	8"	8"	8"	10"	10"	10"	10"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

Fans


Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Fans: °																	
Fan																	
Туре	A,E	type								Axial							
Fan motor	A,E	type							Asynchro	nous with	phase cut						
Number	A,E	no.	8	8	10	10	12	14	14	14	16	18	20	22	22	22	22
Air flow rate	A,E	m³/h	128000	128000	160000	160000	192000	224000	224000	224000	256000	288000	320000	396000	396000	396000	396000

Sound data

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Sound data calculated in cooling mode (1)																	
Carrad marriage large	Α	dB(A)	97,2	98,6	98,6	98,6	98,8	99,9	99,9	100,3	100,3	100,4	101,0	102,9	103,2	102,9	103,2
Sound power level —	E	dB(A)	92,9	95,8	95,9	94,7	95,1	96,1	96,1	97,3	97,4	97,7	98,0	99,9	99,9	99,9	99,9
Cd ================================	Α	dB(A)	64,8	66,2	66,1	66,1	66,2	67,1	67,1	67,5	67,5	67,4	67,9	69,7	69,9	69,7	69,9
Sound pressure level (10 m)	E	dB(A)	60,6	63,4	63,4	62,1	62,5	63,3	63,3	64,6	64,5	64,7	64,8	66,7	66,7	66,7	66,7

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Dimensions and weights																	
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
С	A,E	mm	4760	4760	5950	6400	7140	8330	8330	8330	9520	10710	11900	13090	13090	13090	13090
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Integrated hydronic kit: 00																	
Dimensions and weights																	
Emptywaight	Α	kg	3752	4162	4578	6039	6447	6896	6987	7635	8103	8872	9324	10798	10888	10918	10991
Empty weight —	E	kg	4054	4464	4880	6642	7050	7499	7590	8239	8706	9475	9928	11637	11727	11757	11830
Weight functioning —	Α	kg	3832	4416	4832	6360	6768	7206	7275	8165	8632	9389	9841	11730	11819	11835	11908
weight functioning	E	kg	4134	4718	5134	6964	7371	7809	7878	8768	9236	9993	10445	12568	12658	12674	12747

NSH

Reversible air/water heat pump

Cooling capacity 251 ÷ 731 kW Heating capacity 281 ÷ 786 kW

- · High efficiency also at partial loads
- Electronic expansion valve

DESCRIPTION

Reversible outdoor heat pumps for the production of chilled/heated water designed to satisfy the needs of residential and commercial buildings, or for industrial applications.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -10 °C outside air temperature in winter, and up to 48°C in summer. Hot water production up to 55°C (for more details refer to the technical documentation).

Bi-tri circuit unit

The units are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP. SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

KRS: Electric heater for the heat exchanger

AK: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
AER485P1	A,E	•	•		•		•											
AER485P1 x n° 2 (1)	A,E			•		•		•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•		•	•	•		•	•	•	•	•		•
MULTICHILLER_EVO	A,E	•	•	•		•		•	•	•		•	•	•	•	•	•	•
PRV3	A,E	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Condensation control temperature

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A,E	DCPX69	DCPX69	DCPX68	DCPX69	DCPX68	DCPX69	DCPX68	DCPX73									

Anti-intrusion grid

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202
A,E	GP300M	GP300M	GP300B	GP300M	GP300B	GP400M	GP400B	GP500B	GP500B
Ver	2352	2502	2652	2802		3002	3202	3402	3602
A,E	GP500B	GP500B	GP500B	GP500B	GP30	0M+300M	GP300M+300M	GP300M+400M	GP400M+400M

Antivibration

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Integrated hydro	nic kit: 00																
A,E	AVX536	AVX536	AVX537	AVX536	AVX538	AVX540	AVX541	AVX543	AVX543	AVX545	AVX549	AVX551	AVX551	AVX554	AVX556	AVX557	AVX559
Integrated hydro	nic kit: PA																
A,E	AVX536	AVX536	AVX537	AVX536	AVX538	AVX540	AVX541	AVX543	AVX543	AVX545	AVX550	AVX551	AVX551	AVX553	AVX553	AVX557	AVX559
Integrated hydro	nic kit: PC, PE,	PG, PJ															
A,E	AVX536	AVX536	AVX538	AVX536	AVX538	AVX540	AVX541	AVX543	AVX543	AVX545	AVX550	AVX551	AVX551	AVX553	AVX555	AVX557	AVX559

Heater exchangers

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
A,E	KRS11	KRS11	KRS19	KRS11	KRS19	KRS11	KRS19	KRS14	KRS14	KRS14	KRS14						

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Power factor correction

Ver	1251	1401	1402	1601	1602	1801	1802	2002	2202
A,E	RIFNSH1251	RIFNSH1401	RIFNSH1402	RIFNSH1601	RIFNSH1602	RIFNSH1801	RIFNSH1802	RIFNSH2002	RIFNSH2202
A grey background inc	licates the accessory mu	st be assembled in the f	actory						
Ver	2352	2502	2652	2802		3002	3202	3402	3602
A,E	RIFNSH2352	RIFNSH2502	RIFNSH2652	RIFNSH280	2 RIF	NSH3002	RIFNSH3202	RIFNSH3402	RIFNSH3602

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NSH
4,5,6,7	Size
4,3,0,7	1251, 1401, 1402, 1601, 1602, 1801, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602
8	Operating field
X	Electronic thermostatic expansion valve
9	Model
H	Heat pump
10	Heat recovery
0	Without heat recovery
D	With desuperheater
11	Version
A	High efficiency
E	Silenced high efficiency
12	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
13	Fans
0	Standard
J	Inverter
14	Power supply
0	400V~3 50Hz with fuses
2	230V~3 50Hz with fuses (1)
4	230V~3 50Hz with magnet circuit breakers (1)
5	500V~3 50Hz with fuses (2)
8	400V~3 50Hz with magnet circuit breakers
9	500V~3 50Hz with magnet circuit breakers (2)
15,16	Integrated hydronic kit
	Without hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PC	Pump C
PE	Pump E
PG	Pump G
PJ	Pump J (3)

PERFORMANCE SPECIFICATIONS

NS - HA

	1251	1401	1402	1601	1602	1801	1802	2002	2202
kW	262,7	281,7	257,7	309,7	315,6	365,6	365,6	384,6	414,5
kW	86,9	95,0	94,9	107,8	108,3	128,3	125,3	132,5	138,8
A	149,0	164,0	168,0	185,0	186,0	215,0	216,0	227,0	233,0
W/W	3,02	2,96	2,72	2,87	2,91	2,85	2,92	2,90	2,99
l/h	45186	48451	44327	53262	54292	62883	62883	66147	71302
kPa	38	41	36	27	50	43	43	47	53
kW	281,4	297,4	281,4	332,3	342,5	393,5	395,5	412,5	450,6
kW	88,2	94,2	93,2	104,0	106,8	126,7	123,7	133,9	141,3
A	150,0	163,0	165,0	180,0	182,0	212,0	213,0	229,0	236,0
W/W	3,19	3,16	3,02	3,20	3,21	3,11	3,20	3,08	3,19
l/h	48838	51618	48838	57701	59439	68303	68651	71605	78210
kPa	47	49	47	33	64	54	54	58	67
	kW A W/W I/h kPa kW kW A W/W I/h	kW 262,7 kW 86,9 A 149,0 W/W 3,02 I/h 45186 kPa 38 kW 281,4 kW 88,2 A 150,0 W/W 3,19 I/h 48838	kW 262,7 281,7 kW 86,9 95,0 A 149,0 164,0 W/W 3,02 2,96 I/h 45186 48451 kPa 38 41 kW 281,4 297,4 kW 88,2 94,2 A 150,0 163,0 W/W 3,19 3,16 I/h 48838 51618	kW 262,7 281,7 257,7 kW 86,9 95,0 94,9 A 149,0 164,0 168,0 W/W 3,02 2,96 2,72 I/h 45186 48451 44327 kPa 38 41 36 kW 281,4 297,4 281,4 kW 88,2 94,2 93,2 A 150,0 163,0 165,0 W/W 3,19 3,16 3,02 I/h 48838 51618 48838	kW 262,7 281,7 257,7 309,7 kW 86,9 95,0 94,9 107,8 A 149,0 164,0 168,0 185,0 W/W 3,02 2,96 2,72 2,87 I/h 45186 48451 44327 53262 kPa 38 41 36 27 kW 281,4 297,4 281,4 332,3 kW 88,2 94,2 93,2 104,0 A 150,0 163,0 165,0 180,0 W/W 3,19 3,16 3,02 3,20 I/h 48838 51618 48838 57701	kW 262,7 281,7 257,7 309,7 315,6 kW 86,9 95,0 94,9 107,8 108,3 A 149,0 164,0 168,0 185,0 186,0 W/W 3,02 2,96 2,72 2,87 2,91 I/h 45186 48451 44327 53262 54292 kPa 38 41 36 27 50 kW 281,4 297,4 281,4 332,3 342,5 kW 88,2 94,2 93,2 104,0 106,8 A 150,0 163,0 165,0 180,0 182,0 W/W 3,19 3,16 3,02 3,20 3,21 I/h 48838 51618 48838 57701 59439	kW 262,7 281,7 257,7 309,7 315,6 365,6 kW 86,9 95,0 94,9 107,8 108,3 128,3 A 149,0 164,0 168,0 185,0 186,0 215,0 W/W 3,02 2,96 2,72 2,87 2,91 2,85 I/h 45186 48451 44327 53262 54292 62883 kPa 38 41 36 27 50 43 kW 281,4 297,4 281,4 332,3 342,5 393,5 kW 88,2 94,2 93,2 104,0 106,8 126,7 A 150,0 163,0 165,0 180,0 182,0 212,0 W/W 3,19 3,16 3,02 3,20 3,21 3,11 I/h 48838 51618 48838 57701 59439 68303	kW 262,7 281,7 257,7 309,7 315,6 365,6 365,6 kW 86,9 95,0 94,9 107,8 108,3 128,3 125,3 A 149,0 164,0 168,0 185,0 186,0 215,0 216,0 W/W 3,02 2,96 2,72 2,87 2,91 2,85 2,92 I/h 45186 48451 44327 53262 54292 62883 62883 kPa 38 41 36 27 50 43 43 kW 281,4 297,4 281,4 332,3 342,5 393,5 395,5 kW 88,2 94,2 93,2 104,0 106,8 126,7 123,7 A 150,0 163,0 165,0 180,0 182,0 212,0 213,0 W/W 3,19 3,16 3,02 3,20 3,21 3,11 3,20 I/h 48838 51618	kW 262,7 281,7 257,7 309,7 315,6 365,6 365,6 384,6 kW 86,9 95,0 94,9 107,8 108,3 128,3 125,3 132,5 A 149,0 164,0 168,0 185,0 186,0 215,0 216,0 227,0 W/W 3,02 2,96 2,72 2,87 2,91 2,85 2,92 2,90 I/h 45186 48451 44327 53262 54292 62883 62883 66147 kPa 38 41 36 27 50 43 43 47 kW 281,4 297,4 281,4 332,3 342,5 393,5 395,5 412,5 kW 88,2 94,2 93,2 104,0 106,8 126,7 123,7 133,9 A 150,0 163,0 165,0 180,0 182,0 212,0 213,0 229,0 W/W 3,19 3,16

⁽¹⁾ Not available for size from 1251 to 1801 and from 2352 to 3602 (2) Not available for size 1801-3402-3602 (3) For all configurations including pump J please contact the factory.

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size		2352	2502	2652	2802	3002	3202	3402	3602
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	454,6	499,5	524,5	547,5	591,5	619,6	675,5	731,4
Input power	kW	158,4	173,5	186,7	195,9	202,6	215,4	235,9	256,4
Cooling total input current	A	268,0	295,0	318,0	335,0	349,0	370,0	400,0	430,0
EER	W/W	2,87	2,88	2,81	2,80	2,92	2,88	2,86	2,85
Water flow rate system side	l/h	78174	85906	90201	94153	101712	106523	116144	125766
Pressure drop system side	kPa	37	38	40	43	34	27	35	43
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	502,5	541,5	563,6	585,6	629,5	664,5	725,6	786,7
Input power	kW	157,9	171,0	177,1	185,4	198,0	207,8	230,4	253,1
Heating total input current	A	267,0	292,0	303,0	318,0	342,0	359,0	391,0	423,0
COP	W/W	3,18	3,17	3,18	3,16	3,18	3,20	3,15	3,11
Water flow rate system side	l/h	87247	94025	97849	101673	109320	115403	126004	136606
Pressure drop system side	kPa	49	47	49	53	41	33	43	54

NS - HE

Size		1251	1401	1402	1601	1602	1801	1802	2002	2202
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	250,7	266,7	242,7	292,7	301,6	343,6	349,6	366,6	394,5
Input power	kW	91,8	101,9	100,8	115,7	116,2	136,1	132,2	140,3	146,5
Cooling total input current	A	161,0	178,0	181,0	202,0	202,0	234,0	233,0	246,0	254,0
EER	W/W	2,73	2,62	2,41	2,53	2,60	2,52	2,65	2,61	2,69
Water flow rate system side	l/h	43125	45874	41750	50341	51887	59103	60134	63055	67865
Pressure drop system side	kPa	32	37	33	24	46	38	39	43	48
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	281,4	297,4	281,4	332,3	342,5	393,5	395,5	412,5	450,6
Input power	kW	88,2	94,2	93,2	104,0	106,8	126,7	123,7	133,9	141,3
Heating total input current	A	150,0	163,0	165,0	180,0	182,0	212,0	213,0	229,0	236,0
COP	W/W	3,19	3,16	3,02	3,20	3,21	3,11	3,20	3,08	3,19
Water flow rate system side	l/h	48838	51618	48838	57701	59439	68303	68651	71605	78210
Pressure drop system side	kPa	47	49	47	33	64	54	54	58	67

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

Size		2352	2502	2652	2802	3002	3202	3402	3602
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	435,6	487,6	506,5	517,5	559,6	585,6	636,5	687,5
Input power	kW	169,3	192,4	202,5	210,6	217,4	231,2	251,6	272,0
Cooling total input current	A	293,0	333,0	349,0	365,0	380,0	403,0	436,0	468,0
EER	W/W	2,57	2,53	2,50	2,46	2,57	2,53	2,53	2,53
Water flow rate system side	l/h	74910	83844	87108	88998	96214	100681	109444	118206
Pressure drop system side	kPa	34	35	37	39	30	24	31	38
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	502,5	541,5	563,6	585,6	629,5	664,5	725,6	786,7
Input power	kW	157,9	171,0	177,1	185,4	198,0	207,8	230,4	253,1
Heating total input current	A	267,0	292,0	303,0	318,0	342,0	359,0	391,0	423,0
COP	W/W	3,18	3,17	3,18	3,16	3,18	3,20	3,15	3,11
Water flow rate system side	I/h	87247	94025	97849	101673	109320	115403	126004	136606
Pressure drop system side	kPa	49	47	49	53	41	33	43	54

ENERGY DATA

EITERGT DATE	**																		
Size			1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
UE 813/2013 perform	ance in avera	ge ambie	nt conditi	ons (avera	age) - 35 °	C - Pdesig	nh ≤ 400	kW (1)											
Pdesignh	A,E	kW	185	195	185	218	225	259	260	271	297	330	356	370	385	325	342	374	400
SCOP	A,E	W/W	3,33	3,28	3,23	3,33	3,33	3,23	3,33	3,20	3,30	3,30	3,30	3,33	3,30	3,35	3,40	3,33	3,28
ηsh	A,E	%	130.0%	128.0%	126.0%	130.0%	130.0%	126.0%	130.0%	125.0%	129.0%	129.0%	129.0%	130.0%	129.0%	131.0%	133.0%	130.0%	128.0%
SEER - 12/7 (EN14825	:2018) with s	tandard f	ans (2)																
SEER -	Α	W/W	3,88	3,81	3,46	3,76	3,68	3,71	3,73	3,70	3,80	3,72	3,74	3,66	3,64	3,81	3,76	3,73	3,72
JEEK -	E	W/W	3,41	3,28	3,00	3,19	3,23	3,19	3,32	3,28	3,37	3,28	3,23	3,18	3,12	3,30	3,25	3,23	3,23
Seasonal efficiency —	Α	%	152.1%	149.4%	135.2%	147.4%	144.2%	145.2%	146.0%	145.0%	149.0%	145.7%	146.6%	143.5%	142.5%	149.5%	147.5%	146.1%	145.8%
seasonal enficiency	E	%	133.4%	128.1%	116.8%	124.4%	126.2%	124.7%	129.7%	128.2%	131.8%	128.1%	126.3%	124.3%	121.7%	129.1%	126.9%	126.1%	126.2%

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

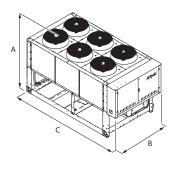
⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Data EN 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b.

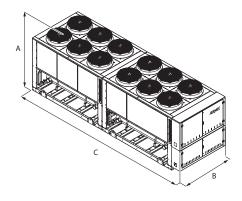
⁽¹⁾ Efficiencies for low temperature applications (35 °C) (2) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.

ELECTRIC DATA

Size			1251	1401	1402	1601	1602	1801	1802	2002	2202
Electric data											
Maximum current (FLA)	A,E	Α	209,0	242,0	276,0	258,0	276,0	316,0	325,0	352,0	370,0
Peak current (LRA)	A,E	А	327,0	387,0	251,0	431,0	251,0	472,0	305,0	313,0	350,0
Size			2352	2502	2652	280	02	3002	3202	3402	3602
Electric data											
Maximum current (FLA)	A,E	Α	390,0	410,0	443,0	476	5,0	500,0	516,0	574,0	631,0
Peak current (LRA)	ΔF	Δ	365,0	436,0	461,0	521	0	534,0	578,0	612,0	653,0

GENERAL TECHNICAL DATA


Size			1251	1401	1402	1601	1602	1801	1802	2002	2202
Compressor											
Туре	A,E	type					Screw				
Number	A,E	no.	1	1	2	1	2	1	2	2	2
Circuits	A,E	no.	1	1	2	1	2	1	2	2	2
Refrigerant	A,E	type					R134a				
System side heat exchanger											
Туре	A,E	type					Shell and tube				
Number	A,E	no.	1	1	2	1	2	1	2	2	1
System side hydraulic connections											
Connections (in/out)	A,E	Туре					Grooved joints				
Sizes (in/out)	A,E	Ø					6"				
Fan											
Туре	A,E	type					Axial				
Fan motor	A	type					Asynchronous				
Fan motor	E	type				Async	hronous with pha	ise cut			
Number	A,E	no.	6	6	6	6	6	8	8	10	10
A: A	A	m³/h	117600	117600	117600	112200	112200	156000	153200	196000	196000
Air flow rate	E	m³/h	82320	117600	82320	78540	78540	109200	107240	137200	137200
Sound data calculated in cooling mode	(1)										
County and a county lawy	A	dB(A)	94,0	94,0	94,0	95,0	95,0	96,0	96,0	97,0	97,0
Sound power level	E	dB(A)	89,0	89,0	89,0	90,0	90,0	91,0	91,0	92,0	92,0
Cound procesure level /10 m)	A	dB(A)	62,0	62,0	62,0	63,0	63,0	64,0	64,0	64,0	64,0
Sound pressure level (10 m)	E	dB(A)	57,0	57,0	57,0	58,0	58,0	59,0	59,0	59,0	59,0


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			2352	2502	2652	2802	3002	3202	3402	3602
Compressor										
Туре	A,E	type				Sci	ew			
Number	A,E	no.	2	2	2	2	2	2	2	2
Circuits	A,E	no.	2	2	2	2	2	2	2	2
Refrigerant	A,E	type				R1	34a			
System side heat exchanger										
Туре	A,E	type				Shell a	nd tube			
Number	A,E	no.	1	1	1	1	2	2	2	2
System side hydraulic connections										
Connections (in/out)	A,E	Туре				Groove	d joints			
Sizes (in/out)	A,E	Ø				()"			
Fan										
Туре	A,E	type				A	rial			
	А	type				Asynch	ironous			
Fan motor	E	type				Asynchronous	with phase cut			
Number	A,E	no.	10	10	10	10	12	12	14	16
A: 4	Α	m³/h	196000	196000	191500	187000	229800	224400	268200	312000
Air flow rate	E	m³/h	137200	137200	134050	130900	196140	157080	187740	218400
Sound data calculated in cooling mode	(1)									
-	А	dB(A)	97,0	97,0	97,0	97,0	97,0	98,0	99,0	99,0
Sound power level	E	dB(A)	92,0	92,0	92,0	92,0	92,0	93,0	94,0	94,0
C	A	dB(A)	64,0	65,0	65,0	65,0	64,0	65,0	66,0	66,0
Sound pressure level (10 m)	E	dB(A)	59,0	60,0	60,0	60,0	59,0	60,0	61,0	61,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1251	1401	1402	1601	1602	1801	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Dimensions and weights																			
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
(A,E	mm	3780	3780	3780	3780	3780	4770	4770	5750	5750	5750	5750	5750	5750	7160	7160	8150	8150
Weights																			
Without hydronic kit	A,E	kg	3245	3280	3570	3435	3835	4115	4005	4385	4570	4940	5265	5470	5610	6540	6745	7425	8105

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSG

Air-water chiller

Cooling capacity 228 ÷ 1580 kW

- Microchannel coil
- High efficiency also at partial loads
- Night mode

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger. In the unit with desuperheater, it is also possible to produce free-hot water

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

E Silenced high efficiency

L Standard silenced

N Silenced very high efficiency

U Very high efficiency

FEATURES

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430:

with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

Bi-tri circuit unit

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.
 Night Mode for standard versions is mandatory DCPX accessory (standard on all low noise versions) or "J" inverter fan

ACCESSORIES

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 x n° 3: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP. SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

DCPX: Device for condensation temperature control, with continuous speed modulation of fans by using a pressure transducer.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
AER485P1 x n° 2 (1)	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,A,E,L,N,U	•	•	•	•	•		•	•		•	•	•	•	•
AERNET	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERSET	°,A,E,L,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,A,E,L,N,U	•	•	•	•	•	•		•	•			•	•	
PRV3	°,A,E,L,N,U	•	•	•	•	٠	•	•	•	•	•		•	•	•
Model	Ver	4202	4502	4802	5202	5602	6002	2 64	102 6	5503	6703	6903	7203	8403	9603
AER485P1 x n° 2 (1)	°,A,E,L,N,U	•	•		•		•								
	°,A,L									•		•		•	•
AER485P1 x n° 3 (1)	E,U									•		•			
	N														
	°,A,L	•	•				•		•			•			•
AERBACP	E,U	•	•				•		•			•			
	N	•	•	•	•	•	•		•						
	°,A,L	•	•		•	•	•		•	•	•	•	•	•	•
AERNET	E,U	•	•		•	•	•			•	•	•	•		
	N	•	•	•	•	•	•		•	•					
	°,A,L	•			•	•	•			•	•	•	•	•	•
AERSET	E,U	•	•	•	•	•	•		•	•	•	•	•		
	N	•	•		•	•	•		•	•					
	°,A,L	•	•		•	•	•		•	•	•	•	•	•	•
MULTICHILLER_EVO	E,U	•		•					•	•		•			
	N	•		•	•	•			•	•					
	°,A,L	•	•	•	•	•	•		•	•	•	•	•	•	•
PRV3	E,U	•	•	•	•				•	•	•	•	•		
	N	•	•	•	•				•						

⁽¹⁾ x Indicates the quantity of accessories to match.

Condensation control temperature

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
ans: M										
0	DCPX110	DCPX111	DCPX111	DCPX112						
A	DCPX111	DCPX111	DCPX111	DCPX111	DCPX112	DCPX112	DCPX112	DCPX113	DCPX113	DCPX113
E,L,N	As standard									
U	DCPX111	DCPX111	DCPX112	DCPX112	DCPX113	DCPX113	DCPX114	DCPX114	DCPX114	DCPX114
Ver	3202	3402	3602	3902	4202	4502	4802	5202	5602	6002
ans: M										
0	DCPX112	DCPX112	DCPX112	DCPX113	DCPX113	DCPX114	DCPX114	DCPX115	DCPX115	DCPX115
A	DCPX113	DCPX114	DCPX114	DCPX115	DCPX115	DCPX116	DCPX116	DCPX116	DCPX117	DCPX118
E,L,N	As standard									
U	DCPX114	DCPX115	DCPX115	DCPX116	DCPX117	DCPX117	DCPX118	DCPX119	DCPX130	DCPX131
Ver	6402		6503	6703	69	03	7203	8403		9603

Ver	6402	6503	6703	6903	7203	8403	9603
Fans: M							
٥	DCPX116	DCPX135+DCPX113	DCPX135+DCPX113	DCPX125+DCPX114	DCPX114+DCPX136	DCPX114+DCPX136	DCPX114+DCPX136
A	DCPX118	DCPX115+DCPX136	DCPX115+DCPX136	DCPX116+DCPX136	DCPX116+DCPX136	DCPX117+DCPX136	-
E,N	As standard	As standard	As standard	As standard	As standard	-	-
L	As standard	As standard	As standard	As standard	As standard	As standard	As standard
U	DCPX132	DCPX116+DCPX137	DCPX117+DCPX137	DCPX117+DCPX137	DCPX118+DCPX137	-	-

The accessory cannot be fitted on the configurations indicated with -

Antivibration

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydror	nic kit: 00													
0	AVX962	AVX962	AVX962	AVX963	AVX963	AVX963	AVX963	AVX968	AVX968	AVX966	AVX966	AVX966	AVX966	AVX965
A,L	AVX963	AVX963	AVX963	AVX963	AVX964	AVX964	AVX966	AVX965	AVX965	AVX970	AVX965	AVX967	AVX967	AVX969
E,U	AVX963	AVX963	AVX964	AVX966	AVX966	AVX965	AVX965	AVX967	AVX967	AVX967	AVX967	AVX969	AVX969	AVX971
N	AVX964	AVX964	AVX987	AVX965	AVX965	AVX967	AVX967	AVX969	AVX969	AVX969	AVX969	AVX971	AVX961	AVX972

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Integrated hydro	nic kit: 00												
0	AVX965	AVX967	AVX967	AVX969	AVX969	AVX969	AVX971	AVX978	AVX978	AVX983	AVX984	AVX984	AVX984
A,L	AVX969	AVX971	AVX971	AVX971	AVX961	AVX972	AVX972	AVX979	AVX979	AVX980	AVX980	AVX986	AVX981
E,U	AVX961	AVX961	AVX972	AVX972	AVX976	AVX973	AVX974	AVX980	AVX982	AVX982	AVX985	-	-
N N	ΔVX972	ΔVΧ973	ΔVΧ974	Δ\/Χ975	Δ\/Χ977	Δ\/Χ977	Δ\/Χ977	Δ\/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	_	_	_	

Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
°,A,E,L,N,U	RIF (1)													

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
°,A,L	RIF (1)												
E,U	RIF (1)	-	-										
N	RIF (1)	-	-	-	-	-							

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
0	GP3V	GP3V	GP3V	GP4V	GP4V	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP5V	GP6V
A	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
E,U	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V	GP8V	GP8V	GP9V
L	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
N	GP5V	GP5V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP8V	GP9V	GP10V	GP11V

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

	Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Ī	0	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP9V	GP9V	GP9V	GP10V	GP11V	GP11V	GP11V
	A,L	GP8V	GP9V	GP9V	GP9V	GP10V	GP11V	GP11V	GP4V+GP8V	GP4V+GP8V	GP5V+GP9V	GP5V+GP9V	GP5V+GP10V	GP6V+GP11V
	E,U	GP10V	GP10V	GP11V	GP11V	GP6V+GP6V	GP6V+GP7V	GP7V+GP7V	GP5V+GP9V	GP5V+GP10V	GP5V+GP10V	GP6V+GP11V	-	-
	N	GP11V	GP6V+GP7V	GP7V+GP7V	GP7V+GP8V	GP8V+GP8V	GP8V+GP8V	GP8V+GP8V	GP6V+GP11V	-	-	-	-	-

A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002
°,A,L	KRS22	KRS22	KRS23							
E.N.U	KRS23									

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	3202	3402	3602	3902	4202	4502	4802	5202	5602	6002
0	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24
A,L	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24
E,U	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS23+KRS23
N	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23

A grey background indicates the accessory must be assembled in the factory

Ver	6402	6503	6703	6903	7203	8403	9603
0	KRS24						
A,L	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
E,U	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-
N	KRS23+KRS23	KRS23+KRS24	-	-	-	-	-

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

CONFIGURATOR

Fiel	d	Description
1,2,	3	NSG
4,5,	6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602, 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403, 9603
8		Operating field
	Χ	Electronic thermostatic expansion valve (1)
	Z	Low temperature electronic thermostatic valve (2)
9		Model
	0	Cooling only
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (3)
	T	With total recovery (4)
11		Version
	0	Standard
	Α	High efficiency
	Ε	Silenced high efficiency
	L	Standard silenced
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils
	0	Aluminium microchannel
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	V	Copper pieps-Coated aluminium fins
13		Fans
	J	Inverter
	М	Oversized
14		Power supply
	0	400V∼3 50Hz with fuses
	2	230V~3 50Hz with fuses (5)
	4	230V~3 50Hz with magnet circuit breakers (5)
	5	500V~3 50Hz with fuses (6)
	8	400V~3 50Hz with magnet circuit breakers
	9	500V~3 50Hz with magnet circuit breakers (6)

Field	Description
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with n° 1 pump
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (7)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (7)
	Kit with 2 pumps
TF	Double pump F (8)
TG	Double pump G (8)
TH	Double pump H (8)
TI	Double pump I (8)
TJ	Double pump J (8)

- (1) Water produced from 0 °C ÷ 15 °C
 (2) Water produced from 0 °C ÷ 5 °C
 (3) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
 (4) The temperature of the water in the heat exchanger inlet must never drop below 35°C. The units from 1402° 1602° 1802° with total recovery are not configurable with the integrated hydronic kit. For all other sizes and versions it is to be evaluated at the order stage.
 (5) Only for sizes from 1402 to 2202
 (6) Only for sizes from 1402 to 3202
 (7) For all configurations including pump J please contact the factory.
 (8) The unit from 5603 to 9603 can only have hydronic kit "TF TG TH- TI TJ"

PERFORMANCE SPECIFICATIONS

NSG - °

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	228,6	261,3	297,8	334,1	358,6	389,8	402,8	443,7	462,6	506,3	531,6	566,5	623,6	676,0
Input power	kW	74,3	85,8	100,4	108,3	119,9	129,9	138,2	151,6	162,6	167,0	175,7	193,9	214,9	228,2
Cooling total input current	А	138,0	156,0	174,0	192,0	214,0	233,0	248,0	271,0	289,0	297,0	309,0	332,0	359,0	390,0
EER	W/W	3,08	3,05	2,97	3,08	2,99	3,00	2,91	2,93	2,85	3,03	3,02	2,92	2,90	2,96
Water flow rate system side	l/h	39316	44954	51218	57461	61665	67027	69255	76286	79541	87045	91392	97398	107202	116226
Pressure drop system side	kPa	14	18	16	21	24	20	22	18	19	17	19	21	24	29
(1) Data EN 14511:2022: Heat exchanger water (servi	ices side) 12°	C / 7°C: outs	ide air 35°C												

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	739,5	792,4	835,2	874,9	897,0	942,5	989,1	1060,2	1095,1	1215,2	1268,8	1333,1	1410,0
Input power	kW	251,7	263,0	281,6	288,8	302,5	320,8	329,9	355,3	375,5	407,7	419,3	461,7	512,0
Cooling total input current	A	434,0	454,0	482,0	500,0	524,0	558,0	581,0	609,0	649,0	701,0	728,0	805,0	900,0
EER	W/W	2,94	3,01	2,97	3,03	2,97	2,94	3,00	2,98	2,92	2,98	3,03	2,89	2,75
Water flow rate system side	l/h	127152	136250	143578	150403	154212	162036	170045	182263	188254	208871	218093	229141	242359
Pressure drop system side	kPa	33	38	28	31	33	38	42	29	31	20	22	25	28

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSG - L

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	227,7	261,7	298,7	335,0	373,6	386,8	415,2	446,3	476,8	498,0	546,8	602,0	645,3	707,0
Input power	kW	72,7	84,0	98,1	112,6	120,1	128,4	138,3	144,3	155,8	165,4	179,1	193,2	212,5	231,2
Cooling total input current	А	131,0	148,0	165,0	192,0	208,0	224,0	242,0	252,0	270,0	284,0	303,0	318,0	342,0	375,0
EER	W/W	3,13	3,12	3,04	2,97	3,11	3,01	3,00	3,09	3,06	3,01	3,05	3,12	3,04	3,06
Water flow rate system side	l/h	39167	45014	51371	57614	64237	66506	71390	76738	81966	85616	94000	103492	110929	121547
Pressure drop system side	kPa	15	18	17	15	19	20	16	19	16	17	19	15	18	22
(1) Data EN 14511:2022; Heat exchanger water (service	s side) 12°C	:/7°C; outsi	de air 35°C												
Size		4202	4502	4802	5202	2 560	2 60	02 6	402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C(1)															

SIZE		4202	4502	4802	5202	5602	6002	6402	6503	6/03	6903	/203	8403	9603
Cooling performance 12 °C/7 °C(1)														
Cooling capacity	kW	743,5	806,3	841,6	893,3	933,8	982,7	1023,0	1083,7	1120,2	1222,9	1269,4	1383,5	1517,2 (2)
Input power	kW	252,4	266,7	283,5	297,7	306,0	315,5	334,5	357,8	379,1	402,0	421,5	465,5	504,7
Cooling total input current	А	416,0	437,0	465,0	490,0	507,0	533,0	563,0	583,0	623,0	670,0	699,0	763,0	848,0
EER	W/W	2,95	3,02	2,97	3,00	3,05	3,12	3,06	3,03	2,96	3,04	3,01	2,97	3,01
Water flow rate system side	l/h	127821	138615	144692	153568	160522	168943	175872	186277	192550	210223	218211	237808	260789
Pressure drop system side	kPa	24	31	33	24	26	31	33	22	24	31	33	26	32

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSG - A

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C / 7 °C (1)															
Cooling capacity	kW	233,0	267,3	306,8	346,4	383,4	397,6	429,0	458,6	491,7	511,7	561,1	619,9	669,1	731,1
Input power	kW	73,5	83,8	96,7	109,8	118,4	126,0	134,9	142,3	152,7	160,7	171,9	187,9	206,4	224,9
Cooling total input current	A	139,0	155,0	170,0	195,0	214,0	229,0	246,0	260,0	276,0	287,0	303,0	322,0	344,0	380,0
EER	W/W	3,17	3,19	3,17	3,15	3,24	3,16	3,18	3,22	3,22	3,18	3,26	3,30	3,24	3,25
Water flow rate system side	l/h	40072	45975	52777	59582	65922	68370	73757	78851	84535	87974	96463	106561	115027	125681
Pressure drop system side	kPa	15	19	18	16	20	22	17	20	16	18	20	16	19	24

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	770,4	833,7	872,2	923,2	961,9	1011,0	1053,8	1121,6	1160,9	1263,4	1313,4	1432,8	1580,6 (2)
Input power	kW	243,7	258,6	273,6	291,5	301,9	312,6	330,2	347,1	365,9	390,3	408,0	451,1	495,6
Cooling total input current	A	417,0	440,0	466,0	502,0	524,0	554,0	583,0	588,0	625,0	676,0	701,0	769,0	866,0
EER	W/W	3,16	3,22	3,19	3,17	3,19	3,23	3,19	3,23	3,17	3,24	3,22	3,18	3,19
Water flow rate system side	l/h	132447	143336	149960	158709	165357	173799	181161	192795	199561	217184	225782	246285	271702
Pressure drop system side	kPa	26	33	36	26	28	33	35	24	26	33	36	27	35

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C (2) Unit not Eurovent certified because it exceeds 1500 kW

NSG - E

	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
kW	243,5	281,0	317,4	359,0	387,6	413,2	428,5	471,9	494,2	514,3	550,0	608,1	654,7	714,4
kW	73,6	86,3	96,5	111,1	122,0	126,7	133,3	144,0	153,3	160,2	172,1	188,9	204,8	222,5
А	133,0	152,0	163,0	189,0	211,0	222,0	237,0	251,0	267,0	279,0	293,0	310,0	334,0	368,0
W/W	3,31	3,26	3,29	3,23	3,18	3,26	3,21	3,28	3,22	3,21	3,20	3,22	3,20	3,21
l/h	41877	48309	54578	61723	66638	71045	73675	81134	84968	88414	94560	104538	112548	122817
kPa	12	11	14	9	11	12	13	15	16	18	19	16	18	23
	kW A W/W I/h	kW 243,5 kW 73,6 A 133,0 W/W 3,31 I/h 41877	kW 243,5 281,0 kW 73,6 86,3 A 133,0 152,0 W/W 3,31 3,26 I/h 41877 48309	kW 243,5 281,0 317,4 kW 73,6 86,3 96,5 A 133,0 152,0 163,0 W/W 3,31 3,26 3,29 I/h 41877 48309 54578	kW 243,5 281,0 317,4 359,0 kW 73,6 86,3 96,5 111,1 A 133,0 152,0 163,0 189,0 W/W 3,31 3,26 3,29 3,23 I/h 41877 48309 54578 61723	kW 243,5 281,0 317,4 359,0 387,6 kW 73,6 86,3 96,5 111,1 122,0 A 133,0 152,0 163,0 189,0 211,0 W/W 3,31 3,26 3,29 3,23 3,18 I/h 41877 48309 54578 61723 66638	kW 243,5 281,0 317,4 359,0 387,6 413,2 kW 73,6 86,3 96,5 111,1 122,0 126,7 A 133,0 152,0 163,0 189,0 211,0 222,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 I/h 41877 48309 54578 61723 66638 71045	kW 243,5 281,0 317,4 359,0 387,6 413,2 428,5 kW 73,6 86,3 96,5 111,1 122,0 126,7 133,3 A 133,0 152,0 163,0 189,0 211,0 222,0 237,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 3,21 I/h 41877 48309 54578 61723 66638 71045 73675	kW 243,5 281,0 317,4 359,0 387,6 413,2 428,5 471,9 kW 73,6 86,3 96,5 111,1 122,0 126,7 133,3 144,0 A 133,0 152,0 163,0 189,0 211,0 222,0 237,0 251,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 3,21 3,28 I/h 41877 48309 54578 61723 66638 71045 73675 81134	kW 243,5 281,0 317,4 359,0 387,6 413,2 428,5 471,9 494,2 kW 73,6 86,3 96,5 111,1 122,0 126,7 133,3 144,0 153,3 A 133,0 152,0 163,0 189,0 211,0 222,0 237,0 251,0 267,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 3,21 3,28 3,22 1/h 41877 48309 54578 61723 66638 71045 73675 81134 84968	kW 243,5 281,0 317,4 359,0 387,6 413,2 428,5 471,9 494,2 514,3 kW 73,6 86,3 96,5 111,1 122,0 126,7 133,3 144,0 153,3 160,2 A 133,0 152,0 163,0 189,0 211,0 222,0 237,0 251,0 267,0 279,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 3,21 3,28 3,22 3,21 1/h 41877 48309 54578 61723 66638 71045 73675 81134 84968 88414	kW 243,5 281,0 317,4 359,0 387,6 413,2 428,5 471,9 494,2 514,3 550,0 kW 73,6 86,3 96,5 111,1 122,0 126,7 133,3 144,0 153,3 160,2 172,1 A 133,0 152,0 163,0 189,0 211,0 222,0 237,0 251,0 267,0 279,0 293,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 3,21 3,28 3,22 3,21 3,20 I/h 41877 48309 54578 61723 66638 71045 73675 81134 84968 88414 94560	kW 243,5 281,0 317,4 359,0 387,6 413,2 428,5 471,9 494,2 514,3 550,0 608,1 kW 73,6 86,3 96,5 111,1 122,0 126,7 133,3 144,0 153,3 160,2 172,1 188,9 A 133,0 152,0 163,0 189,0 211,0 222,0 237,0 251,0 267,0 279,0 293,0 310,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 3,21 3,28 3,22 3,21 3,20 3,22 I/h 41877 48309 54578 61723 66638 71045 73675 81134 84968 88414 94560 104538	kW 243,5 281,0 317,4 359,0 387,6 413,2 428,5 471,9 494,2 514,3 550,0 608,1 654,7 kW 73,6 86,3 96,5 111,1 122,0 126,7 133,3 144,0 153,3 160,2 172,1 188,9 204,8 A 133,0 152,0 163,0 189,0 211,0 222,0 237,0 251,0 267,0 279,0 293,0 310,0 334,0 W/W 3,31 3,26 3,29 3,23 3,18 3,26 3,21 3,28 3,22 3,21 3,20 3,22 3,20 I/h 41877 48309 54578 61723 66638 71045 73675 81134 84968 88414 9450 104538 112548

(1) Data EN 14511:2022; Heat exchanger water (services side) 12°C	/ 7°C: outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)														
Cooling capacity	kW	764,3	813,2	877,0	900,7	944,8	1000,3	1028,9	1101,9	1151,7	1242,8	1300,9	-	-
Input power	kW	236,0	255,6	273,4	283,8	292,9	310,2	318,7	343,0	357,9	392,1	407,8	-	-
Cooling total input current	А	399,0	428,0	450,0	475,0	495,0	519,0	544,0	572,0	599,0	656,0	673,0	-	-
EER	W/W	3,24	3,18	3,21	3,17	3,23	3,22	3,23	3,21	3,22	3,17	3,19	-	-
Water flow rate system side	l/h	131397	139814	150755	154839	162399	171941	176857	189402	197982	213642	223617	-	-
Pressure drop system side	kPa	26	32	24	25	16	16	19	23	26	32	24	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSG - U

N3G-0															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C/7 °C (1)															
Cooling capacity	kW	249,3	288,6	324,9	369,0	399,5	423,8	440,0	483,4	507,1	526,0	564,2	623,1	674,9	735,2
Input power	kW	74,1	85,8	96,9	110,1	120,0	126,0	132,1	143,6	152,2	157,5	167,5	185,9	201,2	218,7
Cooling total input current	Α	141,0	158,0	172,0	196,0	217,0	231,0	246,0	263,0	277,0	287,0	298,0	319,0	342,0	377,0
EER	W/W	3,36	3,36	3,35	3,35	3,33	3,36	3,33	3,37	3,33	3,34	3,37	3,35	3,35	3,36
Water flow rate system side	l/h	42866	49623	55869	63446	68694	72874	75659	83113	87181	90438	96990	107116	116011	126384
Pressure drop system side	kPa	13	11	14	10	11	13	14	16	17	18	20	17	20	24

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C (1)														
Cooling capacity	kW	784,5	837,2	901,8	927,6	971,1	1026,7	1054,7	1133,1	1182,5	1280,2	1339,0	-	-
Input power	kW	232,3	250,1	268,3	277,9	288,3	306,2	315,5	337,3	352,2	383,1	399,1	-	-
Cooling total input current	A	411,0	437,0	461,0	486,0	509,0	536,0	564,0	586,0	617,0	668,0	689,0	-	-
EER	W/W	3,38	3,35	3,36	3,34	3,37	3,35	3,34	3,36	3,36	3,34	3,36	-	-
Water flow rate system side	l/h	134866	143931	155027	159459	166915	176480	181297	194780	203262	220062	230162	-	-
Pressure drop system side	kPa	28	34	25	27	17	17	20	24	28	34	25	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

NSG - N

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Cooling performance 12 °C/7 °C (1)															
Cooling capacity	kW	245,2	283,6	318,2	364,5	394,3	417,2	432,9	475,2	498,1	517,4	552,6	613,0	669,6	727,4
Input power	kW	73,4	84,4	95,3	107,6	118,7	124,5	130,7	141,2	149,3	156,7	165,7	182,9	200,4	216,0
Cooling total input current	A	132,0	149,0	162,0	185,0	207,0	219,0	234,0	249,0	264,0	274,0	287,0	306,0	324,0	359,0
EER	W/W	3,34	3,36	3,34	3,39	3,32	3,35	3,31	3,37	3,34	3,30	3,34	3,35	3,34	3,37
Water flow rate system side	l/h	42156	48766	54716	62663	67797	71743	74443	81707	85643	88946	95006	105378	115107	125049
Pressure drop system side	kPa	13	11	15	9	11	13	14	15	17	18	20	16	20	24

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Cooling performance 12 °C/7 °C(1)														
Cooling capacity	kW	766,9	834,2	880,8	925,4	961,2	1003,2	1036,3	1120,4	-	-	-	-	-
Input power	kW	230,1	248,2	261,5	275,0	286,5	296,1	311,6	333,3	-	-	-	-	-
Cooling total input current	Α	395,0	413,0	435,0	458,0	480,0	509,0	537,0	557,0	-	-	-	-	-
EER	W/W	3,33	3,36	3,37	3,36	3,35	3,39	3,33	3,36	-	-	-	-	-
Water flow rate system side	l/h	131846	143411	151421	159089	165211	172435	178132	192584	-	-	-	-	-
Pressure drop system side	kPa	27	23	29	29	17	17	20	24	-	-	-	-	-

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: M																
SEER - 12/7 (EN14825: 2018) (1)																
SEER	°,A,E,L,N,U	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEPR - (EN 14825: 2018) (3)																
		W/W	5,32	5,40	5,30	5,46	5,46	5,50	5,52	5,51	5,51	5,51	5,54	5,53	5,51	5,52
	Α	W/W	5,53	5,59	5,47	5,51	5,59	5,56	5,55	5,56	5,57	5,51	5,53	5,59	5,57	5,58
SEPR	E	W/W	5,69	5,72	5,77	5,64	5,58	5,71	5,65	5,72	5,67	5,65	5,67	5,64	5,66	5,68
SERN	L	W/W	5,46	5,56	5,43	5,53	5,54	5,52	5,52	5,52	5,55	5,55	5,75	5,61	5,52	5,52
	N	W/W	5,75	5,77	5,89	5,69	5,58	5,66	5,62	5,68	5,61	5,59	5,63	5,64	5,64	5,65
	U	W/W	5,73	5,78	5,81	5,70	5,65	5,76	5,71	5,77	5,72	5,70	5,72	5,70	5,72	5,74

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: M															
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,A,E,L,N,U	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
SEPR - (EN 14825: 2018) (3)															
	0	W/W	5,53	5,52	5,52	5,52	5,52	5,51	5,52	5,53	5,52	5,52	5,55	5,52	5,52
	A	W/W	5,51	5,56	5,55	5,52	5,55	5,56	5,52	5,65	5,59	5,69	5,66	5,60	5,65
CEDD	E	W/W	5,69	5,64	5,69	5,56	5,56	5,56	5,69	5,81	5,86	5,67	5,72	-	-
SEPR	L	W/W	5,53	5,51	5,52	5,51	5,54	5,54	5,54	5,63	5,59	5,66	5,65	5,62	5,66
	N	W/W	5,61	5,62	5,64	5,69	5,57	5,60	5,56	5,71	-	-	-	-	-
	U	W/W	5,76	5,71	5,75	5,64	5,63	5,63	5,74	5,86	5,89	5,73	5,77	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fans: J																
SEER - 12/7 (EN14825: 2018) (1)																
	۰	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	Α	W/W	4,43	4,40	4,48	4,54	4,51	4,54	4,56	4,56	4,56	4,56	4,57	4,57	4,56	4,57
SEER	E	W/W	4,46	4,47	4,55	4,55	4,55	4,58	4,57	4,59	4,57	4,58	4,58	4,58	4,59	4,57
SECK	L	W/W	4,41	4,38	4,47	4,51	4,50	4,54	4,56	4,56	4,56	4,56	4,56	4,56	4,56	4,56
	N	W/W	4,51	4,48	4,57	4,55	4,56	4,60	4,60	4,61	4,60	4,60	4,61	4,61	4,60	4,60
	U	W/W	4,48	4,47	4,56	4,57	4,56	4,58	4,57	4,59	4,58	4,59	4,59	4,59	4,60	4,58
SEPR - (EN 14825: 2018) (3)																
	0	W/W	5,32	5,40	5,30	5,46	5,46	5,50	5,52	5,51	5,51	5,51	5,54	5,53	5,51	5,52
	Α	W/W	5,53	5,59	5,47	5,51	5,59	5,56	5,55	5,56	5,57	5,51	5,53	5,59	5,57	5,58
SEPR	E	W/W	5,69	5,72	5,77	5,64	5,58	5,71	5,65	5,72	5,67	5,65	5,67	5,64	5,66	5,68
SERN	L	W/W	5,46	5,56	5,43	5,53	5,54	5,52	5,52	5,52	5,55	5,55	5,75	5,61	5,52	5,52
	N	W/W	5,75	5,77	5,89	5,69	5,58	5,66	5,62	5,68	5,61	5,59	5,63	5,64	5,64	5,65
	U	W/W	5,73	5,78	5,81	5,70	5,65	5,76	5,71	5,77	5,72	5,70	5,72	5,70	5,72	5,74

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: J															
SEER - 12/7 (EN14825: 2018) (1)															
	0	W/W	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)	- (2)
	Α	W/W	4,57	4,57	4,56	4,56	4,56	4,57	4,56	4,57	4,57	4,58	4,57	4,57	4,58
SEER	E	W/W	4,58	4,56	4,59	4,57	4,59	4,57	4,58	4,60	4,61	4,58	4,60	-	-
SEER	L	W/W	4,56	4,56	4,55	4,56	4,56	4,56	4,55	4,57	4,56	4,57	4,57	4,56	4,57
	N	W/W	4,60	4,59	4,61	4,60	4,60	4,59	4,60	4,62	-	-	-	-	-
	U	W/W	4,59	4,57	4,59	4,57	4,59	4,58	4,59	4,61	4,61	4,58	4,60	-	-
SEPR - (EN 14825: 2018) (3)															
	0	W/W	5,53	5,52	5,52	5,52	5,52	5,51	5,52	5,53	5,52	5,52	5,55	5,52	5,52
	Α	W/W	5,51	5,56	5,55	5,52	5,55	5,56	5,52	5,65	5,59	5,69	5,66	5,60	5,65
SEPR	E	W/W	5,69	5,64	5,69	5,56	5,56	5,56	5,69	5,81	5,86	5,67	5,72	-	-
SELV	L	W/W	5,53	5,51	5,52	5,51	5,54	5,54	5,54	5,63	5,59	5,66	5,65	5,62	5,66
	N	W/W	5,61	5,62	5,64	5,69	5,57	5,60	5,56	5,71	-	-	-	-	-
	U	W/W	5,76	5,71	5,75	5,64	5,63	5,63	5,74	5,86	5,89	5,73	5,77	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Not covered by standard (EN14825: 2018 for comfort applications, 12°C/7°C)
(3) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Electric data																
	0	Α	223,7	241,3	264,3	300,3	327,4	346,4	365,4	386,4	407,4	431,3	446,3	470,3	494,3	543,1
Maximum current (FLA)	A,L	Α	232,6	250,2	273,2	300,3	336,3	355,3	374,3	404,1	425,1	440,1	455,1	488,0	512,0	560,9
Maximum current (FLA)	E,U	Α	232,6	250,2	282,1	309,2	336,3	364,1	383,1	413,0	434,0	449,0	464,0	496,9	520,9	569,8
	N	Α	241,5	259,1	290,9	318,0	345,1	373,0	392,0	421,9	442,9	457,9	472,9	505,8	538,7	593,4
	•	Α	252,0	287,1	329,4	376,3	395,0	442,0	459,0	486,0	493,7	597,6	636,2	665,2	661,2	791,0
Dook surrent (LDA)	A,L	Α	260,9	296,0	338,3	376,3	403,9	450,9	467,9	503,7	511,4	606,4	645,0	682,9	678,9	8,808
Peak current (LRA)	E,U	Α	260,9	296,0	347,2	385,2	403,9	459,7	476,7	512,6	520,3	615,3	653,9	691,8	687,8	817,7
	N	Α	269,8	304,9	356,0	394,0	412,7	468,6	485,6	521,5	529,2	624,2	662,8	700,7	705,6	841,3
Size			4202	4502	4802	5202	5602	2 600	02 6	402	6503	6703	6903	7203	8403	9603
Electric data																
LICCUICUALA																
Liectificulata	0	A	583,1	625,0	658,0	697,9	728,9	9 760	1,9 80	01,8	831,8	871,8	946,7	994,4	1087,4	1183,4
		A A	583,1 600,9	625,0 642,8	658,0 675,8	697,9 706,8	728,9 746,7		,		831,8 864,3	871,8 904,3	946,7 988,1	994,4 1021,1	1087,4 1122,9	1183,4 1236,7
Maximum current (FLA)								7 793	,4 82	25,4		- /-	,			
	A,L	A	600,9	642,8	675,8	706,8	746,7	7 793 8 811	,4 82	25,4 52,1	864,3	904,3	988,1	1021,1	1122,9	
	A,L E,U	A A	600,9 618,7	642,8 651,7	675,8 699,4	706,8 730,4	746,7 770,3	7 793 8 811 8 837	,4 82 ,2 85 7,8 86	25,4 52,1 59,8	864,3 882,1	904,3 930,9	988,1	1021,1	1122,9	
Maximum current (FLA)	A,L E,U N	A A A	600,9 618,7 633,4	642,8 651,7 684,2	675,8 699,4 726,1	706,8 730,4 765,9	746,7 770,3 805,8 1097,	7 793 8 811 8 837 9 120	,4 82 ,2 85 7,8 86 9,9 12	25,4 52,1 59,8 49,8	864,3 882,1 908,7 993,9	904,3 930,9 -	988,1 996,9 -	1021,1	1122,9	1236,7
	A,L E,U N	A A A	600,9 618,7 633,4 821,3	642,8 651,7 684,2 894,2	675,8 699,4 726,1 914,2	706,8 730,4 765,9 1078,1	746,7 770,3 805,8 1097,	7 793 8 811 8 837 9 120 7 124	,4 8,4 8,7 ,2 85 8,6 8,9 12 2,4 12	25,4 52,1 59,8 49,8 73,4	864,3 882,1 908,7 993,9	904,3 930,9 - 1024,2	988,1 996,9 - 1117,1	1021,1 1038,8 - 1151,8	1122,9 - - 1346,4	1236,7 - - 1520,4

GENERAL TECHNICAL DATA

			•													
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Compressor																
Туре	°,A,E,L,N,U	type							Sci	rew						
Number	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	°,A,E,L,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,A,E,L,N,U	type							R12	34ze						

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

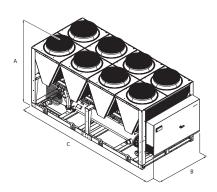
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
	0	kg	24,0	24,0	23,0	30,0	30,0	35,0	35,0	35,0	35,0	40,0	46,0	42,5	44,5	51,0
	A	kg	26,5	34,0	28,0	30,5	34,0	35,0	38,5	40,5	45,0	43,0	47,0	52,0	55,0	74,0
Refrigerant load	E	kg	29,0	30,0	41,0	34,0	40,0	43,0	43,0	46,0	45,0	45,0	57,0	54,0	74,0	60,0
circuit 1 (1)	L	kg	24,0	26,0	37,0	28,0	34,0	35,0	38,5	40,0	42,0	44,0	47,0	52,0	54,0	56,0
	N	kg	36,0	38,0	34,0	44,0	49,0	53,0	56,0	60,0	64,0	64,0	55,0	72,0	81,0	85,0
	U	kg	32,0	34,0	34,0	35,0	46,0	49,0	49,0	46,0	45,0	60,0	54,5	58,0	58,0	75,0
	0	kg	24,0	25,0	25,0	41,0	33,0	38,0	37,0	37,5	35,0	50,0	48,0	46,0	46,0	59,0
	A	kg	28,0	34,0	29,5	36,0	34,0	49,0	40,5	45,0	47,5	48,0	50,0	55,0	60,0	81,0
Refrigerant load	E	kg	29,0	31,5	41,0	40,0	40,0	45,0	45,0	52,0	53,0	53,0	59,0	59,0	74,0	77,0
circuit 2 (1)	L	kg	27,0	28,0	37,0	36,0	34,0	40,0	40,5	43,0	46,0	52,0	50,0	55,0	58,0	72,0
	N	kg	36,0	38,0	34,0	49,0	49,0	56,0	56,0	64,0	64,0	69,0	57,0	77,0	81,0	92,0
	U	kg	32,0	34,0	36,0	41,5	46,0	53,0	54,0	52,0	48,5	65,0	59,0	62,0	63,0	90,0
Refrigerant load circuit 3 (1)	°,A,E,L,N,U	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
System side heat e	xchanger															
Туре	°,A,E,L,N,U	type							Braz	ed plate						
Number	°,A,E,L,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
(1) The load indicate	ed in the table is a	n estimated	and prelimin	ary value. The	final value o	of the refrige	rant load is ir	ndicated on t	he unit's	technical lal	bel. For furthe	er informatio	n contact the	office.		
Size			4202	4502	4802	5202	5602	6002	2	6402	6503	6703	6903	7203	8403	9603
Compressor																
Туре	°,A,E,L,N,U	type								Screw						
	°,A,L	no.	2	2	2	2	2	2		2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2		2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2		2	3	-	-	-	-	-

JILC			7202	7302	7002	3202	3002	0002	0402	0505	0,03	0,03	7203	0103	7003
Compressor															
Туре	°,A,E,L,N,U	type							Screw						
	°,A,L	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
	°,A,L	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
Refrigerant	°,A,E,L,N,U	type							R1234ze						
	0	kg	52,0	55,0	55,0	63,0	65,0	62,0	70,0	67,0	55,0	78,0	62,0	99,0	112,0
D. C	A,L	kg	62,0	67,0	67,0	70,0	106,0	82,0	82,0	74,0	81,0	85,0	70,0	106,0	80,0
Refrigerant load	E	kg	70,0	89,0	80,0	100,0	113,0	86,0	95,0	77,0	89,0	89,0	100,0	-	-
circuit 1 (1)	N	kg	92,0	99,0	110,0	114,0	128,0	128,0	138,0	85,0	-	-	-	-	-
	U	kg	70,0	89,0	80,0	85,0	113,0	86,0	95,0	77,0	89,0	89,0	100,0	-	-
	0	kg	59,0	64,0	64,0	70,0	71,0	73,0	80,0	74,0	61,0	85,0	70,0	99,0	112,0
	A	kg	70,0	78,0	78,0	82,0	106,0	99,0	99,0	81,0	81,0	92,0	75,0	106,0	95,0
Refrigerant load	E	kg	85,0	96,0	90,0	110,0	113,0	98,0	97,0	85,0	89,0	96,0	100,0	-	-
circuit 2 (1)	L	kg	70,0	79,0	78,0	82,0	106,0	99,0	99,0	81,0	81,0	92,0	75,0	106,0	95,0
	N	kg	92,0	107,0	110,0	124,0	128,0	138,0	138,0	92,0	-	-	-	-	-
	U	kg	85,0	96,0	90,0	103,0	113,0	98,0	97,0	85,0	89,0	96,0	100,0	-	-
	0	kg	-	-	-	-	-	-	-	74,0	65,0	85,0	80,0	99,0	112,0
Refrigerant load	A,L	kg	-	-	-	-	-	-	-	81,0	81,0	92,0	75,0	106,0	85,0
circuit 3 (1)	E,U	kg	-	-	-	-	-	-	-	85,0	89,0	96,0	100,0	-	-
	N	kg	-	-	-	-	-	-	-	92,0	-	-	-	-	-
System side heat e	xchanger														
Туре	°,A,E,L,N,U	type							Brazed plate						
	0	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Number	A,L	no.	1	1	1	1	1	1	1	2	2	2	2	2	2
Number	E,U	no.	1	1	1	1	2	2	2	2	2	2	2	-	-

The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

FANS DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Fan																
Туре	°,A,E,L,N,U	type	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial
	0	no.	6	6	6	8	8	8	8	8	8	10	10	10	10	12
Number	A,L	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
Size			4202	4502	4802	5202	5602	600	2 6	402	6503	6703	6903	7203	8403	9603
Fan																
Fan Type	°,A,E,L,N,U	type	Axial	Axial	Axial	Axial	Axial	Axia	al A	xial	Axial	Axial	Axial	Axial	Axial	Axial
	°,A,E,L,N,U	type no.	Axial 12	Axial 14	Axial 14	Axial 16	Axial 16	Axia 16		xial 18	Axial 18	Axial 18	Axial 20	Axial 22	Axial 22	Axial 22
Туре																
	0	no.	12	14	14	16	16	16		18	18	18	20	22	22	22


_					
	VA	rς	17	ρ	п

Oversized			1/03	1602	1003	2002	2202	2252	2502	2/52	2002	2002	2202	2402	2/02	200
Size Fans: M			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	390
Increased fan																
increased fair	°,A,U	type							Async	hronous						
Fan motor	E,L,N	type						Asv	nchronou:		se cut					
Without Static pressure	2/2/11	1) 1						,		7 11 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	0	m³/h	108000	108000	108000	144000	144000	144000	144000	144000	0 144000	180000	180000	180000	180000	2160
	A	m³/h	144000	144000	144000	144000	180000	180000	180000	216000	216000	216000			252000	2880
A: 0	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	161000	161000			184000	2070
Air flow rate	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000	138000	138000	161000	161000	1840
	N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	184000	184000	184000	207000	230000	2530
	U	m³/h	144000	144000	180000	180000	180000	216000	216000	252000	0 252000	252000	252000	288000	288000	3240
	0	dB(A)	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	99,0	99,0	100,0	100,0	101
	A	dB(A)	98,0	98,0	99,0	99,0	99,0	99,0	99,0	100,0	100,0	100,0	100,0	100,0	100,0	101,
Country would be a	E	dB(A)	89,0	89,0	90,0	90,0	90,0	91,0	91,0	92,0	92,0	92,0	92,0	93,0	93,0	93,
Sound power level	L	dB(A)	89,0	89,0	89,0	89,0	90,0	91,0	91,0	91,0	91,0	91,0	91,0	91,0	91,0	92,
	N	dB(A)	90,0	90,0	91,0	91,0	91,0	91,0	91,0	92,0	92,0	92,0	92,0	93,0	93,0	93,
	U	dB(A)	98,0	98,0	99,0	99,0	99,0	100,0	100,0	100,0	100,0	100,0	100,0	101,0	101,0	101
Size			4202	4502	4802	5202	5602	2 60	02 6	402	6503	6703	6903	7203	8403	960
Fans: M									-					, _ , _ ,	0.00	,,,,,
Increased fan																
	°,A,U	type							Asyn	hronous						
Fan motor	E,L,N	type						As	ynchronou		ase cut					
Without Static pressure	-1-1	-7/							,							
	0	m³/h	216000	252000	252000	288000	28800	00 288	000 32	4000	324000	324000	360000	396000	396000	39600
	A	m³/h	288000	324000	324000	324000						432000	504000	504000	540000	6120
	E	m³/h	230000	230000	253000							345000	345000	368000	-	-
Air flow rate		m³/h	184000	207000	207000							276000	322000	322000	345000	4420
	N	m³/h	253000	299000	322000	345000					391000	-	-	-	-	-
	U	m³/h	360000	360000	396000							540000	540000	576000	-	-
	0	dB(A)	101,0	101,0	101,0	102,0				02,0	102,0	102,0	103,0	103,0	103,0	103,
	A	dB(A)	101,0	101,0	102,0	101,0				02,0	103,0	103,0	103,0	103,0	104,0	104,
	E	dB(A)	94,0	94,0	94,0	94,0	94,0			94,0	94,0	94,0	94,0	95,0	-	-
Sound power level	<u>-</u>	dB(A)	93,0	93,0	93,0	93,0	94,0		,	94,0	94,0	94,0	94,0	94,0	94,0	95,0
	N N	dB(A)	93,0	94,0	94,0	95,0	95,0		,	95,0	95,0	-	-	-	-	-
	U	dB(A)	102,0	102,0	102,0	102,0				03,0	103,0	103,0	103,0	103,0	-	-
		,				,	,		,			,	,			
Inverter																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	390
Fans: J																
Inverter fan																
Fan motor	°,A,E,L,N,U	type							lnv	erter						
		m³/h	96000	96000	96000	128000	128000	128000	128000	144000	144000	180000	180000	180000	180000	2160
	A	m³/h	128000	128000	128000	128000	160000	160000	160000	192000	192000	192000	192000	224000	224000	2560
Air flow rate	E	m³/h	92000	92000	115000	115000	115000	138000	138000	161000	161000	161000	161000	184000	184000	2070
All HOW TALC	L	m³/h	92000	92000	92000	92000	115000	115000	115000	138000	138000	138000	138000	161000	161000	1840
	N	m³/h	115000	115000	138000	138000	138000	161000	161000	184000	0 184000	184000	184000	207000	230000	2530
	U	m³/h	128000	128000	160000	160000	160000	192000	192000	224000	0 224000	224000	224000	256000	256000	2880
Sound data calculated in cooling																
		dB(A)	97,0	97,0	97,0	98,0	98,0	98,0	98,0	98,0	98,0	99,0	100,0	100,0	100,0	101
	A	dB(A)	97,0	97,0	98,0	98,0	98,0	98,0	98,0	99,0	99,0	99,0	99,0	99,0	99,0	100
Cound nower level	E	dB(A)	89,0	89,0	90,0	90,0	90,0	91,0	91,0	92,0	92,0	92,0	92,0	93,0	93,0	93,
Sound power level	L	dB(A)	89,0	89,0	89,0	89,0	90,0	91,0	91,0	91,0	91,0	91,0	91,0	91,0	91,0	92,0
	N	dB(A)	90,0	90,0	91,0	91,0	91,0	91,0	91,0	92,0	92,0	92,0	92,0	93,0	93,0	93,0
	U	dB(A)	97,0	97,0	98,0	98,0	98,0	99,0	99,0	99,0	99,0	99,0	99,0	100,0	100,0	100,

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Fans: J															
Inverter fan															
Fan motor	°,A,E,L,N,U	type							Inverter						
	0	m³/h	216000	252000	252000	288000	288000	288000	324000	324000	324000	360000	396000	396000	396000
	A	m³/h	256000	288000	288000	324000	360000	396000	396000	384000	384000	448000	448000	480000	612000
Air flann nata	E	m³/h	230000	230000	253000	253000	276000	299000	322000	322000	345000	345000	368000	-	-
Air flow rate	L	m³/h	184000	207000	207000	234000	260000	286000	286000	276000	276000	322000	322000	345000	442000
	N	m³/h	253000	299000	322000	345000	368000	368000	368000	391000	-	-	-	-	-
	U	m³/h	320000	320000	352000	352000	384000	416000	448000	448000	480000	480000	512000	-	-
Sound data calculated in cooling mode (1)														
	0	dB(A)	101,0	101,0	101,0	102,0	102,0	102,0	102,0	102,0	102,0	103,0	103,0	103,0	103,0
	A	dB(A)	100,0	100,0	101,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	103,0	104,0
Cound nouse lovel	E	dB(A)	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	95,0	-	-
Sound power level	L	dB(A)	93,0	93,0	93,0	93,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	94,0	95,0
	N	dB(A)	93,0	94,0	94,0	95,0	95,0	95,0	95,0	95,0	-	-	-	-	-
	U	dB(A)	101,0	101,0	101,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	102,0	-	-

⁽¹⁾ Sound power: calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure measured in free field (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights																
A	°,A,E,L,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	°,A,E,L,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	0	mm	3970	3970	3970	5160	5160	5160	5160	5160	5160	6350	6350	6350	6350	7540
(A,L	mm	5160	5160	5160	5160	6350	6350	6350	7540	7540	7540	7540	8730	8730	9920
	E,U	mm	5160	5160	6350	6350	6350	7540	7540	8730	8730	8730	8730	9920	9920	11110
	N	mm	6350	6350	7540	7540	7540	8730	8730	9920	9920	9920	9920	11110	12300	13490
Size			4202	4502	4802	5202	5602	600)2	6402	6503	6703	6903	7203	8403	9603
Dimensions and weights																
	°,A,L	mm	2450	2450	2450	2450	2450	245	50	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	245	50	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	245	50	2450	2450	-	-	-	-	-
	°,A,L	mm	2200	2200	2200	2200	2200	220	00	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	220	00	2200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	220	00	2200	2200	-	-	-	-	-
	0	mm	7540	8730	8730	9920	9920	992	20 1	1110	11110	11110	12300	13490	13490	13490
(A,L	mm	9920	11110	11110	11110	12300	134	90 1	3490	15080	15080	17460	17460	18650	21030
C	E,U	mm	12300	12300	13490	13490	15080	162	70 1	7460	17460	18650	18650	19840	-	-
	N	mm	13490	16270	17460	18650	19840	198	40 1	9840	21030	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately. For more information, please refer to the technical manual and / or installation.

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00																
Single module unit																
	0	kg	4108	4153	4275	5137	5468	5476	5485	5680	5690	6659	7153	7163	7188	7854
	Α	kg	4637	4684	4806	5137	5882	5890	6085	6696	6782	7261	7806	8486	8501	9029
	E	kg	4768	4800	5220	5814	6145	6755	6763	7198	7213	7707	7806	8940	8950	9719
Empty weight -	L	kg	4637	4684	4806	5137	5882	5890	6085	6696	6782	7261	8223	8486	8501	9029
	N	kg	5179	5214	5822	6415	6746	7163	7177	7649	7659	8161	8223	9630	10062	10682
	U	kg	4768	4800	5220	5814	6145	6755	6763	7198	7213	7707	8672	8940	8950	9719

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
	0	kg	4186	4225	4393	5256	5586	5614	5622	5953	5962	6982	7475	7485	7501	8166
-	Α	kg	4714	4757	4925	5275	6019	6028	6357	6968	7105	7583	8098	9016	9030	9547
w. i. c	E	kg	4887	4937	5358	6137	6467	7077	7086	7510	7525	8019	8098	9470	9480	10237
Weight functioning	L	kg	4714	4757	4925	5275	6019	6028	6357	6968	7105	7583	8515	9016	9030	9547
-	N	kg	5298	5352	5959	6738	7069	7486	7500	7961	7971	8474	8515	10160	10592	11199
	U	kg	4887	4937	5358	6137	6467	7077	7086	7510	7525	8019	8964	9470	9480	10237
Size			4202	4502	4802	5202	5602	600	02 6	402	6503	6703	6903	7203	8403	9603
Integrated hydronic kit: 00																
Single module unit																
	0	kg	7947	8389	8704	9252	9347	940)5 10	0170	11843	11931	12488	13081	13400	13552
	A,L	kg	9090	9829	9892	10315	10836	114	41 1	1519	-	-	-	-	-	-
Empty weight	E,U	kg	10203	10282	11194	11284	-	-		-	-	-	-	-	-	-
-	N	kg	10748	-	-	-	-	-		-	-	-	-	-	-	-
	0	kg	8239	8681	9234	9781	9877	992	22 10	0687	12797	12885	13398	13990	14309	14462
Walinka Kimatianina	A,L	kg	9608	10334	10397	11247	11767	123	58 12	2437	-	-	-	-	-	-
Weight functioning	E,U	kg	10720	10787	12125	12215	-	-		-	-	-	-	-	-	-
-	N	kg	11265	-	-	-	-	-		-	-	-	-	-	-	-
Bimodule unit																
	0	kg	-	-	-	-	-	-		-	-	-	-	-	-	-
Francisco de la constante de l	A,L	kg	-	-	-	-	-	-		-	9029	9090	9829	9892	10836	11519
Empty weight module 1	E,U	kg	-	-	-	-	6276	627	76 6	741	9719	10203	10282	11194	-	-
	N	kg	-	6084	6517	6517	7126	712	26 7	190	10880	-	-	-	-	-
	0	kg	-	-	-	-	-	-		-	-	-	-	-	-	-
Empty weight module 2	A,L	kg	-	-	-	-	-	-		-	5068	5068	5512	5512	5675	6265
Empty weight module 2	E,U	kg	-	-	-	-	6207	667	71 6	671	5482	5482	5512	5512	-	-
	N	kg	-	6448	6448	7056	7056	712	20 7	120	6014	-	-	-	-	-
	0	kg	-	-	-	-	-	-		-	-	-	-	-	-	-
Total empty weight -	A,L	kg	-	-	-	-	-	-		-	14098	14159	15342	15405	16511	17784
iotai empty weight	E,U	kg	-	-	-	-	12483	129	48 13	3412	15202	15685	15795	16706	-	-
	N	kg	-	12531	12965	13573	14182	142	46 14	1310	16894	-	-	-	-	-
_	0	kg	-	-	-	-	-	-		-	-	-	-	-	-	-
Weight functioning module 1	A,L	kg	-	-	-	-	-	-		-	9547	9608	10334	10397	11767	12437
weight functioning module i	E,U	kg	-	-	-	-	6589	658	39 7	053	10237	10720	10787	12125	-	-
	N	kg	-	6342	6776	6776	7438	743	38 7	502	11398	-	-	-	-	-
_	0	kg	-	-	-	-	-	-		-	-	-	-	-	-	-
Weight functioning module 2	A,L	kg	-	-	-	-	-	-		-	5327	5327	5771	5771	5987	6577
recignic functioning module 2	E,U	kg	-	-	-	-	6519	698	34 6	984	5741	5741	5771	5771	-	-
	N	kg	-	6706	6706	7369	7369	743	33 7	433	6273	-	-	-	-	-
	0	kg	-	-	-	-	-	-		-	-	-	-	-	-	-
Total weight functioning -	A,L	kg	-	-	-	-	-	-		-	14874	14935	16105	16168	17755	19014
iotai weigiit iulictiolillig	E,U	kg	-	-	-	-	13108	135	72 14	4037	15978	16461	16558	17896	-	-
	N	kg	-	13049	13482	14144	14807	148	71 14	1935	17670	-	-	-	-	-

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

TBA 1300-4325

Air-water chiller

Cooling capacity 328 ÷ 1404 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- Evaporator with low refrigerant charge
- Available also R513A (XP10) refrigerant gas

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

 $\label{two-stage} Two-stage \ oil-free \ centrifugal \ compressor \ with \ magnetic \ levitation \ and \ inverter.$

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- Continuous load modulation by varying rpm (from 30% to 100%)
- Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

XLATB: This kit allows to extend the working range of the unit from $\,0\,^{\circ}$ C to -10 $\,^{\circ}$ C ambient temperature, thanks to an additional electric heater and a special insulating material for the heat exchanger.

GP_T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

Model	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
AER485P1	•	•	•		•	•		•	•	
AER485P1 x n° 2 (1)				•			•			•
AERBACP	•	•	•	•	•	•	•	•	•	•
AERNET	•	•	•	•		•	•	•	•	•
MULTICHILLER_EVO	•	•	•	•	•	•	•	•	•	•
PGD1		•			•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Antivibration

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
A,E,N,U	AVX (1)									

(1) Contact us.

Kit low temperature

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
A,E	XLATB1	XLATB3	XLATB5	XLATB6	XLATB7	XLATB6	XLATB7	XLATB7	XLATB8	XLATB8
N,U	XLATB2	XLATB5	XLATB5	XLATB5	XLATB7	XLATB6	XLATB6	XLATB7	XLATB8	XLATB8

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
A,E	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP10T	GP11T
N II	GP3T	GP4T	GP6T	GP7T	GPRT	GPQT	GP10T	GP11T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

CO	NFI	GURATOR
Fiel	d	Description
1,2,	,3	TBA
4,5,	,6,7	Size 1300, 1350, 2300, 2325, 2350, 3300, 3320, 3340, 3350, 4325
8		Model
	0	Cooling only
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	E	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
11		Coils
	0	Aluminium microchannel
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,	15	Integrated hydronic kit
	00	Without hydronic kit
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (1)
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
_		. /1 1

Field	d	Description
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
_	DH	Pump H + stand-by pump
_	DI	Pump I + stand-by pump
_	DJ	Pump J + stand-by pump (1)
_	IA	Pump A equipped with inverter device to work at fixed speed
	IB	Pump B equipped with inverter device to work at fixed speed
_	IC	Pump C equipped with inverter device to work at fixed speedr
	ID	Pump D equipped with inverter device to work at fixed speed
	IE	Pump E equipped with inverter device to work at fixed speed
	IF	Pump F equipped with inverter device to work at fixed speed
	IG	Pump G equipped with inverter device to work at fixed speed
	IH	Pump H equipped with inverter device to work at fixed speed
_	Ш	Pump I equipped with inverter device to work at fixed speed
	IJ	Pump J equipped with inverter device to work at fixed speed (1)
	JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
	JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
	JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
	JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
	JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
	JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
	JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
	JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
	JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed
	JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (1)
	KF	Doble pump F with inverter device to work at fixed speed
	KG	Doble pump G with inverter device to work at fixed speed
	KH	Doble pump H with inverter device to work at fixed speed
	KI	Doble pump I with inverter device to work at fixed speed
	KJ	Doble pump J with inverter device to work at fixed speed (1)
	TF	Double pump F
	TG	Double pump G
	TH	Double pump H
	TI	Double pump I
	TJ	Double pump J (1)
16		Refrigerant gas
	0	R134a
_	G	R513A (XP10)

⁽¹⁾ For all configurations including pump ${\bf J}$ please contact the factory

PERFORMANCE SPECIFICATIONS

TBA - (A)

I DA - (A)											
Size		1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	330,7	437,3	633,9	741,5	871,9	974,8	1087,0	1155,9	1256,9	1404,1
Input power	kW	95,3	125,9	183,0	214,9	254,8	279,5	314,9	334,9	369,1	413,3
Cooling total input current	A	150,7	200,9	286,2	346,4	416,6	446,9	502,1	547,3	592,3	667,6
EER	W/W	3,47	3,47	3,46	3,45	3,42	3,49	3,45	3,45	3,41	3,40
Water flow rate system side	l/h	56903	75228	109011	127504	149890	167604	186876	198728	216075	241381
Pressure drop system side	kPa	60	55	48	42	30	52	45	54	36	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBA - (E)

Size		1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	330,7	437,3	633,9	741,5	871,9	974,8	1087,0	1155,9	1256,9	1404,1
Input power	kW	95,3	125,9	183,0	214,9	254,8	279,5	314,9	334,9	369,1	413,3
Cooling total input current	А	150,7	200,9	286,2	346,4	416,6	446,9	502,1	547,3	592,3	667,6
EER	W/W	3,47	3,47	3,46	3,45	3,42	3,49	3,45	3,45	3,41	3,40
Water flow rate system side	l/h	56903	75228	109011	127504	149890	167604	186876	198728	216075	241381
Pressure drop system side	kPa	60	55	48	42	30	52	45	54	36	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBA - (U)

Size		1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	328,1	443,8	633,5	758,5	876,4	985,0	1088,0	1154,9	1256,9	1342,4
Input power	kW	92,3	124,4	178,8	213,2	245,5	275,4	306,8	326,3	358,1	386,6
Cooling total input current	A	145,7	200,9	281,4	341,6	401,9	437,1	487,3	522,6	582,6	627,6
EER	W/W	3,56	3,57	3,54	3,56	3,57	3,58	3,55	3,54	3,51	3,47
Water flow rate system side	l/h	56452	76308	108940	130424	150669	169356	187070	198556	216075	230760
Pressure drop system side	kPa	51	25	49	50	30	53	56	53	36	38

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBA - (N)

Size		1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	328,1	443,8	633,5	758,5	876,4	985,0	1088,0	1154,9	1256,9	1342,4
Input power	kW	92,3	124,4	178,8	213,2	245,5	275,4	306,8	326,3	358,1	386,6
Cooling total input current	A	145,7	200,9	281,4	341,6	401,9	437,1	487,3	522,6	582,6	627,6
EER	W/W	3,56	3,57	3,54	3,56	3,57	3,58	3,55	3,54	3,51	3,47
Water flow rate system side	I/h	56452	76308	108940	130424	150669	169356	187070	198556	216075	230760
Pressure drop system side	kPa	51	25	49	50	30	53	56	53	36	38

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
SEER - (EN14825:2018) 12/7 with inverte	r fans (1)											
CLLD	A,E	W/W	5,15	5,23	5,48	5,25	5,54	5,54	5,51	5,49	5,57	5,35
SEER	N,U	W/W	5,35	5,41	5,60	5,48	5,76	5,80	5,62	5,71	5,73	5,62
Casanal officians	A,E	%	203,1%	206,0%	216,0%	206,8%	218,4%	218,4%	217,5%	216,5%	219,8%	211,0%
Seasonal efficiency	N,U	%	211,0%	213,5%	221,0%	216,1%	227,3%	229,1%	221,9%	225,4%	226,3%	221,6%
SEPR - (EN14825: 2018) High temperatur	e with inverte	r fans (2)										
CEDD	A,E	W/W	6,31	6,65	6,11	6,32	6,41	6,13	6,26	6,33	6,28	6,12
SEPR	N,U	W/W	6,47	6,61	6,52	6,80	6,49	6,62	6,57	6,50	6,47	6,40

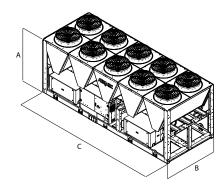
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Electric data												
Maximum aument (FLA)	A,E	A	165,0	249,0	319,0	404,0	488,0	483,0	568,0	727,0	727,0	797,0
Maximum current (FLA)	N,U	А	165,0	249,0	329,0	413,0	498,0	493,0	577,0	737,0	737,0	797,0
Deal, sussessed (LDA)	A,E	A	36,0	45,0	200,0	210,0	305,0	374,0	470,0	565,0	565,0	720,0
Peak current (LRA)	N,U	А	36,0	45,0	210,0	305,0	315,0	384,0	479,0	575,0	575,0	720,0

GENERAL TECHNICAL DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Compressor												
Туре	A,E,N,U	type					Centi	rifugal				
Compressor regulation	A,E,N,U	Туре					Inve	erter				
Number	A,E,N,U	no.	1	1	2	2	2	3	3	3	3	4
Circuits	A,E,N,U	no.	1	1	1	2	1	1	2	1	1	2
Refrigerant	A,E,N,U	type					R1	34a				
D. C	A,E	kg	81,0	166,0	152,0	243,0	285,0	264,0	306,0	317,0	387,0	398,0
Refrigerant charge (1)	N,U	kg	81,0	166,0	163,0	254,0	296,0	275,0	317,0	328,0	398,0	398,0
System side heat exchanger												
Туре	A,E,N,U	type					Shell a	nd tube				
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	A,E,N,U	Туре					Groove	d joints				
Cinca (in Local)	A,E	Ø	3"	4"	6"	6"	6"	6"	6"	6"	8"	8"
Sizes (in/out)	N,U	Ø	6"	6"	6"	6"	6"	6"	6"	6"	8"	8"
Fan												
Туре	A,E,N,U	type					ax	ials				
Fan motor	A,E,N,U	type					Inve	erter				
N. I	A,E	no.	6	8	10	12	14	16	18	20	20	22
Number	N,U	no.	6	8	12	14	16	18	20	22	22	22
A:- 0	A,E	m³/h	112920	150560	188200	225840	263480	301120	338760	376400	376400	414040
Air flow rate	N,U	m³/h	112920	150560	225840	263480	301120	338760	376400	414040	414040	414040


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

SOUND DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Sound data calculated in cooling mode (1)											
	A	dB(A)	88,3	89,9	90,8	92,5	93,0	92,8	93,9	95,3	95,3	95,3
Cound nowar loval	E	dB(A)	82,3	83,9	84,8	86,5	87,0	86,8	87,9	89,3	89,3	89,3
Sound power level	N	dB(A)	82,3	84,0	85,3	86,8	87,1	87,1	88,1	89,5	89,5	89,3
	U	dB(A)	88,3	90,0	91,3	92,8	93,1	93,1	94,1	95,5	95,5	95,3
	Α	dB(A)	56,1	57,5	58,3	59,9	60,2	59,9	60,9	62,2	62,2	62,1
Cound account level (10 m)	E	dB(A)	50,1	51,5	52,3	53,9	54,2	53,9	54,9	56,2	56,2	56,1
Sound pressure level (10 m)	N	dB(A)	50,1	51,6	52,7	54,0	54,2	54,1	55,0	56,3	56,3	56,1
	U	dB(A)	56,1	57,6	58,7	60,0	60,2	60,1	61,0	62,3	62,3	62,1

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Dimensions and weights												
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A,E	mm	3570	4760	5950	7140	8330	9520	10710	11900	11900	13090
	N,U	mm	3570	4760	7140	8330	9520	10710	11900	13090	13090	13090
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350	4325
Integrated hydronic kit: 00												
Weights												
	А	kg	2770	3480	4500	5550	6390	6760	7950	8240	8600	9700
F	E	kg	2850	3590	4630	5720	6580	6980	8190	8510	8870	10000
Empty weight	N	kg	2880	3810	5120	5950	7060	7430	8200	8950	9320	10000
	U	kg	2800	3700	4950	5760	6840	7180	7920	8650	9010	9700
	A	kg	2840	3560	4630	5730	6650	6960	8210	8500	8940	9990
Mainha fi matianin a	E	kg	2920	3670	4760	5900	6840	7180	8450	8770	9210	10290
Weight functioning	N	kg	2960	3940	5250	6100	7320	7630	8410	9210	9660	10290
	U	kg	2880	3830	5080	5910	7100	7380	8130	8910	9350	9990

TBG 1230-4310

Air-water chiller

Cooling capacity 200 ÷ 1165 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- Evaporator with low refrigerant charge
- Night mode

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency
E Silenced high efficiency
N Silenced very high efficiency
U Very high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

 $\label{two-stage} Two\text{-stage oil-free centrifugal compressor with magnetic levitation and inverter.}$

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- Continuous load modulation by varying rpm (from 30% to 100%)

— Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430;

with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 \mathbf{x} \mathbf{n}° **3:** RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 4: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected

is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

XLATB: This kit allows to extend the working range of the unit from $\,0\,$ °C to -10 °C ambient temperature, thanks to an additional electric heater and a special insulating material for the heat exchanger.

GP_T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

H . J . I		1220	1310	2220	2270	2210	2270	2200	2210	4270	4210
Model	Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
AER485P1	A,E,N,U	•	•								
AER485P1 x n° 2 (1)	A,E,N,U			•	•	•					
AER485P1 x n° 3 (1)	A,E,N,U						•	•	•	•	
AER485P1 x n° 4 (1)	A,E,N,U										•
AERBACP	A,E,N,U	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E,N,U	•	•	•	•	•	•	•	•	•	•
PGD1	A,E,N,U	•	•	•	•	•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Antivibration

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A,E,N,U	AVX (1)									

(1) Contact us.

XLATB: Kit for low temperature

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A,E,N,U	XLATB1	XLATB3	XLATB4	XLATB5	XLATB5	XLATB6	XLATB6	XLATB6	XLATB7	XLATB7

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A,E	GP2T	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T
N,U	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	d	Description
1,2,	,3	TBG
4,5,	.6,7	Size 1230, 1310, 2230, 2270, 2310, 3270, 3280, 3310, 4270, 4310
8		Model
	0	Cooling only
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	Ε	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
11		Coils
	0	Aluminium microchannel
	0	Coated aluminium microchannel
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,	15	Integrated hydronic kit
	00	Without hydronic kit
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (1)
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump

Field	Description
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (1)
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed
IG	Pump G equipped with inverter device to work at fixed speed
IH	Pump H equipped with inverter device to work at fixed speed
II	Pump I equipped with inverter device to work at fixed speed
IJ	Pump J equipped with inverter device to work at fixed speed (1)
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed
JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (1)
KF	Doble pump F with inverter device to work at fixed speed
KG	Doble pump G with inverter device to work at fixed speed
KH	Doble pump H with inverter device to work at fixed speed
KI	Doble pump I with inverter device to work at fixed speed
KJ	Doble pump J with inverter device to work at fixed speed (1)
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (1)

⁽¹⁾ For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

TBG - (A)

	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
kW	199,9	296,6	417,6	502,3	600,1	687,0	791,4	900,3	1033,3	1165,3
kW	57,7	86,1	121,5	146,6	174,8	199,1	231,3	262,2	305,7	345,1
А	95,5	140,7	200,9	241,2	291,4	326,6	386,9	437,1	502,3	577,6
W/W	3,46	3,45	3,44	3,43	3,43	3,45	3,42	3,43	3,38	3,38
l/h	34397	51028	71817	86370	103190	118120	136075	154785	177653	200332
kPa	28	43	29	32	37	36	38	40	41	46
	kW A W/W I/h	kW 199,9 kW 57,7 A 95,5 W/W 3,46 1/h 34397	kW 199,9 296,6 kW 57,7 86,1 A 95,5 140,7 W/W 3,46 3,45 1/h 34397 51028	kW 199,9 296,6 417,6 kW 57,7 86,1 121,5 A 95,5 140,7 200,9 W/W 3,46 3,45 3,44 1/h 34397 51028 71817	kW 199,9 296,6 417,6 502,3 kW 57,7 86,1 121,5 146,6 A 95,5 140,7 200,9 241,2 W/W 3,46 3,45 3,44 3,43 1/h 34397 51028 71817 86370	kW 199,9 296,6 417,6 502,3 600,1 kW 57,7 86,1 121,5 146,6 174,8 A 95,5 140,7 200,9 241,2 291,4 W/W 3,46 3,45 3,44 3,43 3,43 1/h 34397 51028 71817 86370 103190	kW 199,9 296,6 417,6 502,3 600,1 687,0 kW 57,7 86,1 121,5 146,6 174,8 199,1 A 95,5 140,7 200,9 241,2 291,4 326,6 W/W 3,46 3,45 3,44 3,43 3,43 3,45 1/h 34397 51028 71817 86370 103190 118120	kW 199,9 296,6 417,6 502,3 600,1 687,0 791,4 kW 57,7 86,1 121,5 146,6 174,8 199,1 231,3 A 95,5 140,7 200,9 241,2 291,4 326,6 386,9 W/W 3,46 3,45 3,44 3,43 3,43 3,45 3,42 I/h 34397 51028 71817 86370 103190 118120 136075	kW 199,9 296,6 417,6 502,3 600,1 687,0 791,4 900,3 kW 57,7 86,1 121,5 146,6 174,8 199,1 231,3 262,2 A 95,5 140,7 200,9 241,2 291,4 326,6 386,9 437,1 W/W 3,46 3,45 3,44 3,43 3,43 3,45 3,42 3,43 1/h 34397 51028 71817 86370 103190 118120 136075 154785	kW 199,9 296,6 417,6 502,3 600,1 687,0 791,4 900,3 1033,3 kW 57,7 86,1 121,5 146,6 174,8 199,1 231,3 262,2 305,7 A 95,5 140,7 200,9 241,2 291,4 326,6 386,9 437,1 502,3 W/W 3,46 3,45 3,44 3,43 3,43 3,45 3,42 3,43 3,38 I/h 34397 51028 71817 86370 103190 118120 136075 154785 177653

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBG - (E)

Size		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	199,9	296,6	417,6	502,3	600,1	687,0	791,4	900,3	1033,3	1165,3
Input power	kW	57,7	86,1	121,5	146,6	174,8	199,1	231,3	262,2	305,7	345,1
Cooling total input current	А	95,5	140,7	200,9	241,2	291,4	326,6	386,9	437,1	502,3	577,6
EER	W/W	3,46	3,45	3,44	3,43	3,43	3,45	3,42	3,43	3,38	3,38
Water flow rate system side	l/h	34397	51028	71817	86370	103190	118120	136075	154785	177653	200332
Pressure drop system side	kPa	28	43	29	32	37	36	38	40	41	46

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBG - (U)

Size		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	230,7	324,2	439,6	511,1	604,5	709,0	807,9	906,9	1011,3	1112,5
Input power	kW	65,3	91,2	124,4	143,9	170,1	201,3	230,6	257,3	290,2	323,2
Cooling total input current	А	105,7	150,9	206,2	236,4	276,6	331,9	392,1	427,3	477,6	537,6
EER	W/W	3,53	3,55	3,53	3,55	3,55	3,52	3,50	3,52	3,49	3,44
Water flow rate system side	l/h	39688	55753	75597	87882	103946	121900	138909	155919	173873	191260
Pressure drop system side	kPa	37	32	32	33	38	39	39	41	39	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

TBG - (N)

Size		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Cooling performance 12 °C/7 °C(1)											
Cooling capacity	kW	230,7	324,2	439,6	511,1	604,5	709,0	807,9	906,9	1011,3	1112,5
Input power	kW	65,3	91,2	124,4	143,9	170,1	201,3	230,6	257,3	290,2	323,2
Cooling total input current	A	105,7	150,9	206,2	236,4	276,6	331,9	392,1	427,3	477,6	537,6
EER	W/W	3,53	3,55	3,53	3,55	3,55	3,52	3,50	3,52	3,49	3,44
Water flow rate system side	l/h	39688	55753	75597	87882	103946	121900	138909	155919	173873	191260
Pressure drop system side	kPa	37	32	32	33	38	39	39	41	39	42

⁽¹⁾ Data EN 14511:2022; Heat exchanger water (services side) 12°C / 7°C; outside air 35°C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
SEER - (EN14825:2018) 12/7 with inverte	r fans (1)											
CEED	A,E	W/W	5,44	5,52	5,76	5,44	5,85	5,70	5,77	5,78	5,61	5,60
SEER	N,U	W/W	5,63	6,03	5,97	5,71	6,04	5,80	5,89	5,93	5,81	5,71
Seasonal efficiency —	A,E	%	214,6%	217,6%	227,5%	214,6%	231,1%	225,1%	227,6%	228,3%	221,5%	220,8%
Seasonal efficiency	N,U	%	222,3%	238,0%	235,9%	225,2%	238,7%	229,0%	232,5%	234,0%	229,2%	225,5%
SEPR - (EN14825: 2018) High temperatur	e with inverte	r fans (2)										
SEPR —	A,E	W/W	6,34	5,98	5,99	6,54	6,35	6,60	6,05	6,07	5,98	5,97
	N,U	W/W	6,47	6,21	6,18	6,78	6,56	6,73	6,20	6,23	6,17	6,09

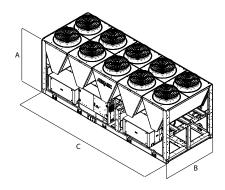
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Electric data												
Maximum current (FLA)	A,E	A	115,0	180,0	229,0	294,0	359,0	408,0	528,0	538,0	587,0	707,0
	N,U	А	125,0	189,0	239,0	304,0	368,0	418,0	538,0	547,0	597,0	707,0
Peak current (LRA) —	A,E	A	26,0	36,0	151,0	220,0	230,0	180,0	249,0	424,0	209,0	608,0
	N,U	А	36,0	45,0	161,0	230,0	239,0	190,0	259,0	433,0	219,0	608,0

GENERAL TECHNICAL DATA

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Compressor												
Туре	A,E,N,U	type					Centr	ifugal				
Compressor regulation	A,E,N,U	Туре					Inve	erter				
Number	A,E,N,U	no.	1	1	2	2	2	3	3	3	3	4
Circuits	A,E,N,U	no.	1	1	1	2	1	2	1	1	2	2
Refrigerant	A,E,N,U	type					R12	34ze				
Definement sharms (1)	A,E	kg	71,0	110,0	142,0	177,0	188,0	254,0	265,0	307,0	318,0	328,0
Refrigerant charge (1)	N,U	kg	82,0	121,0	153,0	188,0	198,0	265,0	276,0	286,0	328,0	328,0
System side heat exchanger												
Туре	A,E,N,U	type					Shell a	nd tube				
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	A,E,N,U	Туре					Groove	d joints				
Sizes (in/out)	A,E,N,U	Ø	3"	4"	5"	6"	6"	6"	6"	6"	6"	6"
Fan												
Туре	A,E,N,U	type					ax	ials				
Fan motor	A,E,N,U	type					Inve	erter				
Montheau	A,E	no.	4	6	8	10	12	14	16	18	20	22
Number	N,U	no.	6	8	10	12	14	16	18	20	22	22
A:- 0	A,E	m³/h	75280	112920	150560	188200	225840	263480	301120	338760	376400	414040
Air flow rate	N,U	m³/h	112920	150560	188200	225840	263480	301120	338760	376400	414040	414040


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

SOUND DATA

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Sound data calculated in cooling mode (1)											
	А	dB(A)	85,2	88,4	88,2	90,1	91,4	91,3	92,9	93,1	93,1	94,2
Sound power level – –	E	dB(A)	82,2	85,4	85,2	87,1	88,4	88,3	89,9	90,1	90,1	91,2
	N	dB(A)	83,3	85,9	85,8	87,5	88,7	88,6	90,1	90,3	90,3	91,2
	U	dB(A)	86,3	88,9	88,8	90,5	91,7	91,6	93,1	93,3	93,3	94,2
	Α	dB(A)	53,3	56,5	55,8	57,6	58,8	58,5	60,0	60,1	60,0	61,0
Sound pressure level (10 m) —	Е	dB(A)	50,3	53,5	52,8	54,6	55,8	55,5	57,0	57,1	57,0	58,0
	N	dB(A)	51,1	53,5	53,3	54,9	55,9	55,7	57,1	57,2	57,1	58,0
	U	dB(A)	54,1	56,5	56,3	57,9	58,9	58,7	60,1	60,2	60,1	61,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Dimensions and weights												
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A,E	mm	1190	1190	4760	5950	7140	8330	9520	10710	11900	13090
	N,U	mm	3570	4760	5950	7140	8330	9520	10710	11900	13090	13090
Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic kit: 00												
Weights												
	Α	kg	2470	2980	4020	4800	5250	6490	6950	7440	8900	9510
[E	kg	2520	3060	4130	4940	5410	6680	7170	7690	9170	9810
Empty weight	N	kg	2840	3590	4560	5420	5890	7150	7620	8130	9610	9800
	U	kg	2760	3480	4430	5250	5700	6930	7370	7850	9310	9500
	А	kg	2540	3050	4110	4930	5390	6670	7150	7650	9160	9780
Weight functioning – —	E	kg	2590	3130	4220	5070	5550	6860	7370	7900	9430	10080
	N	kg	2910	3670	4650	5550	6030	7330	7820	8340	9870	10070
	U	kg	2830	3560	4520	5380	5840	7110	7570	8060	9570	9770

AIR / WATER CHILLERS WITH FREE COOLING

When the cooling of the room is requested throughout the year, even during the winter season, such as in modern communication centers or in industrial applications, it is a waste to consume energy to produce cooling capacity. To meet these needs, Aermec offers a range of chillers capable of exploiting, free of charge, the external cold air to cool the liquid with a considerable energy saving.

Air flow rate Cool. Cap. Heat. Cap. Page **AIR / WATER CHILLERS WITH FREECOOLING** (m³/h) (kW) (kW) **Units with scroll compressors** NRG 0282-0754 F Air-water chiller with free-cooling 58-190 NRB 0800-3600 F Air-water chiller with free-cooling NRB 0800-3600 B Air-water chiller with free-cooling glycol free NRV 0550 F Air-water chiller with free-cooling Units with screw compressors NSM 1402-9603 F Air-water chiller with free-cooling 306-2028 Air-water chiller with free-cooling glycol free NSM 1402-9603 B 305,8-2028,1 -Air-water chiller with free-cooling NSM-HWT-1402-9603-F 306-2001 Air-water chiller with free-cooling glycol free NSM-HWT-1402-9603-B 306-1991 Air-water chiller with free-cooling and Inverter screw compressors NSMI 1251-6102 F 286-1280 TBA 1300-3350 F Air-water chiller with free-cooling 317,2-1223,6 -TBG 1230-4310 F Air-water chiller with free-cooling 238-1110 -

NRG 0282-0754 F

Air-water chiller with free-cooling

Cooling capacity 58 ÷ 190 kW

- · High efficiency also at partial loads
- · Reduced amount of refrigerant
- Compact dimensions

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with streamlined scroll compressors used with R32 gas.

Condensing coil with copper pipes and aluminium louvers, plate heat exchanger.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 48°C external air temperature. Unit can produce chilled water up to -10 °C.

For more information refer to the selection program and to to the dedicated documentation.

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Refrigerant HFC R32

The environmental impact of the units is reduced considerably owing to the last generation R32 (A2L) refrigerant.

Combining a reduced refrigerant load with a low global warming potential (GWP), these units boast low equivalent CO₂ values.

■ The leak detector is supplied as per standard.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

New condensing Coils

The whole range uses copper - aluminium condensation coils with reduced diameter rows, allowing a lower quantity of gas to be used compared to traditional coils.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy seasonal efficiency of the unit.

Option integrated hydronic kit

An optional, integrated hydronic kit containing the main hydraulic components, to obtain a solution that allows you to save money and to facilitate installation.

It is available in different configurations with storage tank or with fixed pumps also inverter.

CONTRO

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Floating HP control: the function can be activated with inverter fans or with DCPX which allows unit operation to be optimised at any operating point through continuous modulation of the fan speed. In addition, the use of inverter fans ensures an increase in energy efficiency at partial loads.

— **Night Mode:** it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

GP: Anti-intrusion grid. VT: Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
AFD40FD1	A					•	•	•	•	•	•	•
AER485P1	E	•	•	•	•	•	•	•	•	•	•	•
AFDDACD	A									•	•	
ERBACP	E	•	•	•	•	•	•	•	•	•	•	•
AERNET	A					•	•	•	•	•	•	•
	E	•	•	•	•	•	•	•	•	•	•	•
MULTICUILLED EVA	A					•	•	•	•	•	•	•
MULTICHILLER_EVO	E	•				•				•	•	
PGD1	A					•	•	•	•	•	•	•
	E			•			•	•			•	

Antivibration

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Integrated hydronic kit: 00, I3, I4, P3, P	4										
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22	VT22
E	VT17	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT22	VT22	VT22
Integrated hydronic kit: 03, 04, K3, K4											
A	-	-	-	-	VT11	VT11	VT11	VT11	VT22	VT22	VT22
E	VT13	VT13	VT13	VT13	VT11	VT11	VT11	VT11	VT22	VT22	VT22

Anti-intrusion grid

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A	-	-	-	-	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)			
E	GP4	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 2 (1)	GP2 x 3 (1)			

Device for peak current reduction

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A	-	-	-	-	DRENRG502FC	DRENRG552FC	DRENRG554	DRENRG604	DRENRG654	DRENRG704	DRENRG754
E	DRENRG282FC	DRENRG302FC	DRENRG332FC	DRENRG352FC	DRENRG502FC	DRENRG552FC	DRENRG554	DRENRG604	DRENRG654	DRENRG704	DRENRG754

The accessory cannot be fitted on the configurations indicated with

Power factor correction

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A	-	-	-	-	RIFNRG502FC	RIFNRG552FC	RIFNRG554	RIFNRG604	RIFNRG654	RIFNRG704	RIFNRG754
E	RIFNRG282FC	RIFNRG302FC	RIFNRG332FC	RIFNRG352FC	RIFNRG502FC	RIFNRG552FC	RIFNRG554	RIFNRG604	RIFNRG654	RIFNRG704	RIFNRG754

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
A,E	T6NRG2										

A grey background indicates the accessory must be assembled in the factory

⁽¹⁾ x_indicates the quantity to buy
The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRG
4,5,6,7	Size
4,3,0,7	0282, 0302, 0332, 0352, 0502, 0552, 0554, 0604, 0654, 0704, 0754
8	Operating field
X	Electronic thermostatic expansion valve
Z	Low temperature electronic thermostatic valve
9	Model
F	Free-cooling
S	Free-cooling with special 3-way valve
10	Heat recovery
	Without heat recovery
D	With desuperheater
11	Version
Α	High efficiency
E	Silenced high efficiency (1)
12	Coils / free-cooling coils
0	Copper-aluminium / Copper-aluminium
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper - Tinned copper
V	Copper-painted alumimium / Copper-painted alumimium
13	Fans
0	Standard
J	Inverter (2)
14	Power supply
۰	400V ~ 3N 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
	Kit with storage tank and pump/s
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
	Kit with pump/s
P3	Single pump high head
P4	Pump high head + stand-by pump
	Kit with inverter pump/s to fixed speed
13	Single high head pump + fixed speed inverter
14	Single high head pump with fixed speed inverter + stand-by pump
	Kit with storage tank and inverter pump/s to fixed speed
K3	Single high head pump + storage tank + fixed speed inverter
K4	Storage tank and low head pump with fixed speed inverter + stand-by pump
	

⁽¹⁾ The size 0282-0302-0332-0352 only available in low noise versions.

PERFORMANCE SPECIFICATIONS

NRG - A

Size		0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Cooling performance chiller operation (1)												
Cooling capacity	kW	-	-	-	-	100,8	111,4	116,9	134,7	148,5	168,3	190,0
Input power	kW	-	-	-	-	31,5	35,1	38,4	43,2	49,0	58,5	67,0
Cooling total input current	A	-	-	-	-	60,0	63,0	63,0	83,0	94,0	114,0	123,0
EER	W/W	-	-	-	-	3,20	3,18	3,05	3,12	3,03	2,88	2,84
Water flow rate system side	l/h	-	-	-	-	17316	19137	20081	23139	25509	28916	32647
Pressure drop system side	kPa	-	-	-	-	43	52	44	60	72	84	85
Cooling performances with free-cooling (2)												
Cooling capacity	kW	-	-	-	-	73,2	75,6	76,6	89,6	92,2	95,1	97,5
Input power	kW	-	-	-	-	3,7	3,7	3,8	5,6	5,6	5,6	5,6
Free cooling total input current	A	-	-	-	-	7,0	6,6	6,3	11,0	11,0	11,0	10,0
EER	W/W	-	-	-	-	19,94	20,59	20,14	16,15	16,62	17,14	17,56
Water flow rate system side	l/h	-	-	-	-	17316	19137	20081	23139	25509	28916	32647
Pressure drop system side	kPa	-	-	-	-	63	76	71	65	78	90	93

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

⁽²⁾ As standard in sizes fom 0282 to 0352

NRG - E

Size		0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Cooling performance chiller operation (1)												
Cooling capacity	kW	58,5	64,5	71,8	81,3	98,0	108,0	112,6	131,2	144,0	162,0	181,4
Input power	kW	18,7	22,1	24,7	30,4	32,0	36,0	39,7	44,1	50,1	60,7	70,5
Cooling total input current	A	33,0	44,0	50,0	62,0	58,0	62,0	63,0	80,0	91,0	113,0	123,0
EER	W/W	3,13	2,92	2,91	2,67	3,06	3,00	2,83	2,98	2,87	2,67	2,57
Water flow rate system side	l/h	10057	11082	12338	13965	16843	18547	19341	22540	24736	27830	31164
Pressure drop system side	kPa	20	24	29	28	40	49	41	57	68	78	77
Cooling performances with free-cooling (2)												
Cooling capacity	kW	39,2	44,0	48,8	51,0	73,2	75,6	76,6	89,6	92,2	95,1	97,5
Input power	kW	0,8	0,8	1,1	1,1	3,7	3,7	3,8	5,6	5,6	5,6	5,6
Free cooling total input current	A	1,5	1,7	2,2	2,2	6,6	6,3	6,1	10,0	10,0	10,0	9,7
EER	W/W	46,65	52,31	45,70	47,80	19,94	20,59	20,14	16,15	16,62	17,14	17,56
Water flow rate system side	l/h	10057	11082	12338	13965	16843	18547	19341	22540	24736	27830	31164
Pressure drop system side	kPa	35	31	40	41	59	71	66	61	74	84	85

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

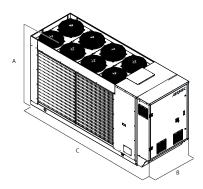
ENERGY DATA BY TYPE OF FAN

Size	0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754		
SEPR - (EN14825: 2018) High temperature	rd fans (1)												
SEPR	Α	W/W	-	-	-	-	6,43	6,30	7,50	7,56	7,17	6,57	6,34
SEPK	E	W/W	7,11	6,66	6,65	6,21	6,34	6,14	7,16	7,24	7,02	6,39	6,12

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Electric data													
Marrian arrant (FLA)	Α	Α	-	-	-	-	73,5	79,1	80,5	100,1	111,4	132,7	144,0
Maximum current (FLA)	E	А	42,3	50,7	58,0	68,7	73,5	79,1	80,5	100,1	111,4	132,7	144,0
Dook surrout (LDA)	А	А	-	-	-	-	276,8	282,5	200,8	224,2	226,7	287,7	353,0
Peak current (LRA)	E	A	162.7	174.8	173,3	223.7	276,8	282.5	200.8	224,2	226,7	287.7	353,0


[■] Data calculated without hydronic kit and accessories.

GENERAL TECHNICAL DATA

Size			0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Compressor													
Туре	A,E	type						Scroll					
Compressor regulation	A,E	Туре						0n/0ff					
Number	A,E	no.	2	2	2	2	2	2	4	4	4	4	4
Circuits	A,E	no.	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type						R32					
System side heat exchanger													
Туре	A,E	type						Brazed plate					
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections													
Sizes (in/out)	A,E	Ø						2"1/2					
Fan													
Туре	A,E	type						Axial					
Number	Α	no.	-	-	-	-	2	2	2	3	3	3	3
Nullibel	E	no.	6	6	8	8	2	2	2	3	3	3	3
Air flow rate	Α	m³/h	-	-	-	-	36079	36079	36079	54481	54481	54481	54481
All flow fate	E	m³/h	23294	22734	26915	26915	27483	27483	27483	41449	41449	41449	41449
Sound data calculated in cooling mode (1)												
Cound nowar laval	Α	dB(A)	-	-	-	-	85,1	85,6	84,2	86,4	86,4	86,4	86,4
Sound power level	E	dB(A)	73,0	73,9	74,3	74,5	81,3	82,1	76,1	77,5	77,5	77,5	77,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0282	0302	0332	0352	0502	0552	0554	0604	0654	0704	0754
Dimensions and weights													
Λ	А	mm	-	-	-	-	1907	1907	1907	1900	1900	1900	1900
A	E	mm	1658	1658	1658	1658	1907	1907	1907	1900	1900	1900	1900
D	A	mm	-	-	-	-	1100	1100	1100	1100	1100	1100	1100
Б	E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
(A	mm	-	-	-	-	3567	3567	3567	4467	4467	4467	4467
(E	mm	3317	3317	3317	3317	3567	3567	3567	4467	4467	4467	4467

NRB 0800-3600 F

Air-water chiller with free-cooling

Cooling capacity 211 ÷ 1010 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with scroll compressors, axial flow fans, micro-channel coil (source side), plate heat exchanger and thermostatic expansion valve (mechanical or electronic, depending on the model).

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency E Silenced high efficiency N Silenced very high efficiency U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Electronic expansion valve

The units from size 1805 to 3600 have an electronic expansion valve as standard.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

To obtain a solution that allows you to save money and to facilitate installation. These units can be configured with an integrated hydronic system

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

CONFIGURATOR

Fiel	d	Description
1,2	.3	NRB
4,5,		Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406, 2600, 2800 3000, 3200, 3400, 3600
8		Operating field
	0	Standard mechanic thermostatic valve (1)
	Χ	Electronic thermostatic expansion valve (2)
	Υ	Low temperature mechanic thermostatic valve
	Z	Low temperature electronic thermostatic valve
9		Model
	F	Free-cooling
	Р	Free-cooling plus (3)
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater (4)
11		Version
	Α	High efficiency
	Е	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils / free-cooling coils
	0	Alluminium microchannel / Copper - aluminium
	ı	Copper-aluminium / Copper-aluminium
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	٧	Copper-painted alumimium / Copper-painted alumimium
13		Fans
	0	Standard
	J	Inverter
14		Power supply
	0	400 V/3/50 Hz with magnet circuit breakers
15,	16	Integrated hydronic kit
		Without hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
_	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F

ACCESSO	KIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

Field	Description
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (5)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (5)
	Kit with storage tank and n° 1 pump
AA	Storage tank and pump A
AB	Storage tank and pump B
AC	Storage tank and pump C
AD	Storage tank and pump D
AE	Storage tank and pump E
AF	Storage tank and pump F
AG	Storage tank and pump G
AH	Storage tank and pump H
Al	Storage tank and pump l
AJ	Storage tank and pump J (5)
	Kit with storage tank and n° 1 pump + stand-by pump
BA	Storage tank with pump A + stand-by pump
BB	Storage tank with pump B + stand-by pump
BC	Storage tank with pump C + stand-by pump
BD	Storage tank with pump D + stand-by pump
BE	Storage tank with pump E + stand-by pump
BF	Storage tank with pump F + stand-by pump
BG	Storage tank with pump G + stand-by pump
ВН	Storage tank with pump H + stand-by pump
BI	Storage tank with pump I + stand-by pump
BJ	Storage tank with pump J + stand-by pump (5)

- (1) Water produced from 4 °C \div 18 °C

- (1) water produce in third C=" (2) Electronic thermostatic as standard from size 1805÷3600.
 (3) Free cooling Plus models "P" are compatible only with "o" and "0" coils.
 (4) The temperature of the water in the heat exchanger inlet must never drop below 35°C. (5) For all configurations including pump J please contact the factory.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
AER485P1	A,E,N,U	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•
AERBACP	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•							•	•	•	•	•	•	•			•
FB1	A,E,N,U	•																•
FL	A,E,N,U		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E,N,U	•							•				•	•	•	•	•	•
PGD1	A,E,N,U	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																	
A	AVX1066	AVX1066	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1074	AVX1074	AVX1052	AVX1054	AVX1055	AVX1055	AVX1050	AVX1050	AVX1050
E,U	AVX1070	AVX1070	AVX1070	AVX1072	AVX1072	AVX1072	AVX1074	AVX1052	AVX1052	AVX1054	AVX1054	AVX1050	AVX1050	AVX1058	AVX1061	AVX1061	AVX1061
N	AVX1072	AVX1072	AVX1072	AVX1074	AVX1074	AVX1074	AVX1052	AVX1054	AVX1054	AVX1057	AVX1057	AVX1058	AVX1058	AVX1061	AVX1063	AVX1063	AVX1063
Integrated hydronic kit: AA, AB, AC, AD	AE, AF, AG,	BA, BB, BO	, BD														
A	AVX1068	AVX1068	AVX1069	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1075	AVX1075	AVX1053	AVX1056	AVX1060	AVX1060	AVX1051	AVX1051	AVX1051
E,U	AVX1071	AVX1069	AVX1069	AVX1073	AVX1073	AVX1073	AVX1075	AVX1053	AVX1053	AVX1056	AVX1056	AVX1051	AVX1051	AVX1059	AVX1062	AVX1062	AVX1062
N	AVX1073	AVX1073	AVX1073	AVX1075	AVX1075	AVX1075	AVX1053	AVX1056	AVX1056	AVX1051	AVX1051	AVX1059	AVX1059	AVX1062	AVX1065	AVX1065	AVX1065
Integrated hydronic kit: AH, AI, BE, BF,	BG																
A	AVX1068	AVX1068	AVX1069	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1075	AVX1075	AVX1053	AVX1056	AVX1060	AVX1060	AVX1051	AVX1051	AVX1051
E,U	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1073	AVX1075	AVX1053	AVX1053	AVX1056	AVX1056	AVX1051	AVX1051	AVX1059	AVX1062	AVX1062	AVX1062
N	AVX1073	AVX1073	AVX1073	AVX1075	AVX1075	AVX1075	AVX1053	AVX1056	AVX1056	AVX1051	AVX1051	AVX1059	AVX1059	AVX1062	AVX1065	AVX1065	AVX1065
Integrated hydronic kit: BH, BI																	
A	AVX1069	AVX1069	AVX1069	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1075	AVX1075	AVX1053	AVX1056	AVX1060	AVX1060	AVX1051	AVX1051	AVX1051
E,U	AVX1069	AVX1069	AVX1069	AVX1073	AVX1073	AVX1073	AVX1075	AVX1053	AVX1053	AVX1056	AVX1056	AVX1051	AVX1051	AVX1059	AVX1062	AVX1062	AVX1062
N	AVX1073	AVX1073	AVX1073	AVX1075	AVX1075	AVX1075	AVX1053	AVX1078	AVX1056	AVX1051	AVX1051	AVX1059	AVX1059	AVX1062	AVX1065	AVX1065	AVX1065
Integrated hydronic kit: DA, DB, DC, DD	, PA, PB, PC	PD, PE, P	F, PG														
A	AVX1066	AVX1066	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1074	AVX1074	AVX1052	AVX1054	AVX1055	AVX1055	AVX1050	AVX1050	AVX1050
E,U	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1072	AVX1074	AVX1052	AVX1052	AVX1054	AVX1054	AVX1050	AVX1050	AVX1058	AVX1061	AVX1061	AVX1061
N	AVX1072	AVX1072	AVX1072	AVX1074	AVX1074	AVX1074	AVX1052	AVX1054	AVX1054	AVX1050	AVX1050	AVX1058	AVX1058	AVX1061	AVX1063	AVX1063	AVX1063
Integrated hydronic kit: DE, DF, DG, PH	, PI																
A	AVX1066	AVX1066	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1074	AVX1074	AVX1052	AVX1055	AVX1055	AVX1055	AVX1050	AVX1050	AVX1050
E,U	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1072	AVX1076	AVX1052	AVX1052	AVX1054	AVX1054	AVX1050	AVX1050	AVX1058	AVX1061	AVX1061	AVX1061
N	AVX1072	AVX1072	AVX1072	AVX1074	AVX1074	AVX1074	AVX1052	AVX1055	AVX1054	AVX1050	AVX1050	AVX1058	AVX1058	AVX1061	AVX1064	AVX1064	AVX1064
Integrated hydronic kit: DH, DI																	
A	AVX1067	AVX1067	AVX1068	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1079	AVX1076	AVX1052	AVX1055	AVX1055	AVX1055	AVX1050	AVX1050	AVX1050
E,U	AVX1068	AVX1068	AVX1068	AVX1072	AVX1072	AVX1072	AVX1076	AVX1052	AVX1052	AVX1055	AVX1055	AVX1050	AVX1050	AVX1058	AVX1061	AVX1061	AVX1061
N	AVX1072	AVX1072	AVX1072	AVX1076	AVX1076	AVX1076	AVX1052	AVX1077	AVX1055	AVX1050	AVX1050	AVX1058	AVX1058	AVX1061	AVX1064	AVX1064	AVX1064

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1805
A,E,N,U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)	DRENRB1600 (1)	DRENRB1805 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	2006	2206	2406	2600	2800	3000	3200	3400
A,E,N,U	DRENRB2006 (1)	DRENRB2206 (1)	DRENRB2406 (1)	-	-	-	-	-

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
A	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	RIFNRB1601	RIFNRB1805	RIFNRB2006
E,U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016

A grey background indicates the accessory must be assembled in the factory $\,$

Ver	2206	2406	2600	2800	3000	3200	3400	3600
A	RIFNRB2206	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600
E,N,U	RIFNRB2216	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600

A grey background indicates the accessory must be assembled in the factory

Double safety valves

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406
A	T6NRB13	T6NRB13	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB15	T6NRB16
E,U	T6NRB14	T6NRB14	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB15	T6NRB17	T6NRB16	T6NRB19	T6NRB19
N	T6NRB14	T6NRB14	T6NRB14	T6NRB14	T6NRB15	T6NRB15	T6NRB18	T6NRB19	T6NRB19	T6NRB20	T6NRB20

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
A	GP2VN	GP2VN	GP3VNF	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4G	GP5G	GP5G	GP6V	GP7V	GP7V	GP7V	GP8V	GP8V	GP8V
E,U	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP10V	GP10V	GP10V
N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN	GP10V	GP11V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

Units 0800A and 0900A with the optional "storage tank" are 3970 mm long and must have the GP2VNA grids installed.

PERFORMANCE SPECIFICATIONS

NRB - A

NKB - A																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: F																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	211,8	234,3	273,4	307,1	335,9	373,3	432,0	474,2	542,2	584,4	655,6	720,2	759,5	803,3	878,1	922,4	962,2
Input power	kW	76,0	88,0	93,9	108,9	124,8	145,6	157,1	185,1	201,0	229,4	243,7	259,3	280,1	307,8	321,2	348,2	374,6
Cooling total input current	Α	134,0	152,0	165,0	189,0	215,0	248,0	270,0	316,0	347,0	394,0	423,0	450,0	483,0	529,0	557,0	602,0	646,0
EER	W/W	2,79	2,66	2,91	2,82	2,69	2,56	2,75	2,56	2,70	2,55	2,69	2,78	2,71	2,61	2,73	2,65	2,57
Water flow rate system side	l/h	36397	40249	46968	52762	57713	64138	74217	81471	93153	100403	112635	123735	130494	138018	150865	158481	165325
Pressure drop system side	kPa	49	50	68	76	91	99	64	68	88	96	122	71	78	82	99	108	118
Cooling performances with free-cooling (2)																		
Cooling capacity	kW	139,8	142,0	203,2	208,4	211,6	214,7	280,5	284,4	350,8	354,8	421,5	486,7	491,2	644,2	562,5	566,7	570,0
Input power	kW	7,5	7,5	11,2	11,2	11,2	11,2	15,0	15,0	18,7	18,7	22,5	26,2	26,2	26,2	30,0	30,0	30,0
Free cooling total input current	Α	13,0	13,0	20,0	20,0	19,0	19,0	26,0	26,0	32,0	32,0	39,0	46,0	45,0	45,0	52,0	52,0	52,0
EER	W/W	18,64	18,94	18,07	18,53	18,81	19,09	18,71	18,97	18,72	18,93	18,74	18,55	18,72	18,88	18,76	18,90	19,01
Water flow rate system side	l/h	36397	40249	46968	52762	57713	64138	74217	81471	93153	100403	112635	123735	130494	138018	150865	158481	165325
Pressure drop system side	kPa	88	97	101	117	139	158	112	125	144	161	188	119	132	142	159	175	190
Model: P																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	210,3	232,4	271,9	305,1	333,3	369,6	428,9	469,8	538,2	579,2	650,8	715,4	754,0	796,6	871,8	914,9	953,7
Input power	kW	76,8	89,2	94,8	110,0	126,2	147,6	158,7	187,5	203,2	232,3	246,6	262,0	283,2	311,5	324,9	352,5	379,6
Cooling total input current	Α	135,0	154,0	167,0	191,0	217,0	251,0	272,0	320,0	351,0	399,0	427,0	454,0	487,0	534,0	562,0	608,0	653,0
EER	W/W	2,74	2,61	2,87	2,77	2,64	2,50	2,70	2,51	2,65	2,49	2,64	2,73	2,66	2,56	2,68	2,60	2,51
Water flow rate system side	l/h	36136	39921	46723	52411	57266	63506	73697	80717	92472	99510	111819	122911	129551	136864	149782	157193	163856
Pressure drop system side	kPa	48	49	67	75	89	97	63	66	87	95	120	70	77	81	97	106	116
Cooling performances with free-cooling (2)																		
Cooling capacity	kW	149,8	152,0	217,8	223,3	226,6	229,5	300,5	304,3	375,9	379,8	451,6	521,6	526,3	530,5	602,5	606,6	609,8
Input power	kW	7,6	7,6	11,4	11,4	11,4	11,4	15,2	15,2	19,0	19,0	22,8	26,7	26,7	26,7	30,5	30,5	30,5
Free cooling total input current	Α	13,0	13,0	20,0	20,0	20,0	19,0	26,0	26,0	33,0	33,0	40,0	46,0	46,0	46,0	53,0	53,0	52,0
EER	W/W	19,66	19,95	19,06	19,55	19,83	20,09	19,73	19,98	19,74	19,94	19,76	19,57	19,74	19,90	19,78	19,91	20,01
Water flow rate system side	l/h	36136	29921	46723	52411	57266	63506	73697	80717	92472	99510	111819	122911	129551	136864	149782	157193	163856
Pressure drop system side	kPa	86	95	100	116	137	155	110	123	142	158	185	117	130	140	157	172	186

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

NRB - E

Model: F	NKB - E																		
Cooling performance chiller operation (1)	Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Cooling capacity kW 220,6 242,6 265,3 310,3 344,7 379,2 438,5 498,2 546,9 610,1 652,9 714,0 752,8 815,7 885,8 926,2 966,7 input power kW 73,4 84,2 95,7 106,6 122,4 120,1 155,3 174,8 199,2 219,5 244,7 25,6 278,8 299,8 316,7 342,9 369,2 Gooling total input current RP 4 120,0 14	Model: F																		
Imput power NW 73,4 84,2 95,7 106,6 122,4 142,0 155,3 174,8 199,2 219,5 244,7 27,6 278,8 299,8 316,7 342,9 360,1	Cooling performance chiller operation (1)																		
Cooling total input current A 126,0 142,0 160,0 179,0 255,0 236,0 236,0 292,0 333,0 368,0 41,0 42,0 465,0 501,0 531,0 575,0 613,0 EER W/W 3,00 2,88 2,77 2,91 2,82 2,67 2,82 2,85 2,75 2,78 2,67 2,77 2,70 2,72 2,80 2,70 2,62 2,80 2,70 2,80 2,70 2,80 2,70 2,80 2,80 2,70 2,80 2,80 2,70 2,80 2,80 2,70 2,80 2,	Cooling capacity	kW	220,6	242,6	265,3	310,3	344,7	379,2	438,5	498,2	546,9	610,1	652,9	714,0	752,8	815,7	885,8	926,2	966,7
EER	Input power	kW	73,4	84,2	95,7	106,6	122,4	142,0	155,3	174,8	199,2	219,5	244,7	257,6	278,8	299,8	316,7	342,9	369,1
Water flow rate system side	Cooling total input current	А	126,0	142,0	160,0	179,0	205,0	236,0	258,0	292,0	333,0	368,0	411,0	432,0	465,0	501,0	531,0	575,0	619,0
Pressure drop system side KPa 44 53 57 82 90 109 58 75 85 89 102 69 77 85 100 109 119	EER	W/W	3,00	2,88	2,77	2,91	2,82	2,67	2,82	2,85	2,75	2,78	2,67	2,77	2,70	2,72	2,80	2,70	2,62
Cooling performances with free-cooling (2) Cooling capacity kW 164,6 168,5 223,0 222,5 227,6 231,2 285,4 338,9 344,8 399,2 403,7 458,1 462,0 516,7 571,9 576,1 579,7 Input power kW 7,9 7,9 7,9 7,9 7,9 10,5 10,5 10,5 10,5 10,5 13,1 15,8 15,8 18,4 18,4 21,0 21,0 23,6 26,3 26,3 26,3 26,3 26,3 26,3 26,3	Water flow rate system side	l/h	37902	41688	45573	53310	59226	65155	75344	85588	93960	104827	112169	122679	129338	140150	152184	159137	166091
Cooling capacity	Pressure drop system side	kPa	44	53	57	82	90	109	58	75	85	89	102	69	77	85	100	109	119
Input power	Cooling performances with free-cooling (2)																		
Free cooling total input current A 13,0 13,0 13,0 13,0 18,0 18,0 17,0 22,0 26,0 26,0 31,0 31,0 35,0 35,0 39,0 44,0 44,0 44,0 44,0 44,0 44,0 44,0 4	Cooling capacity	kW	164,6	168,5	223,0	222,5	227,6	231,2	285,4	338,9	344,8	399,2	403,7	458,1	462,0	516,7	571,9	576,1	579,7
EER W/W 20,90 21,39 21,78 21,18 21,67 22,02 21,74 21,51 21,89 21,72 21,81 22,00 21,87 21,78 21,78 21,94 22,00 Water flow rate system side I/h 37902 41688 45573 53310 5926 65155 75344 85588 9390 104827 112169 122679 12938 14015 152184 159137 16609 Pressure drop system side kPa 67 80 88 120 136 165 95 114 132 139 159 110 122 132 150 163 178 Model: P Cooling performance chiller operation (1) Cooling capacity kW 219,4 241,1 263,2 308,4 342,1 375,8 435,2 494,7 542,4 605,4 647,1 708,4 746,2 808,9 878,9 918,2 957,4 Moding capacity	Input power	kW	7,9	7,9	7,9	10,5	10,5	10,5	13,1	15,8	15,8	18,4	18,4	21,0	21,0	23,6	26,3	26,3	26,3
Water flow rate system side	Free cooling total input current	Α	13,0	13,0	13,0	18,0	18,0	17,0	22,0	26,0	26,0	31,0	31,0	35,0	35,0	39,0	44,0	44,0	44,0
Pressure drop system side	EER	W/W	20,90	21,39	21,78	21,18	21,67	22,02	21,74	21,51	21,89	21,72	21,97	21,81	22,00	21,87	21,78	21,94	22,08
Model: P Cooling performance chiller operation (1) Cooling capacity	Water flow rate system side	l/h	37902	41688	45573	53310	59226	65155	75344	85588	93960	104827	112169	122679	129338	140150	152184	159137	166091
Cooling performance chiller operation (1) Cooling capacity	Pressure drop system side	kPa	67	80	88	120	136	165	95	114	132	139	159	110	122	132	150	163	178
Colling capacity kW 219,4 241,1 263,2 308,4 342,1 375,8 435,2 494,7 542,4 605,4 647,1 708,4 746,2 808,9 878,9 918,2 957,4 10put power kW 74,1 85,1 96,8 107,7 123,7 143,8 157,0 176,7 201,6 222,1 247,8 260,7 282,3 303,4 320,4 347,3 374,2 10put power kW 74,1 85,1 96,8 107,7 123,7 143,8 157,0 176,7 201,6 222,1 247,8 260,7 282,3 303,4 320,4 347,3 374,2 10put power kW 74,1 85,1 96,8 107,7 123,7 143,8 157,0 176,7 201,6 222,1 247,8 260,7 282,3 303,4 320,4 347,3 374,2 10put power kW 74,1 37695 41419 45215 5279 58785 64562 7475 8490 918,5 104013 111187 121705 128201 138974 151002 157752 16450 145,	Model: P																		
Input power KW 74,1 85,1 96,8 10,7 123,7 143,8 15,0 176,7 201,6 222,1 247,8 260,7 282,3 303,4 320,4 343,3 374,2	Cooling performance chiller operation (1)																		
Cooling total input current A 126,0 144,0 162,0 181,0 206,0 238,0 26,0 294,0 336,0 372,0 415,0 436,0 470,0 506,0 536,0 581,0 626,0	Cooling capacity	kW	219,4	241,1	263,2	308,4	342,1	375,8	435,2	494,7	542,4	605,4	647,1	708,4	746,2	808,9	878,9	918,2	957,4
EER W/W 2,96 2,83 2,72 2,86 2,76 2,71 2,80 2,69 2,73 2,61 2,72 2,64 2,67 2,74 2,64 2,55 (Mater flow rate system side	Input power	kW	74,1	85,1	96,8	107,7	123,7	143,8	157,0	176,7	201,6	222,1	247,8	260,7	282,3	303,4	320,4	347,3	374,2
Water flow rate system side I/h 37695 41419 45215 52979 58785 64562 74775 84990 93195 104013 111187 121705 128201 138974 151002 157752 16450 Pressure drop system side kPa 44 53 56 81 89 107 57 74 84 88 100 68 76 84 98 107 117 Cooling performances with free-cooling (2) Cooling capacity kW 175,0 179,4 182,7 236,7 242,4 246,2 304,0 360,9 367,2 425,1 429,9 487,9 491,9 550,3 609,1 613,5 617,1 Input power kW 8,0 8,0 8,0 10,7 10,7 10,7 13,3 16,0 16,0 18,6 18,6 21,3 21,3 24,0 26,6 26,6 26,6 26,6 26,6 26,6 26,6 26,6 26,6	Cooling total input current	Α	126,0	144,0	162,0	181,0	206,0	238,0	260,0	294,0	336,0	372,0	415,0	436,0	470,0	506,0	536,0	581,0	626,0
Pressure drop system side kPa 44 53 56 81 89 107 57 74 84 88 100 68 76 84 98 107 117 Cooling performances with free-cooling (2) Cooling capacity kW 175,0 179,4 182,7 236,7 242,4 246,2 304,0 360,9 367,2 425,1 429,9 487,9 491,9 550,3 609,1 613,5 617,1 Input power kW 8,0 8,0 8,0 10,7 10,7 10,7 13,3 16,0 16,0 18,6 18,6 21,3 21,3 24,0 26,6 26,6 26,6 Free cooling total input current A 14,0 13,0 13,0 18,0 18,0 18,0 18,0 22,0 27,0 27,0 31,0 31,0 36,0 35,0 40,0 45,0 45,0 45,0 45,0	EER	W/W	2,96	2,83	2,72	2,86	2,76	2,61	2,77	2,80	2,69	2,73	2,61	2,72	2,64	2,67	2,74	2,64	2,56
Cooling performances with free-cooling (2) Cooling capacity kW 175,0 179,4 182,7 236,7 242,4 246,2 304,0 360,9 367,2 425,1 429,9 487,9 491,9 550,3 609,1 613,5 617,1 Input power kW 8,0 8,0 8,0 10,7 10,7 10,7 13,3 16,0 16,0 18,6 18,6 21,3 21,3 24,0 26,6 26,6 26,6 26,6 26,6 26,0 24,0 27,0 27,0 27,0 31,0 36,0 35,0 40,0 45,0	Water flow rate system side	l/h	37695	41419	45215	52979	58785	64562	74775	84990	93195	104013	111187	121705	128201	138974	151002	157752	164500
Cooling capacity kW 175,0 179,4 182,7 236,7 242,4 246,2 304,0 360,9 367,2 425,1 429,9 487,9 491,9 550,3 609,1 613,5 617,1 Input power kW 8,0 8,0 8,0 10,7 10,7 10,7 13,3 16,0 16,0 18,6 18,6 21,3 21,3 24,0 26,6 26,6 26,6 26,6 26,6 26,0 45,0	Pressure drop system side	kPa	44	53	56	81	89	107	57	74	84	88	100	68	76	84	98	107	117
Input power kW 8,0 8,0 8,0 10,7 10,7 10,7 13,3 16,0 16,0 18,6 18,6 21,3 21,3 24,0 26,6 26,6 26,6 26,6 26,6 26,6 26,6 26,0 25,0 27,0 27,0 27,0 31,0 36,0 35,0 40,0 45,0 45,0 45,0	Cooling performances with free-cooling (2)																		
Free cooling total input current A 14,0 13,0 13,0 18,0 18,0 18,0 22,0 27,0 27,0 31,0 31,0 36,0 35,0 40,0 45,0 45,0 45,0	Cooling capacity	kW	175,0	179,4	182,7	236,7	242,4	246,2	304,0	360,9	367,2	425,1	429,9	487,9	491,9	550,3	609,1	613,5	617,1
	Input power	kW	8,0	8,0	8,0	10,7	10,7	10,7	13,3	16,0	16,0	18,6	18,6	21,3	21,3	24,0	26,6	26,6	26,6
EER W/W 21,90 22,45 22,86 22,22 22,76 23,11 22,83 22,58 22,98 22,80 23,06 22,90 23,09 22,96 22,87 23,04 23,17	Free cooling total input current	A	14,0	13,0	13,0	18,0	18,0	18,0	22,0	27,0	27,0	31,0	31,0	36,0	35,0	40,0	45,0	45,0	45,0
	EER	W/W	21,90	22,45	22,86	22,22	22,76	23,11	22,83	22,58	22,98	22,80	23,06	22,90	23,09	22,96	22,87	23,04	23,17
Waterflow rate system side 1/h 37695 41419 45215 52979 58785 64562 74775 84990 93195 104013 111187 121705 128201 138974 151002 157752 16450	Water flow rate system side	l/h	37695	41419	45215	52979	58785	64562	74775	84990	93195	104013	111187	121705	128201	138974	151002	157752	164500
Pressure drop system side	Pressure drop system side	kPa	66	79	87	118	134	162	94	113	130	137	156	108	120	130	147	160	174

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

NRB - U

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: F																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	227,3	250,9	275,8	320,4	357,9	396,3	455,4	515,9	569,2	633,7	680,9	742,0	785,1	849,2	919,7	965,1	1010,6
Input power	kW	73,7	83,6	94,1	106,4	120,6	138,5	153,5	173,2	195,2	215,9	238,4	253,0	272,3	293,7	311,5	334,6	357,7
Cooling total input current	Α	133,0	149,0	166,0	189,0	212,0	240,0	267,0	304,0	341,0	379,0	418,0	444,0	474,0	513,0	547,0	587,0	626,0
EER	W/W	3,08	3,00	2,93	3,01	2,97	2,86	2,97	2,98	2,92	2,94	2,86	2,93	2,88	2,89	2,95	2,88	2,83
Water flow rate system side	l/h	39046	43104	47382	55045	61497	68087	78245	88642	97793	108881	116982	127489	134883	145908	158015	165823	173632
Pressure drop system side	kPa	47	57	61	88	97	120	62	81	92	96	111	75	84	92	108	118	130
Cooling performances with free-cooling (2)																		
Cooling capacity	kW	192,7	198,6	203,6	261,5	269,7	276,0	338,6	400,3	410,2	473,3	481,2	544,1	551,0	614,6	678,8	686,3	692,8
Input power	kW	11,2	11,2	11,2	15,0	15,0	15,0	18,7	22,5	22,5	26,2	26,2	30,0	30,0	33,7	37,5	37,5	37,5
Free cooling total input current	A	20,0	20,0	20,0	27,0	26,0	26,0	33,0	39,0	39,0	46,0	46,0	53,0	52,0	59,0	66,0	66,0	66,0
EER	W/W	17,13	17,66	18,11	17,44	17,99	18,41	18,07	17,80	18,24	18,04	18,34	18,14	18,37	18,22	18,11	18,31	18,48
Water flow rate system side	l/h	39046	43104	47382	55045	61497	68087	78245	88642	97793	108881	116982	127489	134883	145908	158015	165823	173632
Pressure drop system side	kPa	71	86	95	128	147	179	103	122	143	150	173	119	133	143	161	177	194
Model: P																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	226,2	249,6	274,2	318,8	356,0	393,8	452,9	513,3	565,9	630,2	676,8	737,9	780,4	844,3	914,6	959,5	1004,3
Input power	kW	74,4	84,4	95,0	107,4	121,8	139,9	154,8	174,8	197,2	218,0	240,9	255,4	275,0	296,5	314,5	338,0	361,5
Cooling total input current	A	134,0	150,0	167,0	190,0	213,0	242,0	269,0	306,0	344,0	382,0	421,0	447,0	478,0	517,0	551,0	591,0	631,0
EER	W/W	3,04	2,96	2,89	2,97	2,92	2,82	2,93	2,94	2,87	2,89	2,81	2,89	2,84	2,85	2,91	2,84	2,78
Water flow rate system side	l/h	38871	42893	47115	54781	61158	67658	77819	88186	97229	108280	116278	126780	134074	145060	157146	164847	172544
Pressure drop system side	kPa	46	57	60	87	96	118	62	80	91	95	110	74	83	91	106	117	128
Cooling performances with free-cooling (2)																		
Cooling capacity	kW	205,9	212,7	218,2	279,8	289,0	295,9	362,9	428,9	439,8	507,3	515,9	583,3	590,7	658,8	727,6	735,7	742,7
Input power	kW	11,4	11,4	11,4	15,2	15,2	15,2	19,0	22,8	22,8	26,7	26,7	30,5	30,5	34,3	38,1	38,1	38,1
Free cooling total input current	Α	21,0	20,0	20,0	27,0	27,0	26,0	33,0	40,0	40,0	47,0	47,0	53,0	53,0	60,0	67,0	67,0	66,0
EER	W/W	18,02	18,62	19,10	18,37	18,97	19,42	19,06	18,77	19,25	19,03	19,35	19,14	19,39	19,22	19,10	19,32	19,50
Water flow rate system side	l/h	38871	42893	47115	54781	61158	67658	77819	88186	97229	108280	116278	126780	134074	145060	157146	164847	172544
Pressure drop system side	kPa	70	85	94	126	145	177	102	121	141	148	171	118	131	141	159	175	191

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2°C

NRB - N

IND-IN																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: F																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	228,3	252,4	278,0	320,3	358,3	397,2	454,4	510,9	563,3	628,5	675,3	728,3	769,3	837,1	899,9	942,6	985,4
Input power	kW	72,5	82,2	92,3	104,6	118,7	136,3	151,0	171,5	194,0	213,5	236,4	253,2	273,3	292,4	312,3	337,1	361,8
Cooling total input current	Α	124,0	140,0	156,0	177,0	199,0	227,0	251,0	287,0	325,0	360,0	399,0	425,0	457,0	490,0	525,0	567,0	608,0
EER	W/W	3,15	3,07	3,01	3,06	3,02	2,91	3,01	2,98	2,90	2,94	2,86	2,88	2,82	2,86	2,88	2,80	2,72
Water flow rate system side	l/h	39222	43370	47761	55033	61559	68239	78074	87785	96785	107983	116017	125122	132179	143818	154615	161957	169298
Pressure drop system side	kPa	50	61	66	88	98	120	63	79	90	94	109	72	80	90	103	113	123
Cooling performances with free-cooling (2)																		
Cooling capacity	kW	263,0	209,6	216,0	263,3	272,4	279,7	331,7	383,3	392,7	446,3	453,4	505,5	511,3	565,7	619,3	625,2	630,3
Input power	kW	10,5	10,5	10,5	13,1	13,1	13,1	15,8	18,4	18,4	21,0	21,0	23,6	23,6	26,3	28,9	28,9	28,9
Free cooling total input current	Α	18,0	18,0	18,0	22,0	22,0	22,0	26,0	31,0	31,0	35,0	35,0	40,0	39,0	44,0	49,0	49,0	49,0
EER	W/W	25,04	19,96	20,57	20,06	20,75	21,30	21,06	20,85	21,37	21,25	21,59	21,39	21,64	21,55	21,44	21,65	21,83
Water flow rate system side	l/h	39222	43370	47761	55033	61559	68239	78074	87785	96785	107983	116017	125122	132179	143818	154615	161957	169298
Pressure drop system side	kPa	71	86	96	121	139	171	95	115	133	143	164	110	122	134	151	165	180
Model: P																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	227,4	251,4	276,7	318,8	356,3	394,6	451,9	508,1	559,8	624,6	670,7	723,5	763,9	831,4	894,1	935,9	977,8
Input power	kW	73,1	82,8	93,1	105,5	119,8	137,7	152,4	173,0	195,9	215,7	239,0	255,8	276,2	295,5	315,6	340,8	366,1
Cooling total input current	А	125,0	141,0	157,0	178,0	201,0	229,0	253,0	289,0	328,0	362,0	402,0	429,0	461,0	494,0	529,0	572,0	614,0
EER	W/W	3,11	3,03	2,97	3,02	2,98	2,87	2,97	2,94	2,86	2,90	2,81	2,83	2,77	2,81	2,83	2,75	2,67
Water flow rate system side	l/h	39073	43187	47536	54768	61222	67801	77644	87290	96173	107317	115226	124312	131253	142839	153613	160804	167994
Pressure drop system side	kPa	50	60	65	87	97	119	62	78	89	93	108	71	79	88	102	111	122
Cooling performances with free-cooling (2)																		
Cooling capacity	kW	213,1	221,8	229,3	278,7	289,4	297,7	352,9	407,4	418,1	475,0	482,9	538,2	544,6	602,5	659,5	666,0	671,4
Input power	kW	10,7	10,7	10,7	13,3	13,3	13,3	16,0	18,6	18,6	21,3	21,3	24,0	24,0	26,6	29,3	29,3	29,3
Free cooling total input current	А	18,0	18,0	18,0	22,0	22,0	22,0	27,0	31,0	31,0	36,0	36,0	40,0	40,0	45,0	49,0	49,0	49,0
EER	W/W	20,00	20,82	21,53	20,93	21,73	22,36	22,08	21,85	22,43	22,30	22,66	22,46	22,72	22,62	22,51	22,73	22,92
Water flow rate system side	l/h	39073	43187	47536	54768	61222	67801	77644	87290	96173	107317	115226	124312	131253	142839	153613	160804	167994
Pressure drop system side	kPa	70	86	96	120	138	169	94	114	132	141	162	108	121	132	149	163	177
(4) C																		

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

E W	Ins (1) I/W 6,24 I/W 6,98	5,77	6,03														
A W	I/W 6,24	5,77	6.03														
E W	,	5,77	6.03														
	I/W 6.98		0,00	6,11	5,82	5,27	6,09	5,55	5,79	5,55	5,70	5,89	5,66	5,52	5,75	5,56	5,56
N W	, ,	6,31	6,11	6,34	6,16	5,51	6,28	6,19	5,81	5,90	5,73	5,98	5,65	5,73	5,96	5,68	5,55
11 11	I/W 7,33	7,13	6,84	6,84	6,70	6,12	6,70	6,57	6,21	6,29	6,07	6,24	5,89	6,03	6,11	5,88	5,75
U W	7,10	6,80	6,54	6,66	6,52	5,99	6,66	6,57	6,30	6,31	6,16	6,43	6,08	6,14	6,34	6,15	6,04
inverter fa	ns (1)																
A W	I/W 6,24	5,77	6,03	6,11	5,82	5,27	6,09	5,55	5,79	5,55	5,70	5,89	5,66	5,52	5,75	5,56	5,56
E W	I/W 6,98	6,31	6,11	6,34	6,16	5,51	6,28	6,19	5,81	5,90	5,73	5,98	5,65	5,73	5,96	5,68	5,55
N W	I/W 7,33	7,13	6,84	6,84	6,70	6,12	6,70	6,57	6,21	6,29	6,07	6,24	5,89	6,03	6,11	5,88	5,75
U W	//W 7,10	6,80	6,54	6,66	6,52	5,99	6,66	6,57	6,30	6,31	6,16	6,43	6,08	6,14	6,34	6,15	6,04
standard fa	ns (1)																
A W	I/W 6,09	5,62	5,91	5,97	5,68	5,13	5,95	5,51	5,65	5,51	5,57	5,75	5,52	5,54	5,62	5,53	5,50
E W	I/W 6,82	6,16	5,95	6,20	6,01	5,37	6,13	6,04	5,66	5,76	5,59	5,83	5,50	5,58	5,81	5,54	5,50
N W	I/W 7,22	6,98	6,71	6,69	6,54	5,98	6,55	6,42	6,07	6,14	5,92	6,09	5,75	5,89	5,98	5,74	5,66
U W	I/W 6,98	6,64	6,39	6,51	6,39	5,86	6,51	6,42	6,16	6,17	6,03	6,28	5,94	5,99	6,20	6,01	5,96
inverter fa	ns (1)																
A W	I/W 6,09	5,62	5,91	5,97	5,68	5,13	5,95	5,51	5,65	5,51	5,57	5,75	5,52	5,54	5,62	5,53	5,50
E W	I/W 6,82	6,16	5,95	6,20	6,01	5,37	6,13	6,04	5,66	5,76	5,59	5,83	5,50	5,58	5,81	5,54	5,50
N W	I/W 7,22	6,98	6,71	6,69	6,54	5,98	6,55	6,42	6,07	6,14	5,92	6,09	5,75	5,89	5,98	5,74	5,66
U W	I/W 6,98	6,64	6,39	6,51	6,39	5,86	6,51	6,42	6,16	6,17	6,03	6,28	5,94	5,99	6,20	6,01	5,96
1	N	E W/W 6,82 N W/W 7,22 U W/W 6,98	Normal N	Name	Niwerter fans (1)	Niwerter fans (1)	Niwerter fans (1)	Note Column Note Note	N W W 6,09 5,62 5,91 5,97 6,09 6,51 6,09 6,51 6,09 6,51 6,00 6,51 6,	Note Note	Name Name	Name Name	Niwerter Fans (1)	Niwerter Fans (1) Niwerter Fans (1)	Name Name	Name Name	Name Name

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Electric data																			
	A	А	190,4	206,8	242,5	271,9	301,2	330,2	378,6	423,4	487,6	516,6	570,9	639,2	672,1	713,0	773,4	814,3	855,2
Maximum current (FLA)	E,U	Α	209,8	226,2	242,5	291,3	320,6	349,6	398,0	468,1	512,9	561,3	590,3	658,6	691,5	751,8	812,2	853,1	894,0
	N	Α	229,2	245,6	261,9	310,7	340,0	369,0	423,3	487,5	532,3	580,7	609,7	678,0	710,9	771,2	831,6	872,5	913,4
	A	Α	379,0	434,2	469,9	522,6	551,9	664,4	712,8	757,6	821,8	850,8	905,1	908,5	941,4	982,3	1042,6	1083,6	1124,5
Peak current (LRA)	E,U	Α	398,4	453,6	469,9	542,0	571,3	683,8	732,2	802,3	847,1	895,5	924,5	927,9	960,8	1021,1	1081,4	1122,4	1163,3
	N	A	417,8	473,0	489,3	561,4	590,7	703,2	757,5	821,7	866,5	914,9	943,9	947,3	980,2	1040,5	1100,8	1141,8	1182,7

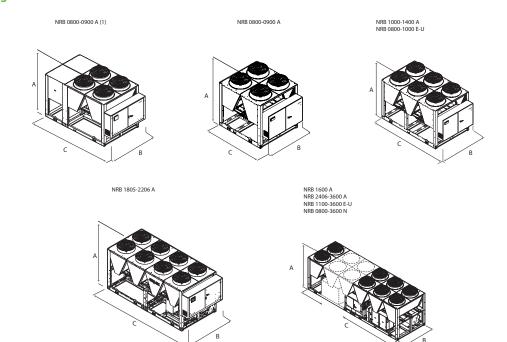
GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	A,E,N,U	type									Scroll								
Compressor regulation	A,E,N,U	Туре									0n-0ff								
Number	A,E,N,U	no.	4	4	4	4	4	4	4	5	6	6	6	5	6	6	6	6	6
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type									R410A								
	Α	kg	14,5	15,0	20,0	22,0	21,5	21,5	25,0	25,0	31,0	31,0	44,0	42,0	41,0	59,0	65,0	56,0	52,0
Refrigerant load circuit 1 (1)	E,U	kg	20,5	20,0	21,5	26,0	26,0	26,0	30,0	36,0	36,0	56,5	56,0	62,0	53,0	70,0	78,0	78,0	78,0
_	N	kg	26,0	26,5	26,5	29,0	28,0	35,0	42,0	44,0	43,0	62,0	62,0	67,0	67,0	76,0	84,0	84,0	84,0
	Α	kg	14,5	15,0	20,0	22,0	23,5	21,5	27,0	30,0	38,0	34,0	44,0	54,0	48,0	59,0	65,0	66,0	64,0
Refrigerant load circuit 2 (1)	E,U	kg	20,5	20,0	21,5	27,0	27,0	27,0	32,0	39,0	40,0	56,5	56,0	62,0	63,0	70,0	78,0	78,0	78,0
_	N	kg	26,0	26,5	26,5	30,0	31,0	35,0	42,0	47,0	47,0	62,0	62,0	67,0	67,0	76,0	84,0	84,0	84,0
Potential global heating	A,E,N,U	GWP								2	088kgCO ₂	eq							
System side heat exchanger																			
Туре	A,E,N,U	type								В	Brazed pla	te							
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																			
Connections (in/out)	A,E,N,U	Туре								Gr	rooved joi	nts							
Hydraulic connections without hydronic kit																			
Sizes (in/out)	A,E,N,U	Ø	3″	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Hydraulic connections with hydronic kit																			
Sizes (in/out)	A,E,N,U	Ø	3″	3″	3"	3″	3″	3"	4"	4"	4"	4"	4"	5"	5"	5″	5"	5"	5"

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

SOUND DATA


Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Sound data calculated in cooling mode (1)																			
	Α	dB(A)	88,0	88,1	90,3	90,2	90,2	90,2	91,7	92,2	93,9	94,4	95,8	96,7	96,7	96,7	97,4	97,4	97,4
Cound nowar lovel	E	dB(A)	85,0	85,1	85,1	86,5	86,5	86,5	87,7	89,2	89,7	91,0	91,5	92,2	92,2	92,8	93,4	93,4	93,4
Sound power level —	N	dB(A)	86,5	86,6	86,6	87,7	87,7	87,7	88,7	90,0	90,5	91,7	92,2	92,8	92,8	93,4	93,9	93,9	93,9
	U	dB(A)	90,2	90,3	90,3	91,7	91,7	91,7	92,9	94,4	94,9	96,2	96,7	97,4	97,4	98,0	98,6	98,6	98,6
<u> </u>	Α	dB(A)	55,9	56,0	58,0	57,9	57,9	57,9	59,3	59,8	61,3	61,8	63,2	63,9	63,9	63,9	64,5	64,5	64,5
Cound proceure level (10 m)	E	dB(A)	52,7	52,8	52,8	54,2	54,2	54,2	55,2	56,5	57,0	58,2	58,7	59,3	59,3	59,8	60,2	60,2	60,2
Sound pressure level (10 m)	N	dB(A)	54,2	54,3	54,3	55,2	55,2	55,2	56,0	57,2	57,7	58,8	59,3	59,8	59,8	60,2	60,6	60,6	60,6
_	U	dB(A)	57,9	58,0	58,0	59,3	59,3	59,3	60,4	61,7	62,2	63,4	63,9	64,5	64,5	65,0	65,4	65,4	65,4

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: F																			
Fan																			
Туре	A,E,N,U	type									axials								
	A	no.	4	4	6	6	6	6	8	8	10	10	12	14	14	14	16	16	16
Number	E,U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
	N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
	A	m³/h	57600	57600	86400	86400	86400	86400	115200	115200	144000	144000	172800	201600	201600	201600	230400	230400	230400
A: G	E	m³/h	64800	64800	64800	86400	86400	86400	108000	129600	129600	151200	151200	172800	172800	194400	216000	216000	216000
Air flow rate	N	m³/h	86400	86400	86400	108000	108000	108000	129600	151200	151200	172800	172800	194400	194400	216000	237600	237600	237600
	U	m³/h	86400	86400	86400	115200	115200	115200	144000	172800	172800	201600	201600	230400	230400	259200	288000	288000	288000
Model: P																			
Fan																			
Туре	A,E,N,U	type									axials								
	А	no.	4	4	6	6	6	6	8	8	10	10	12	14	14	14	16	16	16
Number	E,U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
	N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
	Α	m³/h	54800	54800	82200	82200	82200	82200	109600	109600	137000	137000	164400	191800	191800	191800	219200	219200	230400
Air flaur rata	E	m³/h	61800	61800	61800	82400	82400	82400	103000	123600	123600	144200	144200	164800	164800	185400	206000	206000	216000
Air flow rate	N	m³/h	82400	82400	82400	103000	103000	103000	123600	144200	144200	164800	164800	185400	185400	206000	226600	226600	237600
	U	m³/h	82200	82200	82200	109600	109600	109600	137000	164400	164400	191800	191800	219200	219200	246600	274000	274000	288000

DIMENSIONS

(1) Additional module needed to contain the hydronic kit with "accumulation" option in sizes: NRB 0800A, 0900A

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Dimensions and weights																			
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	Α	mm	2780	2780	3970	3970	3970	3970	4760	5160	6350	6350	7140	8330	8330	8330	9520	9520	9520
C	E,U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330	9520	9520	10710	11900	11900	11900
	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520	10710	10710	11900	13090	13090	13090

■ Units 0800A and 0900A with the optional "storage tank" are 3970 mm long.

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00																			
Free-cooling																			
	Α	kg	2570	2620	3260	3330	3370	3420	4080	4290	5020	5100	5670	6570	6820	6970	7600	7730	7810
Empty weight	E,U	kg	3080	3130	3290	3990	4060	4080	4660	5350	5570	6330	6390	7110	7360	8040	8630	8720	8800
	N	kg	3760	3800	3960	4530	4610	4630	5160	5940	6160	6870	6930	7640	7890	8500	9170	9250	9330
Free-cooling plus																			
	Α	kg	2630	2680	3350	3420	3460	3510	4200	4410	5170	5250	5850	6780	7030	7180	7840	7970	8050
Empty weight	E,U	kg	3170	3220	3380	4110	4180	4200	4810	5530	5750	6540	6600	7350	7600	8310	8930	9020	9100
	N	kg	3880	3920	4080	4680	4760	4780	5340	6150	6370	7110	7170	7910	8160	8800	9500	9580	9660

NRB 0800-3600 B

Air-cooled chiller with free cooling (glycol-free)

Cooling capacity 211 ÷ 1010 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with scroll compressors, axial flow fans, micro-channel coil (source side), plate heat exchanger and thermostatic expansion valve (mechanical or electronic, depending on the model).

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

N Silenced very high efficiency

U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Dual-circuit unit

Unit with 2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

If a higher output is needed in free cooling, there is also the "G" free cooling plus model with boosted water coil.

Free cooling with glycol water

Intermediate plate heat exchanger that creates two circuits:

- Glycol hydraulic circuit (glycol is added to protect the coil from freezing).
- 2. Primary hydraulic circuit for glycol-free systems.

Electronic expansion valve

The units from size 1805 to 3600 have an electronic expansion valve as standard.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

To obtain a solution that allows you to save money and to facilitate installation. These units can be configured with an integrated hydronic system.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

— **Night Mode:** it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI (Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible

to save a log file with all the connected unit datas in the personal terminal for post analysis.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
AFD40FD1	A,E		•	•	•	•	•											
AER485P1	N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•	•	•	•	•											
AERDACF	N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERLINK	A,E	•	•	•	•	•	•											
AERLINK	N,U		•		•	•	•		•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•	•											
AERINET	N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
FB1	A,E	•	•	•	•	•	•											
rdi	N,U	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
гі	A,E	•	•	•	•	•	•											
FL	N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICULUED EVO	A,E	•	•	•	•	•	•											
MULTICHILLER_EVO	N,U		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	A,E	•	•	•	•	•	•											
ועטי	N,U														•		•	•

Antivibration

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Integrated hydronic kit: 00, DA, DB, D	C, DE, DF, DG,	DH, DI, DJ	, PA, PB, F	C, PD, PE,	PF, PG, PI	I, PI, PJ											
A,E	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	-	-	-	-	-	-	-	-	-	-	-
N,U	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)	AVX (1)

⁽¹⁾ Contact us.

Device for peak current reduction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
A,E	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)	-	-	-
N,U	DRENRB0800 (1)	DRENRB0900 (1)	DRENRB1000 (1)	DRENRB1100 (1)	DRENRB1200 (1)	DRENRB1400 (1)	DRENRB1600 (1)	DRENRB1805 (1)	DRENRB2006 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2600	2800	3000	3200	3400	3600
N,U	DRENRB2206 (1)	DRENRB2406 (1)	-	-	-	-	-	-

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered.

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006
A	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1100	RIFNRB1200	RIFNRB1400	-	-	-
E	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401	-	-	-
N	RIFNRB0801	RIFNRB0901	RIFNRB1001	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016
U	RIFNRB0800	RIFNRB0900	RIFNRB1000	RIFNRB1101	RIFNRB1201	RIFNRB1401	RIFNRB1601	RIFNRB1815	RIFNRB2016

A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2600	2800	3000	3200	3400	3600
N,U	RIFNRB2216	RIFNRB2416	RIFNRB2600	RIFNRB2800	RIFNRB3000	RIFNRB3200	RIFNRB3400	RIFNRB3600

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
A	GP2VN	GP2VN	GP3VNF	GP3VNF	GP3VNF	GP3VNF	-	-	-	-	-	-	-	-	-	-	-

-																		
	Ver	0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
	E	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4VN	GP4VN	-	-	-	-	-	-	-	-	-	-	-
	N	GP4VN	GP4VN	GP4VN	GP5VN	GP5VN	GP5VN	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9VN	GP10V	GP11V	GP11V	GP11V
	U	GP3VNF	GP3VNF	GP3VNF	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP10V	GP10V	GP10V

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

CONFIGUR	ATOR
Field	Description
1,2,3	NRB
4,5,6,7	Size 0800, 0900, 1000, 1100, 1200, 1400, 1600, 1805, 2006, 2206, 2406, 2600, 2800, 3000, 3200, 3400, 3600
8	Operating field
۰	Standard mechanic thermostatic valve
Х	Electronic thermostatic expansion valve
Υ	Low temperature mechanic thermostatic valve
Z	Low temperature electronic thermostatic valve
9	Model
В	Free-cooling glycol free
G	Free-cooling glycol free plus (1)
10	Heat recovery
۰	Without heat recovery
D	With desuperheater (2)
11	Version
Α	High efficiency
E	Silenced high efficiency
N	Silenced very high efficiency
U	Very high efficiency
12	Coils / free-cooling coils
۰	Alluminium microchannel / Copper - aluminium
I	Copper-aluminium / Copper-aluminium
0	Painted alluminium microchannel / Copper painted aluminium
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper -Tinned copper
V	Copper-painted alumimium / Copper-painted alumimium
13	Fans
•	Standard
J	Inverter
14	Power supply
0	400V~3 50Hz with magnet circuit breakers
15,16	Integrated hydronic kit
00	Without hydronic kit
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (3)
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (3)

⁽¹⁾ The Free cooling Plus "G" models are only compatible with "°" and "0" coils.
(2) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
(3) For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NRB - A

NND - A																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: B																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	211,8	234,3	273,4	307,1	335,9	373,3	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	76,0	88,0	93,9	108,9	124,8	145,6	-	-	-	-	-	-	-	-	-	-	-
Cooling total input current	Α	134,0	152,0	165,0	189,0	215,0	248,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	2,79	2,66	2,91	2,82	2,69	2,56	-	-	-	-	-	-	-	-	-	-	-
Water flow rate system side	l/h	36397	40249	46968	52762	57713	64138	-	-	-	-	-	-	-	-	-	-	-
Pressure drop system side	kPa	53	58	66	74	88	100	-	-	-	-	-	-	-	-	-	-	-
Cooling performances with free-cooling glycol-f	ree (2)																	
Cooling capacity	kW	119,9	121,9	165,6	172,5	176,2	181,3	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	9,8	9,8	14,3	14,3	14,4	14,4	-	-	-	-	-	-	-	-	-	-	-
Free cooling total input current	A	17,0	17,0	25,0	25,0	25,0	25,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	12,21	12,41	11,56	12,02	12,26	12,60	-	-	-	-	-	-	-	-	-	-	-
Model: G																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	210,3	232,4	271,9	305,1	333,3	369,6	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	76,8	89,2	94,8	110,0	126,2	147,6	-	-	-	-	-	-	-	-	-	-	-
Cooling total input current	А	135,0	154,0	167,0	191,0	217,0	251,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	2,74	2,61	2,87	2,77	2,64	2,50	-	-	-	-	-	-	-	-	-	-	-
Water flow rate system side	l/h	36136	39921	46723	52411	57266	63506	-	-	-	-	-	-	-	-	-	-	-
Pressure drop system side	kPa	53	57	65	73	87	98	-	-	-	-	-	-	-	-	-	-	-
Cooling performances with free-cooling glycol-f	ree (2)																	
Cooling capacity	kW	125,4	127,6	172,1	179,6	183,6	189,2	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	9,9	9,9	14,5	14,5	14,6	14,6	-	-	-	-	-	-	-	-	-	-	-
Free cooling total input current	А	17,0	17,0	25,0	25,0	25,0	25,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	12,62	12,83	11,86	12,36	12,62	12,99	-	-	-	-	-	-	-	-	-	-	-
(4) 6 41 1 4 406/2005					_													

NRB - E

Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: B																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	220,6	242,6	265,3	310,3	344,7	379,2	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	73,4	84,2	95,7	106,6	122,4	142,0	-	-	-	-	-	-	-	-	-	-	-
Cooling total input current	А	126,0	142,0	160,0	179,0	205,0	236,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	3,00	2,88	2,77	2,91	2,82	2,67	-	-	-	-	-	-	-	-		-	-
Water flow rate system side	l/h	37902	41688	45573	53310	59226	65155	-	-	-	-	-	-	-	-	-	-	-
Pressure drop system side	kPa	48	53	61	68	84	102	-	-	-	-	-	-	-	-	-	-	-
Cooling performances with free-cooling glycol-free	ee (2)																	
Cooling capacity	kW	139,1	141,5	143,7	187,8	192,4	195,3	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	11,0	11,0	11,0	14,6	14,6	14,6	-	-	-	-	-	-	-	-	-	-	-
Free cooling total input current	А	19,0	19,0	18,0	24,0	24,0	24,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	12,69	12,92	13,11	12,89	13,17	13,37	-	-	-	-	-	-	-	-	-	-	-
Model: G																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	219,4	241,1	263,2	308,4	342,1	375,8	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	74,1	85,1	96,8	107,7	123,7	143,8	-	-	-	-	-	-	-	-	-	-	-
Cooling total input current	А	126,0	144,0	162,0	181,0	206,0	238,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	2,96	2,83	2,72	2,86	2,76	2,61	-	-	-	-	-	-	-	-	-	-	-
Water flow rate system side	l/h	37695	41419	45215	52979	58785	64562	-	-	-	-	-	-	-	-	-	-	-
Pressure drop system side	kPa	47	52	61	67	83	100	-	-	-	-	-	-	-	-	-	-	-
Cooling performances with free-cooling glycol-free	ee (2)																	
Cooling capacity	kW	144,3	147,0	149,3	195,0	200,0	203,0	-	-	-	-	-	-	-	-	-	-	-
Input power	kW	11,1	11,1	11,1	14,7	14,8	14,8	-	-	-	-	-	-	-	-	-	-	-
Free cooling total input current	A	19,0	19,0	18,0	25,0	25,0	24,0	-	-	-	-	-	-	-	-	-	-	-
EER	W/W	13,03	13,28	13,48	13,24	13,55	13,75	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NRB - U

NRB - U																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: B																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	227,3	250,9	275,8	320,4	357,9	396,3	455,4	515,9	569,2	633,7	680,9	742,0	785,1	849,2	919,7	965,1	1010,6
Input power	kW	73,7	83,6	94,1	106,4	120,6	138,5	153,5	173,2	195,2	215,9	238,4	253,0	272,3	293,7	311,5	334,6	357,7
Cooling total input current	Α	133,0	149,0	166,0	189,0	212,0	240,0	267,0	304,0	341,0	379,0	418,0	444,0	474,0	513,0	547,0	587,0	626,0
EER	W/W	3,08	3,00	2,93	3,01	2,97	2,86	2,97	2,98	2,92	2,94	2,86	2,93	2,88	2,89	2,95	2,88	2,83
Water flow rate system side	l/h	39046	43104	47382	55045	61497	68087	78245	88642	97793	108881	116982	127489	134883	145908	158015	165823	173632
Pressure drop system side	kPa	51	56	66	72	90	111	75	92	112	133	126	110	124	133	158	160	176
Cooling performances with free-cooling glycol-	free (2)																	
Cooling capacity	kW	159,6	162,9	165,8	215,5	222,0	225,8	284,2	346,2	361,7	409,5	413,7	470,6	474,2	525,1	581,4	584,6	587,3
Input power	kW	14,3	24,3	14,3	19,1	19,1	19,1	24,1	31,6	32,0	36,8	36,8	41,1	41,1	45,0	52,6	52,6	52,6
Free cooling total input current	A	26,0	26,0	25,0	34,0	33,0	33,0	42,0	55,0	56,0	65,0	64,0	72,0	72,0	79,0	92,0	92,0	92,0
EER	W/W	11,14	11,37	11,57	11,31	11,62	11,82	11,80	10,97	11,29	11,14	11,26	11,45	11,54	11,66	11,06	11,12	11,17
Model: G																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	226,2	249,6	274,2	318,8	356,0	393,8	452,9	513,3	565,9	630,2	676,8	737,9	780,4	844,3	914,6	959,5	1004,3
Input power	kW	74,4	84,4	95,0	107,4	121,8	139,9	154,8	174,8	197,2	218,0	240,9	255,4	275,0	296,5	314,5	338,0	361,5
Cooling total input current	A	134,0	150,0	167,0	190,0	213,0	242,0	269,0	306,0	344,0	382,0	421,0	447,0	478,0	517,0	551,0	591,0	631,0
EER	W/W	3,04	2,96	2,89	2,97	2,92	2,82	2,93	2,94	2,87	2,89	2,81	2,89	2,84	2,85	2,91	2,84	2,78
Water flow rate system side	l/h	38871	42893	47115	54781	61158	67658	77819	88186	97229	108280	116278	126780	134074	145060	157146	164847	172544
Pressure drop system side	kPa	50	56	-	72	89	109	74	91	111	132	125	109	122	132	157	158	174
Cooling performances with free-cooling glycol-	free (2)																	
Cooling capacity	kW	165,6	169,1	172,3	223,6	230,7	234,8	295,8	360,9	278,5	427,4	432,0	491,6	495,5	547,8	606,7	610,2	613,2
Input power	kW	14,5	14,5	14,5	19,3	19,3	19,3	24,4	31,9	32,4	37,2	37,2	41,6	41,6	45,6	53,2	53,2	53,2
Free cooling total input current	А	26,0	26,0	25,0	34,0	34,0	33,0	42,0	56,0	57,0	65,0	65,0	73,0	72,0	79,0	93,0	93,0	93,0
EER	W/W	11,42	11,66	11,88	11,59	11,93	12,14	12,13	11,31	11,68	11,50	11,62	11,82	11,92	12,02	11,41	11,48	11,53

NRB - N

MID II																		
Size		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: B																		
Cooling performance chiller operation (1)																		
Cooling capacity	kW	228,3	252,4	278,0	320,3	358,3	397,2	454,4	510,9	563,3	628,5	675,3	728,3	769,3	837,1	899,9	942,6	985,4
Input power	kW	72,5	82,2	92,3	104,6	118,7	136,3	151,0	171,5	194,0	213,5	236,4	253,2	273,3	292,4	312,3	337,1	361,8
Cooling total input current	А	124,0	140,0	156,0	177,0	199,0	227,0	251,0	287,0	325,0	360,0	399,0	425,0	457,0	490,0	525,0	567,0	608,0
EER	W/W	3,15	3,07	3,01	3,06	3,02	2,91	3,01	2,98	2,90	2,94	2,86	2,88	2,82	2,86	2,88	2,80	2,72
Water flow rate system side	l/h	39222	43370	47761	55033	61559	68239	78074	87785	96785	107983	116017	125122	132179	143818	154615	161957	169298
Pressure drop system side	kPa	46	50	60	72	91	103	71	90	110	131	124	97	109	130	141	158	170
Cooling performances with free-cooling glycol-	free (2)																	
Cooling capacity	kW	173,9	177,9	181,5	218,5	225,6	235,0	293,7	331,4	347,7	386,9	390,8	445,3	448,6	497,1	534,8	537,7	540,1
Input power	kW	14,5	14,5	14,5	18,1	18,2	18,2	24,8	28,3	28,9	31,6	31,6	34,9	34,9	41,3	44,0	44,0	44,0
Free cooling total input current	А	25,0	25,0	25,0	31,0	31,0	30,0	41,0	47,0	48,0	53,0	53,0	59,0	58,0	69,0	74,0	74,0	74,0
EER	W/W	11,95	12,23	12,48	12,07	12,41	12,90	11,84	11,73	12,04	12,24	12,37	12,75	12,85	12,02	12,15	12,21	12,27
Model: G	_																	
Cooling performance chiller operation (1)																		
Cooling capacity	kW	227,4	251,4	276,7	318,8	356,3	394,6	451,9	508,1	559,8	624,6	670,7	723,5	763,9	831,4	894,1	935,9	977,8
Input power	kW	73,1	82,8	93,1	105,5	119,8	137,7	152,4	173,0	195,9	215,7	239,0	255,8	276,2	295,5	315,6	340,8	366,1
Cooling total input current	А	125,0	141,0	157,0	178,0	201,0	229,0	253,0	289,0	328,0	362,0	402,0	429,0	461,0	494,0	529,0	572,0	614,0
EER	W/W	3,11	3,03	2,97	3,02	2,98	2,87	2,97	2,94	2,86	2,90	2,81	2,83	2,77	2,81	2,83	2,75	2,67
Water flow rate system side	l/h	39073	43187	47536	54768	61222	67801	77644	87290	96173	107317	115226	124312	131253	142839	153613	160804	167994
Pressure drop system side	kPa	46	50	59	72	90	101	71	89	108	130	123	96	108	128	139	156	167
Cooling performances with free-cooling glycol-	free (2)																	
Cooling capacity	kW	180,0	184,4	188,2	226,3	233,9	244,1	305,6	344,3	362,0	402,3	406,6	463,5	467,1	517,6	556,4	559,5	562,1
Input power	kW	14,7	14,6	14,7	18,3	18,4	18,4	25,0	28,5	29,2	31,9	31,9	35,3	35,3	41,7	44,4	44,4	44,4
Free cooling total input current	А	25,0	25,0	25,0	31,0	31,0	31,0	42,0	48,0	49,0	54,0	54,0	59,0	59,0	70,0	75,0	75,0	75,0
EER	W/W	12,25	12,55	12,81	12,37	12,73	13,26	12,20	12,07	12,42	12,61	12,74	13,14	13,25	12,41	12,52	12,59	12,65

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

ENERGY DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: B																			
SEPR - (EN14825: 2018) High temperature	with stand	ard fans (1)																
	Α	W/W	5,61	5,25	5,27	5,43	5,25	5,05	-	-	-	-	-	-	-	-	-	-	-
SEPR	E	W/W	6,07	5,58	5,44	5,59	5,50	5,13	-	-	-	-	-	-	-	-	-	-	-
SERK	N	W/W	6,38	6,09	5,91	5,92	5,78	5,41	5,67	5,51	5,56	5,58	5,53	5,55	5,54	5,53	5,54	5,55	5,53
	U	W/W	6,22	5,87	5,69	5,84	5,71	5,56	5,73	5,52	5,60	5,58	5,53	5,58	5,56	5,55	5,53	5,56	5,56
Model: G																			
SEPR - (EN14825: 2018) High temperature	with stand	ard fans (1)																
	Α	W/W	5,82	5,37	5,48	5,60	5,37	4,87	-	-	-	-	-	-	-	-	-	-	-
SEPR	E	W/W	6,42	5,83	5,62	5,85	5,69	5,10	-	-	-	-	-	-	-	-	-	-	-
	N,U	W/W	6,96	6,54	6,28	6,28	6,08	5,63	6,13	5,90	5,77	5,73	5,58	5,79	5,47	5,56	5,61	5,32	5,18

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

ELECTRIC DATA																			
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Electric data																			
	Α	Α	190,4	206,8	242,5	271,9	301,2	330,2	-	-	-	-	-	-	-	-	-	-	-
Maximum current (FLA)	E	Α	209,8	226,2	242,5	291,3	320,6	349,6	-	-	-	-	-	-	-	-	-	-	-
Maximum current (FLA)	N	А	229,2	245,6	261,9	310,7	340,0	369,0	423,3	487,5	532,3	580,7	609,7	678,0	710,9	771,2	831,6	872,5	913,4
	U	Α	209,8	226,2	242,5	291,3	320,6	349,6	398,0	468,1	512,9	561,3	590,3	658,6	691,5	751,8	812,2	853,1	894,0
	A	Α	379,0	434,2	469,9	522,6	551,9	664,4	-	-	-	-	-	-	-	-	-	-	-
Peak current (LRA)	E	Α	398,4	453,6	469,9	542,0	571,3	683,8	-	-	-	-	-	-	-	-	-	-	-
reak current (LKA)	N	Α	417,8	473,0	489,3	561,4	590,7	703,2	757,5	821,7	866,5	914,9	943,9	947,3	980,2	1040,5	1100,8	1141,8	1182,7
	U	Α	398,4	453,6	469,9	542,0	571,3	683,8	732,2	802,3	847,1	895,5	924,5	927,9	960,8	1021,1	1081,4	1122,4	1163,3

GENERAL TECHNICAL DATA

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Compressor																			
Туре	A,E,N,U	type									Scroll								
Compressor regulation	A,E,N,U	Туре									0n-0ff								
Number	A,E,N,U	no.	4	4	4	4	4	4	4	5	6	6	6	5	6	6	6	6	6
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type									R410A								
	Α	kg	32,0	32,0	48,0	48,0	48,0	48,0	64,0	64,0	80,0	80,0	96,0	112,0	112,0	112,0	128,0	128,0	128,0
Refrigerant charge (1)	E,U	kg	48,0	48,0	48,0	64,0	64,0	64,0	80,0	96,0	96,0	112,0	112,0	128,0	128,0	144,0	160,0	160,0	160,0
	N	kg	64,0	64,0	64,0	80,0	80,0	80,0	96,0	112,0	112,0	128,0	128,0	144,0	144,0	160,0	176,0	176,0	176,0
Hydraulic connections																			
Connections (in/out)	A,E,N,U	Туре								G	rooved joi	nts							
Hydraulic connections withou	t hydronic kit																		
Sizes (in/out)	A,E,N,U	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"
Hydraulic connections with hy	dronic kit																		
Sizes (in/out)	A,E,N,U	Ø	3"	3"	3"	3"	3"	3"	4"	4"	4"	4"	4"	5"	5"	5"	5"	5"	5"

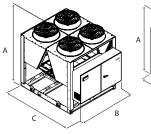
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

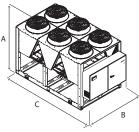
In the versions without a hydronic kit, the water filter is supplied with a connection point for making the connection. In the versions with a hydronic kit, it is supplied ready-mounted.

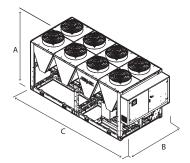
SOUND DATA

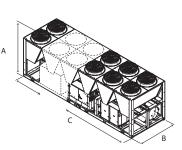
Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Sound data calculated in cooling mode (1)																			
	Α	dB(A)	88,0	88,1	90,3	90,2	90,2	90,2	-	-	-	-	-	-	-	-	-	-	-
Cound nowar loval	E	dB(A)	85,0	85,1	85,1	86,5	86,5	86,5	-	-	-	-	-	-	-	-	-	-	-
Sound power level —	N	dB(A)	86,5	86,6	86,6	87,7	87,7	87,7	88,7	90,0	90,5	91,7	92,2	92,8	92,8	93,4	93,9	93,9	93,9
	U	dB(A)	90,2	90,3	90,3	91,7	91,7	91,7	92,9	94,4	94,9	96,2	96,7	97,4	97,4	98,0	98,6	98,6	98,6
_	Α	dB(A)	55,9	56,0	58,0	57,9	57,9	57,9	-	-	-	-	-	-	-	-	-	-	-
Sound pressure level (10 m) —	E	dB(A)	52,9	53,0	52,8	54,3	54,3	54,3	-	-	-	-	-	-	-	-	-	-	-
Sound pressure level (10 III)	N	dB(A)	54,4	54,5	54,4	55,4	55,4	55,4	56,3	57,6	58,0	59,2	59,6	60,1	60,1	60,6	61,0	61,0	61,0
	U	dB(A)	58,0	58,1	58,0	59,4	59,4	59,4	60,5	62,0	62,4	63,7	64,0	64,6	64,6	65,3	65,7	65,7	65,7

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


FANS DATA


Size	<u> </u>		0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Model: B																			
Fan																			
Tuno	A,E	type	axials	axials	axials	axials	axials	axials	-	-	-	-	-	-	-	-	-	-	-
Туре	N,U	type									axials								
	A	no.	4	4	6	6	6	6	-	-	-	-	-	-	-	-	-	-	-
Number	E	no.	6	6	6	8	8	8	-	-	-	-	-	-	-	-	-	-	-
Number	N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
	U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
	A	m³/h	57600	57600	86400	86400	86400	86400	-	-	-	-	-	-	-	-	-	-	-
Air flow rate	E	m³/h	64800	64800	64800	86400	86400	86400	-	-	-	-	-	-	-	-	-	-	-
All flow fate	N	m³/h	86400	86400	86400	108000	108000	108000	129600	151200	151200	172800	172800	194400	194400	216000	237600	237600	237600
	U	m³/h	86400	86400	86400	115200	115200	115200	144000	172800	172800	201600	201600	230400	230400	259200	288000	288000	288000
Model: G																			
Fan																			
Type	A,E	type	axials	axials	axials	axials	axials	axials	-	-	-	-	-	-	-	-	-	-	-
Туре	N,U	type									axials								
	A	no.	4	4	6	6	6	6	-	-	-	-	-	-	-	-	-	-	-
Number	E	no.	6	6	6	8	8	8	-	-	-	-	-	-	-	-	-	-	-
Nullibel	N	no.	8	8	8	10	10	10	12	14	14	16	16	18	18	20	22	22	22
	U	no.	6	6	6	8	8	8	10	12	12	14	14	16	16	18	20	20	20
	A	m³/h	57600	57600	86400	86400	86400	86400	-	-	-	-	-	-	-	-	-	-	-
Air flow rate	E	m³/h	64800	64800	64800	86400	86400	86400	-	-	-	-	-	-	-	-	-	-	-
All HOW fale	N	m³/h	86400	86400	86400	108000	108000	108000	129600	151200	151200	172800	172800	194400	194400	216000	237600	237600	237600
	U	m³/h	86400	86400	86400	115200	115200	115200	144000	172800	172800	201600	201600	230400	230400	259200	288000	288000	288000


DIMENSIONS


NRB 0800-0900 A

NRB 1000-1400 A NRB 0800-1000 E-U NRB 1100-1400 E-U NRB 0800-1000 N NRB 1100-3600 N NRB 1600-3600 U

Size			0800	0900	1000	1100	1200	1400	1600	1805	2006	2206	2406	2600	2800	3000	3200	3400	3600
Dimensions and weights																			
A	A,E	mm	2450	2450	2450	2450	2450	2450	-	-	-	-	-	-	-	-	-	-	-
A	N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
D	A,E	mm	2200	2200	2200	2200	2200	2200	-	-	-	-	-	-	-	-	-	-	-
D	N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	A	mm	2780	2780	3970	3970	3970	3970	-	-	-	-	-	-	-	-	-	-	-
(E	mm	3970	3970	3970	4760	4760	4760	-	-	-	-	-	-	-	-	-	-	-
C	N	mm	4760	4760	4760	5950	5950	5950	7140	8330	8330	9520	9520	10710	10710	11900	13090	13090	13090
	U	mm	3970	3970	3970	4760	4760	4760	5950	7140	7140	8330	8330	9520	9520	10710	11900	11900	11900

■ For the weights please contact the factory.

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NRV 0550 F

Air-water chiller with free-cooling

Cooling capacity 99,9 ÷ 105,4 kW

- Easy and quick to install compact
- Reliability and modularity
- Microchannel coils

DESCRIPTION

NRV is comprised of independent 99.9 kW modules, that can be connected together up to a power of 900 kW. Each individual module is an outdoor chiller for the production of chilled water.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency **E** Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 46°C external air temperature. Unit can produce chilled water up to $4\,^{\circ}\text{C}$.

Maximum yield at full load but even partial load, thanks to the partialisation steps that increase as the number of connected modules increases this ensures continuous adaptation to the actual system requirements.

Modularity

It is possible to couple up to 9 chillers designed to reduce the overall unit dimensions to a minimum.

The combination of the various chillers allows all the strengths of the individual module to be maintained.

Modularity allows you to adapt installation to the actual development needs of the system. This way the cooling capacity can be increased over time simply and affordably.

Modularity is essential when component redundancy is required, as it allows for a safer system design and increased reliability.

Microchannel coils

Microchannel heat exchanger that guarantees higher thermal exchange yield. Circuit that optimises the liquid distribution in the coil, which is arranged with V beam geometry with open angle.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Components

Already equipped with a water filter, differential pressure switch and butterfly check valves, useful to cut off the hydraulic circuit for maintenance; for instance, to clean the filter.

In the event of variable flow rate, the motorised hydronic valves can intercept one or more modules to reduce the flow rate in low heat load conditions.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

Modalità Night Mode: it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERLINK: Wifi Gateway with an RS485 serial port that can be installed on all machines or on all controllers having an RS485 serial port themselves. The module is capable of simultaneously activating the AP WIFI

(Access point) and WIFI Station functions, the latter making it possible to connect to the home or business LAN both with VMF-E5 and E6. To facilitate certain management and control operations of the unit, the AERAPP application is available both for Android and iOS systems.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

GPNYB_BACK: kit with 1 anti-intrusion grid for the short side of the unit.

GPNYB_SIDE: kit with 2 anti-intrusion grids for the long side of the unit.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

KNYB: Pair of caps with grooved joints assembled on the unit manifold. **KREC:** Accessory kit to remote the electric power supply input to the

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

COMPATIBILITY WITH VMF SYSTEM

For more information about VMF system, refer to the dedicated documentation.

ACCESSORIES COMPATIBILITY

Model	Ver	0550
AER485P1	A,E	•
AERBACP	A,E	•
AERLINK	A,E	•
FB1	A,E	•
GPNYB_BACK	A,E	•
GPNYB_SIDE	A,E	•
MULTICHILLER_EVO	A,E	•
PGD1	A,E	•

DRE: electronic device for peak current reduction

Ver	0550
A,E	DRE (1)

(1) Contact the factory
A grey background indicates the accessory must be assembled in the factory

KNYB: Pair of caps with grooved joints assembled on the unit manifold

Ver	0550
A,E	KNYB

A grey background indicates the accessory must be assembled in the factory

KREC: kit to remote the electric power supply input to the back

Ver	0550
A,E	KREC

A grey background indicates the accessory must be assembled in the factory

RIF: Power factor correction

Ver	0550
A,E	RIF (1)

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRV
4,5,6,7	Size
.,5,0,,	0550
8	Operating field
0	Standard mechanic thermostatic valve (1)
Χ	Electronic thermostatic expansion valve
9	Model
F	Free-cooling
10	Heat recovery
0	Without heat recovery
D	With desuperheater
11	Version
A	High efficiency
E	Silenced high efficiency

Field	Description						
12	Coils / free-cooling coils						
0	Alluminium microchannel / Copper - aluminium						
0	Painted alluminium microchannel / Copper painted aluminium						
R	Copper-copper/Copper-copper						
S	Copper-Tinned copper / Copper -Tinned copper						
٧	Copper-painted alumimium / Copper-painted alumimium						
13	Fans						
0	Standard						
J	Inverter						
14	Power supply						
0	400V ~ 3 50Hz with magnet circuit breakers						
15,16	Integrated hydronic kit						
00	Without hydronic kit						

(1) Water produced up to +4 °C

PERFORMANCE SPECIFICATIONS

NRV - FA/FE

Size			0550
Cooling performance chiller operation	on (1)		
Cooling canacity	A	kW	105,4
Cooling capacity	E	kW	99,9
Innut nouser	Α	kW	36,6
Input power	E	kW	38,2
Cooling total input current	A,E	A	65,0
EER	A	W/W	2,88
EER	E	W/W	2,61
Water flavores anatom side	A	l/h	18104
Water flow rate system side	E	l/h	17164
Duranium duram arratama ai da	A	kPa	31
Pressure drop system side	E	kPa	27
Cooling performances with free-cool	ling (2)		
Caaling sanssitu	A	kW	69,3
Cooling capacity	E	kW	57,7
launt accord	A	kW	3,7
Input power	E	kW	2,6
Free cooling total input current	A	A	6,7
Free cooling total input current	E	A	4,5
CCD	A	W/W	18,48
EER	E	W/W	21,98
Water flow rate custom side	A	l/h	18104
Water flow rate system side	E	l/h	17164
Dunantura duna attata aida	A	kPa	73
Pressure drop system side	E	kPa	66

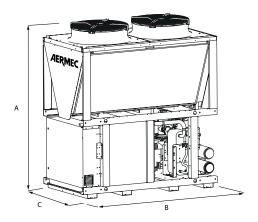
⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/7 °C; External air 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0550
SEER - 23/18 (EN14825: 2018) w	vith standard fans (1)		
Seasonal efficiency	A	%	184.2%
	E	%	181.3%
SEER	A	W/W	4,68
SEER	E	W/W	4,61
SEER - 23/18 (EN14825: 2018) w	vith inverter fans		
r 1 m.	A	%	191.5%
Seasonal efficiency	E	%	189.2%
SEER	A	W/W	4,86
DEEK	E	W/W	4,81
SEPR - (EN14825: 2018) High te	mperature with standard fans (1)		
CEDD	A	W/W	5,94
SEPR	E	W/W	5,60
SEPR - (EN14825: 2018) High te	mperature with inverter fans (1)		
	A	W/W	5,94
SEPR	E	W/W	5,60

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA


Size			0550
Electric data			
Maximum current (FLA)	A,E	A	95,6
Peak current (LRA)	A,E	A	280,6

GENERAL TECHNICAL DATA

Size			0550
Compressor			
Туре	A,E	type	Scroll
Number	A,E	no.	2
Circuits	A,E	no.	1
Refrigerant	A,E	type	R410A
System side heat exchanger			
Туре	A,E	type	Brazed plate
Number	A,E	no.	1
System side hydraulic connections	1		
Connections (in/out)	A,E	Туре	Grooved joints
Sizes (in/out)	A,E	Ø	6"
Fan			
Туре	A,E	type	axials
Fan motor	A,E	type	Asynchronous with phase cut
Number	A,E	no.	2
Air flow rate	Α	m³/h	28600
All flow fale	E	m³/h	22000
Sound data calculated in cooling n	node (1)		
Cound navor lavel	A	dB(A)	86,9
Sound power level	E	dB(A)	81,8
Cound proceura loual (10 m)	A	dB(A)	55,0
Sound pressure level (10 m)	E	dB(A)	49,9

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0550
Dimensions and weights			
A	A,E	mm	2480
В	A,E	mm	2200
C	A,E	mm	1190
Empty weight	A,E	kg	1389

NSM 1402-9603 F

Air-water chiller with free-cooling

Cooling capacity 306 ÷ 2028 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency
E Silenced high efficiency
N Silenced very high efficiency
U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Electronic expansion valve

Electronic thermostatic as standard from size 5202 to 6402 and from 8403 to 9603.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

Integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 x n° 3: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
AER485P1 x n° 2 (1)	A,E,N,U		•				•	•				•		•	•
AERBACP	A,E,N,U		•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E,N,U	•	•	•	•	•	•	•	•	•		•	•	•	
PRV3	A,E,N,U	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
Model	Ver	4202	4502	4802	5202	5602	6002	2 64	102 6	503	6703	6903	7203	8403	9603
AER485P1 x n° 2 (1)	A,E,N,U	•	•	•	•	•	•		•						
AER485P1 x n° 3 (1)	A,E,N,U									•	•	•	•	•	•
AERBACP	A,E,N,U						•					•	•		
AERNET	A,E,N,U	•	•	•	•		•		•		•	•	•	•	•
MULTICHILLER EVO	A,E,N,U	•	•		•		•					•	•		

(1) x Indicates the quantity of accessories to match.

Antivibration - NSM free - coolina

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Integrated hydronic kit: 00														
A	AVX929	AVX929	AVX929	AVX932	AVX933	AVX933	AVX933	AVX934	AVX937	AVX937	AVX937	AVX938	AVX938	AVX942
E,U	AVX929	AVX929	AVX930	AVX933	AVX933	AVX934	AVX934	AVX935	AVX935	AVX935	AVX935	AVX939	AVX939	AVX940
N	AVX930	AVX930	AVX931	AVX931	AVX934	AVX935	AVX935	AVX936	AVX936	AVX936	AVX936	AVX940	AVX941	AVX943
Ver	4202	4502	4802	5202	5602	6002	2 64	02	6503	6703	6903	7203	8403	9603
Integrated hydronic kit: 00														
A	AVX942	AVX944	AVX944	AVX944	AVX945	5 AVX94	17 AVX	947 A	VX953	AVX953	AVX957	AVX954	AVX956	AVX955
E,U	AVX941	AVX945	AVX947	AVX947	AVX950	O AVX95	52 AVX	1948 A	VX954	AVX956	AVX956	AVX958	-	-
N	AVX943	AVX946	AVX948	AVX949	AVX951	1 AVX95	51 AVX	951 A	VX955	-	-	-	-	-

Anti-intrusion grid

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
A	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
E,U	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V	GP8V	GP8V	GP9V
N	GP5V	GP5V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP8V	GP9V	GP10V	GP11V

A grey background indicates the accessory must be assembled in the factory

Ve	er 4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	GP8V	GP9V	GP9V	GP9V	-	GP11V	GP11V	GP4V+GP8V	GP4V+GP8V	GP9V	GP5V+GP9V	GP5V+GP10V	GP6V+GP11V
E,l	U GP10V	GP10V	GP11V	GP11V	GP6V+GP6V	GP6V+GP7V	GP7V+GP7V	GP5V+GP9V	GP5V+GP10V	GP5V+GP10V	GP6V+GP11V	-	-
N	I GP11V	GP6V+GP7V	GP7V+GP7V	GP7V+GP8V	GP8V+GP8V	GP8V+GP8V	GP8V	GP6V+GP11V	-	-	-	_	_

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
A	KRS22	KRS22	KRS23	KRS24	KRS24	KRS24								
E,N,U	KRS23	KRS24	KRS24	KRS24										

A grey background indicates the accessory must be assembled in the factory

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	KRS24	KRS24	KRS23	KRS23	KRS24	KRS24	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
E,U	KRS24	KRS24	KRS23	KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-
N	KRS24	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802C
E	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
N	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802C	RIFNSM2002Q	RIFNSM2202C	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
U	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002C	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C

A grey background indicates the accessory must be assembled in the factory

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
A,E,U	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
N	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	RIFNSM5602C	RIFNSM6002C	RIFNSM6402C	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Fiel	d	Description
1,2,	.3	NSM
4,5,	6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403 9603
8		Operating field
	0	Standard mechanic thermostatic valve (1)
	Χ	Electronic thermostatic expansion valve (2)
	Υ	Low temperature mechanic thermostatic valve (3)
	Z	Low temperature electronic thermostatic valve (3)
9		Model
	F	Free-cooling
	Р	Free-cooling plus (4)
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater
11		Version
	Α	High efficiency
	E	Silenced high efficiency
	N	Silenced very high efficiency
	U	Very high efficiency
12		Coils / free-cooling coils
	0	Alluminium microchannel / Copper - aluminium
	1	Copper-aluminium / Copper-aluminium
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	٧	Copper-painted alumimium / Copper-painted alumimium
13		Fans
	0	Standard
	J	Inverter
14		Power supply
	0	400V ~ 3 50Hz with fuses
	2	230V ~ 3 50Hz with fuses (5)
	4	230V ~ 3 50Hz with magnet circuit breakers (5)
	5	500V ~ 3 50Hz with fuses (6)

Field	Description
8	400V ~ 3 50Hz with magnet circuit breakers
9	500V~3 50Hz with magnet circuit breakers (6)
15,16	Integrated hydronic kit
00	Without hydronic kit
PA	Pump A
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (7)
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (7)
TF	Double pump F (8)
TG	Double pump G (8)
TH	Double pump H (8)
TI	Double pump I (8)
TJ	Double pump J (8)

- (1) Water produced from 4 °C ÷ 15 °C
 (2) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ 18 °C
 (3) Water produced from 4 °C ÷ 18 °C for ° version; -10 °C for the others versions
 (4) The Free-Cooling Plus "P" models are only compatible with" ed "0"
 (5) available only for size from 1402 to 2202
 (6) available only for size from 1402 to 3202
 (7) For all configurations including pump J please contact the factory.
 (8) The unit from 5603 to 9603 can only have hydronic kit "TF TG TH-TI TJ"

PERFORMANCE SPECIFICATIONS

NSM - A

NSIVI - A															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	306,5	350,2	396,8	450,5	505,3	522,5	556,5	600,8	649,8	678,4	726,3	813,3	872,8	954,1
Input power	kW	102,8	117,6	136,7	158,3	168,9	180,5	194,5	203,0	220,4	235,0	252,8	269,7	295,6	317,9
Cooling total input current	А	182,3	206,2	230,6	268,0	291,3	311,4	335,2	351,3	378,4	400,0	426,5	450,9	486,5	530,4
EER	W/W	2,98	2,98	2,90	2,85	2,99	2,90	2,86	2,96	2,95	2,89	2,87	3,02	2,95	3,00
Water flow rate system side	l/h	52654	60163	68174	77407	86812	89765	95621	103224	111642	116561	124785	139737	149958	163932
Pressure drop system side	kPa	45	59	54	36	45	48	54	63	67	73	65	43	50	61
Cooling performances with free-cooling (2)															
Cooling capacity	kW	347,7	362,0	373,1	381,9	468,1	471,2	476,5	560,7	569,1	573,2	578,8	671,5	677,9	770,2
Input power	kW	15,0	15,0	15,0	15,0	18,7	18,7	18,7	22,5	22,5	22,5	22,5	26,2	26,2	30,0
Free cooling total input current	A	30,4	30,4	30,4	30,4	38,0	38,0	38,0	45,6	45,6	45,6	45,6	53,2	53,2	60,8
EER	W/W	23,18	24,14	24,88	25,47	24,97	25,14	25,42	24,93	25,30	25,48	25,73	25,59	25,83	25,68
Water flow rate system side	l/h	60230	68250	77490	86910	89860	95730	103340	111770	116690	124920	139890	150120	164110	171460
Pressure drop system side	kPa	66	86	85	76	78	84	95	98	107	116	113	87	99	107
Model: P															
Cooling performance chiller operation (1)															
Cooling capacity	kW	305,8	349,3	395,0	447,3	502,1	519,1	552,6	597,2	645,4	674,3	721,9	807,8	865,0	946,8
Input power	kW	103,7	118,8	138,1	160,2	170,8	182,6	197,0	205,3	223,1	238,4	257,1	273,3	299,3	321,8
Cooling total input current	Α	182,3	206,2	230,6	268,0	291,3	311,4	335,2	351,3	378,4	400,0	426,5	450,9	486,5	530,4
EER	W/W	2,95	2,94	2,86	2,79	2,94	2,84	2,81	2,91	2,89	2,83	2,81	2,96	2,89	2,94
Water flow rate system side	l/h	52546	60019	67864	76853	86266	89180	94948	102598	110891	115859	124023	138789	148609	162675
Pressure drop system side	kPa	45	59	54	36	45	48	54	63	67	73	65	43	50	61
Cooling performances with free-cooling (2)															
Cooling capacity	kW	371,8	388,1	400,1	409,1	501,9	505,2	510,5	601,2	610,0	614,2	619,7	719,2	725,2	824,6
Input power	kW	15,2	15,2	15,2	15,2	19,0	19,0	19,0	22,9	22,9	22,9	22,9	26,7	26,7	30,5
Free cooling total input current	A	30,7	30,7	30,7	30,7	38,4	38,4	38,4	46,1	46,1	46,1	46,1	53,7	53,7	61,4
EER	W/W	24,41	25,48	26,27	26,86	26,36	26,53	26,81	26,31	26,69	26,88	27,12	26,98	27,20	27,07
Water flow rate system side	l/h	52710	60230	68250	77490	86910	89860	95730	103340	111770	116690	124920	139890	150120	164110
Pressure drop system side	kPa	66	86	86	76	79	84	95	98	107	117	114	87	100	108
(1) C		C CL:II		0/ F	I' 00/										

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C

NSM - A

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F														
Cooling performance chiller operation (1)														
Cooling capacity	kW	996,8	1082,3	1128,3	1167,3	1222,8	1304,9	1346,7	1459,2	1501,9	1659,0	1705,0	1838,1	2028,1
Input power	kW	346,1	365,7	391,9	422,5	438,9	452,7	472,4	492,1	520,2	557,2	583,3	659,0	704,1
Cooling total input current	Α	581,4	614,0	654,6	703,8	733,3	761,1	795,9	821,1	872,1	945,1	985,8	1100,0	1197,7
EER	W/W	2,88	2,96	2,88	2,76	2,79	2,88	2,85	2,97	2,89	2,98	2,92	2,79	2,88
Water flow rate system side	l/h	171269	185947	193855	200561	210092	224201	231379	250713	258050	285029	292937	315803	348457
Pressure drop system side	kPa	66	81	88	75	82	96	102	61	66	81	88	82	102
Cooling performances with free-cooling (2)														
Cooling capacity	kW	774,7	867,5	872,2	875,9	966,0	1058,3	1062,8	1158,4	1162,7	1346,7	1351,7	1449,5	1636,8
Input power	kW	30,0	33,7	33,7	33,7	37,5	41,2	41,2	45,0	45,0	52,5	52,5	56,2	63,7
Free cooling total input current	A	60,8	68,4	68,4	68,4	76,0	83,6	83,6	91,2	91,2	106,4	106,4	114,0	129,2
EER	W/W	25,83	25,71	25,85	25,96	25,77	25,66	25,77	25,75	25,85	25,66	25,75	25,78	25,68
Water flow rate system side	l/h	186150	194070	200780	210330	224450	231640	250990	258340	285350	293260	316150	348840	348457
Pressure drop system side	kPa	117	130	141	131	134	145	154	107	117	130	141	134	154
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	988,7	1074,2	1119,1	1156,4	1212,7	1295,2	1336,2	1447,7	1489,6	1646,9	1691,9	1822,8	2013,1
Input power	kW	350,6	370,3	397,1	428,3	444,3	458,0	478,2	498,2	527,1	564,0	590,8	667,0	712,4
Cooling total input current	A	581,4	614,0	654,6	703,8	733,3	761,1	795,9	821,1	872,1	945,1	985,8	1100,0	1197,7
EER	W/W	2,82	2,90	2,82	2,70	2,73	2,83	2,79	2,91	2,83	2,92	2,86	2,73	2,83
Water flow rate system side	l/h	169873	184553	192278	198678	208362	222522	229577	248739	255936	282961	290686	313186	345875
Pressure drop system side	kPa	66	81	88	75	82	96	102	61	66	81	88	82	102
Cooling performances with free-cooling (2)														
Cooling capacity	kW	828,9	928,7	933,1	936,5	1033,8	1133,1	1137,4	1239,8	1243,9	1442,0	1446,8	1551,1	1752,4
Input power	kW	30,5	34,3	34,3	34,3	38,1	41,9	41,9	45,7	45,7	53,3	53,3	57,1	64,7
Free cooling total input current	A	61,4	69,1	69,1	69,1	76,8	84,5	84,5	92,1	92,1	107,5	107,5	115,2	130,5
EER	W/W	27,21	27,09	27,22	27,32	27,15	27,05	27,15	27,13	27,22	27,04	27,13	27,15	27,07
Water flow rate system side	l/h	171460	186150	194070	200780	210330	224450	231640	250990	258340	285350	293260	316150	348840
Pressure drop system side	kPa	117	130	141	131	134	146	155	108	117	130	141	134	155

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

NSM - E

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	319,8	365,8	417,7	473,0	509,1	549,8	568,8	618,6	646,3	675,1	715,5	796,7	851,7	929,6
Input power	kW	105,5	123,3	137,5	159,4	178,3	183,3	195,5	205,2	220,4	235,9	253,5	270,8	297,1	320,1
Cooling total input current	Α	177,3	205,7	223,1	261,0	294,5	304,8	325,9	341,6	365,4	388,5	414,7	437,5	474,1	516,8
EER	W/W	3,03	2,97	3,04	2,97	2,85	3,00	2,91	3,01	2,93	2,86	2,82	2,94	2,87	2,90
Water flow rate system side	l/h	54946	62848	71763	81260	87462	94455	97732	106280	111041	115993	122937	136886	146332	159723
Pressure drop system side	kPa	33	37	32	37	43	50	54	53	58	64	64	43	49	60
Cooling performances with free-cooling (2)															
Cooling capacity	kW	308,8	317,5	389,9	399,1	403,2	476,4	479,1	552,1	556,5	560,4	564,7	643,3	648,3	727,0
Input power	kW	11,0	11,0	13,7	13,7	13,7	16,5	16,5	19,2	19,2	19,2	19,2	22,0	22,0	24,7
Free cooling total input current	Α	15,9	15,9	19,9	19,9	19,9	23,9	23,9	27,9	27,9	27,9	27,9	31,8	31,8	35,8
EER	W/W	28,07	28,87	28,36	29,03	29,33	28,88	29,04	28,69	28,91	29,11	29,34	29,25	29,47	29,38
Water flow rate system side	l/h	55010	62920	71840	81350	87560	94560	97840	106400	111160	116120	123070	137040	146490	159900
Pressure drop system side	kPa	56	67	56	68	78	80	85	82	90	98	102	77	88	97
Model: P															
Cooling performance chiller operation (1)															
Cooling capacity	kW	316,7	363,1	414,5	469,5	504,1	545,4	564,0	613,8	640,8	669,8	710,9	790,6	843,5	921,3
Input power	kW	106,6	124,7	138,6	161,1	181,0	185,4	197,8	207,6	223,1	239,2	257,8	274,6	301,1	324,4
Cooling total input current	Α	177,3	205,7	223,1	261,0	294,5	304,8	325,9	341,6	365,4	388,5	414,7	437,5	474,1	516,8
EER	W/W	2,97	2,91	2,99	2,91	2,79	2,94	2,85	2,96	2,87	2,80	2,76	2,88	2,80	2,84
Water flow rate system side	l/h	54406	62391	71215	80666	86616	93710	96909	105464	110105	115087	122135	135840	144915	158291
Pressure drop system side	kPa	33	37	32	37	43	50	54	54	59	64	65	43	49	60
Cooling performances with free-cooling (2)															
Cooling capacity	kW	328,8	338,7	415,7	425,8	429,8	508,2	511,0	589,0	593,7	597,7	602,1	686,0	690,6	774,8
Input power	kW	11,2	11,2	13,9	13,9	13,9	16,7	16,7	19,5	19,5	19,5	19,5	22,3	22,3	25,1
Free cooling total input current	Α	16,1	16,1	20,1	20,1	20,1	24,1	24,1	28,1	28,1	28,1	28,1	32,2	32,2	36,2
EER	W/W	29,48	30,36	29,81	30,53	30,82	30,37	30,54	30,17	30,41	30,62	30,84	30,75	30,95	30,87
Water flow rate system side	l/h	55010	62920	71840	81350	87560	94560	97840	106400	111160	116120	123070	137040	146490	159900
Pressure drop system side	kPa	57	67	57	68	78	80	86	83	90	98	103	77	88	98

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

NSM - E

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F														
Cooling performance chiller operation (1)														
Cooling capacity	kW	995,2	1051,6	1137,0	1159,2	1217,3	1279,4	1341,6	1434,0	1499,6	1598,6	1684,0	-	-
Input power	kW	339,9	370,0	389,4	418,0	436,6	448,9	461,2	491,1	510,9	568,9	588,3	-	-
Cooling total input current	Α	554,8	601,5	631,6	677,8	708,4	731,9	755,4	803,9	832,3	923,9	945,4	-	-
EER	W/W	2,93	2,84	2,92	2,77	2,79	2,85	2,91	2,92	2,93	2,81	2,86	-	-
Water flow rate system side	l/h	170980	180685	195353	199172	209139	219823	230507	246385	257643	274665	289333	-	-
Pressure drop system side	kPa	68	79	73	76	67	72	82	60	68	79	73	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	804,0	809,4	888,6	890,5	967,2	1043,7	1119,7	1129,8	1206,8	1215,8	1295,1	-	-
Input power	kW	27,5	27,5	30,2	30,2	33,0	35,7	38,5	38,5	41,2	41,2	44,0	-	-
Free cooling total input current	A	39,8	39,8	43,8	43,8	47,8	51,7	55,7	55,7	59,7	59,7	63,7	-	-
EER	W/W	29,24	29,44	29,38	29,44	29,31	29,20	29,09	29,35	29,26	29,48	29,44	-	-
Water flow rate system side	I/h	171170	180890	195570	199390	209370	220070	230760	246660	257930	274970	289650	-	-
Pressure drop system side	kPa	104	119	113	117	107	110	119	97	104	119	113	-	-
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	987,5	1041,9	1127,1	1148,0	1206,7	1269,3	1332,0	1421,7	1487,9	1583,2	1668,4	-	-
Input power	kW	344,2	375,3	394,8	424,0	442,2	454,4	466,6	497,6	517,4	577,4	596,8	-	-
Cooling total input current	Α	554,8	601,5	631,6	677,8	708,4	731,9	755,4	803,9	832,3	923,9	945,4	-	-
EER	W/W	2,87	2,78	2,86	2,71	2,73	2,79	2,85	2,86	2,88	2,74	2,80	-	-
Water flow rate system side	l/h	169667	179011	193652	197235	207320	218083	228845	244269	255645	272005	286645	-	-
Pressure drop system side	kPa	69	80	74	76	68	72	82	60	69	80	74	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	857,5	862,4	947,1	948,8	1031,1	1113,1	1194,5	1204,3	1286,9	1295,0	1379,9	-	-
Input power	kW	27,9	27,9	30,7	30,7	33,5	36,3	39,0	39,0	41,8	41,8	44,6	-	-
Free cooling total input current	A	40,2	40,2	44,2	44,2	48,2	52,3	56,3	56,3	60,3	60,3	64,3	-	-
EER	W/W	30,74	30,92	30,87	30,92	30,81	30,70	30,59	30,84	30,76	30,95	30,92	-	-
Water flow rate system side	I/h	171170	180890	195570	199390	209370	220070	230760	246660	257930	274970	289650	-	-
Pressure drop system side	kPa	105	119	113	117	107	111	120	98	105	119	113	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C

NSM - U

NSM - U															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	328,1	378,5	429,3	491,9	531,3	568,6	589,0	638,0	667,8	695,1	735,8	824,8	891,0	967,9
Input power	kW	105,3	121,3	136,2	155,8	172,9	180,0	191,0	202,4	216,1	228,4	242,4	263,0	288,2	311,5
Cooling total input current	A	185,8	211,5	232,0	266,3	297,1	312,9	332,3	352,6	374,2	392,3	413,0	442,7	477,2	522,6
EER	W/W	3,12	3,12	3,15	3,16	3,07	3,16	3,08	3,15	3,09	3,04	3,04	3,14	3,09	3,11
Water flow rate system side	l/h	56372	65027	73755	84508	91287	97691	101204	109611	114731	119418	126414	141715	153088	166304
Pressure drop system side	kPa	35	39	34	40	46	53	57	57	62	68	68	46	53	65
Cooling performances with free-cooling (2)															
Cooling capacity	kW	356,2	369,9	451,2	466,4	473,4	555,1	559,4	641,6	648,6	654,2	661,5	753,3	763,5	854,0
Input power	kW	15,0	15,0	18,7	18,7	18,7	22,5	22,5	26,2	26,2	26,2	26,2	30,0	30,0	33,7
Free cooling total input current	A	30,4	30,4	38,0	38,0	38,0	45,6	45,6	53,2	53,2	53,2	53,2	60,8	60,8	68,4
EER	W/W	23,76	24,67	24,07	24,88	25,26	24,68	24,87	24,45	24,71	24,93	25,21	25,12	25,46	25,31
Water flow rate system side	l/h	56430	65100	73840	84600	91390	97800	101320	109730	114860	119550	126550	141870	153260	166490
Pressure drop system side	kPa	59	71	60	73	85	85	92	88	96	104	108	82	96	105
Model: P															
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,9	376,7	427,6	488,8	527,6	565,4	585,6	634,6	664,0	691,7	732,5	820,3	884,7	961,8
Input power	kW	106,3	122,5	137,6	157,4	174,8	181,8	193,0	204,4	218,3	231,1	245,7	266,0	291,3	314,8
Cooling total input current	А	185,8	211,5	232,0	266,3	297,1	312,9	332,3	352,6	374,2	392,3	413,0	442,7	477,2	522,6
EER	W/W	3,08	3,07	3,11	3,10	3,02	3,11	3,03	3,10	3,04	2,99	2,98	3,08	3,04	3,06
Water flow rate system side	l/h	56168	64715	73458	83974	90642	97138	100613	109029	114089	118834	125850	140933	152002	165249
Pressure drop system side	kPa	35	40	34	40	47	54	58	57	63	68	69	46	54	65
Cooling performances with free-cooling (2)															
Cooling capacity	kW	381,5	396,7	483,5	500,0	507,4	595,1	599,9	687,8	695,4	701,6	709,4	807,7	818,0	915,4
Input power	kW	15,2	15,2	19,0	19,0	19,0	22,9	22,9	26,7	26,7	26,7	26,7	30,5	30,5	34,3
Free cooling total input current	A	30,7	30,7	38,4	38,4	38,4	46,1	46,1	53,7	53,7	53,7	53,7	61,4	61,4	69,1
EER	W/W	25,04	26,04	25,39	26,26	26,65	26,05	26,25	25,80	26,09	26,32	26,61	26,51	26,85	26,71
Water flow rate system side	l/h	56430	65100	73840	84600	91390	97800	101320	109730	114860	119550	126550	141870	153260	166490
Pressure drop system side	kPa	60	72	60	74	85	86	92	88	96	104	109	83	96	106

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

NSM - U

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1031,1	1095,0	1181,2	1208,8	1265,8	1326,2	1386,6	1491,1	1554,3	1666,6	1752,7	-	-
Input power	kW	332,0	358,4	379,0	405,3	426,4	440,0	453,5	478,4	498,9	549,8	570,4	-	-
Cooling total input current	А	564,1	604,8	638,6	681,5	718,3	746,0	773,7	811,6	846,2	926,2	954,2	-	-
EER	W/W	3,11	3,06	3,12	2,98	2,97	3,01	3,06	3,12	3,12	3,03	3,07	-	-
Water flow rate system side	l/h	177155	188137	202935	207692	217477	227858	238239	256194	267046	286336	301135	-	-
Pressure drop system side	kPa	74	86	79	83	73	77	87	64	74	86	79	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	941,7	951,8	1043,5	1047,6	1134,8	1221,6	1307,8	1326,2	1413,8	1431,0	1522,9	-	-
Input power	kW	37,5	37,5	41,2	41,2	45,0	48,7	52,5	52,5	56,2	56,2	60,0	-	-
Free cooling total input current	A	76,0	76,0	83,6	83,6	91,2	98,8	106,4	106,4	114,0	114,0	121,6	-	-
EER	W/W	25,12	25,39	25,30	25,40	25,22	25,07	24,92	25,27	25,14	25,45	25,39	-	-
Water flow rate system side	l/h	177350	188350	203160	207920	217720	228110	238500	256480	267340	286650	301470	-	-
Pressure drop system side	kPa	112	129	122	127	115	119	128	105	112	129	122	-	-
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1025,3	1088,1	1174,0	1200,9	1257,9	1318,5	1379,2	1482,0	1545,4	1655,7	1741,6	-	-
Input power	kW	335,5	362,4	383,1	409,7	430,7	444,3	457,9	483,4	504,1	556,1	576,8	-	-
Cooling total input current	A	564,1	604,8	638,6	681,5	718,3	746,0	773,7	811,6	846,2	926,2	954,2	-	-
EER	W/W	3,06	3,00	3,06	2,93	2,92	2,97	3,01	3,07	3,07	2,98	3,02	-	-
Water flow rate system side	l/h	176150	186945	201699	206322	216119	226541	236963	254617	265517	284475	299229	-	-
Pressure drop system side	kPa	74	86	79	83	73	78	88	65	74	86	80	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	1009,7	1020,0	1118,5	1122,6	1216,5	1309,9	1402,4	1421,6	1515,9	1533,4	1632,1	-	-
Input power	kW	38,1	38,1	41,9	41,9	45,7	49,5	53,3	53,3	57,1	57,1	60,9	-	-
Free cooling total input current	A	76,8	76,8	84,5	84,5	92,1	99,8	107,5	107,5	115,2	115,2	122,8	-	-
EER	W/W	26,51	26,78	26,70	26,80	26,62	26,46	26,30	26,66	26,54	26,84	26,78	-	-
Water flow rate system side	l/h	177350	188350	203160	207920	217720	228110	238500	256480	267340	286650	301470	-	-
Pressure drop system side	kPa	113	129	122	128	116	119	128	106	113	130	123	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C

NSM - N

143141 - 14															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F															
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,0	376,5	424,5	486,3	525,3	559,6	579,7	626,1	655,1	682,6	723,4	811,7	888,8	960,7
Input power	kW	103,6	119,3	134,4	153,8	170,9	178,3	189,4	200,8	214,8	227,9	242,9	263,8	283,0	307,1
Cooling total input current	Α	174,8	199,9	218,4	252,6	283,3	297,4	316,9	335,2	357,1	376,5	398,7	426,6	452,0	496,6
EER	W/W	3,15	3,16	3,16	3,16	3,07	3,14	3,06	3,12	3,05	3,00	2,98	3,08	3,14	3,13
Water flow rate system side	l/h	56017	64687	72926	83554	90260	96150	99597	107568	112546	117285	124287	139460	152703	165051
Pressure drop system side	kPa	34	39	33	39	45	52	55	55	60	65	66	44	53	64
Cooling performances with free-cooling (2)															
Cooling capacity	kW	365,1	381,0	449,3	465,6	473,2	541,5	545,8	615,7	622,3	627,8	634,7	713,7	791,0	867,2
Input power	kW	13,7	13,7	16,5	16,5	16,5	19,2	19,2	22,0	22,0	22,0	22,0	24,7	27,5	30,2
Free cooling total input current	A	19,9	19,9	23,9	23,9	23,9	27,9	27,9	31,8	31,8	31,8	31,8	35,8	39,8	43,8
EER	W/W	26,56	27,71	27,24	28,22	28,69	28,13	28,36	27,99	28,29	28,54	28,86	28,84	28,77	28,67
Water flow rate system side	l/h	56080	64760	73010	83650	90360	96260	99710	107690	112670	117420	124420	139610	152870	165230
Pressure drop system side	kPa	51	61	51	63	73	76	82	79	87	94	98	74	83	93
Model: P	_														
Cooling performance chiller operation (1)															
Cooling capacity	kW	325,1	375,2	422,9	483,6	522,0	556,8	576,7	623,1	651,8	679,6	720,3	807,0	882,8	955,1
Input power	kW	104,5	120,4	135,6	155,5	172,9	180,2	191,5	202,9	217,2	230,8	246,4	267,1	286,2	310,3
Cooling total input current	Α	174,8	199,9	218,4	252,6	283,3	297,4	316,9	335,2	357,1	376,5	398,7	426,6	452,0	496,6
EER	W/W	3,11	3,12	3,12	3,11	3,02	3,09	3,01	3,07	3,00	2,94	2,92	3,02	3,09	3,08
Water flow rate system side	l/h	55859	64457	72661	83082	89692	95662	99076	107055	111979	116764	123749	138653	151682	164102
Pressure drop system side	kPa	35	39	33	39	46	52	56	55	61	66	67	45	54	64
Cooling performances with free-cooling (2)															
Cooling capacity	kW	387,5	406,1	478,1	496,6	505,0	577,5	582,4	656,5	663,9	670,1	677,6	761,7	844,0	925,5
Input power	kW	13,9	13,9	16,7	16,7	16,7	19,5	19,5	22,3	22,3	22,3	22,3	25,1	27,9	30,7
Free cooling total input current	A	20,1	20,1	24,1	24,1	24,1	28,1	28,1	32,2	32,2	32,2	32,2	36,2	40,2	44,2
EER	W/W	27,79	29,12	28,57	29,68	30,18	29,58	29,83	29,42	29,75	30,03	30,37	30,35	30,26	30,16
Water flow rate system side	l/h	56080	64760	73010	83650	90360	96260	99710	107690	112670	117420	124420	139610	152870	165230
Pressure drop system side	kPa	52	62	52	64	74	77	82	80	87	94	99	75	83	94

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

NSM - N

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: F														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1004,9	1098,6	1161,7	1218,0	1274,5	1318,1	1361,6	1478,4	-	-	-	-	-
Input power	kW	332,9	349,5	369,2	392,7	416,2	433,5	450,9	472,0	-	-	-	-	-
Cooling total input current	Α	544,1	569,7	600,1	638,5	677,0	708,3	739,7	770,6	-	-	-	-	-
EER	W/W	3,02	3,14	3,15	3,10	3,06	3,04	3,02	3,13	-	-	-	-	-
Water flow rate system side	l/h	172652	188754	199587	209274	218966	226457	233947	254013	-	-	-	-	-
Pressure drop system side	kPa	70	71	84	88	74	78	85	64	-	-	-	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	874,3	1018,1	1092,1	1164,5	1236,6	1246,2	1254,9	1339,1	-	-	-	-	-
Input power	kW	30,2	35,7	38,5	41,2	44,0	44,0	44,0	46,7	-	-	-	-	-
Free cooling total input current	Α	43,8	51,7	55,7	59,7	63,7	63,7	63,7	67,7	-	-	-	-	-
EER	W/W	28,91	28,48	28,37	28,24	28,11	28,33	28,52	28,65	-	-	-	-	-
Water flow rate system side	l/h	172840	188960	199810	209510	219210	226710	234210	254300	-	-	-	-	-
Pressure drop system side	kPa	102	100	114	117	103	109	118	93	-	-	-	-	-
Model: P														
Cooling performance chiller operation (1)														
Cooling capacity	kW	998,8	1092,7	1155,6	1211,7	1267,7	1310,9	1354,2	1470,0	-	-	-	-	-
Input power	kW	336,7	353,2	373,0	396,5	420,0	437,6	455,3	476,9	-	-	-	-	-
Cooling total input current	Α	544,1	569,7	600,1	638,5	677,0	708,3	739,7	770,6	-	-	-	-	-
EER	W/W	2,97	3,09	3,10	3,06	3,02	3,00	2,97	3,08	-	-	-	-	-
Water flow rate system side	I/h	171604	187733	198553	208183	217806	225235	232663	252555	-	-	-	-	-
Pressure drop system side	kPa	70	71	85	89	75	78	85	64	-	-	-	-	-
Cooling performances with free-cooling (2)														
Cooling capacity	kW	933,0	1086,4	1165,3	1242,2	1318,7	1329,5	1339,1	1429,1	-	-	-	-	-
Input power	kW	30,7	36,3	39,0	41,8	44,6	44,6	44,6	47,4	-	-	-	-	-
Free cooling total input current	Α	44,2	52,3	56,3	60,3	64,3	64,3	64,3	68,3	-	-	-	-	-
EER	W/W	30,41	29,96	29,84	29,69	29,55	29,79	30,01	30,14	-	-	-	-	-
Water flow rate system side	l/h	172840	188960	199810	209510	219210	226710	234210	254300	-	-	-	-	-
Pressure drop system side	kPa	102	101	114	118	104	109	118	94	-	-	-	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/* °C; External air 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

ENERGY INDICES (RE	:G. 2016/22	81 EU)														
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F	avatuva with stands	and fone (1)														
SEPR - (EN14825: 2018) High temp	erature with standa A	W/W	7,41	7,05	6,65	6,29	6,78	6,52	6,34	6,73	6,56	6,31	6,10	6,55	6,32	6,50
	E	W/W	7,41	6,77	7,10	6,65	6,30	6,89	6,59	6,81	6,69	6,42	6,09	6,28	6,23	6,44
SEPR	L	W/W	7,68	7,36	7,10	7,20	6,78	7,10	6,94	7,15	6,90	6,67	6,45	6,78	6,94	6,93
	<u></u>	W/W	7,50	7,13	7,47	7,13	6,79	7,10	6,97	7,13	7,03	6,82	6,62	6,97	6,75	6,86
SEPR - (EN14825: 2018) High temp			7,50	7,13	1,11	7,13	0,17	1,22	0,71	7,20	1,03	0,02	0,02	0,71	0,73	0,00
(Α	W/W	7,41	7,05	6,65	6,29	6,78	6,52	6,34	6,73	6,56	6,31	6,10	6,55	6,32	6,50
	E	W/W	7,22	6,77	7,10	6,65	6,30	6,89	6,59	6,81	6,69	6,42	6,09	6,28	6,23	6,44
SEPR	N	W/W	7,68	7,36	7,56	7,20	6,78	7,10	6,94	7,15	6,90	6,67	6,45	6,78	6,94	6,93
	U	W/W	7,50	7,13	7,47	7,13	6,79	7,22	6,97	7,28	7,03	6,82	6,62	6,97	6,75	6,86
Model: P			,	, -			,			,	,	-,-	.,.		-, -	.,
SEPR - (EN14825: 2018) High temp	erature with standa	ard fans (1)														
	A	W/W	7,38	7,12	6,67	6,25	6,79	6,49	6,27	6,71	6,49	6,23	5,99	6,51	6,26	6,44
CEDD	E	W/W	7,25	6,73	7,15	6,60	6,20	6,83	6,51	6,84	6,61	6,31	5,99	6,46	6,22	6,34
SEPR	N	W/W	7,71	7,39	7,62	7,22	6,83	7,18	6,91	7,16	6,88	6,63	6,39	6,75	6,90	6,88
	U	W/W	7,57	7,17	7,56	7,16	6,77	7,23	6,97	7,30	7,02	6,78	6,56	6,97	6,71	6,81
SEPR - (EN14825: 2018) High temp	erature with invert	er fans (1)														
	A	W/W	7,38	7,12	6,67	6,25	6,79	6,49	6,27	6,71	6,49	6,23	5,99	6,51	6,26	6,44
SEPR	E	W/W	7,25	6,73	7,15	6,60	6,20	6,83	6,51	6,84	6,61	6,31	5,99	6,46	6,22	6,34
JEFN	N	W/W	7,71	7,39	7,62	7,22	6,83	7,18	6,91	7,16	6,88	6,63	6,39	6,75	6,90	6,88
	U	W/W	7,57	7,17	7,56	7,16	6,77	7,23	6,97	7,30	7,02	6,78	6,56	6,97	6,71	6,81
(1) Calculation performed with FIXED	water flow rate.															
Size			4202	4502	4802	5202	5602	600)2	6402	6503	6703	6903	7203	8403	9603
Model: F																
Energy index																
	A	W/W	6,16	6,38	6,15	5,85	6,01	6,2	21	6,10	6,58	6,36	6,67	6,49	6,16	6,41
CEDD	E	W/W	6,50	6,19	6,41	5,96	6,00	6,1	6	6,47	6,70	6,81	6,19	6,44	-	-
SEPR	N	W/W	6,63	6,78	6,89	7,00	6,93	6,7	1	6,69	7,26	-	-	-	-	-
	U	W/W	6,90	6,51	6,82	6,49	6,51	6,6	i6	6,80	7,14	7,19	6,84	6,97	-	-
Model: P																
Energy index																
	A	W/W	6,07	6,28	6,03	5,73	5,92	6,1	1	5,98	6,54	6,30	6,61	6,42	6,10	6,34
SEPR	E	W/W	6,41	6,06	6,29	5,84	5,92	6,0	18	6,37	6,64	6,76	6,09	6,34	-	-
JLI II	N	W/W	6,57	6,90	6,84	6,96	6,92	6,7	'8	6,65	7,23	-	-	-	-	-
	U	W/W	6,86	6,60	6,76	6,42	6,48	6,6	i3	6,77	7,12	7,16	6,80	6,93	-	-
ELECTRIC DATA																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Electric data																
	A	А	243,9	271,9	299,1	332,5	374,4	395,7	417,0	450,2	474,9	474,9	474,9	531,4	579,4	635,9
Maximum current (FLA)	E,U	Α	243,9	271,9	307,6	341,0	374,4	404,2	425,5	458,7	483,4	483,4	483,4	539,9	587,9	644,4
	N	Α	252,4	280,4	316,1	349,5	382,9	412,7	434,0	467,2	491,9	491,9	491,9	548,4	604,9	667,2
						388,2	419,8	466,8	484,0	519,5		529,4	529,4	661,9	701,8	831,3
	A	A	265,5	307,3	350,2	J00,2	- ,									839,8
Peak current (LRA)	A E,U	A A	265,5 265,5	307,3 307,3	350,2 358,7	396,7	419,8	475,3	492,5	528,0	537,9	537,9	537,9	670,4	710,3	037,0
Peak current (LRA)								475,3 483,8	492,5 501,0	528,0 536,5			537,9 546,4		710,3 727,3	862,6
	E,U	А	265,5 274,0	307,3 315,8	358,7 367,2	396,7 405,2	419,8 428,3	483,8	501,0	536,5	546,4	546,4	546,4	670,4 678,9	727,3	862,6
Peak current (LRA) Size Flectric data	E,U	А	265,5	307,3	358,7	396,7	419,8	483,8	501,0					670,4		
	E,U N	A A	265,5 274,0 4202	307,3 315,8 4502	358,7 367,2 4802	396,7 405,2 5202	419,8 428,3 5602	483,8 600	501,0 D2	536,5 6402	546,4 6503	546,4 6703	546,4 6903	670,4 678,9 7203	727,3 8403	862,6 9603
Size Electric data	E,U N	A A	265,5 274,0 4202 683,9	307,3 315,8 4502 731,4	358,7 367,2 4802 770,4	396,7 405,2 5202 813,4	419,8 428,3 5602 864,9	483,8 600 913	501,0	536,5 6402 947,2	546,4 6503 980,7	546,4 6703 1028,7	546,4 6903 1123,7	670,4 678,9 7203 1162,7	727,3 8403 1300,2	862,6
Size	E,U N	A A A	265,5 274,0 4202 683,9 700,9	307,3 315,8 4502 731,4 739,9	358,7 367,2 4802 770,4 793,2	396,7 405,2 5202 813,4 836,2	419,8 428,3 5602 864,9 887,7	483,8 600 913 930	501,0 02 ,2	536,5 6 402 947,2 972,7	546,4 6503 980,7 997,7	546,4 6703 1028,7 1054,2	546,4 6903 1123,7 1132,2	670,4 678,9 7203 1162,7 1179,7	727,3 8403 1300,2	862,6 9603 1419,2
Size Electric data	A E,U	A A A A	265,5 274,0 4202 683,9 700,9 715,2	307,3 315,8 4502 731,4 739,9 771,2	358,7 367,2 4802 770,4 793,2 818,7	396,7 405,2 5202 813,4 836,2 870,2	419,8 428,3 5602 864,9 887,7 921,7	483,8 600 913 930 955	501,0 02 1,2 1,2	536,5 6402 947,2 972,7 989,7	546,4 6503 980,7 997,7 1023,2	546,4 6703 1028,7 1054,2	546,4 6903 1123,7 1132,2	670,4 678,9 7203 1162,7 1179,7	727,3 8403 1300,2	862,6 9603 1419,2
Size Electric data	E,U N	A A A	265,5 274,0 4202 683,9 700,9	307,3 315,8 4502 731,4 739,9	358,7 367,2 4802 770,4 793,2	396,7 405,2 5202 813,4 836,2	419,8 428,3 5602 864,9 887,7 921,7 1163,9	483,8 600 913 930 955 9 1290	501,0 02 0,2 1,2 1,7 1,7 1,0,2 1,0,2 1,0,2 1,0,2 1,0,1	536,5 6402 947,2 972,7 989,7 287,2	546,4 6503 980,7 997,7	546,4 6703 1028,7 1054,2	546,4 6903 1123,7 1132,2	670,4 678,9 7203 1162,7 1179,7	727,3 8403 1300,2	862,6 9603 1419,2

GENERAL TECHNICAL DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Compressor																
Туре	A,E,N,U	type							Sci	rew						
Compressor regulation	A,E,N,U	Туре							0n-	-Off						
Number	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type							R1.	34a						
	A	kg	64,0	64,0	64,0	64,0	80,0	80,0	80,0	96,0	96,0	101,0	106,0	117,0	112,0	128,0
Refrigerant charge (1)	E,U	kg	64,0	64,0	80,0	80,0	80,0	96,0	96,0	112,0	112,0	117,0	122,0	133,0	128,0	144,0
	N	kg	80,0	80,0	96,0	96,0	96,0	112,0	112,0	128,0	128,0	133,0	138,0	149,0	160,0	176,0
System side heat exchanger																
Туре	A,E,N,U	type							Shell a	nd tube						
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Hydraulic connections																
Connections (in/out)	A,E,N,U	Туре							Groove	d joints						
(1) The load indicated in the table is	an estimated and prelin	ninary valu	ralue. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.													
Size			4202	4502	4802	5202	5602	600	02 64	102	6503	6703	6903	7203	8403	9603
Compressor																
Туре	A,E,N,U	type							Sc	rew						
Compressor regulation	A,E,N,U	Туре							0n	-Off						
	A	no.	2	2	2	2	2	2		2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2		2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2		2	3	-	-	-	-	-
	A	no.	2	2	2	2	2	2		2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2		2	3	3	3	3	-	-
					٦.				1	2	3	-	-	-	-	-
	N	no.	2	2	2	2	2	2								
Refrigerant	N A,E,N,U	no. type	2	2		2				34a						
Refrigerant			128,0	144,0	144,0	144,0	160,0		R1	34a	192,0	192,0	224,0	224,0	240,0	272,0
Refrigerant Refrigerant charge (1)	A,E,N,U	type) 176	R1 5,0 17	34a '6,0		192,0 240,0	224,0 240,0	224,0 256,0	240,0	272,0
	A,E,N,U A	type kg	128,0	144,0	144,0	144,0	160,0	176	R1 5,0 17 3,0 22	34a '6,0 '4,0						
	A,E,N,U A E,U	type kg kg	128,0 160,0	144,0 160,0	144,0 176,0	144,0 176,0	160,0 192,0	176	R1 5,0 17 3,0 22	34a '6,0 '4,0	224,0	240,0	240,0	256,0	-	-
Refrigerant charge (1)	A,E,N,U A E,U	type kg kg	128,0 160,0	144,0 160,0	144,0 176,0	144,0 176,0	160,0 192,0	176	R1 5,0 17 8,0 22 5,0 25	34a '6,0 '4,0	224,0	240,0	240,0	256,0	-	-
Refrigerant charge (1) System side heat exchanger	A,E,N,U A E,U N	type kg kg kg	128,0 160,0	144,0 160,0	144,0 176,0	144,0 176,0	160,0 192,0	176	R1 5,0 17 8,0 22 5,0 25	34a (6,0 (4,0	224,0	240,0	240,0	256,0	-	-
Refrigerant charge (1) System side heat exchanger	A,E,N,U A E,U N	type kg kg kg	128,0 160,0 176,0	144,0 160,0 208,0	144,0 176,0 224,0	144,0 176,0	160,0 192,0 256,0) 176) 208) 256	R1 5,0 17 8,0 22 5,0 25	34a (6,0 (4,0	224,0 272,0	240,0	240,0	256,0	-	-
Refrigerant charge (1) System side heat exchanger Type	A,E,N,U A E,U N A,E,N,U A	type kg kg kg type no.	128,0 160,0 176,0	144,0 160,0 208,0	144,0 176,0 224,0	144,0 176,0 240,0	160,0 192,0 256,0) 176) 208) 256	R1 5,0 17 8,0 22 5,0 25 Shell a	34a 6,0 4,0 66,0 nd tube	224,0	240,0	240,0	256,0	2	2
Refrigerant charge (1) System side heat exchanger Type	A,E,N,U A E,U N A,E,N,U A	type kg kg kg type no.	128,0 160,0 176,0	144,0 160,0 208,0	144,0 176,0 224,0	144,0 176,0 240,0	160,0 192,0 256,0	1 176 208 0 256 1 2	R1 5,0 17 8,0 22 5,0 25 Shell a	34a (6,0 (4,0 (6,0) and tube 1	224,0 272,0 2 2 2	240,0	240,0	256,0	2	2

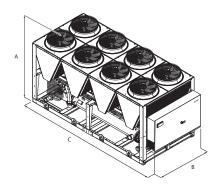
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

${\sf G.s.} = {\sf Grooved\ joints}$

SOUND DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Sound data calculated in cooling mode (1)																
_	Α	dB(A)	98,0	98,0	98,0	98,0	99,0	99,0	99,0	99,7	99,7	99,7	99,7	100,4	100,4	101,1
Cound nowar lovel	E	dB(A)	91,0	91,0	91,7	91,9	92,1	92,6	92,5	93,0	93,0	93,0	93,0	93,7	93,9	94,6
Sound power level —	N	dB(A)	91,7	91,7	92,3	92,5	92,6	93,1	93,0	93,5	93,5	93,5	93,5	94,1	94,6	95,2
	U	dB(A)	98,0	98,0	98,9	99,0	99,0	99,7	99,7	100,4	100,4	100,4	100,4	100,9	101,0	101,5
	Α	dB(A)	65,6	65,6	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,1	67,1	67,6	67,7	68,2
Cound proceure loyal (10 m)	Е	dB(A)	58,6	58,6	59,2	59,4	59,5	59,9	59,9	60,3	60,3	60,3	60,3	60,8	61,0	61,6
Sound pressure level (10 m) —	N	dB(A)	59,2	59,2	59,7	59,9	60,0	60,3	60,3	60,6	60,6	60,6	60,6	61,1	61,5	62,0
	U	dB(A)	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,6	67,6	67,6	67,6	68,1	68,1	68,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


41									4400		4500				
Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Sound data calculated in cooling mode (1	1)														
	Α	dB(A)	101,1	101,6	101,6	101,6	102,1	102,5	102,5	102,7	102,8	103,4	103,4	103,7	104,2
Cound nowar lovel	E	dB(A)	95,2	95,2	95,4	95,6	96,0	96,2	96,4	96,0	96,5	96,4	96,6	-	-
Sound power level	N	dB(A)	95,5	96,0	96,2	96,6	96,9	96,9	96,9	96,7	-	-	-	-	-
	U	dB(A)	102,0	102,0	102,4	102,4	102,8	103,1	103,4	103,4	103,7	103,7	103,9	-	-
	Α	dB(A)	68,2	68,6	68,6	68,6	69,0	69,2	69,2	69,4	69,4	69,8	69,8	70,0	70,4
Cound proceure level (10 m)	E	dB(A)	62,1	62,0	62,2	62,3	62,7	62,8	62,9	62,5	62,8	62,8	62,8	-	-
Sound pressure level (10 m)	N	dB(A)	62,3	62,5	62,6	62,9	63,1	63,1	63,1	62,8	-	-	-	-	-
	U	dB(A)	68,9	68,9	69,1	69,2	69,5	69,7	69,9	69,8	70,0	70,0	70,2	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

FANS DATA

FANS DATA																
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: F																
Fan																
Туре	A,E,N,U	type	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial
	A	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
	A	m³/h	116000	116000	116000	116000	145000	145000	145000	174000	174000	174000	174000	203000	203000	232000
Air flow rate	E	m³/h	89600	89600	112000	112000	112000	134400	134400	156800	156800	156800	156800	179200	179200	201600
All How rate	N	m³/h	112000	112000	134400	134400	134400	156800	156800	179200	179200	179200	179200	201600	224000	246400
	U	m³/h	116000	116000	145000	145000	145000	174000	174000	203000	203000	203000	203000	232000	232000	261000
Model: P																
Fan																
Туре	A,E,N,U	type	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial
	A	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
	A	m³/h	109600	109600	109600	109600	137000	137000	137000	164400	164400	164400	164400	191800	191800	219200
	E	m³/h	85600	85600	107000	107000	107000	128400	128400	149800	149800	149800	149800	171200	171200	192600
Air flow rate	N	m³/h	107000	107000	128400	128400	128400	149800	149800	171200	171200	171200	171200	192600	214000	235400
	U	m³/h	109600	109600	137000	137000	137000	164400	164400	191800	191800	191800	191800	219200	219200	246600
Size			4202	4502	4802	5202	2 560	2 60	02 6	102 6	503	6703	6903	7203	8403	9603
Model: F																
Fan																
Туре	A,E,N,U	type	Axial	Axial	Axial	Axial	l Axia	al Ax	ial A	xial /	xial	Axial	Axial	Axial	Axial	Axial
.,,,,,	A	no.	16	18	18	18	20			22	24	24	28	28	30	34
Number		no.	20	20			20	_			41	41	20	20		J.
Number	N	110.))	22	74	2	6	28	28	30	30	32	_	_
		no	22		22	22 30	24 32			28 32	28 34	30	30	32	-	-
		no. m ³ /h	22	26	28	30	32	3.	2	32	34	-	-	-	-	-
	A	m³/h	232000	26 261000	28 261000	30 26100	32 00 29000	3.00 319	2	32 9000 34	34 8000 3	48000	- 406000	406000	435000	493000
Air flow rate	A E	m³/h m³/h	232000 224000	26 261000 224000	28 261000 246400	30) 26100) 24640	32 00 29000 00 26880	3: 00 319 00 291:	2 000 31 200 31	32 9000 34 3600 31	34 8000 3 3600 3	48000 36000	- 406000 336000	- 406000 358400	435000	- 493000 -
Air flow rate	A E N	m ³ /h m ³ /h m ³ /h	232000 224000 246400	26 261000 224000 291200	28 261000 246400 313600	30 26100 24640 33600	32 00 29000 00 26880 00 35840	3. 00 319 00 291 00 358	2 000 31 200 31 400 35	32 9000 34 3600 31 8400 38	34 8000 3 3600 3	- 48000 36000	- 406000 336000 -	- 406000 358400 -	435000	- 493000 - -
	A E	m³/h m³/h	232000 224000	26 261000 224000	28 261000 246400	30 26100 24640 33600	32 00 29000 00 26880 00 35840	3. 00 319 00 291 00 358	2 000 31 200 31 400 35	32 9000 34 3600 31 8400 38	34 8000 3 3600 3	- 48000 36000	- 406000 336000	- 406000 358400	435000	- 493000 -
Model: P	A E N	m ³ /h m ³ /h m ³ /h	232000 224000 246400	26 261000 224000 291200	28 261000 246400 313600	30 26100 24640 33600	32 00 29000 00 26880 00 35840	3. 00 319 00 291 00 358	2 000 31 200 31 400 35	32 9000 34 3600 31 8400 38	34 8000 3 3600 3	- 48000 36000	- 406000 336000 -	- 406000 358400 -	435000	- 493000 - -
Model: P Fan	A E N U	m ³ /h m ³ /h m ³ /h m ³ /h	232000 224000 246400 290000	26 261000 224000 291200 290000	28 261000 246400 313600 319000	30 26100 24640 33600 31900	32 00 29000 00 26880 00 35840 00 34800	3. 00 319/ 00 291: 00 358/ 00 377/	2 000 311 200 31. 400 35 000 40	32 9000 34 3600 31 8400 38 6000 40	34 18000 3 3600 3 10800 16000 4	48000 36000 - 35000	- 406000 336000 - 435000	- 406000 358400 - 464000	- 435000 - - -	- 493000 - - -
Model: P	A E N U	m ³ /h m ³ /h m ³ /h m ³ /h	232000 224000 246400 290000 Axial	26 261000 224000 291200 290000 Axial	28 261000 246400 313600 319000	30 26100 24640 33600 31900	32 00 29000 00 26880 00 35840 00 34800	3. 00 319 00 291 00 358 00 377 al Ax	2 000 311 200 311 400 35 000 400	32 9000 34 8600 31 8400 38 5000 40	34 18000 3 3600 3 10800 4 16000 4	- 48000 36000 - 35000 Axial	- 406000 336000 - 435000 Axial	- 406000 358400 - 464000	- 435000 - - - - -	- 493000 - - - - -
Model: P Fan Type	A E N U A,E,N,U A	m ³ /h m ³ /h m ³ /h m ³ /h	232000 224000 246400 290000 Axial 16	26 261000 224000 291200 290000 Axial 18	28 261000 246400 313600 319000 Axial	30 26100 0 24640 0 33600 0 31900 Axial	32 00 29000 00 26880 00 35840 00 34800	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	2 31 200 31 200 31 400 35 31 400 40 40 40 40 40 40 40 40 40 40 40 40	32 9000 34 3600 31 38400 38 5000 40 xial /	34 8000 3 3600 3 90800 16000 4 Lixial 24	48000 36000 - 35000 - Axial	- 406000 336000 - 435000 Axial 28	- 406000 358400 - 464000 Axial 28	- 435000 - - - - - Axial 30	- 493000 - - - - - - Axial
Model: P Fan	A E N U	m³/h m³/h m³/h m³/h type no.	232000 224000 246400 290000 Axial 16 20	26 261000 224000 291200 290000 Axial 18 20	28 261000 246400 313600 319000 Axial 18 22	30 26100 24640 33600 31900 Axial 18 22	32 00 29000 00 26880 00 35840 00 34800 1 Axia 20 24	3. 00 319 00 291: 00 358: 00 377 al Ax 2	2 31/200 31/200 31/400 35/200 40/2000	32 9000 34 8600 31 8400 38 86000 40 xxial 4	34 18000 3 3600 3 10800 4 10800 4 10800 4	48000 36000 - 35000 - Axial 24 30	- 406000 336000 - 435000 Axial 28 30	- 406000 358400 - 464000 Axial 28 32	- 435000 - - - - - Axial 30 -	- 493000 - - - - -
Model: P Fan Type	A E N U A,E,N,U A E,U N	m³/h m³/h m³/h m³/h type no. no.	232000 224000 246400 290000 Axial 16 20 22	26 261000 224000 291200 290000 Axial 18 20 26	28 261000 246400 313600 319000 Axial 18 22 28	30 26100 24640 33600 31900 Axial 18 22 30	32 00 29000 00 26881 00 35840 00 34800 1 Axia 20 24	3. 00 319 00 291. 00 358 00 377 all Ax 2 20 3.	2 31:200 31:400 35:400 40:400 40:400 40:400 35:400 40:400 40:4000 40:4	32 99000 34 8400 38 8400 40 55000 40 222 28	34 18000 3 3600 3 10800 4 10800 4	48000 36000 335000 Axial 24 30	- 406000 336000 - 435000 Axial 28 30	- 406000 358400 - 464000 Axial 28 32	- 435000 	- 493000 - - - - - - - - - - 34 - -
Model: P Fan Type	A E N U A,E,N,U A E,U N	m³/h m³/h m³/h m³/h type no. no. m³/h	232000 224000 246400 290000 Axial 16 20 22 219200	26 261000 224000 291200 290000 Axial 18 20 26 246600	28 261000 246400 313600 319000 Axial 18 22 28 246600	30 261000 0 24640 0 33600 0 31900 Axial 18 22 30 0 24660	32 00 29000 00 26880 00 35840 00 34800 1 Axia 20 24 32 00 27400	3.00 319/ 000 291: 000 358: 000 377/ 11 Ax 20 20 3.00 301-	2 31:200 31:200 31:400 35:5000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 30:000 40:000 30:0000 40:000 30:000 40:000 30:000 40:000 30:000 40:000 30:000 40:0000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:0000 40:0000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:0000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:0000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:000 40:0000	32 9000 34 3600 31 38400 38 55000 40 xial // 22 28 33 32	34 18000 3 3600 3 10800 6 16000 4 124 128 134 18800 3	Axial 24 30 - 28800	- 406000 336000 - 435000 Axial 28 30 -	- 406000 358400 - 464000 Axial 28 32 - 383600	Axial 30 - 411000	- 493000 - - - - - - Axial
Model: P Fan Type Number	A E N U A,E,N,U A E,U N A E	m³/h m³/h m³/h m³/h type no. no. no. m³/h m³/h	232000 224000 246400 290000 Axial 16 20 22 219200 214000	26 261000 224000 291200 290000 Axial 18 20 26 246600 214000	28 261000 246400 313600 319000 Axial 18 22 28 246600 235400	30 261000 246400 336000 319000 Axial 18 22 30 246600 235400 23540	32 00 29000 00 26880 00 35840 00 34800 1 Axia 20 24 32 00 27400 00 25680	3.00 319/00 291.00 358-00 377/00 358-00 377/00 358-00 377/00 301-00 301-00 278.00 301-00 278.00 319/00 278.00 319/00 319/00 278.00 319/00 278.00 319/00 278.00 319/00 278.00 319/00 278.00 319/00 278.00 319/00 278.00 319/00 278.00 319/00 278.00 319/00 319/00 278.00 319/	2 31000 311200 31.400 35.400 40.600 4	32 9000 34 3600 31 3400 38 35000 40 40 40 40 22 28 32 32 34 34 34 34 34 34 34 34 34 34	34 18000 3 3600 3 10800 4 10800 4 10800 4 10800 3 10800 4 10800 3	Axial 24 30 28800 21000	- 406000 336000 - 435000 - 435000 Axial 28 30 - 383600 321000	- 406000 358400 - 464000 Axial 28 32 - 383600 342400	Axial 30 - 411000 -	- 493000 - - - - - - - - - - 34 - -
Model: P Fan Type	A E N U A,E,N,U A E,U N	m³/h m³/h m³/h m³/h type no. no. m³/h	232000 224000 246400 290000 Axial 16 20 22 219200	26 261000 224000 291200 290000 Axial 18 20 26 246600	28 261000 246400 313600 319000 Axial 18 22 28 246600	30 26100 0 24640 0 33600 0 31900 Axial 18 22 30 24660 0 23540	32 29000 26880 35840 34800 34800 34800 324 32 20 27400 25680 34240	3.00 319/ 000 291: 000 358: 000 377/ 11 Ax 2 2 3.00 301- 000 278: 000 342:	2	32 9000 34 3600 31 8400 38 8400 40 xial 4 22 28 33 21 1400 32 29600 29	34 88000 3 3600 3 80800 4 6000 4 1xial 24 28 34 8800 3 9600 3	Axial 24 30 - 28800 - 21000	- 406000 336000 - 435000 Axial 28 30 -	- 406000 358400 - 464000 Axial 28 32 - 383600	Axial 30 - 411000	- 493000 - - - - - - - - - - 34 - -

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights																
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	Α	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330	9520
C	E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520	10710
	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900	13090
_	Α	kg	4695	4730	4870	5200	6065	6080	6285	6950	7145	7200	7300	8500	8975	9590
Empty weight	E,U	kg	4855	4875	5435	6025	6380	7025	7045	7625	7715	7785	7880	9145	9605	10475
	N	kg	5370	5390	6065	6655	7010	7560	7585	8175	8265	8340	8430	9930	10905	11630
Size			4202	4502	4802	5202	5602	600)2 (5402	6503	6703	6903	7203	8403	9603
Dimensions and weights																
	Α	mm	2450	2450	2450	2450	2450	245	50	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	245	50	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	245	50	2450	2450	-	-	-	-	-
	Α	mm	2200	2200	2200	2200	2200	220	00 2	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	220	00 2	2200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	220	00 2	2200	2200	-	-	-	-	-
	Α	mm	9520	10710	10710	10710	11900	130	90 1	3090	14280	14280	16660	16660	17850	20230
C	E,U	mm	11900	11900	13090	13090	14280	154	70 1	6660	16660	17850	17850	19040	-	-
	N	mm	13090	15470	16660	17850	19040	1904	40 1	9040	20230	-	-	-	-	-
	A	kg	9655	10475	10525	10945	11580	1220	65 1	2305	14815	14880	16240	16290	17510	18895
Empty weight	E,U	kg	11070	11130	12135	12260	13260	1380	00 1	4340	16230	16825	16940	17955	-	-
	N	kg	11700	13205	13990	14725	15460	1550	05 1	5550	18085	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately. For more information, please refer to the technical manual and / or installation.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSM 1402-9603 B

Air-cooled chiller with free cooling (glycol-free)

Cooling capacity 305,8 ÷ 2028,1 kW

- Microchannel coil
- Night mode
- Operation up to 50 °C outdoor air
- · High efficiency also at partial loads

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency
E Silenced high efficiency
N Silenced very high efficiency
U Very high efficiency

FEATURES

Operating field

Operation at full load up to 50 °C external air temperature depending on the size and vesion. For more information refer to the dedicated documentations or the selection program Magellano.

Unit with 2/3 cooling circuits

Unit with 2/3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

Free cooling with glycol water

Intermediate plate heat exchanger that creates two circuits:

- Glycol hydraulic circuit (glycol is added to protect the coil from freezing).
- **2.** Primary hydraulic circuit for glycol-free systems.

Electronic expansion valve

Electronic thermostatic as standard from size 5202 to 6402 and from 8403 to 9603.

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.
- Night Mode: it is possible to set a silenced operation profile. Perfect
 for night operation since it guarantees greater acoustic comfort in
 the evenings, and a high efficiency in the time of greater load.

ACCESSORIES

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 x n° 3: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP. SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using

Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

AK: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

KDI: Double thickness evaporator insulation. Provides stand-still protection down to -20°C. Must be ordered in conjunction with options

ACCESSORIES COMPATIBILITY

Model	Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
AER485P1 x n° 2 (1)	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E,N,U	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•		•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E,N,U	•	•	•	•	•		•	•	•	•	•	•	•	
PRV3	A,E,N,U	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•
Model	Ver	4202	4502	4802	5202	5602	6002	2 64	02 6	503	6703	6903	7203	8403	9603
AER485P1 x n° 2 (1)	A,E,N,U	•	•	•	•	•	•								
AER485P1 x n° 3 (1)	A,E,N,U									•	•	•	•	•	•
AERBACP	A,E,N,U	•	•	•		•	•			•	•	•	•	•	•
AERNET	A,E,N,U	•	•	•	•	•	•			•	•	•	•	•	•
MULTICHILLER_EVO	A,E,N,U	•	•	•		•				•	•	•	•	•	•
PRV3	A,E,N,U	•					•				•				•

(1) x Indicates the quantity of accessories to match.

Antivibration

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
A	AVX929	AVX929	AVX929	AVX932	AVX933	AVX933	AVX933	AVX934	AVX937	AVX937	AVX937	AVX938	AVX938	AVX942
E,U	AVX929	AVX929	AVX930	AVX933	AVX933	AVX934	AVX934	AVX935	AVX935	AVX935	AVX935	AVX939	AVX939	AVX940
N	AVX930	AVX930	AVX931	AVX931	AVX934	AVX935	AVX935	AVX936	AVX936	AVX936	AVX936	AVX940	AVX941	AVX943
Ver	4202	4502	4802	5202	5602	6002	2 64	02 6	5503	6703	6903	7203	8403	9603
A	AVX942	AVX944	AVX944	AVX944	AVX945	AVX94	7 AVX	947 A	/X953	AVX953	AVX957	AVX954	AVX956	AVX955
E,U	AVX941	AVX945	AVX947	AVX947	AVX950	AVX95	2 AVX	948 A	/X954	AVX956	AVX956	AVX958	-	-
N	AVX943	AVX946	AVX948	AVX949	AVX951	AVX95	1 AVX	951 A\	/X955	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352Q	RIFNSM2502Q	RIFNSM2652Q	RIFNSM2802C
E	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002Q	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
N	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802C	RIFNSM2002Q	RIFNSM2202C	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C
U	RIFNSM1402Q	RIFNSM1602Q	RIFNSM1802Q	RIFNSM2002C	RIFNSM2202Q	RIFNSM2352C	RIFNSM2502C	RIFNSM2652Q	RIFNSM2802C

A grey background indicates the accessory must be assembled in the factory

Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202
A,E,U	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	RIFNSM4502C	RIFNSM4802C	RIFNSM5202C
N	RIFNSM3002C	RIFNSM3202C	RIFNSM3402C	RIFNSM3602C	RIFNSM3902C	RIFNSM4202C	_	_	_

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	RIFNSM5602C	RIFNSM6002C	RIFNSM6402C	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Anti-intrusion grid

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Α	GP4V	GP4V	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V
E,U	GP4V	GP4V	GP5V	GP5V	GP5V	GP6V	GP6V	GP7V	GP7V	GP7V	GP7V	GP8V	GP8V	GP9V
N	GP5V	GP5V	GP6V	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP8V	GP8V	GP9V	GP10V	GP11V

A grey background indicates the accessory must be assembled in the factory

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Α	GP8V	GP9V	GP9V	GP9V	GP10V	GP11V	GP11V	GP4V+GP8V	GP4V+GP8V	GP5V+GP9V	GP5V+GP9V	GP5V+GP10V	GP6V+GP11V
E,U	GP10V	GP10V	GP11V	GP11V	GP6V+GP6V	GP6V+GP7V	GP7V+GP7V	GP5V+GP9V	GP5V+GP10V	GP5V+GP10V	GP6V+GP11V	-	-
N	GP11V	GP6V+GP7V	GP7V+GP7V	GP7V+GP8V	GP8V+GP8V	GP8V+GP8V	GP8V+GP8V	GP6V+GP11V	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with

A grey background indicates the accessory must be assembled in the factory

Heater exchangers

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802
A	KRS22	KRS22	KRS23						

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802			
E,N,U	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23			
A grey background indicates the access	ey background indicates the accessory must be assembled in the factory											
Ver	3002	3202	3402	3602	3902	4202	4502	4802	5202			
A,E,U	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24	KRS24			
N	KRS23	KRS23	KRS24	KRS24	KRS24	KRS24	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23			

A grey background indicates the accessory must be assembled in the factory

Ver	5602	6002	6402	6503	6703	6903	7203	8403	9603
A	KRS24	KRS24	KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24
E,U	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	KRS23+KRS24	-	-
N	KRS23+KRS23	KRS23+KRS23	KRS23+KRS23	KRS23+KRS24	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
E,N	AK (1)													

(1) Available only in low noise version

A grey background indicates the accessory must be assembled in the factory

 •													
Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
E,N	AK (1)												

(1) Available only in low noise version A grey background indicates the accessory must be assembled in the factory

Double thickness evaporator insulation

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
A,E,N,U	KDI (1)													

(1) Contact us.
A grey background indicates the accessory must be assembled in the factory

Ver	4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
A,E,N,U	KDI (1)												

(1) Contact us.
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NSM
4,5,6,7	Size 1402, 1602, 1802, 2002, 2202, 2352, 2502, 2652, 2802, 3002, 3202, 3402, 3602, 3902, 4202, 4502, 4802, 5202, 5602, 6002, 6402, 6503, 6703, 6903, 7203, 8403, 9603
8	Operating field
0	Standard mechanic thermostatic valve (1)
Χ	Electronic thermostatic expansion valve (2)
Υ	Low temperature mechanic thermostatic valve (3)
Z	Low temperature electronic thermostatic valve (3)
9	Model
В	Free-cooling glycol free
G	Free-cooling glycol free plus (4)
10	Heat recovery
0	Without heat recovery
11	Version
Α	High efficiency
E	Silenced high efficiency
N	Silenced very high efficiency
U	Very high efficiency
12	Coils / free-cooling coils
0	Alluminium microchannel / Copper - aluminium

Field	Description
0	Painted alluminium microchannel / Copper painted aluminium
R	Copper-copper/Copper-copper
S	Copper-Tinned copper / Copper -Tinned copper
V	Copper-painted alumimium / Copper-painted alumimium
13	Fans
0	Standard
J	Inverter
14	Power supply
0	400V ~ 3 50Hz with fuses
2	230V ~ 3 50Hz with fuses (5)
4	230V ~ 3 50Hz with magnet circuit breakers (5)
5	500V ~ 3 50Hz with fuses (6)
8	400V ~ 3 50Hz with magnet circuit breakers
9	500V ~ 3 50Hz with magnet circuit breakers (6)
15,16	Integrated hydronic kit
00	Without hydronic kit

- (1) Water produced up to +4 °C.
 (2) Water produced up to +4 °C.
 (3) Water produced from +4 °C ÷ -6 °C
 (4) The Free cooling Plus "G" models are only compatible with "°" and "O" coils.
 (5) Available only for size from 1402 to 3202
 (6) Available only for size from 1402 to 3202

PERFORMANCE SPECIFICATIONS

NSM - A

NSM - A															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	306,5	350,2	396,8	450,5	505,3	522,5	556,5	600,8	649,8	678,4	726,3	813,3	872,8	954,1
Input power	kW	102,8	117,6	136,7	158,3	168,9	180,5	194,5	203,0	220,4	235,0	252,8	269,7	295,6	317,9
Cooling total input current	A	182,0	206,0	231,0	268,0	291,0	311,0	335,0	351,0	378,0	400,0	427,0	451,0	487,0	530,0
EER	W/W	2,98	2,98	2,90	2,85	2,99	2,90	2,86	2,96	2,95	2,89	2,87	3,02	2,95	3,00
Water flow rate system side	l/h	52653	60163	68174	77407	86812	89765	95621	103224	111642	116561	124785	139737	149957	163932
Pressure drop system side	kPa	73	94	100	72	90	96	108	107	117	100	94	81	93	112
Cooling performances with free-cooling glycol-fr	ee (2)														
Cooling capacity	kW	201,2	207,2	212,6	221,0	271,8	273,9	277,4	334,0	337,2	352,7	355,8	414,1	417,7	460,7
Input power	kW	18,5	18,5	18,5	18,5	24,6	24,6	24,6	32,7	32,7	32,9	32,9	38,1	38,1	42,0
Free cooling total input current	A	33,0	32,0	31,0	31,0	42,0	42,0	42,0	57,0	56,0	56,0	56,0	64,0	63,0	70,0
EER	W/W	10,87	11,19	11,48	11,92	11,06	11,14	11,28	10,20	10,30	10,71	10,81	10,86	10,95	10,97
Model: G															
Cooling performance chiller operation (1)															
Cooling capacity	kW	305,8	349,3	395,0	447,3	502,1	519,1	552,6	597,2	645,4	674,3	721,9	807,8	865,0	946,8
Input power	kW	103,7	118,8	138,1	160,2	170,8	182,6	197,0	205,3	223,1	238,4	257,1	273,3	299,3	321,8
Cooling total input current	А	184,0	208,0	233,0	271,0	294,0	315,0	339,0	355,0	382,0	405,0	433,0	456,0	492,0	536,0
EER	W/W	2,95	2,94	2,86	2,79	2,94	2,84	2,81	2,91	2,89	2,83	2,81	2,96	2,89	2,94
Water flow rate system side	l/h	52546	60019	67864	76853	86266	89180	94948	102598	110891	115859	124023	138789	148609	162675
Pressure drop system side	kPa	48	64	74	62	78	84	95	70	74	81	74	86	98	68
Cooling performances with free-cooling glycol-free (2)															
Cooling capacity	kW	213,5	220,0	226,6	237,8	288,8	291,7	294,5	353,1	360,2	374,3	378,1	439,1	443,5	495,5
Input power	kW	18,3	18,3	18,3	18,3	24,2	24,2	24,2	32,1	32,1	32,3	32,3	37,4	37,4	41,3
Free cooling total input current	A	32,0	32,0	31,0	31,0	42,0	42,0	42,0	55,0	55,0	55,0	54,0	62,0	61,0	69,0
EER	W/W	11,68	12,03	12,39	12,99	11,92	12,04	12,16	11,00	11,22	11,59	11,71	11,74	11,86	12,00

NSM - A

NSW - A														
Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation (1)														
Cooling capacity	kW	996,8	1082,3	1128,3	1167,3	1222,8	1304,9	1346,7	1459,2	1501,9	1659,0	1705,0	1838,1	2028,1
Input power	kW	346,1	365,7	391,9	422,5	438,9	452,7	472,4	492,1	520,2	557,2	583,3	659,0	704,1
Cooling total input current	A	581,0	614,0	655,0	704,0	733,0	761,0	796,0	821,0	872,0	945,0	986,0	1100,0	1198,0
EER	W/W	2,88	2,96	2,88	2,76	2,79	2,88	2,85	2,97	2,89	2,98	2,92	2,79	2,88
Water flow rate system side	l/h	171269	185947	193855	200561	210092	224201	231379	250713	258050	285029	292937	315803	348457
Pressure drop system side	kPa	122	132	143	116	109	125	133	112	127	132	143	108	135
Cooling performances with free-cooling glycol-free	2 (2)													
Cooling capacity	kW	464,4	522,4	524,0	526,5	571,2	612,5	614,9	684,4	688,1	798,8	801,4	867,6	965,2
Input power	kW	42,0	46,2	46,2	46,2	50,1	53,8	53,9	60,5	60,5	70,7	70,8	78,9	86,8
Free cooling total input current	A	71,0	77,0	77,0	77,0	84,0	91,0	91,0	101,0	101,0	120,0	120,0	132,0	148,0
EER	W/W	11,06	11,32	11,35	11,41	11,41	11,38	11,41	11,31	11,37	11,29	11,32	10,99	11,12
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	988,7	1074,2	1119,1	1156,4	1212,7	1295,2	1336,2	1447,7	1489,6	1646,9	1691,9	1822,8	2013,1
Input power	kW	350,6	370,3	397,1	428,3	444,3	458,0	478,2	498,2	527,1	564,0	590,8	667,1	712,4
Cooling total input current	Α	588,0	621,0	663,0	713,0	741,0	769,0	805,0	830,0	882,0	956,0	998,0	1112,0	1211,0
EER	W/W	2,82	2,90	2,82	2,70	2,73	2,83	2,79	2,91	2,83	2,92	2,86	2,73	2,83
Water flow rate system side	l/h	169873	184553	192278	198678	208362	222522	229577	248739	255937	282961	290686	313186	345875
Pressure drop system side	kPa	74	91	98	86	95	109	116	84	84	110	110	101	116
Cooling performances with free-cooling glycol-free (2)														
Cooling capacity	kW	500,3	559,0	564,4	569,9	610,4	656,1	662,5	737,9	742,7	856,4	861,8	926,6	1037,6
Input power	kW	41,3	45,5	45,5	45,5	49,3	53,1	53,1	59,6	59,6	69,7	69,7	77,6	85,4
Free cooling total input current	A	69,0	76,0	76,0	76,0	82,0	89,0	89,0	99,0	100,0	118,0	118,0	129,0	145,0
EER	W/W	12,12	12,30	12,42	12,54	12,38	12,36	12,48	12,38	12,46	12,29	12,37	11,95	12,15

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 10%; Free-cooling 0% (2) System side water heat exchanger 12 °C/8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NSM - E

NJM - L															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	319,8	365,8	417,7	473,0	509,1	549,8	568,8	618,6	646,3	675,1	715,5	796,7	851,7	929,6
Input power	kW	105,5	123,3	137,5	159,4	178,3	183,3	195,5	205,2	220,4	235,9	253,5	270,8	297,1	320,1
Cooling total input current	А	177,0	206,0	223,0	261,0	295,0	305,0	326,0	342,0	365,0	389,0	415,0	438,0	474,0	517,0
EER	W/W	3,03	2,97	3,04	2,97	2,85	3,00	2,91	3,01	2,93	2,86	2,82	2,94	2,87	2,90
Water flow rate system side	l/h	54946	62848	71763	81260	87462	94455	97732	106280	111042	115993	122937	136886	146332	159723
Pressure drop system side	kPa	62	76	84	78	90	88	94	100	109	91	94	80	92	110
Cooling performances with free-cooling glycol-fr	ee (2)														
Cooling capacity	kW	186,6	192,0	231,5	241,7	246,1	294,5	297,3	334,0	337,2	351,6	354,9	403,7	407,3	448,1
Input power	kW	15,5	15,5	19,5	19,6	19,6	26,8	26,8	30,6	30,6	31,0	31,0	34,0	34,0	36,8
Free cooling total input current	A	26,0	26,0	32,0	32,0	32,0	44,0	45,0	51,0	51,0	51,0	51,0	55,0	54,0	59,0
EER	W/W	12,01	12,36	11,89	12,34	12,57	11,01	11,11	10,92	11,03	11,35	11,45	11,88	11,98	12,18
Model: G															
Cooling performance chiller operation (1)															
Cooling capacity	kW	316,7	363,1	414,5	469,5	504,1	545,4	564,0	613,8	640,8	669,8	710,9	790,6	843,5	921,3
Input power	kW	106,6	124,7	138,6	161,1	181,0	185,4	197,8	207,6	223,1	239,2	257,8	274,6	301,1	324,4
Cooling total input current	А	179,0	208,0	225,0	263,0	298,0	308,0	329,0	345,0	369,0	393,0	421,0	443,0	480,0	523,0
EER	W/W	2,97	2,91	2,99	2,91	2,79	2,94	2,85	2,96	2,87	2,80	2,76	2,88	2,80	2,84
Water flow rate system side	l/h	54406	62391	71215	80666	86616	93710	96910	105465	110105	115087	122135	135840	144915	158291
Pressure drop system side	kPa	36	42	54	66	76	54	58	59	65	71	73	47	54	66
Cooling performances with free-cooling glycol-fr	ee (2)														
Cooling capacity	kW	197,2	203,1	242,3	255,6	258,0	307,4	310,5	349,3	352,8	266,5	373,6	421,8	425,7	470,1
Input power	kW	15,2	15,2	19,1	19,2	19,2	26,1	26,1	29,9	29,9	30,3	30,3	33,3	33,3	36,1
Free cooling total input current	A	26,0	25,0	31,0	31,0	32,0	43,0	44,0	50,0	50,0	50,0	49,0	54,0	53,0	58,0
EER	W/W	12,94	13,32	12,67	13,29	13,42	11,76	11,88	11,68	11,79	12,11	12,35	12,68	12,80	13,02

NSM - E

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation (1)														
Cooling capacity	kW	995,2	1051,6	1137,0	1159,2	1217,3	1279,4	1341,6	1434,0	1499,6	1598,6	1684,0	-	-
Input power	kW	339,9	370,0	389,4	418,0	436,6	448,9	461,2	491,1	510,9	568,9	588,3	-	-
Cooling total input current	A	555,0	601,0	632,0	678,0	708,0	732,0	755,0	804,0	832,0	924,0	945,0	-	-
EER	W/W	2,93	2,84	2,92	2,77	2,79	2,85	2,91	2,92	2,93	2,81	2,86	-	-
Water flow rate system side	l/h	170980	180685	195353	199172	209139	219823	230507	246385	257643	274665	289333	-	-
Pressure drop system side	kPa	125	128	130	135	84	115	112	110	121	121	130	-	-
Cooling performances with free-cooling glycol-free	ee (2)													
Cooling capacity	kW	495,6	509,3	549,8	551,2	600,1	640,5	682,5	692,0	739,5	761,7	802,2	-	-
Input power	kW	44,0	44,2	46,9	47,0	53,5	57,3	61,5	56,4	63,5	65,6	68,4	-	-
Free cooling total input current	Α	72,0	72,0	76,0	76,0	87,0	93,0	100,0	92,0	104,0	107,0	110,0	-	-
EER	W/W	11,27	11,54	11,72	11,73	11,22	11,17	11,14	12,27	11,64	11,60	11,72	-	-
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	987,5	1041,9	1127,1	1148,0	1206,7	1269,3	1332,0	1421,7	1487,9	1583,2	1668,4	-	-
Input power	kW	344,2	375,3	394,8	424,0	442,2	454,4	466,6	497,6	517,4	577,4	596,9	-	-
Cooling total input current	А	561,0	609,0	640,0	687,0	717,0	740,0	763,0	814,0	842,0	937,0	957,0	-	-
EER	W/W	2,87	2,78	2,86	2,71	2,73	2,79	2,85	2,86	2,88	2,74	2,80	-	-
Water flow rate system side	l/h	169667	179011	193651	197235	207320	218083	228846	244269	255645	272005	286645	-	-
Pressure drop system side	kPa	76	87	83	86	58	70	70	86	86	100	100	-	-
Cooling performances with free-cooling glycol-free	e (2)													
Cooling capacity	kW	523,4	531,6	576,1	581,5	627,1	669,8	712,5	728,1	781,4	795,8	840,2	-	-
Input power	kW	43,0	43,1	46,0	46,0	52,3	56,1	59,8	55,3	62,2	64,2	67,0	-	-
Free cooling total input current	A	70,0	70,0	74,0	74,0	85,0	91,0	98,0	91,0	101,0	104,0	107,0	-	-
EER	W/W	12,17	12,32	12,53	12,65	11,99	11,95	11,91	13,16	12,55	12,40	12,54	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NSM - U

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	328,1	378,5	429,3	491,9	531,3	568,6	589,0	638,0	667,8	695,1	735,8	824,8	891,0	967,9
Input power	kW	105,3	121,3	136,2	155,8	172,9	180,0	191,0	202,4	216,1	228,4	242,4	263,0	288,2	311,5
Cooling total input current	А	186,0	212,0	232,0	266,0	297,0	313,0	332,0	353,0	374,0	392,0	413,0	443,0	477,0	523,0
EER	W/W	3,12	3,12	3,15	3,16	3,07	3,16	3,08	3,15	3,09	3,04	3,04	3,14	3,09	3,11
Water flow rate system side	l/h	56372	65027	73755	84508	91287	97691	101204	109611	114731	119419	126414	141715	153088	166304
Pressure drop system side	kPa	66	81	88	83	96	93	99	106	88	95	87	85	99	117
Cooling performances with free-cooling glycol-f	ree (2)														
Cooling capacity	kW	207,3	213,5	254,5	275,3	278,0	330,7	333,2	373,6	391,6	395,4	406,8	452,9	456,9	499,3
Input power	kW	19,5	19,5	24,5	26,5	26,5	32,7	32,8	37,6	38,0	38,0	38,1	42,0	42,0	45,8
Free cooling total input current	A	34,0	34,0	42,0	45,0	46,0	57,0	57,0	65,0	66,0	65,0	65,0	71,0	70,0	77,0
EER	W/W	10,62	10,94	10,40	10,40	10,49	10,10	10,17	9,94	10,31	10,41	10,67	10,79	10,88	10,90
Model: G															-
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,9	376,7	427,6	488,8	527,6	565,4	585,6	634,6	664,0	691,7	732,5	820,3	884,7	961,8
Input power	kW	106,3	122,5	137,6	157,4	174,8	181,8	193,0	204,4	218,3	231,1	245,7	266,0	291,3	314,8
Cooling total input current	A	187,0	213,0	234,0	269,0	300,0	316,0	335,0	356,0	377,0	396,0	418,0	447,0	482,0	528,0
EER	W/W	3,08	3,07	3,11	3,10	3,02	3,11	3,03	3,10	3,04	2,99	2,98	3,08	3,04	3,06
Water flow rate system side	l/h	56168	64715	73458	83974	90643	97138	100613	109029	114089	118834	125850	140933	152003	165249
Pressure drop system side	kPa	39	45	58	72	84	59	63	64	70	76	78	51	59	72
Cooling performances with free-cooling glycol-f	ree (2)														
Cooling capacity	kW	219,8	228,8	272,7	291,1	297,0	349,6	353,1	394,9	414,0	418,2	430,6	479,9	489,3	530,2
Input power	kW	19,2	19,2	24,1	26,0	26,0	32,1	32,1	36,9	37,3	37,3	37,4	41,3	41,3	45,1
Free cooling total input current	A	34,0	33,0	41,0	44,0	45,0	56,0	56,0	64,0	64,0	64,0	64,0	69,0	68,0	75,0
EER	W/W	11,43	11,90	11,30	11,20	11,42	10,89	11,00	10,71	11,11	11,22	11,51	11,63	11,86	11,77

NSM - U

Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1031,1	1095,0	1181,2	1208,8	1265,8	1326,2	1386,6	1491,1	1554,3	1666,6	1752,7	-	-
Input power	kW	332,0	358,4	379,0	405,3	426,4	440,0	453,5	478,4	498,9	549,8	570,4	-	-
Cooling total input current	А	564,0	605,0	639,0	682,0	718,0	746,0	774,0	812,0	846,0	926,0	954,0	-	-
EER	W/W	3,11	3,06	3,12	2,98	2,97	3,01	3,06	3,12	3,12	3,03	3,07	-	-
Water flow rate system side	l/h	177155	188137	202935	207692	217477	227858	238239	256194	267046	286336	301135	-	-
Pressure drop system side	kPa	119	137	138	145	104	124	113	117	119	137	138	-	-
Cooling performances with free-cooling glycol-f	ree (2)													
Cooling capacity	kW	565,8	570,9	615,3	617,2	681,2	721,6	762,0	777,2	843,7	865,6	910,0	-	-
Input power	kW	54,1	54,1	57,9	58,0	67,5	71,3	75,2	72,3	80,6	83,9	87,7	-	-
Free cooling total input current	A	92,0	91,0	98,0	97,0	114,0	121,0	128,0	123,0	137,0	141,0	147,0	-	-
EER	W/W	10,46	10,55	10,62	10,65	10,10	10,12	10,14	10,75	10,47	10,32	10,38	-	-
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1025,3	1088,1	1174,0	1200,9	1257,9	1318,5	1379,2	1482,0	1545,4	1655,7	1741,6	-	-
Input power	kW	335,5	362,4	383,1	409,7	430,7	444,3	457,9	483,4	504,1	556,1	576,8	-	-
Cooling total input current	A	569,0	611,0	645,0	688,0	725,0	752,0	780,0	819,0	854,0	936,0	963,0	-	-
EER	W/W	3,06	3,00	3,06	2,93	2,92	2,97	3,01	3,07	3,07	2,98	3,02	-	-
Water flow rate system side	l/h	176150	186945	201699	206322	216119	226541	236963	254617	265517	284475	299229	-	-
Pressure drop system side	kPa	81	94	90	94	63	70	75	85	92	103	113	-	-
Cooling performances with free-cooling glycol-f	ree (2)													
Cooling capacity	kW	600,3	606,3	654,1	660,5	720,3	764,2	808,1	827,1	897,3	920,4	968,2	-	-
Input power	kW	53,1	53,1	57,0	57,0	66,1	69,9	73,8	71,0	79,1	82,2	86,0	-	-
Free cooling total input current	A	90,0	90,0	96,0	96,0	111,0	118,0	126,0	120,0	134,0	138,0	144,0	-	-
EER	W/W	11,30	11,41	11,48	11,60	10.90	10.93	10.95	11.64	11.34	11,20	11,25	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; fuller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

NSM - N

NSM - N															
Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B															
Cooling performance chiller operation (1)															
Cooling capacity	kW	326,0	376,5	424,5	486,3	525,3	559,6	579,7	626,1	655,1	682,6	723,4	811,7	888,8	960,7
Input power	kW	103,6	119,3	134,4	153,8	170,9	178,3	189,4	200,8	214,8	227,9	242,9	263,8	283,0	307,1
Cooling total input current	А	175,0	200,0	218,0	253,0	283,0	297,0	317,0	335,0	357,0	376,0	399,0	427,0	452,0	497,0
EER	W/W	3,15	3,16	3,16	3,16	3,07	3,14	3,06	3,12	3,05	3,00	2,98	3,08	3,14	3,13
Water flow rate system side	l/h	56017	64687	72926	83554	90260	96150	99597	107568	112546	117285	124287	139460	152704	165051
Pressure drop system side	kPa	54	65	67	83	96	92	98	79	86	93	86	84	100	106
Cooling performances with free-cooling glycol-f	ree (2)														
Cooling capacity	kW	220,8	232,6	273,9	282,2	286,3	327,6	330,8	378,1	381,7	385,4	396,5	442,9	482,6	528,7
Input power	kW	18,3	19,6	26,5	26,5	27,4	30,6	30,6	33,8	33,8	33,8	34,0	40,8	43,6	46,5
Free cooling total input current	A	31,0	33,0	43,0	44,0	45,0	51,0	51,0	56,0	56,0	56,0	56,0	66,0	70,0	75,0
EER	W/W	12,04	11,88	10,32	10,63	10,44	10,71	10,82	11,17	11,28	11,39	11,66	10,86	11,07	11,37
Model: G															
Cooling performance chiller operation (1)															
Cooling capacity	kW	325,1	375,2	422,9	483,6	522,0	556,8	576,7	623,1	651,8	679,6	720,3	807,0	882,8	955,1
Input power	kW	104,5	120,4	135,6	155,5	172,9	180,2	191,5	202,9	217,2	230,8	246,4	267,1	286,2	310,3
Cooling total input current	А	176,0	201,0	220,0	255,0	286,0	300,0	320,0	338,0	360,0	381,0	404,0	431,0	457,0	501,0
EER	W/W	3,11	3,12	3,12	3,11	3,02	3,09	3,01	3,07	3,00	2,94	2,92	3,02	3,09	3,08
Water flow rate system side	l/h	55859	64457	72661	83082	89692	95662	99076	107055	111979	116764	123748	138653	151682	164102
Pressure drop system side	kPa	39	46	36	44	51	58	62	40	43	47	46	50	60	72
Cooling performances with free-cooling glycol-f	ree (2)														
Cooling capacity	kW	230,8	243,4	284,6	294,0	301,4	342,3	345,8	395,2	403,2	407,2	414,7	463,0	509,0	554,0
Input power	kW	18,0	19,2	25,6	25,9	26,7	29,9	29,9	33,1	33,1	33,1	33,3	39,8	42,6	45,6
Free cooling total input current	А	30,0	32,0	42,0	43,0	44,0	50,0	50,0	55,0	55,0	55,0	55,0	64,0	68,0	74,0
EER	W/W	12,79	12,66	10,98	11,34	11,27	11,44	11,56	11,93	12,17	12,29	12,46	11,62	11,94	12,15

NSM - N

143/41 - 14														
Size		4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Model: B														
Cooling performance chiller operation (1)														
Cooling capacity	kW	1004,9	1098,6	1161,7	1218,0	1274,5	1318,1	1361,7	1478,4	-	-	-	-	-
Input power	kW	332,9	349,5	369,2	392,7	416,2	433,5	450,9	472,0	-	-	-	-	-
Cooling total input current	А	544,0	570,0	600,0	639,0	677,0	708,0	740,0	771,0	-	-	-	-	-
EER	W/W	3,02	3,14	3,15	3,10	3,06	3,04	3,02	3,13	-	-	-	-	-
Water flow rate system side	l/h	172652	188754	199587	209274	218966	226456	233947	254013	-	-	-	-	-
Pressure drop system side	kPa	116	112	104	109	72	78	81	105	-	-	-	-	-
Cooling performances with free-cooling glycol-fr	ree (2)													
Cooling capacity	kW	533,7	625,3	661,6	712,1	756,1	767,1	770,8	815,0	-	-	-	-	-
Input power	kW	46,5	57,3	61,2	64,4	67,7	67,7	67,7	73,9	-	-	-	-	-
Free cooling total input current	A	76,0	93,0	99,0	105,0	110,0	111,0	111,0	121,0	-	-	-	-	-
EER	W/W	11,47	10,91	10,82	11,05	11,17	11,34	11,39	11,03	-	-	-	-	-
Model: G														
Cooling performance chiller operation (1)														
Cooling capacity	kW	998,8	1092,7	1155,6	1211,7	1267,7	1310,9	1354,2	1470,0	-	-	-	-	-
Input power	kW	336,7	353,2	373,0	396,5	420,0	437,6	455,3	476,9	-	-	-	-	-
Cooling total input current	A	550,0	575,0	606,0	644,0	682,0	714,0	746,0	778,0	-	-	-	-	-
EER	W/W	2,97	3,09	3,10	3,06	3,02	3,00	2,97	3,08	-	-	-	-	-
Water flow rate system side	l/h	171604	187733	198553	208183	217806	225235	232663	252555	-	-	-	-	-
Pressure drop system side	kPa	79	67	76	76	41	44	47	72	-	-	-	-	-
Cooling performances with free-cooling glycol-fr	ree (2)													
Cooling capacity	kW	559,3	653,2	691,6	748,6	798,5	804,6	806,4	852,3	-	-	-	-	-
Input power	kW	45,6	56,1	59,8	63,1	66,3	66,2	66,3	72,3	-	-	-	-	-
Free cooling total input current	A	74,0	91,0	97,0	102,0	108,0	108,0	109,0	118,0	-	-	-	-	-
EER	W/W	12,27	11,65	11,56	11,87	12,05	12,15	12,17	11,79	-	-	-	-	-

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / 8,7 °C; External air 2 °C; glycol hydraulic circuit 30%; primary hydraulic circuit glycol 0%.

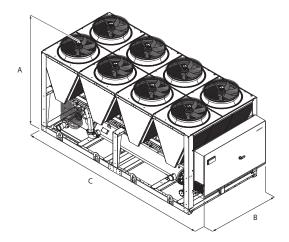
ENERGY INDICES (REG. 2016/2281 EU)

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Model: B																
SEPR - (EN14825: 2018) High temp	erature with stand															
	A	W/W	6,16	5,97	5,71	5,54	5,80	5,60	5,52	5,67	5,57	5,55	5,52	5,72	5,57	5,66
SEPR	E	W/W	6,18	5,87	6,03	5,79	5,54	5,86	5,65	5,80	5,67	5,56	5,51	5,72	5,57	5,64
22.11	N	W/W	6,43	6,20	6,09	5,96	5,71	5,94	5,78	6,01	5,85	5,70	5,61	5,76	5,86	5,88
	U	W/W	6,20	6,02	6,11	6,09	5,85	6,00	5,84	5,96	5,92	5,78	5,71	5,96	5,82	5,86
SEPR - (EN14825: 2018) High temp																
	A	W/W	6,16	5,97	5,71	5,54	5,80	5,60	5,52	5,67	5,57	5,55	5,52	5,72	5,57	5,66
SEPR	<u>E</u>	W/W	6,18	5,87	6,03	5,79	5,54	5,86	5,65	5,80	5,67	5,56	5,51	5,72	5,57	5,64
	N	W/W	6,43	6,20	6,09	5,96	5,71	5,94	5,78	6,01	5,85	5,70	5,61	5,76	5,86	5,88
	U	W/W	6,20	6,02	6,11	6,09	5,85	6,00	5,84	5,96	5,92	5,78	5,71	5,96	5,82	5,86
Model: G																
SEPR - (EN14825: 2018) High temp																
	A	W/W	6,24	6,04	5,75	5,52	5,79	5,58	5,51	5,71	5,62	5,53	5,51	5,64	5,54	5,71
SEPR	E	W/W	6,21	5,91	6,07	5,76	5,51	5,87	5,66	5,84	5,71	5,53	5,51	5,71	5,56	5,66
	N	W/W	6,46	6,23	6,14	6,02	5,77	5,99	5,82	6,08	5,93	5,77	5,64	5,78	5,91	5,91
4888 (Bus 1988 1988) III I .	U	W/W	6,27	6,11	6,19	6,07	5,83	6,05	5,89	6,04	5,93	5,78	5,68	6,01	5,88	5,92
SEPR - (EN14825: 2018) High temp	erature with invert															
	A	W/W	6,24	6,04	5,75	5,52	5,79	5,58	5,51	5,71	5,62	5,53	5,51	5,64	5,54	5,71
SEPR	E	W/W	6,21	5,91	6,07	5,76	5,51	5,87	5,66	5,84	5,71	5,53	5,51	5,71	5,56	5,66
	N	W/W	6,46	6,23	6,14	6,02	5,77	5,99	5,82	6,08	5,93	5,77	5,64	5,78	5,91	5,91
(1) C.I. I.C	U	W/W	6,27	6,11	6,19	6,07	5,83	6,05	5,89	6,04	5,93	5,78	5,68	6,01	5,88	5,92
(1) Calculation performed with FIXED	water flow rate.															
Size	water flow rate.		4202	4502	4802	5202	5602	600)2 64	102	6503	6703	6903	7203	8403	9603
Size Model: B			4202	4502	4802	5202	5602	600)2 64	102	6503	6703	6903	7203	8403	9603
Size Model: B	erature with stand															
Size Model: B	erature with stand	W/W	5,52	5,60	5,53	5,53	5,52	5,5	2 5,	,51	5,73	5,60	5,77	5,64	5,52	5,58
Size Model: B SEPR - (EN14825: 2018) High temper	erature with stand	W/W W/W	5,52 5,61	5,60 5,52	5,53 5,59	5,53 5,54	5,52 5,52	5,5 5,5	2 5, 1 5,	,51 ,60	5,73 5,83	5,60 5,85	5,77 5,55	5,64 5,61	5,52	5,58
Size Model: B SEPR - (EN14825: 2018) High temper	erature with stand A E N	W/W W/W W/W	5,52 5,61 5,69	5,60 5,52 5,85	5,53 5,59 5,82	5,53 5,54 5,93	5,52 5,52 5,94	5,5 5,5 5,8	2 5, 1 5, 7 5,	,51 ,60 ,81	5,73 5,83 6,05	5,60 5,85 -	5,77 5,55 -	5,64 5,61 -	5,52 - -	5,58 - -
Size Model: B SEPR - (EN14825: 2018) High temp	erature with stand. A E N U	W/W W/W W/W	5,52 5,61	5,60 5,52	5,53 5,59	5,53 5,54	5,52 5,52	5,5 5,5	2 5, 1 5, 7 5,	,51 ,60	5,73 5,83	5,60 5,85	5,77 5,55	5,64 5,61	5,52	5,58
Size Model: B SEPR - (EN14825: 2018) High temp	erature with stand. A E N U u erature with invert	W/W W/W W/W w/W	5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62	5,5 5,5 5,8 5,6	2 5, 1 5, 7 5, 3 5,	,51 ,60 ,81	5,73 5,83 6,05 6,04	5,60 5,85 - 6,05	5,77 5,55 - 5,78	5,64 5,61 - 5,85	5,52 - - -	5,58 - - -
Size Model: B SEPR - (EN14825: 2018) High temp	erature with stand. A E N U erature with invert	W/W W/W W/W W/W ter fans (1)	5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53	5,53 5,54 5,93 5,66 5,53	5,52 5,52 5,94 5,62 5,52	5,5 5,5 5,8 5,6	2 5, 1 5, 7 5, 3 5,	.51 .60 .81 .77	5,73 5,83 6,05 6,04	5,60 5,85 - 6,05	5,77 5,55 - 5,78	5,64 5,61 - 5,85	5,52 - - - - 5,52	5,58 - - - - 5,58
Size Model: B SEPR - (EN14825: 2018) High temper SEPR SEPR - (EN14825: 2018) High temper	erature with stand. A E N U erature with invert	W/W W/W W/W W/W ter fans (1) W/W	5,52 5,61 5,69 5,86 5,52 5,61	5,60 5,52 5,85 5,72 5,60 5,52	5,53 5,59 5,82 5,81 5,53 5,53	5,53 5,54 5,93 5,66 5,53 5,54	5,52 5,52 5,94 5,62 5,52 5,52	5,5 5,5 5,8 5,6 5,5	2 5 ₁ 1 5 ₁ 7 5 ₂ 3 5 ₃ 2 5 ₄ 1 5	.51 .60 .81 .77	5,73 5,83 6,05 6,04 5,73 5,83	5,60 5,85 - 6,05 5,60 5,85	5,77 5,55 - 5,78 5,77 5,55	5,64 5,61 - 5,85 5,64 5,61	5,52 - - - 5,52	5,58 - - - - 5,58
Size Model: B SEPR - (EN14825: 2018) High temper SEPR SEPR - (EN14825: 2018) High temper	erature with stand. A E N U erature with invert A E N	W/W W/W W/W W/W ter fans (1) W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69	5,60 5,52 5,85 5,72 5,60 5,52 5,85	5,53 5,59 5,82 5,81 5,53 5,59 5,82	5,53 5,54 5,93 5,66 5,53 5,54 5,93	5,52 5,52 5,94 5,62 5,52 5,52 5,94	5,5 5,5 5,8 5,6 5,5 5,5 5,5	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5,	.51 .60 .81 .77 .51 .60	5,73 5,83 6,05 6,04 5,73 5,83 6,05	5,60 5,85 - 6,05 5,60 5,85	5,77 5,55 - 5,78 5,77 5,55	5,64 5,61 - 5,85 5,64 5,61	5,52 - - - - 5,52 -	5,58 - - - - 5,58 -
Size Model: B SEPR - (EN14825: 2018) High temp SEPR SEPR - (EN14825: 2018) High temp SEPR	erature with stand. A E N U erature with invert	W/W W/W W/W W/W ter fans (1) W/W	5,52 5,61 5,69 5,86 5,52 5,61	5,60 5,52 5,85 5,72 5,60 5,52	5,53 5,59 5,82 5,81 5,53 5,53	5,53 5,54 5,93 5,66 5,53 5,54	5,52 5,52 5,94 5,62 5,52 5,52	5,5 5,5 5,8 5,6 5,5	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5,	.51 .60 .81 .77	5,73 5,83 6,05 6,04 5,73 5,83	5,60 5,85 - 6,05 5,60 5,85	5,77 5,55 - 5,78 5,77 5,55	5,64 5,61 - 5,85 5,64 5,61	5,52 - - - 5,52	5,58 - - - - 5,58
Size Model: B SEPR - (EN14825: 2018) High temper	erature with stand A E N U erature with invert A E N U	W/W W/W W/W W/W (er fans (1) W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69	5,60 5,52 5,85 5,72 5,60 5,52 5,85	5,53 5,59 5,82 5,81 5,53 5,59 5,82	5,53 5,54 5,93 5,66 5,53 5,54 5,93	5,52 5,52 5,94 5,62 5,52 5,52 5,94	5,5 5,5 5,8 5,6 5,5 5,5 5,5	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5,	.51 .60 .81 .77 .51 .60	5,73 5,83 6,05 6,04 5,73 5,83 6,05	5,60 5,85 - 6,05 5,60 5,85	5,77 5,55 - 5,78 5,77 5,55	5,64 5,61 - 5,85 5,64 5,61	5,52 - - - - 5,52 -	5,58 - - - - 5,58 -
Size Model: B SEPR - (EN14825: 2018) High temper SEPR - (EN14825: 2018) High temper SEPR Model: G	erature with stand A E N U erature with invert A E N U	W/W W/W W/W ter fans (1) W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62	5,5 5,5 5,8 5,6 5,5 5,5 5,5 5,8	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5, 3 5,	.51 .60 .81 .77 .51 .60 .81	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,05	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78	5,64 5,61 - 5,85 5,64 5,61 - 5,85	5,52 - - - - 5,52 - -	5,58 - - - - 5,58 - -
Size Model: B SEPR - (EN14825: 2018) High temp SEPR - (EN14825: 2018) High temp SEPR - (EN14825: 2018) High temp SEPR Model: G	erature with stand A E N U erature with invert A E N U erature with stand	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62	5,5 5,5 5,8 5,6 5,5 5,5 5,8 5,6	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5, 3 5,	.51 .60 .81 .77 .51 .60 .81 .77	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78	5,64 5,61 - 5,85 5,64 5,61 - 5,85	5,52 - - - 5,52 - - - - 5,51	5,58 - - - - 5,58 - - -
Size Model: B SEPR - (EN14825: 2018) High temper SEPR - (EN14825: 2018) High temper SEPR Model: G SEPR - (EN14825: 2018) High temper	erature with stand A E N U erature with invert A E N U erature with stand A Erature with stand A E	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62	5,5 5,5 5,8 5,6 5,5 5,5 5,8 5,6	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5, 3 5,	.51 .60 .81 .77 .51 .60 .81 .77	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78 5,77 5,51	5,64 5,61 - 5,85 5,64 5,61 - 5,85 5,66 5,85	5,52 - - - 5,52 - - - - 5,51	5,58 - - - - 5,58 - - - - -
Size Model: B SEPR - (EN14825: 2018) High temper SEPR - (EN14825: 2018) High temper SEPR Model: G SEPR - (EN14825: 2018) High temper	erature with stand A E N U erature with invert A E N U erature with stand A E N N N N	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 5,57 5,65 5,72	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 5,64 5,52 5,90	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 5,57 5,61 5,84	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62 5,51 5,49	5,5 5,5 5,8 5,6 5,5 5,5 5,8 5,6 5,5 5,5	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5, 3 5, 0 5,	.51 .60 .81 .77 .51 .60 .81 .77	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 5,75 5,81 6,08	5,60 5,85 - 6,05 5,60 5,85 - 6,05 5,64 5,87	5,77 5,55 - 5,78 5,77 5,55 - 5,78 5,77	5,64 5,61 - 5,85 5,64 5,61 - 5,85 5,66 5,58	5,52 - - - 5,52 - - - -	5,58 - - - 5,58 - - - 5,58
Size Model: B SEPR - (EN14825: 2018) High temper SEPR - (EN14825: 2018) High temper SEPR Model: G SEPR - (EN14825: 2018) High temper	erature with stand A E N U erature with invert A E N U erature with stand A E E N U erature with stand A E N U	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66	5,52 5,52 5,94 5,62 5,52 5,52 5,94 5,62	5,5 5,5 5,8 5,6 5,5 5,5 5,8 5,6	2 5, 1 5, 7 5, 3 5, 2 5, 1 5, 7 5, 3 5, 0 5,	.51 .60 .81 .77 .51 .60 .81 .77	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04	5,60 5,85 - 6,05 5,60 5,85 - 6,05	5,77 5,55 - 5,78 5,77 5,55 - 5,78 5,77 5,51	5,64 5,61 - 5,85 5,64 5,61 - 5,85 5,66 5,85	5,52 - - - 5,52 - - - - 5,51	5,58 - - - - 5,58 - - - - -
Size Model: B SEPR - (EN14825: 2018) High temper SEPR - (EN14825: 2018) High temper SEPR Model: G SEPR - (EN14825: 2018) High temper	erature with stand A E N U erature with invert A E N U erature with stand A E N U erature with stand A E N U erature with stand A E N U erature with invert	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 5,57 5,65 5,72 5,91	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 5,64 5,52 5,90 5,76	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 5,57 5,61 5,84 5,87	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5,53 5,55 5,53 5,55 5,57 5,73	5,52 5,52 5,62 5,62 5,52 5,52 5,62 5,62	5,5 5,5 5,6 5,6 5,5 5,5 5,6 5,6 5,5 5,5	2 5, 1 5, 7 5, 3 5, 1 5, 1 5, 1 5, 1 5, 1	551 660 881 777 551 660 881 777	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 5,75 5,81 6,08 6,09	5,60 5,85 - 6,05 5,60 5,85 - 6,05 5,64 5,87 - 6,09	5,77 5,55 - 5,78 5,77 5,55 - 5,78 5,77 5,51 - 5,81	5,64 5,61 - 5,85 5,64 5,61 - 5,85 5,66 5,58 - 5,87	5,52 - - - 5,52 - - - - - -	5,58 - - 5,58 - - - -
Size Model: B SEPR - (EN14825: 2018) High temper SEPR - (EN14825: 2018) High temper SEPR Model: G SEPR - (EN14825: 2018) High temper	erature with stand A E N U erature with invert A E N U erature with stand A E N U erature with invert A A A A A A A A A A A A A A A A A A A	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 5,57 5,65 5,72 5,91	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 5,64 5,52 5,90 5,76	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 5,57 5,61 5,84 5,87	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5,53 5,55 5,55 5,57 5,73	5,52 5,52 5,62 5,62 5,52 5,52 5,62 5,62	5,5 5,5 5,6 5,6 5,5 5,5 5,6 5,6 5,5 5,5	2 5, 1 5, 7 5, 3 5, 1 5, 1 5, 1 5, 1 5, 1 5, 1 5, 1	551 660 881 777 551 660 881 777 551 662 884 882	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 5,75 5,81 6,08 6,09	5,60 5,85 - 6,05 5,60 5,85 - 6,05 5,64 5,87 - 6,09	5,77 5,55 - 5,78 5,77 5,55 - 5,78 5,77 5,51 - 5,81	5,64 5,61 - 5,85 5,64 5,61 - 5,85 5,66 5,58 - 5,87	5,52 - - - 5,52 - - - - 5,51	5,58 - - - 5,58 - - - - - 5,58
Size Model: B SEPR - (EN14825: 2018) High temper SEPR - (EN14825: 2018) High temper	erature with stand A E N U erature with invert A E N U erature with stand A E N U erature with stand A E N U erature with invert A E N U	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 5,57 5,65 5,72 5,91	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 5,64 5,52 5,90 5,76	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 5,57 5,61 5,84 5,87	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5,53 5,55 5,55 5,57 5,73	5,52 5,52 5,62 5,62 5,52 5,52 5,62 5,62	5,5 5,5 5,6 5,6 5,5 5,5 5,6 5,6 5,5 5,5	2 5, 1 5, 7 5, 3 5, 1 5, 1 5, 1 5, 1 5, 1 5, 1 5, 1	551 660 881 777 551 660 881 777 551 662 884 882	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 5,75 5,81 6,08 6,09	5,60 5,85 - 6,05 5,60 5,85 - 6,05 5,64 5,87 - 6,09	5,77 5,55 - 5,78 5,77 5,55 - 5,78 5,77 5,51 - 5,81	5,64 5,61 - 5,85 5,64 5,61 - 5,85 5,66 5,58 - 5,66 5,58	5,52 - - - 5,52 - - - - 5,51 - - -	5,58 - - - 5,58 - - - - - - - -
Size Model: B SEPR - (EN14825: 2018) High temper SEPR SEPR - (EN14825: 2018) High temper SEPR	erature with stand A E N U erature with invert A E N U erature with stand A E N U erature with invert A A A A A A A A A A A A A A A A A A A	W/W W/W W/W W/W ter fans (1) W/W W/W W/W W/W W/W W/W W/W W/W W/W W/	5,52 5,61 5,69 5,86 5,52 5,61 5,69 5,86 5,57 5,65 5,72 5,91	5,60 5,52 5,85 5,72 5,60 5,52 5,85 5,72 5,64 5,52 5,90 5,76	5,53 5,59 5,82 5,81 5,53 5,59 5,82 5,81 5,57 5,61 5,84 5,87	5,53 5,54 5,93 5,66 5,53 5,54 5,93 5,66 5,53 5,55 5,55 5,57 5,73	5,52 5,52 5,62 5,62 5,52 5,52 5,62 5,62	5,5 5,5 5,6 5,6 5,5 5,5 5,6 5,6 5,5 5,5	2 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1 5,1	551 660 881 777 551 660 881 777 551 662 884 882	5,73 5,83 6,05 6,04 5,73 5,83 6,05 6,04 5,75 5,81 6,08 6,09	5,60 5,85 - 6,05 5,60 5,85 - 6,05 5,64 5,87 - 6,09	5,77 5,55 - 5,78 5,77 5,55 - 5,78 5,77 5,51 - 5,81	5,64 5,61 - 5,85 5,64 5,61 - 5,85 5,66 5,58 - 5,87	5,52 - - - 5,52 - - - - 5,51	5,58 - - - 5,58 - - - - - - 5,58

ELECTRIC DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Electric data																
	A	А	243,9	271,9	299,1	332,5	374,4	395,7	417,0	450,2	474,9	474,9	474,9	531,4	579,4	635,9
Maximum current (FLA)	E,U	Α	243,9	271,9	307,6	341,0	374,4	404,2	425,5	458,7	483,4	483,4	483,4	539,9	587,9	644,4
	N	Α	252,4	280,4	316,1	349,5	382,9	412,7	434,0	467,2	491,9	491,9	491,9	548,4	604,9	667,2
	A	А	265,5	307,3	350,2	388,2	419,8	466,8	484,0	519,5	529,4	529,4	529,4	661,9	701,8	831,3
Peak current (LRA)	E,U	Α	265,5	307,3	358,7	396,7	419,8	475,3	492,5	528,0	537,9	537,9	537,9	670,4	710,3	839,8
	N	А	274,0	315,8	367,2	405,2	428,3	483,8	501,0	536,5	546,4	546,4	546,4	678,9	727,3	862,6
Size			4202	4502	4802	5202	5602	2 60	02 6	6402	6503	6703	6903	7203	8403	9603
Electric data																
	A	Α	683,9	731,4	770,4	813,4	864,9	913	3,2 9	147,2	980,7	1028,7	1123,7	1162,7	1300,2	1419,2
Maximum current (FLA)	E,U	Α	700,9	739,9	793,2	836,2	887,7	7 930),2 9	72,7	997,7	1054,2	1132,2	1179,7	-	-
	N	А	715,2	771,2	818,7	870,2	921,7	7 955	5,7 9	189,7	1023,2	-	-	-	-	-
	A	А	858,2	930,7	953,4	1108,4	1163,	9 129	0,2 1.	287,2	1069,4	1096,3	1200,0	1222,7	1480,2	1603,2
Peak current (LRA)	E,U	Α	875,2	939,2	976,2	1131,2	1186,	7 130	7,2 1	312,7	1086,4	1121,8	1208,5	1239,7	-	-
	N	Α	889,5	970,5	1001,7	1165.2	1220,	7 133	27 1	329.7	1111.9					

GENERAL TECHNICAL DATA


GENERAL TECHNICAL DI	AIA															
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Compressor																
Туре	A,E,N,U	type							Bi-	vite						
Compressor regulation	A,E,N,U	Type							On-	-Off						
Number	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E,N,U	no.	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E,N,U	type							R1:	34a						
System side heat exchanger																
Туре	A,E,N,U	type							Shell a	nd tube						
Number	A,E,N,U	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,E,N,U	Туре							Groove	d joints						
Fan																
Туре	A,E,N,U	type							Ax	ial						
	Α	no.	8	8	8	8	10	10	10	12	12	12	12	14	14	16
Number	E,U	no.	8	8	10	10	10	12	12	14	14	14	14	16	16	18
	N	no.	10	10	12	12	12	14	14	16	16	16	16	18	20	22
	A	m³/h	116000	116000	116000	116000	145000	145000	145000	174000	174000	174000	174000	203000	203000	232000
Air flow rate	E	m³/h	89600	89600	112000	112000	112000	134400	134400	156800	156800	156800	156800	179200	179200	201600
Air now rate	N	m³/h	112000	112000	134400	134400	134400	156800	156800	179200	179200	179200	179200	201600	224000	246400
	U	m³/h	116000	116000	145000	145000	145000	174000	174000	203000	203000	203000	203000	232000	232000	261000
Sound data calculated in cooling mode (1)															
	Α	dB(A)	98,0	98,0	98,0	98,0	99,0	99,0	99,0	99,7	99,7	99,7	99,7	100,4	100,4	101,1
Country of the country of	E	dB(A)	91,0	91,0	91,7	91,9	92,1	92,6	92,5	93,0	93,0	93,0	93,0	93,7	93,9	94,6
Sound power level	N	dB(A)	91,7	91,7	92,3	92,5	92,6	93,1	93,0	93,5	93,5	93,5	93,5	94,1	94,6	95,2
	U	dB(A)	98,0	98,0	98,9	99,0	99,0	99,7	99,7	100,4	100,4	100,4	100,4	100,9	101,0	101,5
	A	dB(A)	65,6	65,6	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,1	67,1	67,6	67,7	68,2
S 1 1 1 /10 \	E	dB(A)	58,6	58,6	59,2	59,4	59,5	59,9	59,9	60,3	60,3	60,3	60,3	60,8	61,0	61,6
Sound pressure level (10 m)	N	dB(A)	59,2	59,2	59,7	59,9	60,0	60,3	60,3	60,6	60,6	60,6	60,6	61,1	61,5	62,0
	U	dB(A)	65,6	65,6	66,4	66,4	66,4	67,1	67,1	67,6	67,6	67,6	67,6	68,1	68,1	68,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			4202	4502	4802	5202	5602	6002	6402	6503	6703	6903	7203	8403	9603
Compressor															
Туре	A,E,N,U	type							Bi-vite						
Compressor regulation	A,E,N,U	Туре							0n-0ff						
	Α	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Number	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
	A	no.	2	2	2	2	2	2	2	3	3	3	3	3	3
Circuits	E,U	no.	2	2	2	2	2	2	2	3	3	3	3	-	-
	N	no.	2	2	2	2	2	2	2	3	-	-	-	-	-
Refrigerant	A,E,N,U	type							R134a						
System side heat exchanger															
Туре	A,E,N,U	type						S	hell and tub	e					
	Α	no.	1	1	1	1	1	1	1	2	2	2	2	2	2
Number	E,U	no.	1	1	1	1	2	2	2	2	2	2	2	-	-
	N	no.	1	2	2	2	2	2	2	2	-	-	-	-	-
Connections (in/out)	A,E,N,U	Type						(irooved join	ts					
Fan															
Туре	A,E,N,U	type							Axial						
	A	no.	16	18	18	18	20	22	22	24	24	28	28	30	34
Number	E,U	no.	20	20	22	22	24	26	28	28	30	30	32	-	-
	N	no.	22	26	28	30	32	32	32	34	-	-	-	-	-
	A	m³/h	232000	261000	261000	261000	290000	319000	319000	348000	348000	406000	406000	435000	493000
Air flow rate	E	m³/h	224000	224000	246400	246400	268800	291200	313600	313600	336000	336000	358400	-	-
All flow fate	N	m³/h	246400	291200	313600	336000	358400	358400	358400	380800	-	-	-	-	-
	U	m³/h	290000	290000	319000	319000	348000	377000	406000	406000	435000	435000	464000	-	-
Sound data calculated in cooling mode (1)														
	Α	dB(A)	101,1	101,6	101,6	101,6	102,1	102,5	102,5	102,7	102,8	103,4	103,4	103,7	104,2
Sound power level	E	dB(A)	95,2	95,2	95,4	95,6	96,0	96,2	96,4	96,0	96,5	96,4	96,6	-	-
Souria power level	N	dB(A)	95,5	96,0	96,2	96,6	96,9	96,9	96,9	96,7	-	-	-	-	-
	U	dB(A)	102,0	102,0	102,4	102,4	102,8	103,1	103,4	103,4	103,7	103,7	103,9	-	-
	Α	dB(A)	68,2	68,6	68,6	68,6	69,0	69,2	69,2	69,4	69,4	69,8	69,8	70,0	70,4
Cound avecous level (10 m)	E	dB(A)	62,1	62,0	62,2	62,3	62,7	62,8	62,9	62,5	62,8	62,8	62,8	-	-
Sound pressure level (10 m)	N	dB(A)	62,3	62,5	62,6	62,9	63,1	63,1	63,1	62,8	-	-	-	-	-
	U	dB(A)	68,9	68,9	69,1	69,2	69.5	69.7	69.9	69.8	70.0	70.0	70.2	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Ci			1402	1/02	1002	2002	2202	2252	2502	2/52	2002	2002	2202	2402	2602	2002
Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602	3902
Dimensions and weights																
A	A,E,N,U	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E,N,U	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
	А	mm	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330	9520
C	E,U	mm	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520	10710
	N	mm	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900	13090
Size			4202	4502	4802	5202	5602	. 60	02	6402	6503	6703	6903	7203	8403	9603
Dimensions and weights																
	А	mm	2450	2450	2450	2450	2450	24	50	2450	2450	2450	2450	2450	2450	2450
A	E,U	mm	2450	2450	2450	2450	2450	24	50	2450	2450	2450	2450	2450	-	-
	N	mm	2450	2450	2450	2450	2450	24	50	2450	2450	-	-	-	-	-
	А	mm	2200	2200	2200	2200	2200	22	00	2200	2200	2200	2200	2200	2200	2200
В	E,U	mm	2200	2200	2200	2200	2200	22	00	2200	2200	2200	2200	2200	-	-
	N	mm	2200	2200	2200	2200	2200	22	00	2200	2200	-	-	-	-	-
	A	mm	9520	10710	10710	10710	11900	130	190	13090	14280	14280	16660	16660	17850	20230
C	E,U	mm	11900	11900	13090	13090	14280) 154	70	16660	16660	17850	17850	19040	-	-
	N	mm	13090	15470	16660	17850	19040) 190	140	19040	20230	-	-	-	-	-

For transport reasons, the units with the depth of more than 13090 mm are shipped separately. For more information, please refer to the technical manual and / or installation.

NSM-HWT-1402-9603-F

Air-water chiller with free-cooling

Cooling capacity 306 ÷ 2001 kW

- · High efficiency also at partial loads
- Microchannel coil
- Ideal in data center applications
- Water outlet temperatures up to 30°C
- Night mode

DESCRIPTION

The NSM are chillers, designed and manufactured to meet air conditioning requirements in residential/commercial buildings or to meet refrigeration requirements in industrial facilities.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers. The base, the structure and the panels are made of steel treated with rustproof polyester paint.

These chillers are also equipped with a Free cooling coil and are used when the refrigerant load request persists even during the winter months, or when the outdoor air temperature is below the temperature of the return liquid from the system. In Free cooling operation (mixed Free cooling and compressors, or Free cooling only), the fluid is cooled directly by the outdoor air, allowing even the complete shutdown of compressors with a significant energy saving.

Extremely reliable and flexible units which perfectly adapt themselves to all thermal load requests thanks to inverter technology, with high energy efficiencies both at full and partial load.

VERSIONS

NSM WF_A High Efficiency

NSM WF_E High efficiency low noise **NSM WF_U** Very high efficiency

NSM WF_N Very high efficiency low noise

FEATURES

- Unit with 1/2 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.
- The full range uses aluminium microchannel coils, ensuring very high levels of efficiency. This allows using less refrigerant compared to traditional copper coils.
- Electronic Thermostatic valve brings significant benefits, in particular when the refrigerant is working at partial loads to the benefit of energy efficiency of the unit.
- Standard differential pressure switch

- Throttle valve in the hydraulic circuit for water switching on the Free-Cooling coils
- Fans inverter
- Device for electronically controlling the series condensation, for operation even at low temperatures or in free cooling, which allows adjusting the air flow rate to actual system demand with resulting advantages in terms of consumption reduction.

CONTROLS

Microprocessor adjustment, that allows isolating the condenser coils to maximise the free cooling efficiency, even in mixed Free cooling and compressor operation

- Complete with latest generation Touch screen allowing real time graphics visualization showing water and external air temperatures, pressures and requested load.
- Ethernet communication is offered as standard and allows all information to be visualized on a PC connected to the controller (via IP and browser).
- The presence of a programmable timer allows setting time bands of operation and a possible second set-point
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis. **PRV3:** Allows you to control the chiller at a distance.

FB1: Air filter

MULTICHILLER_EVO: Control system for multiple parallel installed constant flow chillers providing individual chiller on/off and control capability. **AVX:** Spring anti-vibration supports

ACCESSORIES FACTORY FITTED ONLY

KRS: Evaporator trace heating **GP:** Anti-intrusion grids.

AK: ACOUSTIC KIT. This accessory allows further sound reduction. Must be requested at time of order and is available factory fitted only. **RIF:** Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
AER485P1		•(x2)												
AERNET		•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3		•	•	•	•	•		•	•	•	•	•	•	•
FB1		•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO				•	•	•	•	•	•					
AVX	(1)	•	•	•	•	•	٠	•	•	•	•	•	•	•
Size		3902	4202	4502	4802	5202	560)2	6002	6402	6903	7203	8403	9603
AER485P1		•(x2)	•(x2)	•(x2)	•(x2)	•(x2)	•(x2	2)	•(x2)	•(x2)	•(x3)	•(x3)	•(x3)	•(x3)
AERNET					•									•
PRV3		•	•	•	•	•	•		•	•	•	•	•	•
FB1		•	•		•						•			•
MULTICHILLER_EVO		•	•	•	•	•	•		•	•	•	•	•	•
AVX	(1)	•	•	•	•		•			•	•	•	•	•

⁽¹⁾ Accessories to be defined for compatibility

KRS: Evaporator trace heating

Ver		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
all	(1)	•	•	•	•	•	•	•	•	•	•	•	•	•
Ver		3902	4202	4502	4802	5202	56	i02	6002	6402	6903	7203	8403	9603
all	(1)	•	•	•				•	•	•	•	•	•	•

GP: Anti-intrusion grids

Ver		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
all	(1)	•	•	•	•	•	•	•	•	•	•	•	•	•
Ver		3902	4202	4502	4802	5202	56	02	6002	6402	6903	7203	8403	9603
all	(1)	•	•	•		•		•	•	•	•	•	•	•

AK: Acoustic kit

Ver		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
all	(2)	•	•	•	•	•	•	•		•	•	•	•	•
Ver		3902	4202	4502	4802	5202	56	02	6002	6402	6903	7203	8403	9603
all	(2)	•	•	•	•					•	•	•	•	•

RIF: Power factor correction

Ver	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
all	RIFNSM1402	RIFNSM1602	RIFNSM1802	RIFNSM2002	RIFNSM2202	RIFNSM2352	RIFNSM2502	RIFNSM26	52 RIFNSM280	2 RIFNSM3002	RIFNSM3202	RIFNSM3402	RIFNSM3602
Ver	3902	4202	4502	4802	2 52	02 5	602	6002	6402	6903	7203	8403	9603
all	RIFNSM3902	2 RIFNSM420)2 RIFNSM45	502 RIFNSM4	1802 RIFNSA	15202 RIFN	SM5602 RIF	NSM6002	RIFNSM6402	RIFNSM6903	RIFNSM7203	RIFNSM8403	RIFNSM9603

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

⁽x2) Indicates the amount to order

⁽¹⁾ Accessories to be defined for compatibility
A grey background indicates the accessory must be assembled in the factory

⁽¹⁾ Accessories to be defined for compatibility
A grey background indicates the accessory must be assembled in the factory

⁽²⁾ The accessory is only available for the "E/N" silenced versions
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

<u>Field</u>	Description
1,2,3	NSM
4,5,6,7	Size 1402-1602-1802-2002-2202-2352-2502-2652-2802-3002-3202-3402-3602-3902-4202-4502-4802-5202-5602-6002-6402-6903-7203-8403-9603
8	Operating field
W	Electronic thermostatic valve (temperature of water produced from 5°C to 30 °C)
9	Model
F	Free-cooling
P	Free-cooling plus (1)
11	Version
A	High efficiency
E	Silenced high efficiency
U	Very high efficiency
N	Silenced very high efficiency
12	Condensing coils / Free cooling water coils
•	Aluminium microchannel / Copper Aluminium
0	Painted aluminium microchannel / Painted Aluminium Copper
R	Copper - Copper (1) / Copper Copper
<u> </u>	Copper - Thinned (1) / Copper - Thinned
V	Epoxy paint (only free cooling coil)(1) / Epoxy paint (only free cooling coil)
13	Fans
	Inverter
14	Power supply
15.16	400V/3/50Hz
15,16	Integrated hydronic kit
00	Without hydronic kit
PA	Pumping unit (pump A)
PB	Pumping unit (pump B)
PC PC	Pumping unit (pump C)
PD	Pumping unit (pump D)
PE	Pumping unit (pump E)
PF	Pumping unit (pump F)
PG	Pumping unit (pump G)
PH	Pumping unit (pump H)
PI	Pumping unit (pump I)
PJ	Pumping unit (pump J)
DA	Pumping unit (pump A and stand-by pump)
DB	Pumping unit (pump B and stand-by pump)
DC	Pumping unit (pump C and stand-by pump)
DD	Pumping unit (pump D and stand-by pump)
DE	Pumping unit (pump E and stand-by pump)
DF	Pumping unit (pump F and stand-by pump)
DG	Pumping unit (pump G and stand-by pump)
DH	Pumping unit (pump H and stand-by pump)
DI	Pumping unit (pump I and stand-by pump)
DJ	Pumping unit (pump J and stand-by pump)
TF	Double static, pressure pump (pump F)
TG	Double static, pressure pump (pump G)
TH	Double static, pressure pump (pump h)
TI	Double static, pressure pump (pump i)
TJ	Double static, pressure pump (pump J)
IJ	pounie static, pressure purity (purity 1)

⁽¹⁾ The free cooling plus models can have coils only in options $"^{\circ \shortparallel}$ and "0"

NSMW - FA - PA

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Free-cooling		1402	1002	1002	2002	2202	2332	2502	2032	2002	3002	3202	3402	3002
Cooling performance chiller operation (1)														
Cooling capacity	kW	306	351	400	441	479	505	546	589	638	653	687	753	792
Input power	kW	82	95	109	118	125	135	147	155	167	172	179	192	205
	A	146	166	187	200	208	224	242	258	277	290	306	327	348
Cooling total input current EER	W/W	3,75	3,69	3,69		3,83		3,71	3,79	3,81	3,80	3,84	3,92	3,86
					3,73		3,73							
Water flow rate system side	I/h	52650	60360	68820 95	75940 76	82440 89	86790	93850	101330	109680 91	112330 96		129500	136230
Pressure drop system side	kPa	60	80	93	/0	07	99	116	85	91	90	84	93	103
Cooling performances with free-cooling (2)	LAM	226	251	262	270	440	AFA	462	F42	FF1	FFA	550	CAA	([1
Cooling capacity	kW kW	336	351	363	370	449	454	462	542	551	554	559	644	651
Input power		19,3	19,3	19,3	19,3	24,1	24,1	24,1	28,9	28,9	28,9	28,9	33,7	33,7
Free cooling total input current	Α	30,0	30,0	30,0	30,0	37,6	37,6	37,6	45,1	45,1	45,1	45,1	52,6	52,6
EER	W/W	17,43	18,20	18,82	19,20	18,63	18,86	19,16	18,74	19,06	19,15	19,32	19,11	19,29
Water flow rate system side	l/h	52650	60360	68820	75940	82440	86790	93850	101330	109680			129500	136230
Pressure drop system side	kPa	87	115	139	129	133	147	171	128	141	147	141	146	161
Free-cooling Plus														
Cooling performance chiller operation (1)														
Cooling capacity	kW	305	349	398	439	477	502	543	587	635	650	683	749	788
Input power	kW	82	96	109	120	126	136	148	157	169	174	181	194	207
Cooling total input current	A	147	167	188	201	210	226	244	260	279	292	308	330	351
EER	W/W	3,70	3,64	3,64	3,68	3,78	3,68	3,66	3,74	3,76	3,74	3,78	3,86	3,80
Water flow rate system side	l/h	52410	60090	68480	75580	82100	86410	93420	100950	109190			128910	135580
Pressure drop system side	kPa	59	79	94	75	89	98	115	84	90	95	83	92	102
Cooling performances with free-cooling (2)														
Cooling capacity	kW	361	378	391	399	484	490	497	584	594	597	602	694	701
Input power	kW	19,7	19,7	19,7	19,7	24,6	24,6	24,6	29,5	29,5	29,5	29,5	34,4	34,4
Free cooling total input current	Α	30,6	30,6	30,6	30,6	38,2	38,2	38,2	45,9	45,9	45,9	45,9	53,5	53,5
EER	W/W	18,35	19,22	19,89	20,29	19,69	19,93	20,25	19,81	20,15	20,24	20,41	20,19	20,38
Water flow rate system side	l/h	52410	60090	68480	75580	82100	86410	93420	100950	109190	111820	117510	128910	135580
Pressure drop system side	kPa	86	114	138	128	131	145	169	127	139	146	139	145	160
Size		3902	4202	4502	4802	5202	560	2 60	002 (5402	6903	7203	8403	9603
Free-cooling		3902	4202	4502	4802	5202	560	2 60	002 (5402	6903	7203	8403	9603
Free-cooling Cooling performance chiller operation (1)														
Free-cooling Cooling performance chiller operation (1) Cooling capacity	kW	853	882	959	1014	1082	1169	9 12	262	1327	1476	1531	1758	2001
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power	kW	853 216	882 228	959 244	1014 260	1082 281	1169 295	9 12	262 319	1327 343	1476 373	1531 388	1758 442	2001 512
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	853 216 362	882 228 377	959 244 416	1014 260 453	1082 281 478	1169 295 494	9 12 5 3 4 5	262 119 531	1327 343 567	1476 373 646	1531 388 683	1758 442 740	2001 512 854
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W	853 216 362 3,95	882 228 377 3,87	959 244 416 3,92	1014 260 453 3,90	1082 281 478 3,86	1169 295 494 3,97	9 12 5 3 4 5 7 3	262 819 531 ,95	1327 343 567 3,87	1476 373 646 3,96	1531 388 683 3,94	1758 442 740 3,97	2001 512 854 3,91
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	853 216 362 3,95 146650	882 228 377 3,87 151620	959 244 416 3,92 165010	1014 260 453 3,90 174350	1082 281 478 3,86 186190	1169 295 494 3,97 0 20119	9 12 5 3 4 5 7 3 50 21	262 319 531 ,95 7040 2	1327 343 567 3,87 28220	1476 373 646 3,96 253930	1531 388 683 3,94 263260	1758 442 740 3,97 302310	2001 512 854 3,91 344170
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	853 216 362 3,95	882 228 377 3,87	959 244 416 3,92	1014 260 453 3,90	1082 281 478 3,86	1169 295 494 3,97	9 12 5 3 4 5 7 3 50 21	262 819 531 ,95	1327 343 567 3,87	1476 373 646 3,96	1531 388 683 3,94	1758 442 740 3,97	2001 512 854 3,91
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa	853 216 362 3,95 146650 69	882 228 377 3,87 151620 74	959 244 416 3,92 165010 91	1014 260 453 3,90 174350	1082 281 478 3,86 186190 94	1169 295 494 3,97 0 20119	9 12 5 3 7 3 7 3 550 212	262 319 531 ,95 7040 2	1327 343 567 3,87 28220	1476 373 646 3,96 253930 116	1531 388 683 3,94 263260 116	1758 442 740 3,97 302310 117	2001 512 854 3,91 344170 138
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa	853 216 362 3,95 146650 69	882 228 377 3,87 151620 74	959 244 416 3,92 165010 91	1014 260 453 3,90 174350 101	1082 281 478 3,86 186190 94	1169 295 494 3,97 0 2011! 110	9 1.3 5 3 3 5 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7	262 819 831 ,95 7040 2	1327 343 567 3,87 28220 144	1476 373 646 3,96 253930 116	1531 388 683 3,94 263260 116	1758 442 740 3,97 302310 117	2001 512 854 3,91 344170 138
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW	853 216 362 3,95 146650 69 735 38,5	882 228 377 3,87 151620 74 740 38,5	959 244 416 3,92 165010 91 827 43,4	1014 260 453 3,90 174350 101 836 43,4	1082 281 478 3,86 186190 94 845 43,4	1169 295 494 3,97 0 2011! 110	9 12 5 3 7 3 7 3 7 1 1 1 5 1 1 5 1 1 5 1 1 5 1 1 1 1 1 1 1	262 319 531 ,95 7040 2 130	1327 343 567 3,87 28220 144	1476 373 646 3,96 253930 116	1531 388 683 3,94 263260 116	1758 442 740 3,97 302310 117 1402 72,3	2001 512 854 3,91 344170 138 1590 81,9
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	853 216 362 3,95 146650 69 735 38,5 60,1	882 228 377 3,87 151620 74 740 38,5 60,1	959 244 416 3,92 165010 91 827 43,4 67,6	1014 260 453 3,90 174350 101 836 43,4 67,6	1082 281 478 3,86 186190 94 845 43,4 67,6	1169 295 494 3,97 3 2011! 110 935 48,2 75,1	9 13 5 3 7 3 7 3 7 3 10 1 10 1 5 11 5 2 5 5 2 5	262 319 331 ,95 7040 2 330 025 33,0	1327 343 567 3,87 28220 144 1033 53,0 82,6	1476 373 646 3,96 253930 116 1284 67,5 105,1	1531 388 683 3,94 263260 116 1293 67,5 105,1	1758 442 740 3,97 302310 117 1402 72,3 112,7	2001 512 854 3,91 344170 138 1590 81,9
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	853 216 362 3,95 146650 69 735 38,5 60,1 19,07	882 228 377 3,87 151620 74 740 38,5 60,1 19,19	959 244 416 3,92 165010 91 827 43,4 67,6 19,07	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48	1169 295 494 3,97 0 2011! 110 935 48,2 75,1	9 1: 5 3 7 3 70 21: 0 1 5 10 5 11 8 12 8 19 9 159	262 319 331 ,95 7040 2 330 025 33,0 52,6	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03	1531 388 683 3,94 263260 116 1293 67,5 105,1	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650	882 228 377 3,87 151620 74 740 38,5 60,1 19,19	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48	295 494 3,97 0 2011! 110 935 48,2 75,1 19,3	9 13 5 3 4 5 7 3 7 3 10 1 5 10 5 11 8 1 8 19 19 1550 21	262 119 131 195 17040 2 130 1025 133,0 122,6 1933 17040 2	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W	853 216 362 3,95 146650 69 735 38,5 60,1 19,07	882 228 377 3,87 151620 74 740 38,5 60,1 19,19	959 244 416 3,92 165010 91 827 43,4 67,6 19,07	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48	1169 295 494 3,97 0 2011! 110 935 48,2 75,1	9 13 5 3 4 5 7 3 7 3 10 1 5 10 5 11 8 1 8 19 19 1550 21	262 119 131 195 17040 2 130 1025 133,0 122,6 1933 17040 2	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03	1531 388 683 3,94 263260 116 1293 67,5 105,1	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus	kW A W/W I/h kPa kW kW A W/W I/h	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650	882 228 377 3,87 151620 74 740 38,5 60,1 19,19	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48	295 494 3,97 0 2011! 110 935 48,2 75,1 19,3	9 13 5 3 4 5 7 3 7 3 10 1 5 10 5 11 8 1 8 19 19 1550 21	262 119 131 195 17040 2 130 1025 133,0 122,6 1933 17040 2	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011!	9 1: 5 33 4 55 7 3 3 50 21: 0 1 5 10 2 5 1 8 19 19 19 15 15 10 21:	262 319 331 ,95 7040 2 330 025 33,0 22,6 9,33 7040 2	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011!	9 1: 5 33 4 55 7 3 3 50 21: 0 1 5 10 2 5 1 8 19 19 19 19 14 1:	262 319 331 ,95 7040 2 130 025 33,0 12,6 19,33 10,00 10,000	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011!	9 1: 5 33 4 55 7 3 3 50 21: 0 1 5 10 2 5 1 8 19 19 19 19 14 1:	262 319 331 ,95 7040 2 330 025 33,0 22,6 9,33 7040 2	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011!	9 1: 5 33 4 55 7 3 3 50 21: 0 1 5 11 2 5 5 1 8 8 19 19 15 550 21: 3 1	262 319 331 ,95 7040 2 130 025 33,0 12,6 19,33 10,00 10,000	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173	9 1: 5 33 4 55 7 3 3 50 21: 0 1 5 11 8 1 99 19 199 19 18 3 1 4 1: 4 1:	262 319 331 ,95 7040 2 130 025 33,0 12,6 19,33 7040 2 194 256 322 336	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Prescoling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173	9 1: 5 33 4 55 7 3 3 50 21: 0 1 2 5 11 8 8 99 199 199 193 3 1	262 319 331 ,95 7040 2 130 025 33,0 12,6 19,33 7040 2 194 256 322 336 3,90	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173	9 1: 5 3 4 5 7 3 7 3 7 3 7 5 0 21: 6 10 2 5 1 8 8 9 19 19 19 19 19 19 19 19 19 19 19 19 1	262 319 331 ,95 7040 2 130 025 33,0 12,6 19,33 7040 2 194 256 322 336 3,90	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127 878 230 381 3,81 150930	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142 955 247 420 3,87 164290	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84 173550	1082 281 478 3,86 18619(94 845 43,4 67,6 19,48 18619(159 1077 284 482 3,80 18523(1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173 1164 298 498 3,91 0 2001!	9 1: 5 3 4 5 7 3 7 3 7 3 7 5 0 21: 6 10 2 5 1 8 8 9 19 19 19 19 19 19 19 19 19 19 19 19 1	262 319 331 ,95 7040 2 130 025 33,0 12,6 19,33 7040 2 194 256 322 336 3,90 55990 2	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81 27050	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90 252860	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89 262120	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91 300800	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207 1991 517 861 3,85 342450
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Free-cooling Plus Cooling performance swith free-cooling (2)	kW A W/W I/h kPa kW kW A W/W I/h kPa kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127 878 230 381 3,81 150930	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142 955 247 420 3,87 164290	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84 173550	1082 281 478 3,86 18619(94 845 43,4 67,6 19,48 18619(159 1077 284 482 3,80 18523(1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173 1164 298 498 3,91 0 2001!	9 1: 5 3 4 5 7 3 7 3 7 3 7 5 0 21: 6 10 1 8 8 9 19 19 19 19 19 19 19 19 19 19 19 19 1	262 319 331 ,95 7040 2 330 025 33,0 12,6 19,33 7040 2 194 256 322 336 3,90 55990 2	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81 27050	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90 252860	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89 262120	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91 300800	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207 1991 517 861 3,85 342450
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling Plus Cooling performance swith free-cooling (2) Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa kW kW A W/W L/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119 849 218 365 3,90 146000 69	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127 878 230 381 3,81 150930 73	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142 955 247 420 3,87 164290 90	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84 173550 100	1082 281 478 3,86 18619(94 845 43,4 67,6 19,48 18619(159 1077 284 482 3,80 18523(93	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173 1164 298 498 3,91 0 2001:	9 1: 5 3 4 5 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7	262 319 331 ,95 7040 2 130 025 33,0 12,6 19,33 7040 2 194 256 322 336 3,90 55990 2 1129	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81 27050 142	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90 252860 115	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89 262120 115	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91 300800 115	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207 1991 517 861 3,85 342450 136
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling Plus Cooling performance swith free-cooling (2) Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa kW kW A W/W L/h kPa kW kW A	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119 849 218 365 3,90 146000 69	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127 878 230 381 3,81 150930 73 797 39,3	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142 955 247 420 3,87 164290 90 891 44,2	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84 173550 100 900 44,2	1082 281 478 3,86 186199 94 845 43,4 67,6 19,48 186190 159 1077 284 482 3,80 185230 93	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173 1166 298 498 498 3,91 100 100 49,7	9 1: 5 3 4 55 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3	262 319 331 ,95 7040 2 330 025 33,0 62,6 9333 7040 2 194 256 322 336 390 5990 2 1129	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81 27050 142	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90 252860 115 1384 68,8	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89 262120 115 1393 68,8	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91 300800 115 1510 73,7	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207 1991 517 861 3,85 342450 136
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling performance chiller operation (1) Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling capacity Input power Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa kW kW A W/W I/h kPa kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119 849 218 365 3,90 146000 69 792 39,3 61,2	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127 878 230 381 3,81 150930 73 797 39,3 61,2	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142 955 247 420 3,87 164290 90 891 44,2 68,8	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84 173550 100 900 44,2 68,8	1082 281 478 3,86 18619(94 845 43,4 67,6 19,48 18619(19) 159 1077 284 482 3,80 18523(19) 93 910 44,2 68,8	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173 1164 298 498 3,91 0 2001: 109 1000 49,7	9 1: 5 3 4 5 7 3 7 50 21: 0 1 5 11 2 5 1 8 8 9 19 15 50 21: 3 1 4 1: 3 3 3 1 3 3 1 3 3 7 1 1 5 5 8	262 319 331 ,95 7040 2 330 025 33,0 62,6 9333 7040 2 194 256 322 336 3,90 5990 2 1129	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81 27050 142 1113 54,0 84,1	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90 252860 115 1384 68,8 107,0	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89 262120 115 1393 68,8 107,0	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91 300800 115 1510 73,7 114,7	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207 1991 517 861 3,85 342450 136 1713 83,5 130,0
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prec-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119 849 218 365 3,90 146000 69 792 39,3 61,2 20,16	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127 878 230 381 3,81 150930 73 797 39,3 61,2 20,28	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142 955 247 420 3,87 164290 90 891 44,2 68,8 20,16	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84 173550 100 900 44,2 68,8 20,36	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159 1077 284 482 3,80 185230 93 910 44,2 68,8 20,58	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173 1166 298 498 3,91 109 109 49,7 76,5	9 1: 5 3 4 5 7 3 7 3 5 50 21: 0 1 6 11 6 11 8 19 19 5 50 21: 1 3 3 3 3 1 3 3 5 1 3 3 2 0 2 1 3 3 1 3 3 2 0 2 1 3 3 2 3 3 3 3 5 5 5 8 1 9 9 20	262 319 331 ,95 7040 2 330 025 33,0 025 33,0 22,6 33,0 22,6 33,0 22,6 33,0 22,6 23,0 24,0 25,0 26,0 27,0 28,0 29,0 20,0	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81 27050 142 1113 54,0 84,1 20,59	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90 252860 115 1384 68,8 107,0 20,12	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89 262120 115 1393 68,8 107,0 20,25	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91 300800 115 1510 73,7 114,7 20,49	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207 1991 517 861 3,85 342450 136 1713 83,5 130,0 20,51
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling performance chiller operation (1) Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling capacity Input power Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa kW kW A W/W I/h kPa kW A W/W I/h kPa	853 216 362 3,95 146650 69 735 38,5 60,1 19,07 146650 119 849 218 365 3,90 146000 69 792 39,3 61,2	882 228 377 3,87 151620 74 740 38,5 60,1 19,19 151620 127 878 230 381 3,81 150930 73 797 39,3 61,2	959 244 416 3,92 165010 91 827 43,4 67,6 19,07 165010 142 955 247 420 3,87 164290 90 891 44,2 68,8	1014 260 453 3,90 174350 101 836 43,4 67,6 19,27 174350 158 1009 262 456 3,84 173550 100 900 44,2 68,8	1082 281 478 3,86 186190 94 845 43,4 67,6 19,48 186190 159 1077 284 482 3,80 185230 93 910 44,2 68,8 20,58	1169 295 494 3,97 0 2011! 110 935 48,2 75,1 19,3 0 2011! 173 1166 298 498 3,91 109 109 49,7 76,5	9 1: 5 3 4 5 7 3 5 50 21: 0 1 6 11 6 11 8 19 19 5 50 21: 1 8 3 1 3 1 3 2 0 21: 7 1 1 5 5 8 19 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	262 319 331 ,95 7040 2 330 025 33,0 025 33,0 22,6 33,0 22,6 33,0 22,6 33,0 22,6 23,0 24,0 25,0 26,0 27,0 28,0 29,0 20,0	1327 343 567 3,87 28220 144 1033 53,0 82,6 19,49 28220 213 1320 346 571 3,81 27050 142 1113 54,0 84,1	1476 373 646 3,96 253930 116 1284 67,5 105,1 19,03 253930 165 1470 377 652 3,90 252860 115 1384 68,8 107,0	1531 388 683 3,94 263260 116 1293 67,5 105,1 19,17 263260 165 1524 392 688 3,89 262120 115 1393 68,8 107,0	1758 442 740 3,97 302310 117 1402 72,3 112,7 19,40 302310 179 1749 447 747 3,91 300800 115 1510 73,7 114,7	2001 512 854 3,91 344170 138 1590 81,9 127,7 19,42 344170 207 1991 517 861 3,85 342450 136

⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

NSMW - FE - PE

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Free-cooling		1102	1002	1002			2332		2032		3002	3202	5.102	5002
Cooling performance chiller operation (1)														
Cooling capacity	kW	315	362	415	456	478	524	551	599	626	641	667	735	772
Input power	kW	75	91	101	112	120	127	138	145	156	161	169	178	192
Cooling total input current	A	134	158	175	189	199	210	227	240	258	272	288	303	325
EER EER	W/W	4,19	3,97	4,09	4,07	3,98	4,13	4,00	4,12	4,02	3,97	3,95	4,13	4,03
Water flow rate system side	I/h			71300		82240	90170			107680	110230			132800
,	kPa	54220	62220		78430			94830	102950				126390	
Pressure drop system side	KPa	42	49	64	76	85	61	66	68	74	79	80	51	58
Cooling performances with free-cooling (2)														
Cooling capacity	kW	267	273	337	342	344	408	411	474	478	479	482	548	551
Input power	kW	6,4	6,4	7,9	7,9	7,9	9,5	9,5	11,1	11,1	11,1	11,1	12,7	12,7
Free cooling total input current	A	9,4	9,4	11,8	11,8	11,8	14,1	14,1	16,5	16,5	16,5	16,5	18,8	18,8
EER	W/W	41,99	43,01	42,41	43,05	43,31	42,79	43,10	42,64	42,94	43,08	43,29	43,10	43,35
Water flow rate system side	l/h	54220	62220	71300	78430	82240	90170	94830	102950	107680	110230	114670	126390	132800
Pressure drop system side	kPa	71	86	97	115	127	95	104	102	112	118	122	89	99
Free-cooling Plus														
Cooling performance chiller operation (1)														
Cooling capacity	kW	314	360	412	453	474	521	548	595	622	637	662	730	767
Input power	kW	76	92	102	113	122	128	139	147	157	163	170	180	194
Cooling total input current	A	134	159	176	190	201	211	229	242	260	274	291	306	328
EER EER	W/W	4,14	3,92	4,03	4,00	3,90	4,07	3,93	4,06	3,96	3,90	3,88	4,06	3,95
Water flow rate system side	I/h	53990	61890	70890	77860	81600	89640	94230	102360	107020	109540		125570	131860
Pressure drop system side	kPa	42	49	63	75	83	60	65	67	73	78	79	51	57
Cooling performances with free-cooling (2)	NI d	TL	TJ	03	13	UJ	00	UJ.	U	73	70	17	71	JI
Cooling capacity	kW	285	292	360	365	367	435	438	506	509	511	513	584	587
	kW					8,1	9,7						12,9	
Input power		6,5	6,5	8,1	8,1			9,7	11,3	11,3	11,3	11,3		12,9
Free cooling total input current	A	9,6	9,6	11,9	11,9	11,9	14,3	14,3	16,7	16,7	16,7	16,7	19,1	19,1
EER	W/W	44,05	45,10	44,49	45,14	45,38	44,88	45,19	44,73	45,03	45,17	45,36	45,18	45,42
Water flow rate system side	l/h	53990	61890	70890	77860	81600	89640	94230	102360	107020	109540		125570	131860
Pressure drop system side	kPa	70	86	96	113	125	94	102	101	110	116	120	88	98
Ciro		2002	4202	4502	4902	5202	E60°	2 60	102 4	102	6002	7202	9402	0602
Size		3902	4202	4502	4802	5202	5602	2 60	002	5402	6903	7203	8403	9603
Free-cooling		3902	4202	4502	4802	5202	5602	2 60	002	5402	6903	7203	8403	9603
Free-cooling Cooling performance chiller operation (1)	I.W.													
Free-cooling Cooling performance chiller operation (1) Cooling capacity	kW	823	870	932	1011	1070	1152	2 12	226	1300	1423	1502	-	-
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power	kW	823 202	870 210	932 228	1011 241	1070 260	1152 275	2 12	226 96	1300 318	1423 350	1502 364	-	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	823 202 339	870 210 348	932 228 388	1011 241 421	1070 260 443	1152 275 460	? 12 29 49	126 96 93	1300 318 526	1423 350 601	1502 364 631	-	-
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W	823 202 339 4,07	870 210 348 4,15	932 228 388 4,09	1011 241 421 4,19	1070 260 443 4,12	1152 275 460 4,19	2 12 29 49 4,	96 93 14	1300 318 526 4,09	1423 350 601 4,07	1502 364 631 4,13	-	-
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	823 202 339	870 210 348	932 228 388	1011 241 421	1070 260 443 4,12	1152 275 460 4,19	2 12 29 49 4,	96 93 14	1300 318 526 4,09	1423 350 601	1502 364 631	-	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W	823 202 339 4,07	870 210 348 4,15	932 228 388 4,09	1011 241 421 4,19	1070 260 443 4,12	1152 275 460 4,19	2 12 29 49 4, 20 210	96 93 14	1300 318 526 4,09	1423 350 601 4,07	1502 364 631 4,13	-	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	823 202 339 4,07 141610	870 210 348 4,15 149590	932 228 388 4,09 160240	1011 241 421 4,19 173870	1070 260 443 4,12 184060	1152 275 460 4,19 0 19812	2 12 29 49 4, 20 210	96 93 14 0870 2	1300 318 526 4,09 23620	1423 350 601 4,07 244770	1502 364 631 4,13 258380	- - - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h	823 202 339 4,07 141610	870 210 348 4,15 149590	932 228 388 4,09 160240	1011 241 421 4,19 173870	1070 260 443 4,12 184060	1152 275 460 4,19 0 19812	2 12 29 49 4, 4, 20 210 8	96 93 14 0870 2	1300 318 526 4,09 23620	1423 350 601 4,07 244770	1502 364 631 4,13 258380	- - - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa	823 202 339 4,07 141610 69	870 210 348 4,15 149590 78	932 228 388 4,09 160240 91	1011 241 421 4,19 173870 86	1070 260 443 4,12 184060 94	1152 275 460 4,19 0 19812 65	2 122 29 49 4,0 4,0 20 210 8	9226 996 993 14 1870 2	1300 318 526 4,09 23620 81	1423 350 601 4,07 244770 105	1502 364 631 4,13 258380 105	- - - - -	- - - - -
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa	823 202 339 4,07 141610 69	870 210 348 4,15 149590 78	932 228 388 4,09 160240 91	1011 241 421 4,19 173870 86	1070 260 443 4,12 184060 94	1152 275 460 4,19 0 19812 65	2 12 29 49 4,0 4,0 20 210 8	96 993 14 1870 2 31	1300 318 526 4,09 23620 81	1423 350 601 4,07 244770 105	1502 364 631 4,13 258380 105		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW	823 202 339 4,07 141610 69 616 14,3	870 210 348 4,15 149590 78 680 15,9	932 228 388 4,09 160240 91 686 15,9	1011 241 421 4,19 173870 86 753	1070 260 443 4,12 184060 94 759	1152 275 460 4,19 0 19812 65 826 19,1 28,2	2 12 29 49 4,0 4,0 20 210 8 88 20 20	96 99 14 0870 2 31	1300 318 526 4,09 23620 81 960 22,3 32,9	1423 350 601 4,07 244770 105 1031 23,8 35,3	1502 364 631 4,13 258380 105 1099 25,4 37,6		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	823 202 339 4,07 141610 69 616 14,3 21,2 43,07	870 210 348 4,15 149590 78 680 15,9 23,5 42,76	932 228 388 4,09 160240 91 686 15,9 23,5 43,17	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10	1070 260 443 4,12 18406(94 759 17,5 25,9	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32	2 122 29 49 49 4, 20 2100 88 89 20 20 301 302 432 433	96 99 14 9870 2 31 93 93 93 93 94	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21	-	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590	932 228 388 4,09 160240 91 686 15,9 23,5 43,17	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,33	2 122 29 49 49 4, 4, 20 2100 8 8 89 20 20 20 210 210 210 210 210 210 210 21	96 99 14 9870 2 31 93 93 0,7 0,6 ,24	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620	1423 350 601 4,07 2244770 105 1031 23,8 35,3 43,27 244770	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W	823 202 339 4,07 141610 69 616 14,3 21,2 43,07	870 210 348 4,15 149590 78 680 15,9 23,5 42,76	932 228 388 4,09 160240 91 686 15,9 23,5 43,17	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10	1070 260 443 4,12 18406(94 759 17,5 25,9	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32	2 122 29 49 49 4, 4, 20 2100 8 8 89 20 20 20 210 210 210 210 210 210 210 21	96 99 14 9870 2 31 93 93 0,7 0,6 ,24	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21	-	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus	kW A W/W I/h kPa kW kW A W/W I/h	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590	932 228 388 4,09 160240 91 686 15,9 23,5 43,17	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,33	2 122 29 49 49 4, 4, 20 2100 8 8 89 20 20 20 210 210 210 210 210 210 210 21	96 99 14 9870 2 31 93 93 0,7 0,6 ,24	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620	1423 350 601 4,07 2244770 105 1031 23,8 35,3 43,27 244770	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812	2 122 29 44 4, 4, 20 2100 8 8 20 210 2 43 20 2100	96 97 98 14 14 1870 2 181 193 103 104 108 107 108 108 108 108 108 108 108 108	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812	2 122 29 49 4, 4, 20 2100 8 8 20 210 210 11:	9226 996 993 14 1870 2 181 93 93 0,7 0,6 1,24 218	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812 106	2 122 29 44 4, 4, 20 210 8 8 20 210 210 11:	226 96 93 14 0870 2 31 93 00,7 00,6 00,24 0 00,7 021 021 021 021	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812 106	2 122 29 44 4, 4, 20 2100 8 8 20 20 2 43 20 2100 11:	96 97 98 14 1870 2 181 193 10,7 10,6 10,7 10,6 10,7 10	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812 106	2 122 29 44 4, 4, 20 2100 8 8 20 20 2100 11: 4 122 4 30 20 2100 4 4:	9226 996 993 14 1870 2 181 193 10,7 10,6 10,24 10,7 10,6 10,24 10,7 10	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140 1063 263 448 4,04	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812 106 1144 278 464 4,12 0 19675	2 122 29 44 4 4, 20 2100 8 8 20 2100 11: 4 122 4 30 20 2100 11: 4 122 4 4, 50 2050	226 96 93 14 0870 2 31 93 00,7 00,6 0,24 4 0870 2 211 218 00 97 007 0470 2	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99 243180	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812 106	2 122 29 44 4 4, 20 2100 8 8 20 2100 11: 4 122 4 30 20 2100 11: 4 122 4 4, 50 2050	9226 996 993 14 1870 2 181 193 10,7 10,6 10,24 10,7 10,6 10,24 10,7 10	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling Plus Cooling performance shiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107 818 204 342 4,00 140680 68	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750 77	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230 90	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128 1005 244 425 4,12 172870 85	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140 1063 263 448 4,04 18279(93	1152 275 460 4,19 0 19812 65 826 19,1 28,2 106 1144 278 464 4,12 0 19675 64	2 122 29 44 4 4, 20 2100 8 8 20 2100 11: 4 122 4 126 4 4, 50 2095 8	93 14 9870 2 31 93 31 93 30,7 00,6 02,24 4 0870 2 211 218 000 997 007 0470 2	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190 80	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99 243180 104	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800 104		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling Plus Cooling performance shiller operation (2) Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750 77	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230 90	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140 1063 263 448 4,04	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,32 0 19812 106 1144 278 464 4,12 0 19675	2 122 29 44 4, 4, 20 2100 8 8 20 2100 11: 4 122 4 126 50 2095 8	93 14 9870 2 31 93 31 93 30,7 00,6 02,24 4 0870 2 211 218 000 997 007 0470 2 330	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190 80	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99 243180 104	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800 104		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling Plus Cooling performance shiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107 818 204 342 4,00 140680 68	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750 77	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230 90	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128 1005 244 425 4,12 172870 85	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140 1063 263 448 4,04 18279(93	1152 275 460 4,19 0 19812 65 826 19,1 28,2 106 1144 278 464 4,12 0 19675 64	2 122 29 44 4, 4, 20 2100 8 8 20 2100 11: 4 122 4 126 50 2095 8	93 14 9870 2 31 93 31 93 30,7 00,6 02,24 4 0870 2 211 218 000 997 007 0470 2 330	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190 80	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99 243180 104	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800 104		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling Plus Cooling performance shiller operation (2) Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107 818 204 342 4,00 140680 68	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750 77	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230 90	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128 1005 244 425 4,12 172870 85	1070 260 443 4,12 18406(94 759 17,5 25,9 43,39 18406(140 1063 263 448 4,04 18279(93	1152 275 460 4,19 0 19812 65 826 19,1 28,2 106 1144 278 464 4,12 0 19675 64	2 122 29 44 4 4, 20 2100 8 8 20 2100 11: 4 122 4 4, 20 250 209 8	9226 96 93 14 1870 2 31 93 93 97 97 97 97 97 97 9470 2 30	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190 80	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99 243180 104	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800 104		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW KW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107 818 204 342 4,00 140680 68	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750 77	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230 90	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128 1005 244 425 4,12 172870 85	1070 260 443 4,12 184060 94 759 17,5 25,9 43,39 184060 140 1063 263 448 4,04 182799 93	1152 275 460 4,19 0 19812 65 826 19,1 28,2 106 1144 278 464 4,12 0 19675 64	2 122 29 44 44, 4, 4, 20 2100 88 20 2100 11: 4 122 4 4, 50 2099 8	9226 96 93 14 1870 2 31 93 0,7 0,6 1,24 218 000 97 007 0470 2 30 52 1,0 1,0	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190 80	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99 243180 104	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800 104		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kPa kW kW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107 818 204 342 4,00 140680 68 657 14,5 21,5	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750 77	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230 90 732 16,2 23,9 45,26	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128 1005 244 425 4,12 172870 85	1070 260 443 4,12 184060 94 759 17,5 25,9 43,39 184060 140 1063 263 448 4,04 182790 93 808 17,8 26,3 45,45	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,3; 0 19812 106 1144 278 464 4,12 0 19675 64 880 19,4 28,7 64	2 122 29 44 44, 4, 4, 20 2100 88 20 2100 11: 4 122 4 310 20 209 8 8 9, 4 1 22 7 3 30 0 45	926 96 93 14 1870 2 31 93 0,7 0,6 1,24 218 000 997 007 9470 2 30 52 1,0 1,0 5,32	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190 80 1024 22,6 33,4 45,24	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 244770 150 1414 354 607 3,99 243180 104 1099 24,2 35,8	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800 104		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kPa kW kW A W/W KW A W/W I/h kPa	823 202 339 4,07 141610 69 616 14,3 21,2 43,07 141610 107 818 204 342 4,00 140680 68 657 14,5 21,5 45,16	870 210 348 4,15 149590 78 680 15,9 23,5 42,76 149590 114 865 212 351 4,08 148750 77 725 16,2 23,9 44,85	932 228 388 4,09 160240 91 686 15,9 23,5 43,17 160240 133 926 230 392 4,02 159230 90 732 16,2 23,9	1011 241 421 4,19 173870 86 753 17,5 25,9 43,10 173870 128 1005 244 425 4,12 172870 85 803 17,8 26,3 45,19	1070 260 443 4,12 184060 94 759 17,5 25,9 43,39 184060 140 1063 263 448 4,04 182790 93 808 17,8 26,3 45,45	1152 275 460 4,19 0 19812 65 826 19,1 28,2 43,3; 0 19812 106 1144 278 464 4,12 0 19675 64 880 19,4 28,7 64	2 122 29 44 44, 4, 20 2100 88 20 2100 11: 4 122 4 30 20 2100 11: 4 122 4 4, 20 209 8	926 96 93 14 1870 2 31 93 0,7 0,6 1,24 218 000 997 007 9470 2 30 52 1,0 1,0 5,32	1300 318 526 4,09 23620 81 960 22,3 32,9 43,16 23620 121 1292 321 531 4,02 22190 80 1024 22,6 33,4 45,24	1423 350 601 4,07 244770 105 1031 23,8 35,3 43,27 2244770 150 1414 354 607 3,99 243180 104 1099 24,2 35,8 45,35	1502 364 631 4,13 258380 105 1099 25,4 37,6 43,21 258380 150 1493 368 636 4,06 256800 104 1171 25,9 38,2 45,30		

⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

NSMW - FU - PU

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Free-cooling														
Cooling performance chiller operation (1)														
Cooling capacity	kW	328	381	435	482	506	550	580	627	657	674	703	772	814
Input power	kW	84	98	112	121	128	138	148	159	168	172	178	191	203
Cooling total input current	A	148	170	192	204	212	229	244	263	279	291	305	326	345
EER EER	W/W	3,93	3,90	3,89	3,99	3,97	3,99	3,92	3,94	3,91	3,91	3,95	4,05	4,02
Water flow rate system side	I/h	56440	65570	74810	82890	87080	94670	99780	107790	113080			132770	139960
Pressure drop system side	kPa	46	54	71	84	94	66	72	74	81	86	87	56	64
Cooling performances with free-cooling (2)	NI d	40	J 1	/ 1	04	24	00	12	/4	01	00	07	30	04
	kW	244	250	127	450	AFF	E22	E 40	617	625	620	625	710	720
Cooling capacity	kW	344	359	437	450	455	533	540	617	625	629	635	719	728
Input power		19,3	19,3	24,1	24,1	24,1	28,9	28,9	33,7	33,7	33,7	33,7	38,5	38,5
Free cooling total input current	A	30,0	30,0	37,6	37,6	37,6	45,1	45,1	52,6	52,6	52,6	52,6	60,1	60,1
EER	W/W	17,84	18,61	18,16	18,66	18,87	18,43	18,67	18,31	18,54	18,65	18,84	18,66	18,89
Water flow rate system side	I/h	56440	65570	74810	82890	87080	94670	99780	107790	113080			132770	139960
Pressure drop system side	kPa	77	95	107	127	142	104	114	111	122	129	134	97	109
Free-cooling Plus														
Cooling performance chiller operation (1)														
Cooling capacity	kW	327	380	433	480	504	548	578	624	655	671	700	769	810
Input power	kW	84	99	113	122	129	139	149	160	170	174	180	192	205
Cooling total input current	А													
EER	W/W	3,88	3,84	3,84	3,93	3,91	3,94	3,87	3,89	3,86	3,86	3,89	4,00	3,96
Water flow rate system side	l/h	56250	65300	74510	82510	86670	94290	99370	107380	112630	115420	120380	132250	139380
Pressure drop system side	kPa	46	54	70	83	93	66	72	73	80	85	86	55	63
Cooling performances with free-cooling (2)														
Cooling capacity	kW	370	386	471	484	490	574	582	665	674	678	685	775	785
Input power	kW	19,7	19,7	24,6	24,6	24,6	29,5	29,5	34,4	34,4	34,4	34,4	39,3	39,3
Free cooling total input current	A	17,1	17,1	21,0	21,0	21,0	27,5	27,5	3 1,1	31,1	3 1,1	31,1	ررد <u>د</u>	37,3
EER EER	W/W	18,82	19,66	19,17	19,72	19,94	19,47	19,73	19,34	19,59	19,71	19,91	19,72	19,97
Water flow rate system side	I/h	56250	65300	74510	82510	86670	94290	99370	107380	112630			132250	139380
Pressure drop system side	kPa	77	94	106	126	140	103	113	111	12030	128	133	96	108
riessule drop system side	KFd	11	74	100	120	140	103	113	1111	121	120	133	90	100
Size		3902	4202	4502	4802	5202	2 560)2 60	002 (6402	6903	7203	8403	9603
Size Free-cooling		3902	4202	4502	4802	5202	2 560)2 60	002	6402	6903	7203	8403	9603
Free-cooling		3902	4202	4502	4802	5202	2 560)2 60	002	6402	6903	7203	8403	9603
Free-cooling Cooling performance chiller operation (1)	kW	3902	909	4502 978	4802	520 2				1365	6903		8403	9603
Free-cooling Cooling performance chiller operation (1) Cooling capacity		864	909	978	1059	1127	121	3 1.	289	1365	1495	1576		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power	kW	864 216	909 228	978 243	1059 260	1127 276	121	3 1: 3 3	289 317	1365 341	1495 372	1576 388	-	-
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	864 216 363	909 228 378	978 243 414	1059 260 454	1127 276 472	121 293 49.	3 1: 3 3	289 117 529	1365 341 566	1495 372 639	1576 388 677	- -	-
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W	864 216 363 3,99	909 228 378 3,99	978 243 414 4,02	1059 260 454 4,08	1127 276 472 4,09	121 29: 49: 4,1	3 1: 3 3 3 5 4 4	289 817 529 -,06	1365 341 566 4,00	1495 372 639 4,02	1576 388 677 4,06	- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	864 216 363 3,99 148610	909 228 378 3,99 156340	978 243 414 4,02 168140	1059 260 454 4,08 182140	1127 276 472 4,09	121 29 49 4,1 0 2086	13 1. 3 3 3 5 4 4 510 22	289 317 529 ,06 1670 2	1365 341 566 4,00	1495 372 639 4,02 257070	1576 388 677 4,06 271060	- - - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	864 216 363 3,99	909 228 378 3,99	978 243 414 4,02	1059 260 454 4,08	1127 276 472 4,09	121 29: 49: 4,1	13 1. 3 3 3 5 4 4 510 22	289 817 529 -,06	1365 341 566 4,00	1495 372 639 4,02	1576 388 677 4,06	- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa	864 216 363 3,99 148610 75	909 228 378 3,99 156340 84	978 243 414 4,02 168140 99	1059 260 454 4,08 182140 94	1127 276 472 4,09 19379 103	121 29 49 4,1 0 2086 71	13 1. 33 3 33 5 4 4 4 510 22	289 317 529 ,,06 1670 2	1365 341 566 4,00 34730 88	1495 372 639 4,02 257070 116	1576 388 677 4,06 271060 116	- - - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa	864 216 363 3,99 148610 75	909 228 378 3,99 156340 84	978 243 414 4,02 168140 99	1059 260 454 4,08 182140 94	1127 276 472 4,09 19379 103	121 29. 49. 4,1 0 20860 71	13 13 33 33 35 34 4 44 4510 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 317 529 ,06 1670 2	1365 341 566 4,00 34730 88	1495 372 639 4,02 257070 116	1576 388 677 4,06 271060 116	- - - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW	864 216 363 3,99 148610 75 808 43,4	909 228 378 3,99 156340 84 886 48,2	978 243 414 4,02 168140 99 902 48,2	1059 260 454 4,08 182140 94 989 53,0	1127 276 472 4,09 19379 103 1003 53,0	121 299 499 4,1 00 2086 71 109 57,	13 13 33 33 53 44 44 510 22 1 5	289 117 529 ,,06 1670 2 88	1365 341 566 4,00 34730 88	1495 372 639 4,02 257070 116	1576 388 677 4,06 271060 116 1446 77,1		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	864 216 363 3,99 148610 75 808 43,4 67,6	909 228 378 3,99 156340 84 886 48,2 75,1	978 243 414 4,02 168140 99 902 48,2 75,1	1059 260 454 4,08 182140 94 989 53,0 82,6	1127 276 472 4,09 19379 103 1003 53,0 82,6	121 29: 49: 4,1 00 20866 71 109 57,	13 13 33 33 53 54 44 44 610 22 1 1 1 88 66 11 9	289 317 529 ,06 11670 2 888 177 52,6	1365 341 566 4,00 34730 88 1262 67,5	1495 372 639 4,02 257070 116 1359 72,3 112,7	1576 388 677 4,06 271060 116 1446 77,1 120,2		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	864 216 363 3,99 148610 75 808 43,4 67,6 18,64	909 228 378 3,99 156340 84 886 48,2 75,1 18,38	978 243 414 4,02 168140 99 902 48,2 75,1 18,72	1059 260 454 4,08 182140 94 989 53,0 82,6	1127 276 472 4,09 19379 103 1003 53,0 82,6	121 29. 49. 4,1 70 20866 71 109 57, 90, 2	13 1: 33 3: 33 3: 54 4 4 510 22: 1 1: 101 1: 188 66 11 9:	289 317 529 ,06 1670 2 88 177 2,6	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	864 216 363 3,99 148610 75 808 43,4 67,6 18,64	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65	1127 276 472 4,09 1 19379 103 1003 53,0 82,6 18,92	121 299 490 4,1 200 2086 71 109 57, 90, 2 18,6 00 2086	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 117 529 ,06 1670 2 88 177 ,2,6 ,7,6 8,78	1365 341 566 4,00 (34730 88 1262 67,5 105,1 18,71 (34730	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W	864 216 363 3,99 148610 75 808 43,4 67,6 18,64	909 228 378 3,99 156340 84 886 48,2 75,1 18,38	978 243 414 4,02 168140 99 902 48,2 75,1 18,72	1059 260 454 4,08 182140 94 989 53,0 82,6	1127 276 472 4,09 19379 103 1003 53,0 82,6	121 299 490 4,1 200 2086 71 109 57, 90, 2 18,6 00 2086	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 317 529 ,06 1670 2 88 177 2,6	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus	kW A W/W I/h kPa kW kW A W/W I/h	864 216 363 3,99 148610 75 808 43,4 67,6 18,64	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65	1127 276 472 4,09 1 19379 103 1003 53,0 82,6 18,92	121 299 490 4,1 200 2086 71 109 57, 90, 2 18,6 00 2086	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 117 529 ,06 1670 2 88 177 ,2,6 ,7,6 8,78	1365 341 566 4,00 (34730 88 1262 67,5 105,1 18,71 (34730	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65	1127 276 472 4,09 1 19379 103 1003 53,0 82,6 18,92	121 299 490 4,1 200 2086 71 109 57, 90, 2 18,6 00 2086	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 117 529 ,06 1670 2 88 177 ,2,6 ,7,6 8,78	1365 341 566 4,00 (34730 88 1262 67,5 105,1 18,71 (34730	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus	kW A W/W I/h kPa kW kW A W/W I/h	864 216 363 3,99 148610 75 808 43,4 67,6 18,64	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65	1127 276 472 4,09 1 19379 103 1003 53,0 82,6 18,92	121 299 491 4,1 90 2086 71 109 57, 90, 2 18,8 90 2086 11	13 1: 13 3 3 13 3 3 14 4 4 16 10 22 18 6 6 18 6 18 18 6 18 6 18 18	289 317 529 ,06 1670 2 88 177 22,6 77,6 8,78 1670 2	1365 341 566 4,00 (34730 88 1262 67,5 105,1 18,71 (34730	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 19379	121 299 491 4,1 00 2086 71 109 57, 90, 22 18,80 110 110 120 120 120 120 120 120 120 12	13 1: 13 3 3 13 3 3 14 4 4 1610 22 18 6 6 18 6 18 18 6 10 22 16 11 1 9 18 6 1 1 1 9 18 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 317 529 ,06 1670 2 88 177 22,6 77,6 8,78 1670 2 132	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 1 19379 154	121 299 491 4,1 00 2086 71 57, 90, 22 18,8 00 2086 11 12 29	13 1: 13 3 3 13 3 3 14 4 4 16 10 22 18 6 18 18 6 18 6 18 18 6 1	289 317 529 ,06 1670 2 88 177 22,6 77,6 8,78 1670 2 132	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 19379 154	121 299 491 4,1 00 20866 71 57, 90, 22 18,8 00 20866 110 29 29 49	13 1: 13 3 3: 14 4 4 4 4 6: 10 22 1 5: 10 1 1 1 8 6: 11 9 86 18 6: 13 10 22 6: 14 10 10 10 10 10 10 10 10 10 10 10 10 10	289 317 529 ,06 11670 2 88 177 22,6 17,6 8,78 11670 2 132 284 320 533	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140	1127 276 472 4,09 19379 103 53,0 82,6 18,92 154 1122 278 475 4,03	121 299 491 4,1 00 2086 71 109 57, 90, 22 18,8 00 2086 111 29 49	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 18 6 18 18 6 18 16 10 22 16 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 317 529 ,06 11670 2 88 177 22,6 17,6 8,78 11670 2 132 284 320 533 1,01	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 19379 154	121 299 491 4,1 00 2086 71 109 57, 90, 22 18,8 10 2086 11 29 49 4,0 10 2077	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 18 6 18 18 6 18 16 10 22 16 11 11 11 11 11 11 11 11 11 11 11 11 1	289 317 529 ,06 11670 2 88 177 22,6 17,6 8,78 11670 2 132 284 320 533 1,01	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570 3,95	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Free-cooling Plus Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124 906 230 381 3,94 155780	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97 167500	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 154 1122 278 475 4,03 19301	121 299 491 4,1 00 2086 71 109 57, 90, 22 18,8 00 2086 110 29 49 4,0 00 2077	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 18 6 18 18 6 18 16 10 22 16 11 11 11 11 11 11 11 11 11 11 11 11 1	289 317 529 ,06 1670 2 88 177 22,6 17,6 8,78 1670 2 132 284 320 533 1,01 0780 2	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570 3,95 133810	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97 256070	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165 1570 392 682 4,01 270020		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117 861 218 366 3,94 148030 75	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124 906 230 381 3,94 155780 84	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97 167500 99	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140 1055 262 457 4,03 181460 93	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 154 1122 278 475 4,03 19301 102	121 299 491 4,1 00 2086 71 109 57, 90, 22 18,8 10 2086 110 29 49 4,0 00 2077	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 15 18 6 18 16 10 22 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 317 529 ,06 11670 2 88 177 22,6 17,6 8,78 11670 2 132 284 320 533 1,01 0780 2 87	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570 3,95 133810 87	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97 256070 115	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165 1570 392 682 4,01 270020 115		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Free-tooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW KW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117 861 218 366 3,94 148030 75	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124 906 230 381 3,94 155780 84	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97 167500 99	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140 1055 262 457 4,03 181460 93	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 1122 278 475 4,03 19301 102	121 299 491 4,1 00 2086 71 109 57, 90, 22 18,8 00 2086 110 29 49 4,0 00 2077 70	13 1: 13 3 3 13 3 3 14 4 4 15 10 22 18 6 18 18 6 18 16 10 22 16 1 1 17 5 18 4 18 4 4 17 5 0 22 17 6 1 1	289 317 529 ,06 1670 2 88 177 22,6 77,6 8,78 1670 2 132 284 320 533 ,01 0780 2 87	1365 341 566 4,00 34730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570 3,95 133810 87	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97 256070 115	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165 1570 392 682 4,01 270020 115		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW KW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117 861 218 366 3,94 148030 75	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124 906 230 381 3,94 155780 84	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97 167500 99 972 49,1	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140 1055 262 457 4,03 181460 93	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 154 1122 278 475 4,03 19301 102 1081	121 299 491 4,1 00 2086 71 109 57, 90, 2 18,8 90 2086 110 2 120 2 29 49 4,0 0 2077 70	33 13 33 33 34 4 44 4510 22 1 8 66 11 99 16 10 22 16 10 22 17 10 22 18 10 22 18 10 22 18 10 22 19 10 22 10 2	289 317 529 ,06 1670 2 88 177 12,6 77,6 8,78 1670 2 132 284 332 333 1,01 0780 2 87	1365 341 566 4,00 334730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570 3,95 233810 87 1360 68,8	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97 256070 115 1465 73,7	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165 1570 392 682 4,01 270020 115 1558 78,6		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117 861 218 366 3,94 148030 75	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124 906 230 381 3,94 155780 84 954 49,1 76,5	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97 167500 99 972 49,1 76,5	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140 1055 262 457 4,03 181460 93	1127 276 472 4,09 19379 103 1003 53,0 82,6 18,92 1 19379 154 1122 278 475 4,03 0 19301 102	2 121 299 491 4,1 100 2086 71 109 57, 90, 2 18,8 90 2086 110 2 29 49 4,0 10 2077 70 71	33 13 33 33 34 4 44 4510 22 1 8 66 11 99 86 18 86 11 98 87 10 22 88 11 10 22 98 11 10	289 317 529 ,06 1670 2 88 177 12,6 77,6 8,78 1670 2 132 284 332 333 1,01 0780 2 87 268 33,9 19,4	1365 341 566 4,00 334730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570 3,95 233810 87 1360 68,8 107,0	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97 256070 115 1465 73,7 114,7	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165 1570 392 682 4,01 270020 115 1558 78,6 122,3		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW KW A W/W I/h kPa kW KW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117 861 218 366 3,94 148030 75 871 44,2 68,8 19,70	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124 906 230 381 3,94 155780 84 954 49,1 76,5	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97 167500 99 972 49,1 76,5 19,79	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140 1055 262 457 4,03 181460 93	1127 276 472 4,09 19379 103 53,0 82,6 18,92 1122 278 475 4,03 1 1081 1081 1081 54,0 84,1 20,00	121 293 493 4,1 100 2086 71 103 57, 90, 2 18,8 90 2086 111 2 120 29 49 4,0 10 2077 70 11 117	33 1:33 3:33 3:33 3:44 44 45:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:10 22:1 1 5:4 5:4 5:4 5:4 5:4 5:4 5:4 5:4 5:4 5:4	289 317 529 ,06 1670 2 88 177 2,6 7,6 8,78 1670 2 132 284 332 284 333 ,01 0780 2 87 268 33,9 19,4 9,85	1365 341 566 4,00 334730 88 1262 67,5 105,1 18,71 334730 132 1359 344 570 3,95 33810 87 1360 68,8 107,0 19,77	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97 256070 115 1465 73,7 114,7 19,88	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165 1570 392 682 4,01 270020 115 1558 78,6 122,3 19,82		
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW A W/W I/h kPa	864 216 363 3,99 148610 75 808 43,4 67,6 18,64 148610 117 861 218 366 3,94 148030 75	909 228 378 3,99 156340 84 886 48,2 75,1 18,38 156340 124 906 230 381 3,94 155780 84 954 49,1 76,5	978 243 414 4,02 168140 99 902 48,2 75,1 18,72 168140 145 974 245 418 3,97 167500 99 972 49,1 76,5	1059 260 454 4,08 182140 94 989 53,0 82,6 18,65 182140 140 1055 262 457 4,03 181460 93	1127 276 472 4,09 19379 103 53,0 82,6 18,92 1122 278 475 4,03 0 19301 102 1081 54,0 84,1 20,00	2 120 493 491 491 491 491 491 491 57, 90, 2 18,8 90 2086 111 2 120 29 49 4,0 10 2077 70 117 15 59, 91, 91, 91, 91, 91, 91, 91, 9	33 1:33 3:33 3:33 3:44 44 45:10 22:11 5:41 5:11 5:11 5:11 5:11 5:11 5:11 5	289 317 529 ,06 1670 2 88 177 2,6 7,6 8,78 1670 2 132 284 332 284 333 ,01 0780 2 87 268 33,9 19,4 9,85	1365 341 566 4,00 334730 88 1262 67,5 105,1 18,71 134730 132 1359 344 570 3,95 233810 87 1360 68,8 107,0	1495 372 639 4,02 257070 116 1359 72,3 112,7 18,80 257070 166 1489 375 644 3,97 256070 115 1465 73,7 114,7	1576 388 677 4,06 271060 116 1446 77,1 120,2 18,75 271060 165 1570 392 682 4,01 270020 115 1558 78,6 122,3		

⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

NSMW - FN - PN

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Free-cooling														
Cooling performance chiller operation (1)														
Cooling capacity	kW	324	376	428	473	497	538	567	614	643	659	687	751	803
Input power	kW	74	88	99	109	116	124	134	142	152	157	163	174	184
Cooling total input current	A	132	154	172	184	192	206	222	235	252	265	280	297	313
EER EER	W/W	4,41	4,27	4,31	4,35	4,29	4,33	4,21	4,32	4,24	4,21	4,22	4,32	4,38
	I/h				81410	85540	92510	97450		110670		118220	129100	
Water flow rate system side		55800	64730	73570					105570		113400			138190
Pressure drop system side	kPa	46	54	42	49	56	65	71	45	49	53	51	54	64
Cooling performances with free-cooling (2)	1111	240	222	204	104			170					407	470
Cooling capacity	kW	318	330	391	401	404	465	470	531	536	539	543	607	670
Input power	kW	7,9	7,9	9,5	9,5	9,5	11,1	11,1	12,7	12,7	12,7	12,7	14,3	15,9
Free cooling total input current	A	12	12	14	14	14	16	16	19	19	19	19	21	24
EER	W/W	39,96	41,57	41,02	42,00	42,41	41,76	42,22	41,75	42,17	42,36	42,67	42,46	42,16
Water flow rate system side	l/h	55800	64730	73570	81410	85540	92510	97450	105570	110670	113400	118220	129100	138190
Pressure drop system side	kPa	67	81	66	78	87	93	102	72	79	84	84	87	95
Free-cooling Plus														
Cooling performance chiller operation (1)														
Cooling capacity	kW	323	374	426	471	494	535	564	611	640	656	683	746	799
Input power	kW	74	89	100	110	117	125	136	143	153	158	164	175	185
Cooling total input current	A	132	155	173	185	194	207	224	237	254	267	282	300	316
EER EER	W/W	4,36	4,22	4,26	4,29	4,23	4,27	4,15	4,26	4,18	4,15	4,16	4,26	4,32
Water flow rate system side	I/h	55590	64410	73210	80970	85050	92040	96930	105040	110080	112780	117540	128400	137510
Pressure drop system side	kPa	45	53	42	49	55	64	70	44	49	52	50	54	63
Cooling performances with free-cooling (2)	ni u	19	33	12	17	33	VT	70	17	17	JL	30	51	03
Cooling capacity	kW	337	352	417	427	431	495	501	566	572	575	579	648	715
	kW	8,1	8,1	9,7	9,7	9,7	11,3	11,3	12,9	12,9	12,9	12,9	14,5	16,2
Input power		12		14	14									
Free cooling total input current	A		12			14	17	17	19	19	19	19	21	24
EER	W/W	41,76	43,58	42,96	44,05	44,49	43,79	44,29	43,78	44,23	44,44	44,76	44,54	44,22
Water flow rate system side	I/h	55590	64410	73210	80970	85050	92040	96930	105040	110080	112780	117540	128400	137510
Pressure drop system side	kPa	66	80	65	77	86	92	101	71	78	83	83	86	94
Size		3902	4202	4502	4802	5202	560	2 60	002 (5402	6903	7203	8403	9603
Size Free-cooling		3902	4202	4502	4802	5202	2 560	2 60	002 (5402	6903	7203	8403	9603
Free-cooling		3902	4202	4502	4802	5202	2 560	2 60	002 (5402	6903	7203	8403	9603
Free-cooling Cooling performance chiller operation (1)	ĿW													
Free-cooling Cooling performance chiller operation (1) Cooling capacity	kW	852	881	969	1033	1115	119	8 12	263	1329	-	-	-	-
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power	kW	852 195	881 207	969 218	1033 232	1115 249	119 265	8 12 5 2	263 88	1329 311	-	-	-	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	852 195 328	881 207 343	969 218 374	1033 232 408	1115 249 427	119 265 447	8 12 5 2	263 88 81	1329 311 516	- -	- - -	- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W	852 195 328 4,37	881 207 343 4,26	969 218 374 4,44	1033 232 408 4,46	1115 249 427 4,49	119 265 447 4,5	8 12 5 2 7 4	263 88 81 ,38	1329 311 516 4,27	-		- - -	- - -
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	852 195 328 4,37 146560	881 207 343 4,26 151590	969 218 374 4,44 166730	1033 232 408 4,46 177640	1115 249 427 4,49 19182	119 265 447 4,5° 0 2060	8 12 5 2 7 4 1 4 10 21	263 88 81 ,38 7280 2	1329 311 516 4,27 28590			- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	852 195 328 4,37	881 207 343 4,26	969 218 374 4,44	1033 232 408 4,46	1115 249 427 4,49	119 265 447 4,5	8 12 5 2 7 4 1 4 10 21	263 88 81 ,38	1329 311 516 4,27	-		- - -	- - -
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa	852 195 328 4,37 146560 75	881 207 343 4,26 151590 81	969 218 374 4,44 166730 80	1033 232 408 4,46 177640 80	1115 249 427 4,49 19182 80	119 265 447 4,5 0 2060 45	8 12 5 2 7 4 1 4 10 212	263 88 81 ,38 7280 2	1329 311 516 4,27 28590 53			- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa	852 195 328 4,37 146560 75	881 207 343 4,26 151590 81	969 218 374 4,44 166730 80	1033 232 408 4,46 177640 80	1115 249 427 4,49 19182 80	119. 265 447 4,5° 0 2060 45	8 1.3 5 2 5 2 7 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 88 81 ,38 7280 2	1329 311 516 4,27 28590 53			- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW	852 195 328 4,37 146560 75 731	881 207 343 4,26 151590 81 737 17,5	969 218 374 4,44 166730 80 857 20,7	1033 232 408 4,46 177640 80 921 22,3	1115 249 427 4,49 19182 80 988 23,8	119. 265 447 4,5° 0 2060 45	8 12 5 2 7 4 1 4 10 21 6 10 6 10	263 88 81 ,38 7280 2 53	1329 311 516 4,27 28590 53			- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa kW A	852 195 328 4,37 146560 75 731 17,5 26	881 207 343 4,26 151590 81 737 17,5 26	969 218 374 4,44 166730 80 857 20,7	1033 232 408 4,46 177640 80 921 22,3 33	1115 249 427 4,49 19182 80 988 23,8	119. 265 447 4,5' 0 2060 45 105 25,4	88 13 5 22 7 4 11 4 110 213 66 110	263 88 81 ,38 7280 2 53	1329 311 516 4,27 28590 53 1079 25,4 38			- - -	
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW	852 195 328 4,37 146560 75 731	881 207 343 4,26 151590 81 737 17,5	969 218 374 4,44 166730 80 857 20,7	1033 232 408 4,46 177640 80 921 22,3	1115 249 427 4,49 19182 80 988 23,8	119. 265 447 4,5' 0 2060 45 105 25,4	88 13 5 22 7 4 11 4 110 213 66 110	263 88 81 ,38 7280 2 53	1329 311 516 4,27 28590 53				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW A	852 195 328 4,37 146560 75 731 17,5 26	881 207 343 4,26 151590 81 737 17,5 26	969 218 374 4,44 166730 80 857 20,7	1033 232 408 4,46 177640 80 921 22,3 33 41,37	1115 249 427 4,49 19182 80 988 23,8 35 41,45	119. 265 447 4,5° 0 2060 45 105 25,4° 38 6 41,5°	8 13 5 2 7 4 1 4 10 213 6 10 6 10 6 10 6 10 6 10	263 88 81 ,38 7280 2 53 068 55,4 38 8	1329 311 516 4,27 28590 53 1079 25,4 38				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	852 195 328 4,37 146560 75 731 17,5 26 41,84	881 207 343 4,26 151590 81 737 17,5 26 42,13	969 218 374 4,44 166730 80 857 20,7 31 41,48	1033 232 408 4,46 177640 80 921 22,3 33 41,37	1115 249 427 4,49 19182 80 988 23,8 35 41,45	119. 265 447 4,5° 0 2060 45 105 25,4 38 6 41,5 0 2060	8 13 5 2 7 4 1 4 110 213 6 110 6 114 2 4 2 42 110 213	263 88 81 ,38 7280 2 53 068 55,4 38 8	1329 311 516 4,27 28590 53 1079 25,4 38 42,42				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730	1033 232 408 4,46 177640 80 921 22,3 33 41,37	1115 249 427 4,49 19182 80 988 23,8 35 41,45	119. 265 447 4,5° 0 2060 45 105 25,4 38 6 41,5 0 2060	8 13 5 2 7 4 1 4 110 213 6 110 6 114 2 4 2 42 110 213	263 88 81 ,38 7280 2 53 068 55,4 38 2,01	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus	kW A W/W I/h kPa kW kW A W/W I/h	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730	1033 232 408 4,46 177640 80 921 22,3 33 41,37	1115 249 427 4,49 19182 80 988 23,8 35 41,45	119. 265 447 4,5° 0 2060 45 105 25,4 38 6 41,5 0 2060	8 13 5 2 7 4 1 4 110 213 6 110 6 114 2 4 2 42 110 213	263 88 81 ,38 7280 2 53 068 55,4 38 2,01	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182	1199 265 447 4,5° 0 2060 45 105 25,- 38 6 41,5° 0 2060 71	88 13. 5 22 42. 10 21. 11 4 2. 12 42. 10 21.	263 88 81 ,38 7280 2 53 068 55,4 38 2,01 7280 2	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182	1199 265 447 4,5° 0 2060 45 105 25,4 38 6 41,5° 0 2060 71	8 1.3 5 2 5 7 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 88 81 ,38 7280 2 53 068 55,4 38 2,01 7280 2	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106	1199 265 447 4,5' 0 2060 45 105 25,4 38 6 41,5' 0 2060 71	8 1.3 5 2 7 4 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	263 88 81 ,38 7280 2 53 068 55,4 38 2,01 7280 2 84	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling total input current EER Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106	1199 265 447 4,5' 0 2060 45 105 25,4 38 6 41,5' 0 2060 71 119 268 450	88 1.3 1.3 1.5 2.5 2.7 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	263 88 81 ,38 7280 2 53 253 268 2,01 7280 2 84	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling total input current EER Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106	1199 265 447 4,5° 0 2060 45 105 25,4° 38 5 41,5° 0 2060 71 119 268 450 4,4°	8 1.3 5 2 7 4 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	263 88 81 ,38 7280 2 53 268 2,01 7280 2 84 257 .991 .85 ,32	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling total input current EER Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106	1199 265 447 4,5° 0 2060 45 105 25,4° 38 5 41,5° 0 2060 71 119 268 450 4,4°	8 1.3	263 88 81 ,38 ,7280 2 53 268 2,01 77280 2 84 257 191 185 ,32 66210 2	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 27390				
Free-cooling Cooling performance chiller operation (1) Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106	1199 265 447 4,5° 0 2060 45 105 25,4° 38 5 41,5° 0 2060 71 119 268 450 4,4°	8 1.3	263 88 81 ,38 7280 2 53 268 2,01 7280 2 84 257 .991 .85 ,32	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Free-cooling Plus Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling (2)	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105 848 197 330 4,31 145850 74	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820 80	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106 965 220 377 4,38 165970	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106 1110 251 430 4,43 19095 79	1199 265 447 4,5° 0 2060 45 105 25,4° 38 5 41,5° 0 2060 71 119 268 450 4,4° 0 2050	8 1.3	263 88 81 ,38 ,38 ,7280 2 53 268 2,01 ,7280 2 84 257 ,91 ,85 ,32 ,32 ,32 ,32 ,32 ,33 ,38 ,38 ,38 ,38 ,38 ,38 ,38	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 27390 53				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Free-cooling Plus Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity	kW A W/W I/h kPa kW A W/W I/h kPa kW A W/W I/h kPa kW KW A W/W KW A W/W KW A W/W KW	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105 848 197 330 4,31 145850 74	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820 80	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106 965 220 377 4,38 165970 79	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106 1110 251 430 4,43 19095 79	1199 263 447 4,5° 0 2060 45 105 25,4 38 6 41,5 0 2060 71 119 268 450 4,4° 0 2050 45	8 1.3	263 88 81 ,38 ,38 ,7280 2 53 253 268 2,01 ,7280 2 84 257 ,91 ,85 ,32 ,32 ,32 ,32 ,33 ,38 ,38 ,38 ,38 ,38 ,38 ,48 ,54 ,48 ,54 ,48 ,54 ,54 ,54 ,54 ,54 ,54 ,54 ,54	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 227390 53				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kW KPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105 848 197 330 4,31 145850 74	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820 80 786 17,8	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106 965 220 377 4,38 165970 79	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106 1028 234 411 4,40 176870 79	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106 1110 251 430 4,43 19095 79	1199 265 447 4,5° 0 2060 45 105 25,4 38 5 41,5 0 2060 71 119 268 450 4,4' 4,4' 60 2050 45	88 12 5 2 7 4 11 4 10 212 66 111 64 2 2 10 212 10 212 1	263 88 81 ,38 87280 2 53 253 268 2008 88 201 2 77280 2 88 257 191 185 ,32 66210 2 53 139 5,9	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 27390 53 1151 25,9				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Prescooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kW A kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105 848 197 330 4,31 145850 74 780 17,8 26	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820 80 786 17,8 26	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106 965 220 377 4,38 165970 79	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106 1028 234 411 4,40 176870 79	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106 11100 251 430 4,43 19095 79	1199 265 447 4,5° 0 2060 45 105 25,4 38 5 41,50 0 2060 71 119 268 450 4,4' 4,0' 0 2050 45	8 1.3	263 88 81 ,38 ,38 ,7280 2 53 253 268 2,01 ,7280 2 84 257 ,91 ,85 ,32 ,32 ,32 ,32 ,33 ,38 ,38 ,4 ,4 ,5 ,4 ,4 ,5 ,4 ,4 ,5 ,4 ,4 ,5 ,5 ,4 ,4 ,5 ,5 ,6 ,6 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 227390 53 1151 25,9 38				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Pus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Cooling capacity Input power Cooling performances with free-cooling (2) Cooling performances with free-cooling total input current EER Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kW A W/W I/h kPa kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105 848 197 330 4,31 145850 74 780 17,8 26 43,88	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820 80 786 17,8 26 44,20	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106 965 220 377 4,38 165970 79	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106 1028 234 411 4,40 176870 79 981 22,6 33 43,37	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106 11100 2511 430 4,43 19095 79 1053 24,2 36 43,45	1199 265 447 4,5° 0 2060 45 105 25,4 38 6 41,5 0 2060 71 119 268 450 4,4 0 2050 45 112 25,4 38 43,5 44,5 105 105 105 105 105 105 105 10	88 12.5 22 7 44 11 44 110 211: 110 21:	263 88 81 ,38 7280 2 53 068 5,4 38 2,01 77280 2 84 2257 191 85 ,32 6210 2 53 139 5,9 38 4,06	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 227390 53 1151 25,9 38 44,51				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kW A kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105 848 197 330 4,31 145850 74 780 17,8 26	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820 80 786 17,8 26	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106 965 220 377 4,38 165970 79	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106 1028 234 411 4,40 176870 79 981 22,6 33 43,37	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106 11100 2511 430 4,43 19095 79 1053 24,2 36 43,45	1199 265 447 4,5° 0 2060 45 105 25,4 38 6 41,5 0 2060 71 119 268 450 4,4 0 2050 45 112 25,4 38 43,5 44,5 105 105 105 105 105 105 105 10	88 12.5 22 7 44 11 44 110 211: 110 21:	263 88 81 ,38 7280 2 53 068 5,4 38 2,01 77280 2 84 2257 191 85 ,32 6210 2 53 139 5,9 38 4,06	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 227390 53 1151 25,9 38				
Free-cooling Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling Pus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Cooling capacity Input power Cooling performances with free-cooling (2) Cooling performances with free-cooling total input current EER Cooling performances with free-cooling (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kW A W/W I/h kPa kW A W/W I/h kPa	852 195 328 4,37 146560 75 731 17,5 26 41,84 146560 105 848 197 330 4,31 145850 74 780 17,8 26 43,88	881 207 343 4,26 151590 81 737 17,5 26 42,13 151590 113 877 209 346 4,20 150820 80 786 17,8 26 44,20	969 218 374 4,44 166730 80 857 20,7 31 41,48 166730 106 965 220 377 4,38 165970 79	1033 232 408 4,46 177640 80 921 22,3 33 41,37 177640 106 1028 234 411 4,40 176870 79 981 22,6 33 43,37	1115 249 427 4,49 19182 80 988 23,8 35 41,45 19182 106 11100 2511 430 4,43 19095 79 1053 24,2 36 43,45	1199 265 447 4,5° 0 2060 45 105 25,4 38 6 41,5 0 2060 71 119 268 450 4,4' 0 2050 45 112 25,4 38 38 43,5° 44,5° 105 105 105 105 105 105 105 105	88 12.5 22.7 44.1 4.10 21.3 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	263 88 81 ,38 7280 2 53 068 5,4 38 2,01 77280 2 84 2257 191 85 ,32 6210 2 53 139 5,9 38 4,06	1329 311 516 4,27 28590 53 1079 25,4 38 42,42 28590 84 1322 314 520 4,21 227390 53 1151 25,9 38 44,51				

⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

ELECTRIC DATA

Size				1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Electrical data																
	FA-PA	(1)	А	204	226	251	257	273	290	306	335	355	380	405	428	440
Maximum august (FLA)	FE-PE	(1)	Α	204	226	261	267	273	299	316	345	364	390	415	437	450
Maximum current (FLA)	FU-PU	(1)	Α	204	226	261	267	273	299	316	345	364	390	415	437	450
	FN-PN	(1)	Α	214	236	270	277	283	309	325	354	374	399	425	447	469
	FA-PA	(1)	Α	277	285	299	336	350	346	359	439	451	515	568	622	592
Deals sussessed (LDA)	FE-PE	(1)	Α	277	285	308	345	350	356	368	449	461	525	578	632	601
Peak current (LRA)	FU-PU	(1)	Α	277	285	308	345	350	356	368	449	461	525	578	632	601
	FN-PN	(1)	А	287	295	318	355	360	366	378	458	471	535	588	641	621
Size				3902	4202	4502	4802	2 520	02	5602	6002	6402	6903	7203	8403	9603
Electrical data																
	FA-PA	(1)	Α	473	497	538	570	59	00	620	668	701	831	863	933	1051
Mariana (FLA)	FE-PE	(1)	А	483	516	548	595	61	5	645	688	730	841	882	-	-
Maximum current (FLA)	FU-PU	(1)	Α	483	516	548	595	61	5	645	688	730	841	882	-	-
	FN-PN	(1)	Α	508	531	583	624	65	64	683	716	749	-	-	-	-
	FA-PA	(1)	Α	601	625	680	710	84	16	886	965	958	902	932	1137	1205

Α

Α

FE-PE

FU-PU

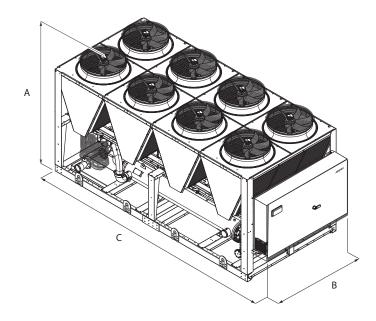
FN-PN

(1)

(1)

(1)

GENERAL TECHNICAL DATA


Peak current (LRA)

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	360
Compressors															
Compressors	All	Туре				-			Screw						
Compressors / Circuit	All	n°	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
Refrigerant	All	Туре							R134a						
System side heat exchanger		/1													
Exchanger	All	Туре							Shell&tub	e					
Exchanger	All	n°	1	1	1	1	1	1	1	1	1	1	1	1	1
Fans													-		
Fans	All	Туре	Axial	Axial	Axial	Axial	Axial	Axial	Axia						
	FA-PA	n°	8	8	8	8	10	10	10	12	12	12	12	14	14
	FE-PE	n°	8	8	10	10	10	12	12	14	14	14	14	16	16
Fans	FU-PU	n°	8	8	10	10	10	12	12	14	14	14	14	16	16
	FN-PN	n°	10	10	12	12	12	14	14	16	16	16	16	18	20
Sound data calculated in coolin					12	12	14	17	17	10	10	10	10	10	20
wasa sarsaratea iii tooliii	FA-PA	dB(A)	97	97	97	97	98	98	98	98	98	99	99	100	101
	FE-PE	dB(A)	93	93	93	94	94	93	93	93	93	95	96	98	98
Sound power level (1)	FU-PU	dB(A)	97	97	98	98	98	99	99	99	99	99	100	101	102
	FN-PN	dB(A)	93	93	94	94	94	94	93	93	93	94	96	98	99
Size			3902	4202	4502	4802	520	02 5	602	6002	6402	6903	7203	8403	9603
Compressors															
Compressors	All	Туре							Screw						
	FA-PA	n°	2/2	2/2	2/2	2/2	2/	2 2	2/2	2/2	2/2	3/3	3/3	3/3	3/3
C	FE-PE	n°	2/2	2/2	2/2	2/2	2/	2 2	2/2	2/2	2/2	3-3	3-3	-	-
Compressors / Circuit	FU-PU	n°	2/2	2/2	2/2	2/2	2/	2 2	2/2	2/2	2/2	3-3	3-3	-	-
	FN-PN	n°	2/2	2/2	2/2	2/2	2/	2 :	2/2	2/2	2/2	-	-	-	-
Refrigerant	All	Туре							R134a						
System side heat exchanger		/1													
Exchanger	All	Туре							Shell&tuk	oe .					
	FA-PA	n°	1	1	1	1	1		1	1	1	2	2	2	2
	FE-PE	n°	1	1	1	1	1		1	1	1	2	2	-	
Exchanger	FU-PU	n°	1	1	1	1	1		2	2	2	2	2	-	_
	FN-PN	n°	1	1	2	2	2		2	2	2	-	-	-	
Fans			· ·												
Fans	All	Туре	Axial	Axial	Axial	Axial	Axi	ial A	ixial	Axial	Axial	Axial	Axial	Axial	Axia
TUIIS	FA-PA	n°	16	16	18	18	18		20	22	22	28	28	30	34
	FE-PE	n°	18	20	20	22	22		24	26	28	30	32	-	-
Fans	FU-PU	n°	18	20	20	22	22		24	26	28	30	32		
	FN-PN	n°	22	22	26	28	30		32	32	32	-	-		
Sound data calculated in coolin		Ш		22	20	20)(U	JL	JŁ	JL	-	-		
Jounn data Calculated III COOIIII	-	dD(V)	101	100	101	101	10	11 .	102	102	102	104	104	105	105
	FA-PA	dB(A)	101	100	101	101	10		102	102	102	104	104	105	
Sound power level (1)	FE-PE	dB(A)	98	96	97	97	99		100	100	99	99	99	-	-
•	FU-PU	dB(A)	101	101	101	102	10		103	103	103	104	104	-	
	FN-PN	dB(A)	98	97	97	97	99		100	100	99	_	-	-	_

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification

⁽¹⁾ Unit standard configuration without hydronic kit

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Dimensions and	l weights														
A	mm	All	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	mm	All	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		Α	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330
c	mm	E	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520
C	mm	U	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520
		N	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900

Size			3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
Dimensions and w	eights .													
A	mm	All	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	mm	All	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		Α	9520	9520	10710	10710	10710	11900	13090	13090	16660	16660	17850	20230
C		E	10710	11900	11900	13090	13090	14280	15470	16660	17850	19040	-	-
C	mm	U	10710	11900	11900	13090	13090	14280	15470	16660	17850	19040	-	-
		N	13090	13090	15470	16660	17850	19040	19040	19040	-	-	-	-

For transport reasons, units with depth greater than 13090 mm are shipped separately. For further information, refer to the technical and/or installation manual.

NSM-HWT-1402-9603-B

Air-water chiller with free-cooling glycol free

Cooling capacity 306 ÷ 1991 kW

- High efficiency also at partial loads
- Microchannel condenser technology
- Ideal in data center applications
- Water outlet temperatures up to 30°C
- Night mode function

DESCRIPTION

NSM chillers are designed and manufactured to meet air conditioning requirements in residential/commercial buildings or to meet refrigeration requirements in industrial facilities.

These are outdoor units with screw compressors, axial fans, micro-channel coils, and shell and tube heat exchangers. The base, the structure and the panels are made of steel treated with rustproof polyester paint.

These chillers are also equipped with a Free cooling coil and are used when the refrigerant load request persists even during the winter months, or when the outdoor air temperature is below the temperature of the return liquid from the system. In Free cooling operation (mixed Free cooling and compressors, or Free cooling only), the fluid is cooled directly by the outdoor air, allowing even the complete shutdown of compressors with a significant energy saving.

VERSIONS

A High Efficiency **E** High efficiency low noise **U** Very high efficiency

N Very high efficiency low noise

FEATURES

- Unit with 2 or 3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.
- An intermediate plate heat exchanger provides two circuits: a glycol circuit, where glycol is added to protect the chiller's coils from freezing, and the chilled water circuit without glycol.
- The full range uses aluminium microchannel coils, ensuring very high levels of efficiency. This allows using less refrigerant compared to traditional copper coils.
- Electronic Thermostatic valve brings significant benefits, in particular when the refrigerant is working at partial loads to the benefit of energy efficiency of the unit.

- Standard differential pressure switch
- Throttle valve in the hydraulic circuit for water switching on the Free-Cooling coils
- Fans inverter
- Device for electronically controlling the series condensation, for operation even at low temperatures or in free cooling, which allows adjusting the air flow rate to actual system demand with resulting advantages in terms of consumption reduction.

CONTROL

Microprocessor adjustment, that allows isolating the condenser coils to maximise the free cooling efficiency, even in mixed Free cooling and compressor operation

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS pro-

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis. FB1: Air filter

MULTICHILLER_EVO: Control system for multiple parallel installed constant flow chillers providing individual chiller on/off and control capability. AVX: Spring anti-vibration mounts.

ACCESSORIES FACTORY FITTED ONLY

KRS: Evaporator trace heating

RIFNSM: Current power factor correction. Connected in parallel to the motor, it allows a reduction of the input current (approx. 10%).

GP: Anti-intrusion grids.

AK: ACOUSTIC KIT. This accessory allows further sound reduction. Must be requested at time of order and is available factory fitted only.

ACCESSORIES COMPATIBILITY

Size	vers.	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
AER485P1		•(x2)												
AERNET		•	•	•	•	•	•	•	•	•	•	•	•	
PRV3		•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO		•	•		•		•	•			•	•		
AVX (1)		•	•	•	٠	•	•	•	•	•	•	•	•	•
Size		3902	4202	4502	4802	5202	2 56	502	6002	6402	6903	7203	8403	9603
AER485P1		•(x2)	•(x2)	•(x2)	•(x2)	•(x2)) •()	x2)	•(x2)	•(x2)	•(x3)	•(x3)	•(x3)	•(x3)
AERNET			•			•				•			•	
PRV3		•	•	•	•	•		•	•	•	•	•	•	•
MULTICHILLER_EVO		•	•		•	•		•	•	•	•	•	•	•
AVX (1)		•	•		•	•				•	•	•	•	•

⁽¹⁾ Accessories to be defined for compatibility

Evaporator trace heating

Vers.		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
	(1)	KRS												
Vers.		3902	4202	4502	4802	5202	5	602	6002	6402	6903	7203	8403	9603
	(1)	KRS	KRS	KRS	KRS	KRS		KRS						

Power factor correction

Vers.	1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
	RIFNSM1402	RIFNSM1602	RIFNSM1802	RIFNSM2002	RIFNSM2202	RIFNSM2352	RIFNSM2502	RIFNSM2652	RIFNSM2802	RIFNSM3002	RIFNSM3202	RIFNSM3402	RIFNSM3602
Vers.	3902	4202	4502	4802	520)2 56	502	5002	6402	6903	7203	8403	9603
	RIFNSM3902	RIFNSM420	2 RIFNSM45	02 RIFNSM4	802 RIFNSM	15202 RIFNS	M5602 RIFN	ISM6002 RIF	NSM6402 R	FNSM6903 F	RIFNSM7203	RIFNSM8403	RIFNSM9603

A grey background indicates the accessory must be assembled in the factory $\,$

Anti-intrusion grids

Vers.		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
	(1)	GP												
Vers.		3902	4202	4502	4802	5202	5	602	6002	6402	6903	7203	8403	9603
	(1)	GP	GP	GP	GP	GP		GP						

Acoustic kit

Vers.		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
	(2)	AK												
Vers.		3902	4202	4502	4802	5202	5	602	6002	6402	6903	7203	8403	9603
	(2)	AK	AK	AK	AK	AK		AK						

CONFIGURATOR

Field	Description
1,2,3	NSM
4,5,6,7	Size
	1402-1602-1802-2002-2202-2352-2502-2652-2802-3002-3202
	3402-3602-3902-4202-4502-4802-5202-5602-6002-6402
	6903-7203-8403-9603
8	Operational limits
W	Electronic thermostatic valve (temperature of water produced from 5°C to 30°C)
9	Model
В	Free cooling Glycol Free
G	Free cooling Glycol Free Plus (1)
10	Versions
A	High efficiency
E	Low noise high efficency
U	Very high efficiency
N	Low noise very high efficiency

⁽¹⁾ The free cooling plus models can have coils only in options "o" and "O" $\,$

Field	Description
11	Condensing coils/ Free cooling water coils
0	Aluminium microchannel/ Copper Aluminium
0	Painted aluminium microchannel/ Painted Aluminium Copper
R	Copper - Copper/Copper - Copper (1)
S	Copper - Thinned/Copper - Thinned (1)
٧	Epoxy paint (only free cooling coil)/Epoxy paint (only free cooling coil) (1)
12	Fans
J	Inverter
13	Power supply
0	400V/3/50Hz
14-15	Integrated hydronic kit
0	Without hydronic kit

⁽x2) Indicates the amount to order

⁽¹⁾ Accessories to be defined for compatibility
A grey background indicates the accessory must be assembled in the factory

⁽¹⁾ Accessories to be defined for compatibility
A grey background indicates the accessory must be assembled in the factory

⁽²⁾ The accessory is only available for the "E/N" silenced versions A grey background indicates the accessory must be assembled in the factory

NSMW - BA - GA

Cina		1402	1602	1002	2002	2202	2252	2502	2652	2002	2002	2202	3402	2602
Size Free-cooling glycol free		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Cooling performance chiller operation (1)	LAM	206	251	400	441	470	505	F46	500	(20	(5)	607	752	700
Cooling capacity	kW	306	351	400	441	479	505	546	589	638	653	687	753	792
Input power	kW	82	95	109	118	125	135	147	155	167	172	179	192	205
Cooling total input current	A	146	166	187	200	208	224	242	258	277	290	306	327	348
EER	W/W	3,75	3,69	3,69	3,73	3,83	3,73	3,71	3,79	3,81	3,8	3,84	3,92	3,86
Water flow rate system side	I/h	52824	60556	69042	76187	82709	87074	94164	101663	110040	112699		129925	136678
Pressure drop system side	kPa	91	120	119	91	107	118	139	135	152	133	130	99	110
Cooling performances with glycol-free (2)														
Cooling capacity	kW	303	276	281	292	360	363	367	437	441	454	456	541	542
Input power	kW	22,6	22,6	22,6	22,6	29,7	29,7	29,7	38,6	38,6	38,7	38,7	44,8	44,8
Free cooling total input current	А	36,1	36,1	36,1	36,1	47	47	47	61,5	61,5	61,7	61,7	71,2	71,2
EER	W/W	13,43	12,22	12,46	12,93	12,14	12,23	12,36	11,32	11,43	11,73	11,79	12,07	12,11
Water flow rate system side	l/h	52824	60556	69042	76187	82709	87074	94164	101663	110040	112699	118488	129925	136678
Pressure drop system side	kPa	91	120	119	91	107	118	139	135	152	133	130	99	110
Free-cooling glycol free Plus														
Cooling performance chiller operation (1)														
Cooling capacity	kW	305	349	398	439	477	502	543	587	635	650	683	749	788
Input power	kW	82	96	109	120	126	136	148	157	169	174	181	194	207
Cooling total input current	A	147	167	188	201	210	226	244	260	279	292	308	330	351
	W/W					3,78								
Wester Grow water growth and girls		3,70	3,64	3,64	3,68		3,68	3,66	3,74	3,76	3,74	3,78	3,86	3,80
Water flow rate system side	I/h	52588	60291	68707	75829	82367	86693	93725	101283	109546	112184		129336	136024
Pressure drop system side	kPa	90	119	118	90	106	117	137	134	151	132	129	98	108
Cooling performances with glycol-free (2)														
Cooling capacity	kW	314	287	293	305	377	380	384	459	463	478	481	570	572
Input power	kW	23	22,9	22,9	23	30,1	30,1	30,1	39,2	39,2	39,3	39,3	45,5	45,5
Free cooling total input current	A	36,6	36,6	36,6	36,6	47,7	47,7	47,7	62,3	62,3	62,5	62,5	72,1	72,1
EER	W/W	13,67	12,52	12,77	13,30	12,51	12,60	12,74	11,72	11,84	12,18	12,25	12,53	12,58
Water flow rate system side	l/h	52588	60291	68707	75829	82367	86693	93725	101283	109546	112184	117898	129336	136024
Pressure drop system side	kPa	90	119	118	90	106	117	137	134	151	132	129	98	108
-														
Size		3902	4202	4502	4802	5202	560	2 60	002	6402	6903	7203	8403	9603
Free-cooling glycol free		3902	4202	4502	4802	5202	560	2 60	002	6402	6903	7203	8403	9603
		3902	4202	4502	4802	5202	560	2 60	002	6402	6903	7203	8403	9603
Free-cooling glycol free	kW	3902 853	4202 882	4502 959	4802	5202	560			6 402 1327	6903 1476	7203 1531	8403 1758	9603 2001
Free-cooling glycol free Cooling performance chiller operation (1)	kW kW							9 12						
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity		853	882	959	1014	1082	116	9 12	262	1327	1476	1531	1758	2001
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power	kW	853 216	882 228	959 244	1014 260	1082 281	116 295	9 12 5 3 4 5	262 119	1327 343	1476 373	1531 388	1758 442	2001 512
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A	853 216 362	882 228 377	959 244 416	1014 260 453	1082 281 478 3,86	116 295 494 3,97	9 12 5 3 4 5 7 3	262 119 331 ,95	1327 343 567 3,87	1476 373 646	1531 388 683	1758 442 740	2001 512 854
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W	853 216 362 3,95	882 228 377 3,87	959 244 416 3,92	1014 260 453 3,9	1082 281 478 3,86	116 295 494 3,97	9 12 5 3 4 5 7 3 11 212	262 119 331 ,95	1327 343 567 3,87	1476 373 646 3,96	1531 388 683 3,94	1758 442 740 3,97	2001 512 854 3,91
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W I/h	853 216 362 3,95 147129	882 228 377 3,87 152124	959 244 416 3,92 165550	1014 260 453 3,9 174920	1082 281 478 3,86 18680	116 295 494 3,97 2 2018	9 12 5 3 4 5 7 3 11 212	262 119 331 ,95 7758 2	1327 343 567 3,87 28975	1476 373 646 3,96 254763	1531 388 683 3,94 264131	1758 442 740 3,97 303311	2001 512 854 3,91 345300
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2)	kW A W/W I/h kPa	853 216 362 3,95 147129 128	882 228 377 3,87 152124 137	959 244 416 3,92 165550 148	1014 260 453 3,9 174920 165	1082 281 478 3,86 18680.	116 295 494 3,97 2 2018	9 13 5 3 4 5 7 3 11 213 5 1	262 :19 :31 ,95 :7758 2	1327 343 567 3,87 28975	1476 373 646 3,96 254763 126	1531 388 683 3,94 264131 141	1758 442 740 3,97 303311 111	2001 512 854 3,91 345300 144
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa	853 216 362 3,95 147129 128	882 228 377 3,87 152124 137	959 244 416 3,92 165550 148	1014 260 453 3,9 174920 165	1082 281 478 3,86 186800 155	1160 295 494 3,91 2 2018 146	9 13 5 35 7 37 7 37 111 213 5 1	262 119 131 ,95 77758 2	1327 343 567 3,87 28975 190	1476 373 646 3,96 254763 126	1531 388 683 3,94 264131 141	1758 442 740 3,97 303311 111	2001 512 854 3,91 345300 144
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW	853 216 362 3,95 147129 128 598 49,8	882 228 377 3,87 152124 137 599	959 244 416 3,92 165550 148 674	1014 260 453 3,9 174920 165 675	1082 281 478 3,86 18680 155 675	116 295 494 3,97 2 2018 146 748	9 13 5 3 4 5 7 3 7 3 111 213 5 1	262 119 131 195 17758 2 171	1327 343 567 3,87 28975 190	1476 373 646 3,96 254763 126	1531 388 683 3,94 264131 141 1039 84,7	1758 442 740 3,97 303311 111 1134 93,7	2001 512 854 3,91 345300 144 1263 103,6
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	853 216 362 3,95 147129 128 598 49,8 78,9	882 228 377 3,87 152124 137 599 49,8 78,9	959 244 416 3,92 165550 148 674 55	1014 260 453 3,9 174920 165 675 55	1082 281 478 3,86 18680 155 675 55 87,1	116 295 494 3,97 2 2018 146 748 60	9 13 5 3 7 3 7 3 7 3 111 213 5 1 8 8 6 6	262 119 131 ,95 77758 2 771	1327 343 567 3,87 28975 190 807 64,9	1476 373 646 3,96 254763 126 1038 84,7 134,1	1531 388 683 3,94 264131 141 1039 84,7 134,1	1758 442 740 3,97 303311 111 1134 93,7 148,7	2001 512 854 3,91 345300 144 1263 103,6 164,3
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	853 216 362 3,95 147129 128 598 49,8 78,9 12,03	882 228 377 3,87 152124 137 599 49,8 78,9 12,04	959 244 416 3,92 165550 148 674 55 87,1 12,26	1014 260 453 3,9 174920 165 675 55 87,1 12,28	1082 281 478 3,86 186800 155 675 55 87,1 12,28	1166 295 494 3,97 2 2018 146 748 60 95	99 13 5 3 7 3 7 3 7 3 7 3 8 8 6 6 10	262 119 131 ,95 77758 2 771 802 4,9	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27	1758 442 740 3,97 303311 111 1134 93,7 148,7	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550	1014 260 453 3,9 174920 165 675 55 87,1 12,28	1082 281 478 3,86 186800 155 675 55 87,1 12,28	1166 295 494 3,97 2 2018 146 748 60 95 12,4 2 2018	9 12 5 3 4 5 7 3 111 212 6 1 8 8 6 10 16 12	262 119 331 ,95 77758 2 71 302 4,9 202,6 2,36 77758 2	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W	853 216 362 3,95 147129 128 598 49,8 78,9 12,03	882 228 377 3,87 152124 137 599 49,8 78,9 12,04	959 244 416 3,92 165550 148 674 55 87,1 12,26	1014 260 453 3,9 174920 165 675 55 87,1 12,28	1082 281 478 3,86 186800 155 675 55 87,1 12,28	1166 295 494 3,97 2 2018 146 748 60 95	9 12 5 3 4 5 7 3 111 212 6 1 8 8 6 10 16 12	262 119 331 ,95 77758 2 71 302 4,9 202,6 2,36 77758 2	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27	1758 442 740 3,97 303311 111 1134 93,7 148,7	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus	kW A W/W I/h kPa kW kW A W/W I/h	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550	1014 260 453 3,9 174920 165 675 55 87,1 12,28	1082 281 478 3,86 186800 155 675 55 87,1 12,28	1166 295 494 3,97 2 2018 146 748 60 95 12,4 2 2018	9 12 5 3 4 5 7 3 111 212 6 1 8 8 6 10 16 12	262 119 331 ,95 77758 2 71 302 4,9 202,6 2,36 77758 2	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155	1166 295 494 3,91 2 2018 146 748 60 95 12,4 2 2018	9 1: 5 3 4 5 7 3 7 3 111 21: 5 1 1 21: 8 8 6 6 10: 16 12: 111 21:	262 119 331 ,95 77758 2 771 802 4,9 922,6 2,36 77758 2	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155	1166 295 494 3,91 2 2018 146 60 95 12,4 2 2018 146	9 1: 5 3 4 5 7 3 7 3 111 21: 5 1 1 21: 6 1 10: 16 12: 111 21: 15 1 1	262 119 331 ,95 77758 2 771 802 4,9 02,6 2,36 77758 2 171	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 116 298	9 1: 5 3 4 5 7 3 7 3 111 21: 5 1 16 12: 16 12: 17 11 21: 18 8 8 6 6 10: 10: 10: 10: 10: 10: 10: 10: 10: 10:	262 119 131 195 17758 2 171 1802 4,9 192,6 193,6	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 116 298 498	9 1: 5 3 4 5 7 3 7 3 111 21: 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1	262 119 131 195 17758 2 171 1802 4,9 102,6 102,6 17758 2 171	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155 1077 284 482 3,80	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 298 498 3,9	9 1: 5 3 4 5 7 3 7 3 111 21: 5 1 10 10 10 10 10 10 10 10 10 10 10 10 1	262 319 331 ,95 77758 2 771 302 4,9 02,6 2,36 77758 2 171 256 322 336 ,90	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190 1320 346 571 3,81	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155 1077 284 482 3,80	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 298 498 3,9	9 1: 5 3 4 5 7 3 7 3 111 21: 5 1 10 10 10 10 10 10 10 10 10 10 10 10 1	262 319 331 ,95 77758 2 771 302 4,9 02,6 2,36 77758 2 171 256 322 336 ,90	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190 1320 346 571 3,81	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155 1077 284 482 3,80	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 298 498 3,9	9 1: 5 3 4 5 7 3 111 21: 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1	262 319 331 ,95 77758 2 771 302 4,9 02,6 2,36 77758 2 171 256 322 336 ,90	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190 1320 346 571 3,81	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90 146478	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81 151430	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148 955 247 420 3,87 164829	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84 174121	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155 1077 284 482 3,80 18583	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 298 498 3,99 8 2007	9 1: 5 3 4 5 7 3 111 21: 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1	262 319 331 ,95 77758 2 771 802 4,9 02,6 2,36 77758 2 171 256 322 336 ,90 6706 2	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190 1320 346 571 3,81 27798	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90 253695	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89 262987	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91 301787	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85 343582
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90 146478	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81 151430	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148 955 247 420 3,87 164829	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84 174121	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155 1077 284 482 3,80 18583	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 298 498 3,99 8 2007	9 1: 5 3 4 5 7 3 111 21: 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1	262 319 331 ,95 77758 2 771 802 4,9 02,6 2,36 77758 2 171 256 322 336 ,90 6706 2	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190 1320 346 571 3,81 27798	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90 253695	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89 262987	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91 301787	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85 343582
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90 146478 127	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81 151430 136	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148 955 247 420 3,87 164829 147	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84 174121 164	1082 281 478 3,86 18680 155 675 55 87,1 12,28 18680 155 1077 284 482 3,80 18583 153	1166 295 494 3,93 2 2018 146 60 95 12,4 2 2018 146 298 498 3,99 8 2007	9 1: 5 3 4 5 7 3 111 21: 6 1 10 10 10 10 10 10 10 10 10 10 10 10 1	262 319 331 ,95 77758 2 771 302 4,9 02,6 2,36 77758 2 171 256 322 336 ,90 6706 2 170	1327 343 567 3,87 28975 190 807 64,9 102,6 12,43 28975 190 1320 346 571 3,81 27798 188	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90 253695 125	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89 262987 140	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91 301787 110	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85 343582 143
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW KW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90 146478 127	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81 151430 136	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148 955 247 420 3,87 164829 147 708 55,8	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84 174121 164	1082 281 478 3,86 18680; 155 675 55 87,1 12,28 18680; 155 1077 284 482 3,80 18583; 153	1166 295 494 3,97 2 2018 146 60 95 12,4 2 2018 146 298 498 3,9 8 2007 144 785 61,1	99 12 5 3 4 5 7 3 111 212 5 1 8 6 6 12 111 212 6 1 14 12 13 3 3 13 3 5 1 3 84 21 14 1	262 119 331 ,95 7758 2 771 302 4,9 102,6 102,36 17758 2 171 256 1622 1336 190 190 190 190 190 190 190 190	1327 343 567 3,87 28975 190 807 64,9 102,6 112,43 28975 190 1320 346 571 3,81 27798 188 844 66,0	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90 253695 125 1089 86,0	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89 262987 140	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91 301787 110 1192 95,1	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85 343582 143
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW A W/W I/h kPa kW KW A	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90 146478 127 628 50,5 80,0	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81 151430 136 629 50,5 80,0	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148 955 247 420 3,87 164829 147 708 55,8 88,3	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84 174121 164	1082 281 478 3,86 18680; 155 675 55 87,1 12,28 18680; 155 1077 284 482 3,80 18583; 153 709 55,8 88,3	1166 295 494 3,97 2 2018 146 60 95 12,4 2 2018 146 116 298 3,9 8 2007 144 785 61,1 96,6	9 1: 5 3 4 5 7 3 111 21: 5 1 8 8 6 6 10 16 12: 111 21: 5 1 4 1: 8 3 3 3 8 4 21: 4 1: 5 8 0 6 4 10	262 119 331 ,95 7758 2 771 302 4,9 22,6 22,36 77758 2 171 256 222 336 ,90 66706 2 170 339 66,0 04,1	1327 343 567 3,87 28975 190 807 64,9 102,6 112,43 28975 190 1320 346 571 3,81 27798 188 844 66,0 104,1	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90 253695 125 1089 86,0 136,0	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89 262987 140 1090 86,0 136,0	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91 301787 110 1192 95,1 150,8	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85 343582 143 1325 105,2 166,6
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Cooling performance with glycol-free (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A W/W I/h kPa kW KW A W/W I/h kPa	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90 146478 127 628 50,5 80,0 12,43	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81 151430 136 629 50,5 80,0 12,45	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148 955 247 420 3,87 164829 147 708 55,8 88,3 12,68	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84 174121 164 709 55,8 88,3 12,70	1082 281 478 3,86 18680; 155 675 55 87,1 12,28 18680; 155 1077 284 482 3,80 18583; 153 709 55,8 88,3 12,70	1166 295 494 3,97 2 2018 146 60 95 12,4 2 2018 146 116 298 498 3,9 8 2007 144 785 61,1 96,1	9 1: 5 3 4 5 7 3 111 21: 5 1 8 8 6 6 10: 111 21: 5 1 4 1: 8 3 3 3 5 1 3 3 8 4 21: 4 1: 5 8 0 6 6 4 10: 6 12: 6 12: 7 12: 8 13: 8 14: 8 15: 8 16: 8	262 119 331 ,95 7758 2 771 302 4,9 102,6 102,36 17758 2 171 256 1622 171 170 170 170 170 170 170 170	1327 343 567 3,87 28975 190 807 64,9 102,6 112,43 28975 190 1320 346 571 3,81 27798 188 844 66,0 104,1 12,80	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90 253695 125 1089 86,0 136,0 12,67	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89 262987 140 1090 86,0 136,0 12,68	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91 301787 110 1192 95,1 150,8 12,54	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85 343582 143 1325 105,2 166,6 12,59
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW A W/W I/h kPa kW KW A	853 216 362 3,95 147129 128 598 49,8 78,9 12,03 147129 128 849 218 365 3,90 146478 127 628 50,5 80,0	882 228 377 3,87 152124 137 599 49,8 78,9 12,04 152124 137 878 230 381 3,81 151430 136 629 50,5 80,0	959 244 416 3,92 165550 148 674 55 87,1 12,26 165550 148 955 247 420 3,87 164829 147 708 55,8 88,3	1014 260 453 3,9 174920 165 675 55 87,1 12,28 174920 165 1009 262 456 3,84 174121 164	1082 281 478 3,86 18680; 155 675 55 87,1 12,28 18680; 155 1077 284 482 3,80 18583; 153 709 55,8 88,3 12,70	1166 295 494 3,97 2 2018 146 60 95 12,4 2 2018 146 116 298 498 3,9 8 2007 144 785 61,1 96,1	9 1: 5 3 4 5 7 3 111 21: 5 1 8 6 6 12: 111 21: 6 1 4 1: 8 3 3 3 5 1 3 3 8 4 21: 4 1: 6 8 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 7 6 7	262 119 331 ,95 7758 2 771 302 4,9 102,6 102,36 17758 2 171 256 1622 171 170 170 170 170 170 170 170	1327 343 567 3,87 28975 190 807 64,9 102,6 112,43 28975 190 1320 346 571 3,81 27798 188 844 66,0 104,1 12,80	1476 373 646 3,96 254763 126 1038 84,7 134,1 12,26 254763 126 1470 377 652 3,90 253695 125 1089 86,0 136,0	1531 388 683 3,94 264131 141 1039 84,7 134,1 12,27 264131 141 1524 392 688 3,89 262987 140 1090 86,0 136,0	1758 442 740 3,97 303311 111 1134 93,7 148,7 12,1 303311 111 1749 447 747 3,91 301787 110 1192 95,1 150,8	2001 512 854 3,91 345300 144 1263 103,6 164,3 12,18 345300 144 1991 517 861 3,85 343582 143 1325 105,2 166,6

⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

NSMW - BE - GE

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Free-cooling glycol free														
Cooling performance chiller operation (1)														
Cooling capacity	kW	315	362	415	456	478	524	551	599	626	641	667	735	772
Input power	kW	75	91	101	112	120	127	138	145	156	161	169	178	192
Cooling total input current	A	134	158	175	189	199	210	227	240	258	272	288	303	325
EER	W/W	4,19	3,97	4,09	4,07	3,98	4,13	4,00	4,12	4,02	3,97	3,95	4,13	4,03
Water flow rate system side	l/h	54400	62421	71530	78692	82506	90469	95144	103288	108035	110595	115049	126808	133234
Pressure drop system side	kPa	81	100	101	95	104	105	116	127	139	121	125	96	106
Cooling performances with glycol-free (2)														
Cooling capacity	kW	260	228	276	285	287	343	345	389	391	402	403	469	471
Input power	kW	10,6	10,6	13,4	13,5	13,5	19,2	19,2	21,9	21,9	22,1	22,1	23,9	23,9
Free cooling total input current	A	16,7	16,6	21,0	21,2	21,2	30,5	30,5	34,5	34,5	34,9	34,9	37,6	37,6
EER	W/W	24,39	21,44	20,58	21,09	21,21	17,84	17,94	17,79	17,87	18,15	18,22	19,61	19,67
Water flow rate system side	I/h	54400	62421	71530	78692	82506	90469	95144	103288	108035	110595		126808	133234
Pressure drop system side	kPa	81	100	101	95	104	105	116	127	139	121	125	96	106
Free-cooling glycol free Plus														
Cooling performance chiller operation (1)														
Cooling capacity	kW	314	360	412	453	474	521	548	595	622	637	662	730	767
Input power	kW	76	92	102	113	122	128	139	147	157	163	170	180	194
Cooling total input current	A	134	159	176	190	201	211	229	242	260	274	291	306	328
EER	W/W	4,14	3,92	4,03	4,00	3,90	4,07	3,93	4,06	3,96	3,90	3,88	4,06	3,95
Water flow rate system side	I/h	54167	62091	71121	78115	81864	89932	94544	102700	107375	109898		125980	132294
Pressure drop system side	kPa	81	99	99	94	103	103	114	126	138	119	123	94	104
Cooling performances with glycol-free (2)	1,147	270	727	200	200	200	250	240	400	400	410	424	401	402
Cooling capacity	kW	270	237	288	298	300	358	360	406	408	419	421	491	492
Input power	kW	10,8	10,7	13,5	13,7	13,7	19,4	19,4	22,1	22,1	22,3	22,3	24,1	24,1
Free cooling total input current	A	16,8	16,8	21,2	21,4	21,4	30,8	30,8	34,8	34,8	35,2	35,2	37,9	37,9
EER	W/W	25,10	22,15	21,24	21,80	21,93	18,48	18,59	18,39	18,48	18,80	18,87	20,33	20,39
Water flow rate system side	I/h kPa	54167 81	62091 99	71121 99	78115 94	81864 103	89932 103	94544	102700 126	107375 138	109898 119	114268	125980 94	132294 104
Pressure drop system side	Kra	01	ענ	צנ	74	10.5	103	114	120	130	117	123	74	104
Size		3902	4202	4502	4802	5202	560	02 6	002	6402	6903	7203	8403	9603
Size Free-cooling glycol free		3902	4202	4502	4802		560)2 6	002	6402	6903	7203	8403	9603
		3902	4202	4502	4802		560	02 6	002	6402	6903	7203	8403	9603
Free-cooling glycol free	kW	3902 823	4202 870	4502 932	4802					6402 1300	6903 1423	7203 1502	8403	9603
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power	kW kW					5202		52 1						
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	823 202 339	870 210 348	932 228 388	1011 241 421	1070 260 443	115 27 46	52 1 5 2	226 296 493	1300 318 526	1423 350 601	1502 364 631	-	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW	823 202	870 210	932 228	1011 241	5202 1070 260	115	52 1 5 2 0 4	226 296 493 4,14	1300 318 526 4,09	1423 350 601 4,07	1502 364 631 4,13	-	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	823 202 339 4,07 142081	870 210 348 4,15 150081	932 228 388 4,09 160772	1011 241 421 4,19 174443	1070 260 443 4,12 18466	115 27 46 4,1 5 1987	52 1 5 2 0 4 9 4 768 21	226 296 493 4,14 1564 2	1300 318 526 4,09 24359	1423 350 601 4,07 245581	1502 364 631 4,13 259231	- - -	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	823 202 339 4,07	870 210 348 4,15	932 228 388 4,09	1011 241 421 4,19	1070 260 443 4,12	115 27 46 4,1	52 1 5 2 0 4 9 4 768 21	226 296 493 4,14	1300 318 526 4,09	1423 350 601 4,07	1502 364 631 4,13	- - -	- - -
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2)	kW A W/W I/h kPa	823 202 339 4,07 142081 121	870 210 348 4,15 150081 135	932 228 388 4,09 160772 142	1011 241 421 4,19 174443 152	1070 260 443 4,12 18466.	115 27. 46 4,1 5 1987 81	52 1 5 2 0 4 9 4 768 21	226 296 493 4,14 1564 2	1300 318 526 4,09 24359 110	1423 350 601 4,07 245581 119	1502 364 631 4,13 259231 123	- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa	823 202 339 4,07 142081 121	870 210 348 4,15 150081 135	932 228 388 4,09 160772 142	1011 241 421 4,19 174443 152	1070 260 443 4,12 18466 170	115 27. 46 4,1 5 1987 81	552 1 55 2 0 4 9 4 1	226 296 493 4,14 11564 2 128	1300 318 526 4,09 24359 110	1423 350 601 4,07 245581 119	1502 364 631 4,13 259231 123	- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW	823 202 339 4,07 142081 121 515 25,6	870 210 348 4,15 150081 135 578 31,3	932 228 388 4,09 160772 142 588 31,5	1011 241 421 4,19 174443 152 633 33,1	1070 260 443 4,12 18466 170	115 27. 466 4,1 5 1987 81 69	52 1 5 2 0 4 9 2 768 21 1	226 296 493 4,14 1564 2 128	1300 318 526 4,09 24359 110	1423 350 601 4,07 245581 119 880 46,8	1502 364 631 4,13 259231 123 924 48,5	- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	823 202 339 4,07 142081 121 515 25,6 40,1	870 210 348 4,15 150081 135 578 31,3 48,8	932 228 388 4,09 160772 142 588 31,5	1011 241 421 4,19 174443 152 633 33,1 51,6	1070 260 443 4,12 18466 170 634 33,1 51,6	115 27 46 4,1 5 1987 81 69 38,	52 1 5 2 0 4 9 4 768 21 1	226 296 493 4,14 11564 2 128 742 41,1	1300 318 526 4,09 24359 110 788 43,7 69,0	1423 350 601 4,07 245581 119 880 46,8 73,4	1502 364 631 4,13 259231 123 924 48,5 75,9	- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	823 202 339 4,07 142081 121 515 25,6 40,1 20,11	870 210 348 4,15 150081 135 578 31,3 48,8 18,44	932 228 388 4,09 160772 142 588 31,5 49,1 18,68	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09	1070 260 443 4,12 18466 170 634 33,1 51,6	115 27 46 4,1 5 1987 81 69 38, 61,	52 155 200 409 42768 211 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	226 296 493 4,14 11564 2 128 742 41,1 555,0 8,06	1300 318 526 4,09 24359 110 788 43,7 69,0	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06	-	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12	115 27. 46 4,1 5 1987 81 69 38, 61, 2 18,65	52 155 200 409 42768 211 33 44 44 44 44 11 602 11 602 12 6	226 296 493 4,14 11564 2 1128 742 41,1 555,0 8,06	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W	823 202 339 4,07 142081 121 515 25,6 40,1 20,11	870 210 348 4,15 150081 135 578 31,3 48,8 18,44	932 228 388 4,09 160772 142 588 31,5 49,1 18,68	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09	1070 260 443 4,12 18466 170 634 33,1 51,6	115 27. 46 4,1 5 1987 81 69 38, 61, 2 18,65	52 155 200 409 42768 211 33 44 44 44 44 11 602 11 602 12 6	226 296 493 4,14 11564 2 128 742 41,1 555,0 8,06	1300 318 526 4,09 24359 110 788 43,7 69,0	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06	-	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus	kW A W/W I/h kPa kW kW A W/W I/h	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12	115 27. 46 4,1 5 1987 81 69 38, 61, 2 18,65	52 155 200 409 42768 211 33 44 44 44 44 11 602 11 602 12 6	226 296 493 4,14 11564 2 1128 742 41,1 555,0 8,06	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443	5202 1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170	115 27. 46 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987	52 155 2 1 1 5 2 1 1 1 1 1 1 1 1 1 1 1 1	226 296 493 4,14 11564 2 128 742 41,1 55,0 8,06 11564 2	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152	1070 260 443 4,12 18466. 170 634 33,1 51,6 19,12 18466 170	115 277 466 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81	768 21 768 21 1 2768 21 1 2768 21	226 296 493 4,14 11564 2 1128 742 41,1 65,0 8,06 11564 2 128	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152	1070 260 443 4,12 18466. 170 634 33,1 51,6 19,12 18466 170	115 27. 46 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81	52 155 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	226 296 493 4,14 11564 2 1128 742 41,1 65,0 8,06 11564 2 1128	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152	1070 260 443 4,12 18466. 170 634 33,1 51,6 19,12 18466 170	115 277 466 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81	768 21 768 21 1 2768 21 1 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	226 296 493 4,14 11564 2 1128 742 41,1 65,0 8,06 11564 2 128	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448	115 27, 46 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81 114 27 46 4,1	768 21 1 2 1 1 3 2 1 1 4 4 4 1 1 8 2 4	226 296 493 4,14 11564 2 1128 742 41,1 65,0 8,06 11564 2 128 1218 300 497 4,07	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531 4,02	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00 141148	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135 865 212 351 4,08 149240	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142 926 230 392 4,02 159755	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152 1005 244 425 4,12 173439	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170	115 27, 46 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81 27 46 4,1	52 155 250 44 44 44 44 44 44 44 44 44 44 44 44 44	226 296 493 4,14 11564 2 1128 742 41,1 55,0 8,06 11564 2 128 1218 300 497 4,07	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531 4,02 22920	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99 243982	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06 257648		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling stal input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448	115 27. 46 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81 27 46 4,1	52 155 250 44 44 44 44 44 44 44 44 44 44 44 44 44	226 296 493 4,14 11564 2 1128 742 41,1 65,0 8,06 11564 2 128 1218 300 497 4,07	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531 4,02	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling stall input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2)	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00 141148 120	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135 865 212 351 4,08 149240 134	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142 926 230 392 4,02 159755 140	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152 1005 244 425 4,12 173439 150	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448 4,04 18339 168	115 27, 46 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81 27 46 4,1 4 1973 80	768 21 1 2 1 1 3 2 1 1 3 2 1 1 4 4 2 1 1 8 2 1 1 4 4 2 4 2 1 1 4 5 2 1 1 7 6 8 2 1	226 296 493 4,14 11564 2 1128 742 41,1 65,0 8,06 11564 2 1218 300 497 4,07 10159 2	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531 4,02 22920 109	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99 243982 118	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06 257648 122		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling glycol free Plus Cooling performance swith glycol-free (2) Cooling performances with glycol-free (2) Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa kW A W/W I/h kPa kW A W/W I/h kPa kW A W/W KW A W/W KW A W/W KW A W/W KW A	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00 141148 120	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135 865 212 351 4,08 149240 134	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142 926 230 392 4,02 159755 140	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152 1005 244 425 4,12 173439 150	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448 4,04 18339 168	115 27, 46 4,1 5 1987 81 69 38, 61, 2 18,0 5 1987 81 27 46 4,1 44 1973 80	52 1 5 2 0 4 9 4 768 21 1 3 4 4 1 002 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	226 296 493 4,14 11564 2 1128 742 41,1 655,0 8,06 11564 2 1128 2128 300 497 4,07 10159 2	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531 4,02 22920 109	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99 243982 118	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06 257648 122		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kW A kW KW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00 141148 120 538 25,8	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135 865 212 351 4,08 149240 134	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142 926 230 392 4,02 159755 140 615 31,7	1011 241 4,19 174443 152 633 33,1 51,6 19,09 174443 152 1005 244 425 4,12 173439 150 661 33,4	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448 4,04 18339 168	115 27 46 4,1 5 1987 81 69 38,61,2 11,4 2 18,65 1987 81 4 11,4 27 46 4,1 4 1973 80	52 155 2 1 55 2 1 5 1 5 2 1 1 1 1 1 1 1	2226 2996 493 4,14 11564 2128 742 41,1 555,0 8,06 11564 2 1218 300 497 4,07 10159 2 127	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 224359 110 1292 321 531 4,02 22920 109	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99 243982 118	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06 257648 122		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling total input current EER Cooling performance with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00 141148 120 538 25,8 40,5	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135 865 212 351 4,08 149240 134	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142 926 230 392 4,02 159755 140 615 31,7	1011 241 4,19 174443 152 633 33,1 51,6 19,09 174443 152 1005 244 425 4,12 173439 150 661 33,4 52,0	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448 4,04 18339 168 662 33,4 52,0	115 27 46 4,1 5 1987 81 69 38,61,2 11,4 27 46 4,1 4 1973 80 72 38,61,61,61	52 155 2 1 55 2 1 5 1 5 2 1 1 1 1 1 1 1	226 296 493 4,14 11564 2128 742 41,1 555,0 8,06 11564 2 1218 300 497 4,07 10159 2 1127	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 224359 110 1292 321 531 4,02 22920 109 822 44,1 69,5	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99 243982 118 920 46,8 73,9	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06 257648 122 966 48,9 76,5		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00 141148 120 538 25,8 40,5 20,80	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135 865 212 351 4,08 149240 134	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142 926 230 392 4,02 159755 140 615 31,7 49,4 19,38	1011 241 421 4,19 174443 152 633 33,1 51,6 19,09 174443 152 1005 244 425 4,12 173439 150 661 33,4 52,0 19,78	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448 4,04 18339 168 662 33,4 52,0 19,80	115 27 46 4,1 5 1987 81 69 38,61,2 114 27 46 4,1 41 27 46 4,1 41 72 80 72 38,61,0 18,0 18,0	52 155 2 1 55 2 1 5 1 5 1 5 1 5 1 5 1 5	226 296 493 4,14 11564 2128 742 41,1 555,0 8,06 11564 2128 300 497 4,07 10159 2127 775 41,4 655,5 8,70	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531 4,02 22920 109 822 44,1 69,5 18,64	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99 243982 118 920 46,8 73,9 19,65	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06 257648 122 966 48,9 76,5 19,74		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling total input current EER Cooling performance with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kPa kW kW A W/W I/h kPa	823 202 339 4,07 142081 121 515 25,6 40,1 20,11 142081 121 818 204 342 4,00 141148 120 538 25,8 40,5	870 210 348 4,15 150081 135 578 31,3 48,8 18,44 150081 135 865 212 351 4,08 149240 134	932 228 388 4,09 160772 142 588 31,5 49,1 18,68 160772 142 926 230 392 4,02 159755 140 615 31,7	1011 241 4,19 174443 152 633 33,1 51,6 19,09 174443 152 1005 244 425 4,12 173439 150 661 33,4 52,0	1070 260 443 4,12 18466 170 634 33,1 51,6 19,12 18466 170 1063 263 448 4,04 18339 168 662 33,4 52,0 19,80	115 27 46 4,1 5 1987 81 69 38,61,2 114 27 46 4,1 41 973 80 61,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 1	52 15 5 2 0 4 9 4 768 21 1 3 4 4 4 1 1 6 102 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	226 296 493 4,14 11564 2128 742 41,1 555,0 8,06 11564 2128 300 497 4,07 10159 2127 775 41,4 655,5 8,70	1300 318 526 4,09 24359 110 788 43,7 69,0 18,01 24359 110 1292 321 531 4,02 22920 109 822 44,1 69,5 18,64	1423 350 601 4,07 245581 119 880 46,8 73,4 18,79 245581 119 1414 354 607 3,99 243982 118 920 46,8 73,9	1502 364 631 4,13 259231 123 924 48,5 75,9 19,06 259231 123 1493 368 636 4,06 257648 122 966 48,9 76,5		

⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

NSMW - BU - GU

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Free-cooling glycol free												7272		
Cooling performance chiller operation (1)														
Cooling capacity	kW	328	381	435	482	506	550	580	627	657	674	703	772	814
Input power	kW	84	98	112	121	128	138	148	159	168	172	178	191	203
Cooling total input current	A	148	170	192	204	212	229	244	263	279	291	305	326	345
EER EER	W/W	3,93	3,90	3,89	3,99	3,97	3,99	3,92	3,94	3,91	3,91	3,95	4,05	4,02
Water flow rate system side	I/h	56622	65790	75056	83161	87363	94979	100110	108143	113452			133207	140417
Pressure drop system side	kPa	88	112	111	106	117	115	128	139	127	134	130	106	117
Cooling performances with glycol-free (2)	KI U	00	112	- 111	100	117	113	120	137	127	131	130	100	117
Cooling capacity	kW	319	287	345	367	369	433	436	488	506	507	538	595	597
Input power	kW	23,6	23,5	29,6	31,5	31,5	38,6	38,6	44,5	44,7	44,7	44,8	49,8	49,8
Free cooling total input current	A	37,3	37,3	46,8	50,1	50,1	61,5	61,5	70,6	71,0	71,0	71,2	78,9	78,9
EER EER	W/W	13,52	12,20	11,67	11,64	11,72	11,22	11,30	10,96	11,31	11,35	12,01	11,96	12,00
	I/h	56622		75056	83161	87363	94979							
Water flow rate system side			65790					100110	108143	113452			133207	140417
Pressure drop system side	kPa	88	112	111	106	117	115	128	139	127	134	130	106	117
Free-cooling glycol free Plus														
Cooling performance chiller operation (1)	LAM	227	200	422	400	504	F40	F70	(24	(55	(71	700	760	010
Cooling capacity	kW	327	380	433	480	504	548	578	624	655	671	700	769	810
Input power	kW	84	99	113	122	129	139	149	160	170	174	180	192	205
Cooling total input current	A	149	171	194	205	214	231	246	265	281	294	308	328	347
EER	W/W	3,88	3,84	3,84	3,93	3,91	3,94	3,87	3,89	3,86	3,86	3,89	4,00	3,96
Water flow rate system side	I/h	56434	65512	74759	82781	86955	94601	99699	107739	113006			132683	139835
Pressure drop system side	kPa	87	111	110	105	116	115	127	138	126	132	129	105	116
Cooling performances with glycol-free (2)														
Cooling capacity	kW	331	300	360	385	388	455	458	510	531	533	567	624	626
Input power	kW	23,9	23,9	30	32	32	39,2	39,2	45,1	45,4	45,4	45,5	50,5	50,5
Free cooling total input current	A	37,9	37,8	47,5	50,8	50,8	62,3	62,3	71,6	72,0	72,0	72,1	80,0	80,0
EER	W/W	13,81	12,56	11,98	12,04	12,13	11,61	11,69	11,30	11,70	11,73	12,47	12,36	12,40
Water flow rate system side	l/h	56434	65512	74759	82781	86955	94601	99699	107739	113006	11579	9 120780	132683	139835
Pressure drop system side	kPa	87	111	110	105	116	115	127	138	126	132	129	105	116
Cinc.		2002	4202	4503	4003	5202	F (0)	2 (0	102	(402	(002	7202	0403	0603
Size		3902	4202	4502	4802	5202	560	2 60	002	6402	6903	7203	8403	9603
Free-cooling glycol free		3902	4202	4502	4802	5202	5602	2 60	002	6402	6903	7203	8403	9603
Free-cooling glycol free Cooling performance chiller operation (1)	LW													
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity	kW	864	909	978	1059	1127	1213	3 12	189	1365	1495	1576	-	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power	kW	864 216	909 228	978 243	1059 260	1127 276	121 <u>3</u> 293	3 12	189 17	1365 341	1495 372	1576 388	-	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	864 216 363	909 228 378	978 243 414	1059 260 454	1127 276 472	1213 293 493	3 12 3 3	189 17 29	1365 341 566	1495 372 639	1576 388 677	- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W	864 216 363 3,99	909 228 378 3,99	978 243 414 4,02	1059 260 454 4,08	1127 276 472 4,09	1213 293 493 4,14	3 12 3 5 4 4,	189 17 29 06	1365 341 566 4,00	1495 372 639 4,02	1576 388 677 4,06	- - -	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h	864 216 363 3,99 149099	909 228 378 3,99 156852	978 243 414 4,02 168696	1059 260 454 4,08 182745	1127 276 472 4,09 19443	1213 293 493 4,14 1 20929	3 12 3 5 5 4 4,	289 17 29 06	1365 341 566 4,00	1495 372 639 4,02 257918	1576 388 677 4,06 271953	- - -	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	864 216 363 3,99	909 228 378 3,99	978 243 414 4,02	1059 260 454 4,08	1127 276 472 4,09	1213 293 493 4,14	3 12 3 5 5 4 4,	189 17 29 06	1365 341 566 4,00	1495 372 639 4,02	1576 388 677 4,06	- - -	- - -
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2)	kW A W/W I/h kPa	864 216 363 3,99 149099 134	909 228 378 3,99 156852 133	978 243 414 4,02 168696 156	1059 260 454 4,08 182745 166	1127 276 472 4,09 19443 188	1213 293 493 4,14 1 20929	3 12 3 3 5. 5. 4 4, 98 222	289 17 29 06 2401 2	1365 341 566 4,00 35505 128	1495 372 639 4,02 257918	1576 388 677 4,06 271953		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa	864 216 363 3,99 149099 134	909 228 378 3,99 156852 133	978 243 414 4,02 168696 156	1059 260 454 4,08 182745 166	1127 276 472 4,09 19443 188	1212 293 493 4,14 1 2092! 112	3 123 3 3 55 4 4,4 4,4 4,98 2222 1 1-1 9.6	189 117 229 06 2401 2 42	1365 341 566 4,00 35505 128	1495 372 639 4,02 257918 131	1576 388 677 4,06 271953 135		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW	864 216 363 3,99 149099 134 647 54,7	909 228 378 3,99 156852 133 743 63,8	978 243 414 4,02 168696 156 746 63,8	1059 260 454 4,08 182745 166 796 68,7	1127 276 472 4,09 19443 188 797 68,7	121: 293 493 4,14 1 2092: 112 885	3 12 3 3 5. 4 4, 998 222 1 1	289 17 29 06 2401 2 42 38 4,0	1365 341 566 4,00 35505 128	1495 372 639 4,02 257918 131 1126 98,2	1576 388 677 4,06 271953 135 1177 103,1		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	864 216 363 3,99 149099 134 647 54,7 86,6	909 228 378 3,99 156852 133 743 63,8	978 243 414 4,02 168696 156 746 63,8 100,7	1059 260 454 4,08 182745 166 796 68,7 108,3	1127 276 472 4,09 19443 188 797 68,7	121: 293 493 4,14 1 2092! 112 885 79,0	3 12 3 3 5. 4 4, 98 222 1 1 6 9. 8 4 7 13	189 17 29 06 2401 2 42 38 44,0	1365 341 566 4,00 335505 128 990 89,0 141,2	1495 372 639 4,02 257918 131 1126 98,2 155,6	1576 388 677 4,06 271953 135 1177 103,1 163,2		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	864 216 363 3,99 149099 134 647 54,7 86,6 11,83	909 228 378 3,99 156852 133 743 63,8	978 243 414 4,02 168696 156 746 63,8	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60	1127 276 472 4,09 19443 188 797 68,7 108,3	121: 293 493 4,14 1 2092: 112 885 79,0 8 125,	3 123 3 3 5. 4 4, 4 4, 9 9 222 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	189 17 29 06 2401 2 42 38 44,0 33,4 ,17	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	864 216 363 3,99 149099 134 647 54,7 86,6 11,83	909 228 378 3,99 156852 133 743 63,8 100,7 11,65	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61	121: 293 493 4,14 1 2092! 112 885 79,0 8 125, 11,2	3 12 3 3 5. 4 4, 98 222 1 1. 6 9. 7 13 0 11	189 17 29 06 2401 2 42 38 44,0 33,4 ,17	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 335505	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W	864 216 363 3,99 149099 134 647 54,7 86,6 11,83	909 228 378 3,99 156852 133 743 63,8 100,7	978 243 414 4,02 168696 156 746 63,8 100,7 11,69	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60	1127 276 472 4,09 19443 188 797 68,7 108,3	121: 293 493 4,14 1 2092! 112 885 79,0 8 125, 11,2	3 12 3 3 5. 4 4, 98 222 1 1. 6 9. 7 13 0 11	189 17 29 06 2401 2 42 38 44,0 33,4 ,17	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41		-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus	kW A W/W I/h kPa kW kW A W/W I/h	864 216 363 3,99 149099 134 647 54,7 86,6 11,83	909 228 378 3,99 156852 133 743 63,8 100,7 11,65	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61	121: 293 493 4,14 1 2092! 112 885 79,0 8 125, 11,2	3 12 3 3 5. 4 4, 98 222 1 1. 6 9. 7 13 0 11	189 17 29 06 2401 2 42 38 44,0 33,4 ,17	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 335505	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83	909 228 378 3,99 156852 133 743 63,8 100,7 11,65	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61	121: 293 493 4,14 1 2092! 112 885 79,0 8 125, 11,2	3 12 3 3 5. 4 4, 98 222 1 1. 6 9. 7 13 0 11	189 17 29 06 2401 2 42 38 44,0 33,4 ,17	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 335505	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus	kW A W/W I/h kPa kW kW A W/W I/h	864 216 363 3,99 149099 134 647 54,7 86,6 11,83	909 228 378 3,99 156852 133 743 63,8 100,7 11,65	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 1 2092! 112	3 123 3 3 5 5. 4 4, 998 2222 1 1 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 335505	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 11 2092! 112	3 12 3 3 5 5 4 4, 98 222 1 1 6 9, 0 84 7 13 0 11 98 222 1 1	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 335505 128	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 11 2092! 112 112 296	3 12 3 3 5 5 4 4, 98 222 1 1 6 9, 0 84 7 13 0 11 98 222 1 1	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2 42	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 11 2092! 112 112 296 497	3 12 3 3 5 5 4 4, 98 222 1 1 6 9, 0 11 98 222 1 1 8 12 6 3, 7 5	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2 42 284 20 33	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03	121: 293 493 4,14 1 2092! 112 885 79,0 8 125, 1 11,2 11 2092! 112 112 296 497 4,08	3 12 3 3 5 5 4 4, 98 222 1 1 6 9, 0 84 7 13 0 11 198 222 1 1 8 12 6 3. 7 5 3 4,	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2 42 284 20 33 01	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128 1359 344 570	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 11 2092! 112 296 497 4,08	3 12 3 3 5 5 4 4, 98 222 1 1 6 99 0 84 7 13 0 11 98 222 1 1 8 12 6 3 7 5 3 4, 3 3 6 221	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2 42 284 20 33 01 1510 2	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128 1359 344 570 3,95	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling system side Prescooling system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94 148519	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97 168052	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 11 2092! 112 296 497 4,08	3 12 3 3 5 5 4 4, 98 222 1 1 6 99 0 84 7 13 0 11 98 222 1 1 8 12 6 3 7 5 3 4, 3 3 6 221	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2 42 284 20 33 01	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128 1359 344 570 3,95 334585	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97 256917	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01 270905		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling stal input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2)	kW A W/W I/h kPa kW kW A W/W I/h kPa kW L/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94 148519	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133 906 230 381 3,94 156292	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97 168052	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166 1055 262 457 4,03 182059 165	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03 19364 187	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 1 2092! 112 296 497 4,08 11 2084: 111	3 12 3 3 5 5 4 4, 98 222 1 1 6 99 0 84 7 13 0 11 98 222 1 1 8 12 6 3 7 5 3 4, 3 4,	289 17 29 06 2401 2 42 38 44,0 33,4 ,17 2401 2 42 284 20 33 01 1510 2 41	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128 1359 344 570 3,95 334585 127	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97 256917 130	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01 270905 134		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling glycol free Plus Cooling performance swith glycol-free (2) Cooling performances with glycol-free (2) Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94 148519 133	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133 906 230 381 3,94 156292 132	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97 168052 155	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166 1055 262 457 4,03 182059 165	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03 19364 187	121: 293 493 4,14 1 2092! 112 885 79,0 3 125, 1 11,2 11 2092! 112 296 497 4,08 11 2084: 1111	3 12 3 3 5 5 4 4, 98 222 1 1 6 9, 0 84 7 13 0 11 98 222 1 1 8 12 6 3. 7 5 3 4, 3 4, 4 9, 9 9, 1 1	289 17 29 06 2401 2 42 38 4,0 33,4 ,17 2401 2 42 284 20 33 01 1510 2 41	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128 1359 344 570 3,95 34585 127	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97 256917 130	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01 270905 134		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kW A kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94 148519 133	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133 906 230 381 3,94 156292 132	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97 168052 155 783 64,7	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166 1055 262 457 4,03 182059 165 834 69,7	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03 19364 187	121: 293 493 4,14 1 2092: 112 885 79,0 3 125, 1 1,2 1 2092: 1 120 296 497 4,08 1 2084: 111 931	3 123 3 3 5 5 4 4, 98 2222 1 1- 6 99 0 84 7 133 0 111 98 2222 1 1- 8 12 8 12 6 3 7 5 8 3 4 4, 9 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 17 29 06 2401 2 42 38 4,0 33,4 ,17 2401 2 42 284 20 33 ,01 1510 2 41	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128 1359 344 570 3,95 34485 127	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97 256917 130	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01 270905 134		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94 148519 133	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133 906 230 381 3,94 156292 132 780 64,7 102	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97 168052 155 783 64,7 102	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166 1055 262 457 4,03 182059 165 834 69,7 109,8	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 475 4,03 19364 187 835 69,7	121: 293 493 4,14 1 2092: 112 885 79,0 3 125, 1 1,2 1 2092: 1 120 497 4,08 41 2084: 111 931 80,7 3 127,	3 123 3 3 5 5 4 4, 98 2222 1 1- 6 99 0 84 7 13 0 11 198 2222 1 1- 8 12 8 12 6 3 7 5 8 3 7 5 8 3 7 5 8 3 8 3 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	289 17 29 06 2401 2 42 38 4,0 33,4 ,17 2401 2 42 284 20 33 ,01 1510 2 41 84 84 85,2 155,2	1365 341 566 4,00 335505 128 990 89,0 141,2 11,13 335505 128 1359 344 570 3,95 234585 127 1036 90,3 143,1	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97 256917 130 1185 99,6 157,6	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01 270905 134		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94 148519 133	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133 906 230 381 3,94 156292 132 780 64,7 102 12,05	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97 168052 155 783 64,7 102 12,11	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166 1055 262 457 4,03 182059 165 834 69,7	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03 19364 187 19364 11,98	121: 293 493 4,14 1 2092! 112 885 79,0 8 125, 1 1,2 1 2092! 112 112 112 112 112 113 114 115 116 117 117 117 118 119 119 119 119 119 110 110 110 110 110	3 123 3 3 5 5 4 4, 98 222 1 1 6 9 0 88 7 13 0 11 98 222 1 1 8 12 6 3 7 5 8 3 7 5 8 12 1 1 8 3 7 5 8 12 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	289 17 29 06 2401 2 42 338 4,0 3,4 1,7 2401 2 42 284 20 33 301 1510 2 41 84 5,2 155,2 1,54	1365 341 566 4,00 35505 128 990 89,0 141,2 11,13 35505 128 1359 344 570 3,95 134585 127 1036 90,3 143,1 11,48	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97 256917 130 1185 99,6 157,6 11,90	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01 270905 134 1236 104,6 165,4 11,81		
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kPa kW kW A W/W I/h kPa	864 216 363 3,99 149099 134 647 54,7 86,6 11,83 149099 134 861 218 366 3,94 148519 133	909 228 378 3,99 156852 133 743 63,8 100,7 11,65 156852 133 906 230 381 3,94 156292 132 780 64,7 102	978 243 414 4,02 168696 156 746 63,8 100,7 11,69 168696 156 974 245 418 3,97 168052 155 783 64,7 102	1059 260 454 4,08 182745 166 796 68,7 108,3 11,60 182745 166 1055 262 457 4,03 182059 165 834 69,7 109,8	1127 276 472 4,09 19443 188 797 68,7 108,3 11,61 19443 188 1122 278 475 4,03 19364 187 19364 11,98	121: 293 493 4,14 1 2092! 112 885 79,0 8 125, 1 1,2 1 2092! 112 112 112 112 113 114 115 115 116 117 117 117 118 119 119 119 110 110 110 110 110 110 110	3 123 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	289 17 29 06 2401 2 42 338 4,0 3,4 1,7 2401 2 42 284 20 33 301 1510 2 41 84 5,2 155,2 1,54	1365 341 566 4,00 335505 128 990 89,0 141,2 11,13 335505 128 1359 344 570 3,95 234585 127 1036 90,3 143,1	1495 372 639 4,02 257918 131 1126 98,2 155,6 11,46 257918 131 1489 375 644 3,97 256917 130 1185 99,6 157,6	1576 388 677 4,06 271953 135 1177 103,1 163,2 11,41 271953 135 1570 392 682 4,01 270905 134		

⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

NSMW - BN - GN

Size		1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Free-cooling glycol free														
Cooling performance chiller operation (1)														
Cooling capacity	kW	324	376	428	473	497	538	567	614	643	659	687	751	803
Input power	kW	74	88	99	109	116	124	134	142	152	157	163	174	184
Cooling total input current	А	132	154	172	184	192	206	222	235	252	265	280	297	313
EER	W/W	4,41	4,27	4,31	4,35	4,29	4,33	4,21	4,32	4,24	4,21	4,22	4,32	4,38
Water flow rate system side	l/h	55983	64940	73810	81682	85818	92811	97769	105919	111036	113774	118607	129528	138643
Pressure drop system side	kPa	74	93	87	102	113	110	122	111	122	128	125	100	115
Cooling performances with glycol-free (2)														
Cooling capacity	kW	266	278	329	334	337	384	387	439	441	442	467	523	567
Input power	kW	12	14	19	19	20	22	22	24	24	24	24	29	31
Free cooling total input current	A	19,1	21,2	30,3	30,3	31,5	34,5	34,5	37,5	37,5	37,5	37,6	45,8	48,3
<u>eer</u>	W/W	21,73	20,57	17,29	17,53	16,94	17,58	17,68	18,41	18,50	18,55	19,52	17,83	18,28
Water flow rate system side	I/h	55983	64940	73810	81682	85818	92811	97769	105919	111036	113774	118607	129528	138643
Pressure drop system side	kPa	74	93	87	102	113	110	122	111	122	128	125	100	115
Free-cooling glycol free Plus														
Cooling performance chiller operation (1)														
Cooling capacity	kW	323	374	426	471	494	535	564	611	640	656	683	746	799
Input power	kW	74	89	100	110	117	125	136	143	153	158	164	175	185
Cooling total input current	A	132	155	173	185	194	207	224	237	254	267	282	300	316
EER	W/W	4,36	4,22	4,26	4,29	4,23	4,27	4,15	4,26	4,18	4,15	4,16	4,26	4,32
Water flow rate system side	I/h	55770	64623	73447	81232	85330	92341	97251	105389	110441	113149	117928	128821	137959
Pressure drop system side	kPa	74	92	86	101	112	109	121	110	121	127	123	99	113
Cooling performances with glycol-free (2)	1.147	270	202	246	251	257	40.4	407	101	102	161	404	F 40	F0F
Cooling capacity	kW	279	292	346	351	354	404	407	461	463	464	491	549	595
Input power	kW	12,4	13,7	19,2	19,2	20	22,1	22,1	24,1	24,1	24,1	24,1	29,5	31,3
Free cooling total input current	A	19,2	21,4	30,5	30,5	31,7	34,8	34,8	37,8	37,8	37,8	37,9	46,1	48,6
EER	W/W	22,53	21,40	18,03	18,27	17,67	18,32	18,43	19,17	19,27	19,31	20,33	18,59	19,04
Water flow rate system side	I/h kPa	55770 74	64623 92	73447	81232 101	85330 112	92341 109	97251 121	105389	110441	113149	117928 123	128821	137959
Pressure drop system side	Krd	/4	92	86	101	112	109	IZI	110	121	127	123	99	113
Size		3902	4202	4502	4802	5202	560	2 6	002	6402	6903	7203	8403	9603
Size Free-cooling glycol free		3902	4202	4502	4802	5202	560	2 6	002	6402	6903	7203	8403	9603
		3902	4202	4502	4802	5202	560	2 6	002	6402	6903	7203	8403	9603
Free-cooling glycol free	kW	3902 852	4202 881	4502 969	4802 1033	5202	560			6402 1329	6903	7203	8403	9603
Free-cooling glycol free Cooling performance chiller operation (1)	kW kW							8 1	263					
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	852	881	969	1033	1115	119	8 1	263	1329	-	-	-	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW	852 195	881 207	969 218	1033 232	1115 249	119 265	8 1 5 2	263 288 481	1329 311	-	-	-	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A	852 195 328	881 207 343	969 218 374	1033 232 408	1115 249 427	119 265 447 4,5	8 1 5 2 7 4 1 4	263 288 481	1329 311 516			- - -	-
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side	kW A W/W	852 195 328 4,37	881 207 343 4,26	969 218 374 4,44	1033 232 408 4,46	1115 249 427 4,49	119 265 447 4,5	8 1 5 2 7 4 1 4 85 21	263 288 481	1329 311 516 4,27		-	- - -	- - -
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa	852 195 328 4,37 147047 117	881 207 343 4,26 152087 125	969 218 374 4,44 167278 101	1033 232 408 4,46 178230 93	1115 249 427 4,49 19244 102	119 265 447 4,5 8 2066 75	8 1 5 2 7 4 1 4 85 21	263 288 481 4,38 7997 2	1329 311 516 4,27 29339 92			- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa	852 195 328 4,37 147047 117	881 207 343 4,26 152087 125	969 218 374 4,44 167278 101	1033 232 408 4,46 178230 93	1115 249 427 4,49 19244 102	119 265 447 4,5 8 2066 75	8 1 5 5 7 4 1 4 1 4 8 5 2 1 5 5 5 1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	263 288 481 4,38 7997 2	1329 311 516 4,27 29339 92			- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW	852 195 328 4,37 147047 117 617 32,8	881 207 343 4,26 152087 125 618 32,8	969 218 374 4,44 167278 101 727 41,1	1033 232 408 4,46 178230 93 770 43,7	1115 249 427 4,49 19244 102 828 45,7	119 265 447 4,5 8 2066 75 880 47,	8 1 5 2 7 4 1 4 85 21	263 288 481 4,38 77997 2 92	1329 311 516 4,27 29339 92 889 47,7			- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A	852 195 328 4,37 147047 117 617 32,8 51,0	881 207 343 4,26 152087 125 618 32,8 51,0	969 218 374 4,44 167278 101 727 41,1 65,0	1033 232 408 4,46 178230 93 770 43,7 69,0	1115 249 427 4,49 19244 102 828 45,7 72,0	119 265 447 4,5 8 2066 75 880 47,	8 15 27 4 1 4 885 21 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	263 288 481 4,38 7997 2 92 887 47,7	1329 311 516 4,27 29339 92 889 47,7 75,0			- - -	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W	852 195 328 4,37 147047 117 617 32,8 51,0	881 207 343 4,26 152087 125 618 32,8 51,0 18,85	969 218 374 4,44 167278 101 727 41,1 65,0 17,68	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59	1115 249 427 4,49 19244 102 828 45,7 72,0	119 265 447 4,5' 8 2066 75 880 47, 75,	8 1 5 2 7 4 1 4 85 21 0 8 7 4 7 4 0 7 46 1	263 288 481 4,38 7797 2 92 92 47,7 75,0	1329 311 516 4,27 29339 92 889 47,7 75,0				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12	119 265 447 4,5 8 2066 75 888 47, 75,1 ! 18,4 8 2066	8 1 5 2 7 4 1 4 85 21 0 8 7 4 0 7 46 1 85 21	263 288 481 4,38 77997 2 92 3887 47,7 75,0 8,60	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W	852 195 328 4,37 147047 117 617 32,8 51,0	881 207 343 4,26 152087 125 618 32,8 51,0 18,85	969 218 374 4,44 167278 101 727 41,1 65,0 17,68	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59	1115 249 427 4,49 19244 102 828 45,7 72,0	119 265 447 4,5' 8 2066 75 880 47, 75,	8 1 5 2 7 4 1 4 85 21 0 8 7 4 0 7 46 1 85 21	263 288 481 4,38 7797 2 92 92 47,7 75,0	1329 311 516 4,27 29339 92 889 47,7 75,0				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus	kW A W/W I/h kPa kW kW A W/W I/h	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12	119 265 447 4,5 8 2066 75 888 47, 75,1 ! 18,4 8 2066	8 1 5 2 7 4 1 4 85 21 0 8 7 4 0 7 46 1 85 21	263 288 481 4,38 77997 2 92 3887 47,7 75,0 8,60	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339			-	
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1)	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244	119 265 447 4,5 8 2066 75 880 47, 75, 1 18,4 8 2066	8 1 5 2 7 4 1 1 4 885 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 92 887 47,7 75,0 8,60 7997 2	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Prescoling glycol free Plus Cooling performance chiller operation (1) Cooling capacity	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102	119 265 447 4,5 8 2066 75 880 47, 75, 118,4 8 2066 75	8 15 27 4 11 4 85 21 5 7 4 7 7 4 7 16 11 885 21 5 1 8 8 7 1 8 7 1	263 288 481 4,38 7997 2 92 887 47,7 75,0 8,60 77997 2	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Prescoling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102	119 265 447, 4,5 8 2066 75 880 47, 75, 118,4 8 2066 75	3 8 1 1 1 4 4 5 5 5 2 1 1 1 4 4 5 5 5 6 6 7 7 7 4 4 6 7 7 7 7 4 7 7 7 7 7 7 7	263 288 481 4,38 7997 2 92 887 47,7 75,0 8,60 77997 2 92	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102	119 265 447 4,5 8 2066 75 880 47, 75, 118,4 8 2066 75	8 8 1 1 1 4 5 5 5 6 6 7 7 7 4 4 7 7 7 7 4 4 7 7 7 7 4 7 7 7 7 4 7	263 288 481 4,38 7997 2 992 887 47,7 75,0 8,60 77997 2 992	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 1110 251 430 4,43	119 265 447 4,5 8 2066 75 880 47, 75,0 2 18,4 8 2066 75 119 268 450 4,4	8 8 1 1 1 4 4 5 5 5 2 1 1 1 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 992 887 47,7 75,0 8,60 7997 2 992 257 291 485 4,32	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117 848 197 330 4,31 146331	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125 877 209 346 4,20 151317	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38 166517	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 1110 251 430 4,43	119 265 447 4,5 8 2066 75 880 47, 75,1 119 268 450 4,4 6 2057	8 8 1 1 1 4 5 5 5 2 1 1 1 4 4 5 1 1 1 1 4 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 92 887 47,7 75,0 8,60 77997 2 92 257 291 485 4,32 6918 2	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21 28136				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prescooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Prescooling stal input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side	kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 1110 251 430 4,43	119 265 447 4,5 8 2066 75 880 47, 75,0 2 18,4 8 2066 75 119 268 450 4,4	8 8 1 1 1 4 5 5 5 2 1 1 1 4 4 5 1 1 1 1 4 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 992 887 47,7 75,0 8,60 7997 2 992 257 291 485 4,32	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prece cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2)	kW A W/W I/h kPa kW A W/W I/h kPa kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117 848 197 330 4,31 146331 116	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125 877 209 346 4,20 151317 124	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38 166517	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93 1028 234 411 4,40 177452	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 1110 251 430 4,43 19157	119 265 447 4,5 8 2066 75 880 47, 75,1 119 268 450 4,4 6 2057	8 1 1 5 5 2 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 992 887 47,7 75,0 8,60 7997 2 992 257 291 485 4,32 6918 2 91	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21 28136 91				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity	kW A W/W I/h kPa kW A W/W I/h kPa kW A W/W I/h kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117 848 197 330 4,31 146331 116	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125 877 209 346 4,20 151317 124	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38 166517 100	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93 1028 234 411 4,40 177452 92	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 1110 251 430 4,43 19157 101	119 265 447 4,5 8 2066 75 880 47, 75,1 119 268 450 4,4 6 2057 74	8	263 288 481 4,38 7997 2 992 887 47,7 75,0 8,60 7997 2 992 257 291 485 4,32 6918 2 91	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21 28136 91				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Free-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Pressure drop system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117 848 197 330 4,31 146331 116	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125 877 209 346 4,20 151317 124	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38 166517 100	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93 1028 234 411 4,40 177452 92	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 1110 251 430 4,43 19157 101	119 265 447 4,5' 8 2066 75 888 47, 75, 18,48 8 2066 75 119 268 450 4,4 6 2057 74 925 48,	8 1 1 1 4 4 5 5 21 1 4 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 92 3887 47,7 75,0 8,60 77997 2 92 257 291 485 4,32 6918 2 91 932 48,1	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21 28136 91 934 48,1				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precauling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117 848 197 330 4,31 146331 116	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125 877 209 346 4,20 151317 124 649 33,1 51,4	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38 166517 100 764 41,4	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93 1028 234 411 4,40 177452 92	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 1110 251 430 4,43 19157 101 870 46,1 72,5	119 265 447 4,5' 8 2066 75 888 47, 75, 118,48 8 2066 75 119 268 450 4,4,4 6 2057 74 925 48,75,	8 1 1 1 4 4 5 5 21 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 92 3887 47,7 75,0 8,60 77997 2 92 257 291 485 4,32 6918 2 91 932 48,1 75,5	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21 28136 91 934 48,1 75,5				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Prec-cooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kW A kW A W/W I/h kPa kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117 848 197 330 4,31 146331 116 647 33,1 51,4 19,56	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125 877 209 346 4,20 151317 124 649 33,1 51,4 19,61	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38 166517 100 764 41,4 65,5 18,44	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93 1028 234 411 4,40 177452 92	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 11100 251 430 4,43 19157 101 870 46,1 72,5 18,87	119 265 447 4,5' 8 2066 75 888 47, 75,6' 1199 268 450 4,4 6 2057 74 92: 48, 75, 719,2	8 1 1 1 4 4 5 5 21 1 1 4 4 5 5 5 4 4 5 5 5 7 7 7 4 4 5 7 7 7 4 7 7 7 7	263 288 481 4,38 7997 2 92 257 75,0 28,60 7797 2 91 485 4,32 66918 2 91 932 48,1 75,5 9,37	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21 28136 91 934 48,1 75,5 19,41				
Free-cooling glycol free Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current EER Water flow rate system side Pressure drop system side Pressure drop system side Precooling glycol free Plus Cooling performance chiller operation (1) Cooling capacity Input power Cooling total input current EER Water flow rate system side Pressure drop system side Cooling performances with glycol-free (2) Cooling capacity Input power Free cooling total input current	kW A W/W I/h kPa kW kW A W/W I/h kPa kW kPa kW kPa kW kW A W/W I/h kPa	852 195 328 4,37 147047 117 617 32,8 51,0 18,81 147047 117 848 197 330 4,31 146331 116	881 207 343 4,26 152087 125 618 32,8 51,0 18,85 152087 125 877 209 346 4,20 151317 124 649 33,1 51,4	969 218 374 4,44 167278 101 727 41,1 65,0 17,68 167278 101 965 220 377 4,38 166517 100	1033 232 408 4,46 178230 93 770 43,7 69,0 17,59 178230 93 1028 234 411 4,40 177452 92	1115 249 427 4,49 19244 102 828 45,7 72,0 18,12 19244 102 11100 251 430 4,43 19157 101 870 46,1 72,5 18,87	119 265 447 4,5' 8 2066 75 888 47, 75,6' 1199 268 450 4,4 6 2057 74 92: 48, 75, 719,2	8 1 1 4 4 5 5 21 1 4 4 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	263 288 481 4,38 7997 2 92 257 75,0 28,60 7797 2 91 485 4,32 66918 2 91 932 48,1 75,5 9,37	1329 311 516 4,27 29339 92 889 47,7 75,0 18,64 29339 92 1322 314 520 4,21 28136 91 934 48,1 75,5				

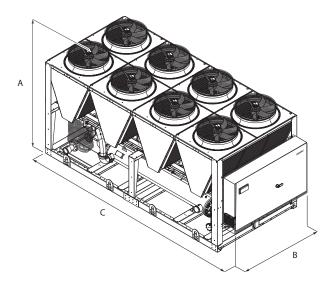
⁽¹⁾ System side water heat exchanger 25°C/20°C, External air 35°C; 0% Free-cooling (2) System side water heat exchanger 25°C; External air 12°C

ELECTRIC DATA

Size				1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Electrical data																
	BA,GA	(1)	Α	206	228	253	265	289	306	324	362	384	400	415	449	472
Maximum surrent (FLA)	BE,GE	(1)	Α	207	229	265	277	289	322	339	372	394	410	426	457	480
Maximum current (FLA)	BU,GU	(1)	Α	207	229	265	280	292	322	339	372	395	410	426	457	480
	BN,GN	(1)	Α	215	240	280	292	305	332	349	381	404	419	434	472	503
	BA,GA	(1)	Α	279	269	308	346	362	395	406	457	472	490	500	536	551
Dook current (LDA)	BE,GE	(1)	Α	279	269	317	354	362	403	415	466	480	499	509	545	560
Peak current (LRA)	BU,GU	(1)	Α	279	269	317	357	365	403	415	466	481	499	509	545	560
	BN,GN	(1)	Α	288	280	332	369	378	414	425	475	490	508	518	559	583

Size				3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
Electrical data															
	BA,GA	(1)	Α	504	527	569	602	619	645	698	737	877	910	976	1111
Mariana arment (FLA)	BE,GE	(1)	Α	512	550	583	631	648	681	730	779	894	936	-	-
Maximum current (FLA)	BU,GU	(1)	Α	512	550	583	631	648	683	731	779	899	941	-	-
	BN,GN	(1)	Α	541	564	624	667	693	719	758	797	-	-	-	-
	BA,GA	(1)	Α	590	611	643	665	857	883	963	990	866	888	1072	1204
Dook surrent (LDA)	BE,GE	(1)	Α	598	628	651	687	879	906	980	1016	875	905	-	-
Peak current (LRA)	BU,GU	(1)	Α	598	628	651	687	879	909	982	1016	880	910	-	-
	BN,GN	(1)	A	627	642	692	723	924	945	1009	1034	-	-	-	-

⁽¹⁾ Unit standar configuration without hydronic kit


GENERAL TECHNICAL DATA

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Compressors															
Compressors	All	type							Screw						
Compressors / Circuit	All	n°	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
Refrigerant	All	type							R134a						
System side heat exchanger															
Exchanger	All	type							Shell&tube						
Exchanger	All	n°	1	1	1	1	1	1	1	1	1	1	1	1	1
Fans															
Fans	All	type	Axial	Axial	Axial	Axial	Axial	Axial	Axial						
	BA,GA	n°	8	8	8	8	10	10	10	12	12	12	12	14	14
Fame	BE,GE	n°	8	8	10	10	10	12	12	14	14	14	14	16	16
Fans	BU,GU	n°	8	8	10	10	10	12	12	14	14	14	14	16	16
	BN,GN	n°	10	10	12	12	12	14	14	16	16	16	16	18	20
Sound data calculated in cooling mo	de														
	BA,GA	dB(A)	97,1	97,1	97,4	97,3	98,1	98,0	97,8	98,4	98,4	98,7	99,3	100,4	100,8
Sound power level (1)	BE,GE	dB(A)	92,7	93,0	93,4	93,6	93,8	93,4	92,8	92,7	92,5	94,9	96,4	97,6	98,4
Soutiu power level (1)	BU,GU	dB(A)	97,3	97,4	98,4	98,3	98,4	98,8	98,7	99,1	99,1	99,5	100,1	101,2	101,6
	BN,GN	dB(A)	92,8	93,1	93,9	93,8	93,9	93,7	93,2	93,0	92,8	94,3	96,0	97,9	98,7

	BN,GN	dB(A)	92,8	93,1	93,9	93,8	93,9	93,/ 93	3 <u>,</u> 2 93,	0 92,8	94,3	96,0	97,9	98,/
Size			3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
Compressors														
Compressors	All	Туре						Sc	rew					
	BA,GA	n°	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	3/3	3/3	3/3	3/3
Communication / Cinquit	BE,GE	n°	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	3/3	3/3	-	-
Compressors / Circuit	BU,GU	n°	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	3/3	3/3	-	-
	BN,GN	n°	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	-	-	-	-
Refrigerant	All	Туре						R1	34a					
System side heat exchanger														
Exchanger	All	Туре						Shell	&tube					
	BA,GA	n°	1	1	1	1	1	1	1	1	1	1	1	1
Evehanger	BE,GE	n°	1	1	1	1	1	2	2	2	2	2	-	-
Exchanger	BU,GU	n°	1	1	1	1	1	2	2	2	2	2	-	-
	BN,GN	n°	1	1	2	2	2	2	2	2	-	-	-	-
Fans														
Fans	All	Туре	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial	Axial
	BA,GA	n°	16	16	18	18	18	20	22	22	28	28	30	34
Fans	BE,GE	n°	18	20	20	22	22	24	26	28	30	32	-	-
Talis	BU,GU	n°	18	20	20	22	22	24	26	28	30	32	-	-
	BN,GN	n°	22	22	26	28	30	32	32	32	-	-	-	-
Sound data calculated in cooling n	node													
	BA,GA	dB(A)	100,8	100,4	100,8	100,9	101,4	102,3	102,3	101,9	103,7	103,8	105,0	104,8
Sound power level (1)	BE,GE	dB(A)	97,6	96,4	96,7	97,0	98,9	100,3	99,5	98,7	98,7	98,9	-	-
Journa power level (1)	BU,GU	dB(A)	101,5	101,4	101,4	101,8	102,3	103,2	103,1	102,9	104,0	104,3	-	-
	BN,GN	dB(A)	97,9	96,8	97,0	97,3	98,7	100,1	99,5	98,7	-	-	-	-

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNIEN ISO 9614-2, as required for Eurovent certification

DIMENSIONS

Size			1402	1602	1802	2002	2202	2352	2502	2652	2802	3002	3202	3402	3602
Dimension	s and weights														
A	mm	Alls	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	mm	Alls	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		А	5160	5160	5160	5160	6350	6350	6350	7140	7140	7140	7140	8330	8330
•		Е	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520
C	mm	U	5160	5160	6350	6350	6350	7140	7140	8330	8330	8330	8330	9520	9520
		N	6350	6350	7140	7140	7140	8330	8330	9520	9520	9520	9520	10710	11900

Size			3902	4202	4502	4802	5202	5602	6002	6402	6903	7203	8403	9603
Dimensions ar	nd weights													
A	mm	Alls	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	mm	Alls	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
		Α	9520	9520	10710	10710	10710	11900	13090	13090	16660	16660	17850	20230
C		E	10710	11900	11900	13090	13090	14280	15470	16660	17850	19040	-	-
C	mm	U	10710	11900	11900	13090	13090	14280	15470	16660	17850	19040	-	-
		N	13090	13090	15470	16660	17850	19040	19040	19040	-	-	-	-

For transport reasons, units with depth greater than 13090 mm are shipped separately. For further information, refer to the technical and/or installation manual.

All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NSMI 1251-6102 F

Air-water chiller with free-cooling

Cooling capacity 286 ÷ 1280 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low electrical consumption

DESCRIPTION

Air-cooled outdoor chiller designed to meet air conditioning needs in residential/commercial complexes or industrial applications.

Outdoor units with high-efficiency screw compressors axial fans, microchannel external coils and plant side shell and tube heat exchanger. In the unit with desuperheater, it is also possible to produce free-hot water

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to $50\,^{\circ}\text{C}$ external air temperature. Unit can produce chilled water (up to $-6\,^{\circ}\text{C}$).

Units mono or dual-circuit

Unit with 1–2 refrigerant circuits.

The single circuit units have the inverter compressor, while the dual-circuit have an asynchronous compressor on/off switch and an inverter, the combination provides both high efficiency at part load and full load

Aluminium microchannel coils

The microchannel condensing aluminum coils ensure high levels of efficiency, reduced quantities of refrigerant and lower unit weight. The treatment "O" available as configurator it ensures high resistance to corrosion even in the most aggressive environments.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

Low noise version

Silenced versions feature a special compressor jacket which ensures a further noise reduction of approximately 4 dB.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FB1: Air filter to protect the micro-channel coils. Formed of a frame and a composite baffle in micro-expanded aluminium mesh, with particularly low pressure drops.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

GP_: Anti-intrusion grid kit

KRS: Electric heater for the heat exchanger

ACCESSORIES COMPATIBILITY

Model	Ve	125	1 16	01	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
AER485P1	A,E	•	•	,	•												
AER485P1 x n° 2 (1)	A,E					•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	A,E	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•		,	•	•	•	•	•	•	•	•	•	•	•	•	•
FB1	A,E	•	•	,	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	A,E			,	•	•	•	•	•	•	•		•	•			
PRV3	A,E				•		•	•	•	•	•	•	•	•	•	•	•
(1) x Indicates the quantity of accessories to	match.																
Ver	1251	1601 1	301	2352	26	52 2	802	3202	3402	3802	4102	4402	48	02 5	202	5702	6102
A,E	GP4V	GP4V G	P5V	GP5V	GP	6V (P7V	GP7V	GP7V	GP8V	GP9V	GP10\	GP.	11V G	P11V	GP11V	GP11V

A grey background indicates the accessory must be assembled in the factory

Antivibration - NSMI free-cooling

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Integrated hydronic kit: 00															
A	AVX991	AVX992	AVX993	AVX966	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990
E	AVX991	AVX992	AVX994	AVX966	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990

Antivibration - NSMI free-cooling plus

	Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Ī	ntegrated hydronic kit: 00															
	A	AVX991	AVX992	AVX993	AVX966	AVX970	AVX995	AVX995	AVX995	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990
	E	AVX991	AVX992	AVX994	AVX966	AVX970	AVX995	AVX995	AVX999	AVX996	AVX988	AVX989	AVX990	AVX990	AVX990	AVX990

Heater exchangers

Ver	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
A	KRS23	KRS23	KRS23	KRS23	KRS23	KRS23	-	KRS24							
E	KRS23	KRS24													

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Description
NSMI
Size 1251, 1601, 1801, 2352, 2652, 2802, 3202, 3402, 3802, 4102, 4402, 4802, 5202 5702, 6102
Operating field
Model
Free-cooling Free-cooling
Free-cooling plus (1)
Heat recovery
Without heat recovery
With desuperheater (2)
Version
High efficiency
Silenced high efficiency
Coils / free-cooling coils
Alluminium microchannel / Copper - aluminium
Painted alluminium microchannel / Copper painted aluminium
Copper-copper/Copper
Copper-Tinned copper / Copper -Tinned copper
Copper-painted alumimium / Copper-painted alumimium
Fans
Standard
Inverter
Power supply
400V ~ 3 50Hz with magnet circuit breakers
Integrated hydronic kit
Without hydronic kit
Kit with n° 1 pump
Pump A

Field	Description
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (3)
	Pump n° 1 pump + stand-by pump
DA	Pump A + stand-by pump
DB	Pump B + stand-by pump
DC	Pump C + stand-by pump
DD	Pump D + stand-by pump
DE	Pump E + stand-by pump
DF	Pump F + stand-by pump
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (3)
	Kit with 2 pumps
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (3)

- (1) The Free-Cooling Plus "P" models are only compatible with"°" ed "O"
 (2) The temperature of the water in the heat exchanger inlet must never drop below 35°C.
 (3) For all configurations including pump J please contact the factory.

PERFORMANCE SPECIFICATIONS

NSMI - free-cooling (FA/FE - PA/PE)

NSMI - Hee-cooling (TA/TE-TA/	• -/																
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Model: F																	
Cooling performance chiller operation (1)																	
Cooling capacity	A,E	kW	286,5	385,6	455,6	496,5	587,5	649,6	718,4	784,3	832,8	929,0	989,0	1096,3	1164,2	1208,4	1280,3
Input power	A,E	kW	96,6	126,7	157,5	177,7	206,3	221,2	244,7	272,7	280,5	324,3	343,8	368,4	417,3	436,6	477,9
Cooling total input current	A,E	A	166,0	212,0	261,0	309,0	356,0	381,0	417,0	456,0	470,0	547,0	580,0	644,0	692,0	728,0	761,0
EER	A,E	W/W	2,97	3,04	2,89	2,79	2,85	2,94	2,94	2,88	2,97	2,86	2,88	2,98	2,79	2,77	2,68
Water flow rate system side	A,E	l/h	49230	66245	78283	85309	100931	111607	123424	134748	143088	159614	169917	188349	200020	207622	219967
Pressure drop system side	A,E	kPa	52	78	75	48	67	68	76	46	54	68	79	80	90	94	107
Cooling performances with free-cooling (2)																	
Cooling capacity	A,E	kW	254,5	276,0	340,9	346,5	414,6	649,6	488,1	495,1	559,2	628,2	692,4	762,8	771,1	775,7	782,2
Input power	A,E	kW	15,0	15,0	18,7	18,7	22,5	26,2	26,2	26,2	30,0	33,7	37,5	41,2	41,2	41,2	41,2
Free cooling total input current	A,E	A	26,0	25,0	31,0	33,0	39,0	45,0	45,0	44,0	50,0	57,0	63,0	72,0	68,0	69,0	66,0
EER	A,E	W/W	19,97	18,41	18,19	18,49	18,43	18,22	18,60	18,87	18,65	18,62	18,47	18,50	18,70	18,81	18,97
Water flow rate system side	A,E	l/h	49230	66245	78283	85309	100931	111607	123424	134748	143088	159614	169917	188349	200020	207622	219967
Pressure drop system side	A,E	kPa	80	121	128	88	109	109	124	94	99	108	125	127	143	157	169
Model: P																	
Cooling performance chiller operation (1)																	
Cooling capacity	A,E	kW	285,5	383,5	453,4	493,5	584,0	646,4	714,7	778,5	827,8	923,5	983,6	1090,1	1156,6	1200,5	1270,3
Input power	A,E	kW	97,4	127,8	158,9	179,7	208,6	223,4	247,5	275,8	283,4	327,8	347,4	372,4	421,9	441,5	483,8
Cooling total input current	A,E	A	168,0	214,0	263,0	312,0	360,0	385,0	421,0	461,0	474,0	553,0	585,0	644,0	692,0	728,0	761,0
EER	A,E	W/W	2,93	3,00	2,85	2,75	2,80	2,89	2,89	2,82	2,92	2,82	2,83	2,93	2,74	2,72	2,63
Water flow rate system side	A,E	l/h	49048	65887	77903	84789	100332	111060	122801	133758	142233	158667	168998	187289	198712	206254	218254
Pressure drop system side	A,E	kPa	51	78	74	47	67	67	75	45	53	67	79	79	89	92	105
Cooling performances with free-cooling (2)																	
Cooling capacity	A,E	kW	271,8	296,0	365,5	371,4	444,5	512,7	523,2	530,1	599,3	673,3	742,3	817,7	826,2	830,9	837,1
Input power	A,E	kW	15,2	15,2	19,0	19,0	22,8	26,7	26,7	26,7	30,5	34,3	38,1	41,9	41,9	41,9	41,9
Free cooling total input current	A,E	A	26,0	25,0	32,0	33,0	39,0	46,0	45,0	45,0	51,0	58,0	64,0	72,0	69,0	69,0	66,0
EER	A,E	W/W	17,84	19,43	19,19	19,50	19,45	19,23	19,63	19,89	19,67	19,64	19,49	19,52	19,72	19,83	19,98
Water flow rate system side	A,E	l/h	49048	65887	77903	84789	100332	111060	122801	133758	142233	158667	168998	187289	198712	206254	218254
Pressure drop system side	A,E	kPa	80	120	127	87	108	108	123	93	98	107	123	125	141	155	166

- (1) System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

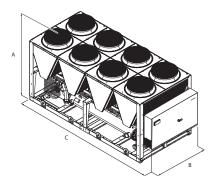
Size	1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Model: F															
SEPR - (EN14825: 2018) High temperature with standard fans (1)															
SEPR A,E W/W	6,95	6,32	6,23	6,60	6,73	7,06	6,85	6,65	6,98	6,74	6,83	7,24	7,11	7,28	7,05
SEPR - (EN14825: 2018) High temperature with inverter fans (1)															
SEPR A,E W/W	6,95	6,32	6,23	6,60	6,73	7,06	6,85	6,65	6,98	6,74	6,83	7,24	7,11	7,28	7,05
Model: P															
SEPR - (EN14825: 2018) High temperature with standard fans (1)															
SEPR A,E W/W	7,02	6,39	6,31	6,69	6,83	7,19	6,93	6,69	7,06	6,82	6,93	7,30	7,15	7,31	7,05
SEPR - (EN14825: 2018) High temperature with inverter fans (1)															
SEPR A,E W/W	7,02	6,39	6,31	6,69	6,83	7,19	6,93	6,69	7,06	6,82	6,93	7,30	7,15	7,31	7,05

⁽¹⁾ Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Electric data																	
Maximum current (FLA)	A,E	Α	259,9	299,9	388,4	452,7	485,9	534,4	534,4	582,4	670,9	727,4	774,9	874,2	917,2	1002,2	1036,2
Peak current (LRA)	A,E	Α	59,9	59,9	68,4	582,4	617,9	666,4	666,4	790,4	878,9	1008,4	1080,0	1180,2	1335,2	1420,2	1532,2

GENERAL TECHNICAL DATA


Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Compressor																	
Туре	A,E	type								Screw							
Compressor regulation	A,E	Туре	I	-	- 1	I+0n/0ff	I+0n/0ff	I+0n/0ff	1+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff	I+0n/0ff
Number	A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
Circuits	A,E	no.	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type								R134a							
System side heat exchanger																	
Туре	A,E	type							S	hell and tu	be						
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections																	
Connections (in/out)	A,E	Туре							G	rooved joir	its						
Sizes (in/out)	A,E	Ø	5"	6"	6"	6"	6"	6"	6"	8"	8"	8"	8"	10"	10"	10"	10"
Fan																	
Туре	A,E	type								Axial							
Fan motor	A,E	type							Asynchro	nous with	phase cut						
Number	A,E	no.	8	8	10	10	12	14	14	14	16	18	20	22	22	22	22
Air flow rate	A,E	m³/h	109600	109600	137000	137000	164400	191800	191800	191800	219200	146600	274000	301400	301400	301400	301400

Sound data

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Sound data calculated in cooling mode (1)																
Cound a count lovel	Α	dB(A)	98,1	99,2	99,4	99,4	99,7	100,7	100,7	101,1	101,2	101,3	101,9	103,6	103,8	103,8	103,9
Sound power level	F	dR(A)	94 2	96.0	96 3	95 7	96.2	96.6	96.6	97.8	97 9	98 3	98.6	100.2	100.2	100.2	100 3

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
			1231	1001	1001	2332	2032	2002	3202	3402	3002	4102	4402	4002	3202	3/02	0102
Dimensions and weights																	
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
(A,E	mm	4760	4760	5950	6400	7140	8330	8330	8330	9520	10710	11900	13090	13090	13090	13090
Weight NSMI free-cooling																	
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Integrated hydronic kit: 00																	
Dimensions and weights																	
Frankrissisk	Α	kg	4220	4670	5207	6669	7211	7767	7858	8507	9106	9983	10543	12125	12214	12244	12318
Empty weight	E	kg	4522	4972	5508	7272	7815	8371	8462	9110	9709	10586	11146	12963	13053	13083	13156
Weight NSMI free-cooling plu	ıs																
Size			1251	1601	1801	2352	2652	2802	3202	3402	3802	4102	4402	4802	5202	5702	6102
Integrated hydronic kit: 00																	
Dimensions and weights																	
Emptyweight	Α	kg	4327	4777	5340	6803	7404	7992	8083	8731	9363	10272	10864	12478	12567	12597	12671
Empty weight	E	kg	4629	5079	5642	7406	8007	8596	8687	9335	9966	10875	11467	13316	13406	13436	13510

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

TBA 1300-3350 F

Air-water chiller with free-cooling

Cooling capacity 317,2 ÷ 1223,6 kW

- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- · Evaporator with low refrigerant charge
- Available also R513A (XP10) refrigerant gas

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

Two-stage oil-free centrifugal compressor with magnetic levitation and inverter.

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- Continuous load modulation by varying rpm (from 30% to 100%)
- Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

CONFIGURATOR

_		GURATUR
Fiel		Description
1,2,	.3	TBA
4,5,	6,7	Size 1300, 1350, 2300, 2325, 2350, 3300, 3320, 3340, 3350
8		Model
	F	Free-cooling
	Р	Free-cooling plus (1)
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	E	Silenced high efficiency
11		Coils / free-cooling coils
	0	Alluminium microchannel / Copper - aluminium
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	V	Copper-painted alumimium / Copper-painted alumimium
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,1	15	Integrated hydronic kit
	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (2)
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump

Field	Description
	H Pump H + stand-by pump
	Kit with inverter pump to fixed speed
	· · · · · ·
- I.	Pump J equipped with inverter device to work at fixed speed (2)
	Kit with n°1 pump + stand-by pump both equipped wih inverter device to work at
	fixed speed
J	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
J	B Pump B+stand-by pump, both equipped with inverter to work at fixed speed
J	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
J	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
J	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
J	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
J	71 17 17 17 17 17 17 17 17 17 17 17 17 1
J	H Pump H+stand-by pump, both equipped with inverter to work at fixed speed
J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
J	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (2)
	Kit with double pump both equipped with inverter device to work at fixed speed
K	
K	G Doble pump G with inverter device to work at fixed speed
K	H Doble pump H with inverter device to work at fixed speed
K	
K	· · · · · · · · · · · · · · · · · · ·
	Kit with double pumps
T	
T	
T	
T	
T	
16	Refrigerant gas
	R134a
	R513A (XP10)

⁽¹⁾ The Free-Cooling Plus "P" models are only compatible with"^{o"} ed "O" (2) For all configurations including pump J please contact the factory.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible

to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

GP_T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

ACCESSORIES COM	/ TITOTETT									
Model	Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350
AER485P1	A,E	•	•	•		•	•		•	•
AER485P1 x n° 2 (1)	A,E									
AERBACP	A,E	•	•	•	•	•	•	•	•	•
AERNET	A,E	•								•
MULTICHILLER_EVO	A,E	•	•	•	•	•	•	•	•	•
PGD1	A,E									•

⁽¹⁾ x Indicates the quantity of accessories to match.

Antivibration

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350
A,E	AVX (1)								

(1) Contact us.

Anti-intrusion grid

Ver	1300	1350	2300	2325	2350	3300	3320	3340	3350
A,E	GP3T	GP4T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

PERFORMANCE SPECIFICATIONS

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Model: F											
Cooling performance chiller opera	ation (1)										
Cooling capacity	A,E	kW	317,2	419,2	634,5	736,4	838,4	934,7	1065,0	1149,0	1223,6
Input power	A,E	kW	91,6	121,8	182,8	214,3	244,4	267,3	311,2	337,8	365,9
Cooling total input current	A,E	A	147,5	198,3	295,0	345,8	396,7	427,5	498,3	559,2	604,2
EER	A,E	W/W	3,46	3,44	3,47	3,44	3,43	3,50	3,42	3,40	3,34
Water flow rate system side	A,E	I/h	54505	72025	109011	126530	144050	160596	182983	197414	210235
Pressure drop system side	A,E	kPa	65	32	70	54	45	69	72	66	52
Cooling performances with free-c	ooling (2)										
Cooling capacity	A,E	kW	297,2	395,5	594,4	692,7	791,1	888,3	994,1	1085,0	1100,1
Input power	A,E	kW	11,3	15,0	22,5	26,3	30,0	33,8	37,5	41,3	41,3
Free cooling total input current	A,E	A	17,5	23,3	35,0	40,8	46,7	52,5	58,3	64,2	64,2
EER	A,E	W/W	26,41	26,36	26,41	26,38	26,36	26,31	26,50	26,30	26,66
Water flow rate system side	A,E	l/h	54505	72025	109011	126530	144050	160596	182983	197414	210235
Pressure drop system side	A,E	kPa	118	78	130	103	99	127	138	117	109
Model: P	-										
Cooling performance chiller opera	ation (1)										
Cooling capacity	A,E	kW	317,2	419,2	634,5	736,4	838,4	934,7	1065,0	1149,0	1206,6
Input power	A,E	kW	93,1	123,9	185,8	217,9	248,6	271,6	316,4	343,6	366,0
Cooling total input current	A,E	A	147,9	198,8	295,7	346,7	397,6	428,6	499,6	560,5	605,5
EER	A,E	W/W	3,41	3,38	3,42	3,38	3,37	3,44	3,37	3,34	3,30
Water flow rate system side	A,E	I/h	54505	72025	109011	126530	144050	160596	182983	197414	207315
Pressure drop system side	A,E	kPa	65	32	70	54	45	69	72	66	50
Cooling performances with free-c	ooling (2)										
Cooling capacity	A,E	kW	319,4	425,1	638,8	744,5	850,2	954,8	1068,2	1166,2	1181,8
Input power	A,E	kW	11,5	15,3	23,0	26,8	30,7	34,5	38,4	42,2	42,2
Free cooling total input current	A,E	A	17,9	18,8	35,7	36,7	37,6	53,6	44,6	65,5	80,5
		W/W	27,76	27,71	27,76	27,73	27,71	27,66	27,85	27,64	28,01
EER	A,E	VV/VV	21,10	41,11	21,10	ב ון וב	2,,, ,	27,00	21,03	27,04	20,01
EER Water flow rate system side	A,E	I/h	54505	72025	109011	126530	144050	160596	182983	197414	207315

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C/7 °C; External air 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Model: F											
SEER - (EN14825:2018) 12/7 with i	nverter fans (1)										
SEER	A,E	W/W	5,06	5,14	5,21	5,17	5,30	5,40	5,32	5,26	5,23
Seasonal efficiency	A,E	%	199,3%	202,7%	205,5%	203,6%	208,8%	212,8%	209,6%	207,2%	206,1%
SEPR - (EN14825: 2018) High temp	erature with inverte	r fans (2)									
SEPR	A,E	W/W	8,65	8,51	8,79	8,32	8,53	9,04	9,34	8,89	8,58
Model: P											
SEER - (EN14825:2018) 12/7 with i	nverter fans (1)										
SEER	A,E	W/W	4,98	5,06	5,14	5,09	5,21	5,32	5,11	5,18	5,17
Seasonal efficiency	A,E	%	196,3%	199,4%	202,5%	200,4%	205,5%	209,7%	201,2%	204,0%	203,7%
SEPR - (EN14825: 2018) High temp	erature with inverte	r fans (2)									
SEPR	A,E	W/W	8,91	8,45	8,88	8,53	8,65	9,18	8,99	9,06	8,81

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

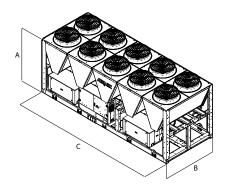
ELECTRIC DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Electric data											
Maximum current (FLA)	A,E	A	165,0	249,0	329,0	413,0	498,0	493,0	577,0	737,0	737,0
Peak current (LRA)	A,E	A	36.0	45.0	210.0	305.0	315.0	384,0	479.0	575,0	575,0

GENERAL TECHNICAL DATA

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Compressor											
Туре	A,E	type					Centrifugal				
Compressor regulation	A,E	Туре					Inverter				
Number	A,E	no.	1	1	2	2	2	3	3	3	3
Circuits	A,E	no.	1	1	1	2	1	1	2	1	1
Refrigerant	A,E	type					R134a				
Refrigerant charge (1)	A,E	kg	81,5	165,7	163,0	253,8	295,8	275,2	317,2	327,9	397,9
System side heat exchanger											
Туре	A,E	type					Shell and tube				
Number	A,E	no.	1	1	1	1	1	1	1	1	1
Hydraulic connections											
Connections (in/out)	A,E	Туре					Grooved joints				
Size (in)	A,E	Ø	3"	4"	4"	5"	5"	5"	5"	6"	6"
Size (out)	A,E	Ø	3"	4"	4"	5"	5"	5"	5"	6"	6"
Sound data calculated in cooling mode	2 (2)										
Country and a second	A	dB(A)	88,3	90,0	91,3	92,8	93,1	93,1	94,1	95,5	95,5
Sound power level	E	dB(A)	82,3	84,0	85,3	86,8	87,1	87,1	88,1	89,5	89,5
Cound assessme level (10 m)	A	dB(A)	56,1	57,6	58,7	60,0	60,2	60,1	61,0	62,3	62,3
Sound pressure level (10 m)	E	dB(A)	50,1	51,6	52,7	54,0	54,2	54,1	55,0	56,3	56,3

General data - fans (F model)


Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Fan											
Туре	A,E	type					Axial				
Fan motor	A,E	type					Inverter				
Number	A,E	no.	6	8	12	14	16	18	20	22	22
Air flow rate	A,E	m³/h	93180	124240	186360	217420	248480	279540	310600	341660	341660

General data - fans (P model)

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Fan											
Туре	A,E	type					Axial				
Fan motor	A,E	type					Inverter				
Number	A,E	no.	6	8	12	14	16	18	20	22	22
Air flow rate	A,E	m³/h	88680	118240	177360	206920	236480	266040	295600	325160	325160

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Dimensions and weights											
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200
(A,E	mm	3570	4760	7140	8330	9520	10710	11900	13090	13090
Model F											
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Integrated hydronic ki	t: 00										
Weights											
Former to be	A	kg	3290	4330	5860	7050	8020	8490	9820	10310	10670
Empty weight	E	kg	3370	4440	6030	7250	8240	8740	10100	10610	10970
W. L. C. et al.	A	kg	3570	4720	6380	7680	8790	9270	10720	11270	11710
Weight functioning	E	kg	3650	4830	6550	7880	9010	9520	11000	11570	12010
Model P											
Size			1300	1350	2300	2325	2350	3300	3320	3340	3350
Integrated hydronic ki	t: 00										
Weights											
Emptyweight	A	kg	3380	4460	6050	7270	8270	8780	10140	10650	11020
Empty weight	E	kg	3470	4570	6220	7470	8490	9020	10410	10960	11320
Weight functioning	A	kg	3700	4910	6650	8000	9150	9680	11180	11760	12220
Weight functioning	E	kg	3790	5020	6820	8200	9370	9920	11450	12070	12520

TBG 1230-4310 F

Air-water chiller with free-cooling

Cooling capacity 238 ÷ 1110 kW

- HFO R1234ze refrigerant gas
- · High efficiency also at partial loads
- Microchannel coil
- Low peak current (only 6 Amps!)
- · Evaporator with low refrigerant charge

DESCRIPTION

Air-cooled chiller designed to meet air conditioning needs in residential / commercial complexes or industrial applications.

These are outdoor units with oil free centrifugal compressor, axial fans, micro-channel coils, and shell and tube heat exchangers.

The base, the structure and the panels are made of steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Operation at full load up to 43°C external air temperature depending on size and version. For further details refer to the selection software/technical documentation.

Units mono or dual-circuit

The units according to the size are mono or dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Oil free centrifugal compressor

Two-stage oil-free centrifugal compressor with magnetic levitation and inverter.

Compressor features:

- Operates without oil as bearings are magnetic levitation type
- Continuous load modulation by varying rpm (from 30% to 100%)
- Low peak currents (only 6 Amps!)

Aluminium microchannel coils

The whole range uses microchannel condenser coils allowing reduction of refrigerant charge but keeping the same high efficiency.

Free-cooling water coils

These units also have a water coil dedicated to free-cooling mode. Free-cooling offers significant energy saving in applications that require cooling all year round.

As soon as the outside air temperature allows, a valve makes the water flow towards the free-cooling battery which is cooled directly by the air. The compressors are completely shut down, if possible, leading to considerable electrical savings.

 A "P" free-cooling plus model with the oversized water battery can be chosen for applications in which a higher free-cooling performance is required.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations, to obtain a solution that allows you to save money and to facilitate installation.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430:

with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

Further features:

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

CO	NFI	GURATOR
Fiel	d	Description
1,2,	.3	TBG
4,5,	6,7	Size 1230, 1310, 2230, 2270, 2310, 3270, 3280, 3310, 4270, 4310
8		Model
	F	Free-cooling
	Р	Free-cooling plus (1)
9		Heat recovery
	0	Without heat recovery
10		Version
	Α	High efficiency
	E	Silenced high efficiency
11		Coils / free-cooling coils
	0	Alluminium microchannel / Copper - aluminium
	0	Painted alluminium microchannel / Copper painted aluminium
	R	Copper-copper/Copper-copper
	S	Copper-Tinned copper / Copper -Tinned copper
	V	Copper-painted alumimium / Copper-painted alumimium
12		Fans
	J	Inverter
13		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
14,	15	Integrated hydronic kit
_	00	Without hydronic kit
		Kit with n° 1 pump
	PA	Pump A
	PB	Pump B
	PC	Pump C
	PD	Pump D
	PE	Pump E
_	PF	Pump F
	PG	Pump G
	PH	Pump H
	PI	Pump I
	PJ	Pump J (2)
		Pump n° 1 pump + stand-by pump
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump

Field	Description
DG	Pump G + stand-by pump
DH	Pump H + stand-by pump
DI	Pump I + stand-by pump
DJ	Pump J + stand-by pump (2)
	Kit with inverter pump to fixed speed
IA	Pump A equipped with inverter device to work at fixed speed
IB	Pump B equipped with inverter device to work at fixed speed
IC	Pump C equipped with inverter device to work at fixed speedr
ID	Pump D equipped with inverter device to work at fixed speed
IE	Pump E equipped with inverter device to work at fixed speed
IF	Pump F equipped with inverter device to work at fixed speed
IG	Pump G equipped with inverter device to work at fixed speed
IH	Pump H equipped with inverter device to work at fixed speed
II	Pump I equipped with inverter device to work at fixed speed
IJ	Pump J equipped with inverter device to work at fixed speed (2)
	Kit with n°1 pump + stand-by pump both equipped wih inverter device to work at
	fixed speed
JA	Pump A+stand-by pump, both equipped with inverter to work at fixed speed
JB	Pump B+stand-by pump, both equipped with inverter to work at fixed speed
JC	Pump C+stand-by pump, both equipped with inverter to work at fixed speed
JD	Pump D+stand-by pump, both equipped with inverter to work at fixed speed
JE	Pump E+stand-by pump, both equipped with inverter to work at fixed speed
JF	Pump F+stand-by pump, both equipped with inverter to work at fixed speed
JG	Pump G+stand-by pump, both equipped with inverter to work at fixed speed
JH	Pump H+stand-by pump, both equipped with inverter to work at fixed speed
JI	Pump I+stand-by pump, both equipped with inverter to work at fixed speed
JJ	Pump J+stand-by pump, both equipped with inverter to work at fixed speed (2)
	Kit with double pump both equipped with inverter device to work at fixed speed
KF	Doble pump F with inverter device to work at fixed speed
KG	Doble pump G with inverter device to work at fixed speed
KH	Doble pump H with inverter device to work at fixed speed
KI	Doble pump I with inverter device to work at fixed speed
KJ	Doble pump J with inverter device to work at fixed speed (2)
	Kit with double pumps
TF	Double pump F
TG	Double pump G
TH	Double pump H
TI	Double pump I
TJ	Double pump J (2)

⁽¹⁾ The Free-Cooling Plus "P" models are only compatible with"^{o"} ed "O" (2) For all configurations including pump J please contact the factory.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-

AER485P1 x n° 3: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 x n° 4: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

GP T: Anti-intrusion grid kit

ACCESSORIES COMPATIBILITY

Model	Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
AER485P1	A,E	•	•								
AER485P1 x n° 2 (1)	A,E			•	•	•					
AER485P1 x n° 3 (1)	A,E						•	•	•	•	
AER485P1 x n° 4 (1)	A,E										•
AERBACP	A,E	•	•	•	•	•	•	•	•	•	•
AERNET	A,E	•	•	•	•	•	•	•	•	•	•
PGD1	A,E			•		•		•			

(1) x Indicates the quantity of accessories to match.

Antivibration

, in this is a tron										
Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A,E	AVX (1)									

(1) Contact us.

Anti-intrusion grid

Ver	1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
A,E	GP3T	GP4T	GP5T	GP6T	GP7T	GP8T	GP9T	GP10T	GP11T	GP11T

A grey background indicates the accessory must be assembled in the factory

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Model: F												
Cooling performance chiller operation (1)												
Cooling capacity	A,E	kW	237,9	328,6	453,2	526,8	623,2	730,8	798,8	907,5	1019,7	1110,3
Input power	A,E	kW	68,6	95,3	130,6	153,1	181,1	211,4	231,7	260,0	294,0	328,1
Cooling total input current	A,E	А	112,5	158,3	214,2	255,0	300,8	346,7	387,5	433,3	489,2	549,2
EER	A,E	W/W	3,47	3,45	3,47	3,44	3,44	3,46	3,45	3,49	3,47	3,38
Water flow rate system side	A,E	l/h	40879	56452	77865	90518	107064	125557	137237	155924	175196	190769
Pressure drop system side	A,E	kPa	48	51	45	54	50	55	54	63	46	56
Cooling performances with free-cooling (2	2)											
Cooling capacity	A,E	kW	275,5	371,6	478,0	568,6	665,9	766,4	855,5	956,3	1057,8	1079,5
Input power	A,E	kW	11,3	15,0	18,8	22,5	26,3	30,0	33,8	37,5	41,3	41,3
Free cooling total input current	A,E	A	17,5	23,3	29,2	35,0	40,8	46,7	52,5	58,3	64,2	64,2
EER	A,E	W/W	24,49	24,77	25,49	25,27	25,36	25,54	25,34	25,50	25,64	26,16
Water flow rate system side	A,E	l/h	40879	56452	77865	90518	107064	125557	137237	155924	175196	190769
Pressure drop system side	A,E	kPa	81	93	86	97	87	97	98	113	88	105
Model: P												
Cooling performance chiller operation (1)												
Cooling capacity	A,E	kW	237,9	328,6	453,2	526,8	623,1	730,8	798,8	907,5	1019,7	1110,3
Input power	A,E	kW	69,6	96,9	132,6	155,8	184,3	214,7	235,6	265,7	296,9	337,7
Cooling total input current	A,E	A	112,5	158,3	214,2	255,0	300,8	346,7	387,5	433,3	489,2	549,2
EER	A,E	W/W	3,42	3,39	3,42	3,38	3,38	3,40	3,39	3,42	3,43	3,29
Water flow rate system side	A,E	l/h	40879	56452	77865	90518	107064	125557	137237	155924	175196	190769
Pressure drop system side	A,E	kPa	48	51	45	54	50	55	54	63	46	56
Cooling performances with free-cooling (2	2)											
Cooling capacity	A,E	kW	295,4	398,2	514,2	610,9	714,2	823,8	919,0	1029,7	1136,1	1160,9
Input power	A,E	kW	11,5	15,4	19,2	23,0	26,9	30,7	34,5	38,3	42,2	42,2
Free cooling total input current	A,E	A	17,5	23,3	29,2	35,0	40,8	46,7	52,5	58,3	64,2	64,2
EER	A,E	W/W	25,70	25,90	26,80	26,50	26,60	26,90	26,60	26,90	26,90	27,50
Water flow rate system side	A,E	l/h	40879	56452	77864	90517	107064	125557	137236	155924	175196	190768
Pressure drop system side	A,E	kPa	78	91	83	94	84	94	95	110	84	101

⁽¹⁾ System side water heat exchanger 12 °C/7 °C; External air 35 °C; Chiller operation 100%; Free-cooling 0% (2) System side water heat exchanger 12 °C / * °C; External air 2 °C

ENERGY INDICES (REG. 2016/2281 EU)

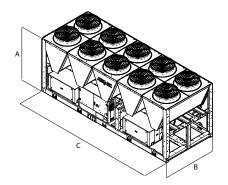
		1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
rter fans (1)											
A,E	W/W	5,40	5,47	5,72	5,35	5,72	5,53	5,64	5,67	5,66	5,49
A,E	%	213,1%	215,7%	225,9%	210,9%	225,8%	218,0%	222,6%	223,7%	223,4%	216,4%
ture with inverte	r fans (2)										
A,E	W/W	9,45	9,36	9,37	8,49	9,15	9,31	9,45	9,50	9,47	9,13
rter fans (1)											
A,E	W/W	5,33	5,58	5,65	5,27	5,63	5,45	5,56	5,56	5,63	5,34
A,E	%	210,3%	220,0%	222,8%	207,6%	222,2%	214,9%	219,2%	219,3%	222,3%	210,7%
ture with inverte	r fans (2)										
A,E	W/W	9,36	9,24	9,27	8,55	9,21	9,34	9,35	9,35	9,43	8,93
	A,E A,E ture with inverte A,E rter fans (1) A,E A,E ture with inverte	A,E W/W A,E % ture with inverter fans (2) A,E W/W rter fans (1) A,E W/W A,E % ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 A,E % 213,1% ture with inverter fans (2) A,E W/W 9,45 rter fans (1) A,E W/W 5,33 A,E % 210,3% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 A,E % 213,1% 215,7% ture with inverter fans (2) A,E W/W 9,45 9,36 rter fans (1) A,E W/W 5,33 5,58 A,E % 210,3% 220,0% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 5,72 A,E % 213,1% 215,7% 225,9% ture with inverter fans (2) A,E W/W 9,45 9,36 9,37 rter fans (1) A,E W/W 5,33 5,58 5,65 A,E % 210,3% 220,0% 222,8% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 5,72 5,35 A,E % 213,1% 215,7% 225,9% 210,9% ture with inverter fans (2) A,E W/W 9,45 9,36 9,37 8,49 rter fans (1) A,E W/W 5,33 5,58 5,65 5,27 A,E % 210,3% 220,0% 222,8% 207,6% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 5,72 5,35 5,72 A,E % 213,1% 215,7% 225,9% 210,9% 225,8% ture with inverter fans (2) A,E W/W 9,45 9,36 9,37 8,49 9,15 rter fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 5,72 5,35 5,72 5,53 A,E % 213,1% 215,7% 225,9% 210,9% 225,8% 218,0% ture with inverter fans (2) A,E W/W 9,45 9,36 9,37 8,49 9,15 9,31 rter fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 5,72 5,35 5,72 5,53 5,64 A,E % 213,1% 215,7% 225,9% 210,9% 225,8% 218,0% 222,6% ture with inverter fans (2) A,E W/W 9,45 9,36 9,37 8,49 9,15 9,31 9,45 rter fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 5,56 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% 219,2% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 5,72 5,35 5,72 5,53 5,64 5,67 A,E % 213,1% 215,7% 225,9% 210,9% 225,8% 218,0% 222,6% 223,7% ture with inverter fans (2) A,E W/W 9,45 9,36 9,37 8,49 9,15 9,31 9,45 9,50 rter fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 5,56 5,56 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% 219,2% 219,3% ture with inverter fans (2)	rter fans (1) A,E W/W 5,40 5,47 5,72 5,35 5,72 5,53 5,64 5,67 5,66 A,E % 213,1% 215,7% 225,9% 210,9% 225,8% 218,0% 222,6% 223,7% 223,4% ture with inverter fans (2) A,E W/W 9,45 9,36 9,37 8,49 9,15 9,31 9,45 9,50 9,47 rter fans (1) A,E W/W 5,33 5,58 5,65 5,27 5,63 5,45 5,56 5,56 5,63 A,E % 210,3% 220,0% 222,8% 207,6% 222,2% 214,9% 219,2% 219,3% 222,3% ture with inverter fans (2)

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Electric data												
Maximum current (FLA)	A,E	A	125,0	189,0	239,0	304,0	368,0	418,0	538,0	547,0	597,0	707,0
Peak current (LRA)	A,E	A	36,0	45,0	161,0	230,0	239,0	355,0	424,0	433,0	549,0	608,0

GENERAL TECHNICAL DATA


Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Compressor												
Туре	A,E	type					Centi	ifugal				
Compressor regulation	A,E	Туре					Inve	erter				
Number	A,E	no.	1	1	2	2	2	3	3	3	4	4
Circuits	A,E	no.	1	1	1	2	1	2	1	1	2	2
Refrigerant	A,E	type					R12	34ze				
Refrigerant charge (1)	A,E	kg	81,5	120,1	152,3	187,1	197,8	264,5	275,2	285,9	327,9	327,9
System side heat exchanger												
Туре	A,E	type					Shell a	nd tube				
Number	A,E	no.	1	1	1	1	1	1	1	1	1	1
Hydraulic connections												
Connections (in/out)	A,E	Туре					Groove	d joints				
Size (in)	A,E	Ø	3"	3"	4"	4"	5"	5"	5"	5"	6"	6"
Size (out)	A,E	Ø	3"	3"	4"	4"	5"	5"	5"	5"	6"	6"
Sound data calculated in cooling mode	(2)											
	A	dB(A)	86,3	88,9	88,8	90,5	91,7	91,6	93,1	93,3	93,3	94,2
Sound power level	E	dB(A)	83,3	85,9	85,8	87,5	88,7	88,6	90,1	90,3	90,3	91,2
C d /10 \	A	dB(A)	54,1	56,5	56,3	57,9	58,9	58,7	60,1	60,2	60,1	61,0
Sound pressure level (10 m)	E	dB(A)	51,1	53,5	53,3	54,9	55,9	55,7	57,1	57,2	57,1	58,0

General data - fans

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Model: F												
Inverter fan												
Туре	A,E	type					Ax	ial				
Fan motor	A,E	type					Inve	erter				
Number	A,E	no.	6	8	10	12	14	16	18	20	22	22
Air flow rate	A,E	m³/h	93150	124200	155250	186300	217350	248400	279450	310500	341550	341550
Model: P												
Inverter fan												
Туре	A,E	type					Ax	ial				
Fan motor	A,E	type					Inve	erter				
Number	A,E	no.	6	8	10	12	14	16	18	20	22	22
Air flow rate	A,E	m³/h	88800	118400	148000	177600	207200	236800	266400	296000	325600	325600

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Dimensions and weights												
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200	2200
C	A,E	mm	3570	4760	5950	7140	8330	9520	10710	11900	13090	13090
Model F												
Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic kit: 00												
Weights												
F	А	kg	3250	4110	5220	6180	6770	8130	8720	9400	10960	11220
Empty weight	E	kg	3330	4220	5360	6350	6960	8350	8960	9670	11270	11520
W. inha formation in	A	kg	3510	4450	5630	6700	7360	8820	9500	10250	11920	12190
Weight functioning	E	kg	3590	4560	5770	6870	7550	9040	9740	10520	12230	12490
Model P												
Size			1230	1310	2230	2270	2310	3270	3280	3310	4270	4310
Integrated hydronic kit: 00												
Weights												
Emptyweight	A	kg	3340	4240	5380	6370	6990	8380	9000	9710	11310	11570
Empty weight	E	kg	3430	4350	5520	6540	7180	8600	9250	9990	11610	11870
Wainha for sainning	А	kg	3640	4640	5860	6970	7680	9180	9900	10700	12420	12690
Weight functioning	E	kg	3730	4750	6000	7140	7870	9400	10150	10980	12720	12990

www.aermec.com

WATER / WATER CHILLERS AND HEAT PUMPS

Aermec plant engineering really comes into its own in the field of machines and technology for centralised systems. Aermec offer a full range of chillers and heat pumps from the small domestic system up to that of the large size for the service industry.

The cooling capacity range is extremely wide, and the fittings solutions are equally diverse, for scroll, screw or centrifugal compressor applications.

The careful selection of materials and the close attention paid to every detail of assembly coupled with the huge selection of accessories complete the industry-leading products designed for use in this sector, making Aermec units a real "must" in the world of Italian and European climate control.

	R CHILLERS AND HEAT PUMPS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
Units with scroll compr					
VENICE H	Reversible water-cooled heat pump, gas side		6,9-9,8	8,3-11,6	652
WRL 026H-161H	Reversible water-cooled heat pump, gas side		6,0-40,0	8,0-48,0	655
WRL 026-161	Water cooled heat pump reversible water side		6,6-44,2	7,5-48,0	662
WRL 180H-650H	Reversible water-cooled heat pump, gas side		44,9-157,4	53,0-183,3	668
WRL 180-650	Water cooled heat pump reversible water side		49,0-174,0	55,0-192,0	672
WRK	Reversible water-cooled heat pump, gas side		38,9-165,9	48,5-207,7	677
WWB 0300-0900	Water-water heat pumps only			56,7-265,9	684
WWM	Water cooled heat pump reversible water side		96	110	688
NXW 0503-1654	Water cooled heat pump reversible water side		111-511	127-582	694
NXW 0503H - 1654H	Reversible water-cooled heat pump, gas side		106-477	125-565	699
Units with screw compr	essors				
WS 0601-2802	Water cooled heat pump reversible water side		147-700	164-778	704
HWS 0601 - 2802	Water cooled heat pump reversible water side		147-369	165-778	708
HWSG	Water cooled heat pump reversible water side		110-396	122-595	712
WSH	Reversible water-cooled heat pump, gas side		165,8-269,7	183,3-300,3	716
WFGI	Water cooled heat pump reversible water side		217-1765	243-1960	720
WFGN	Water cooled heat pump reversible water side		136-1727	153-1921	729
WFI	Water cooled heat pump reversible water side		291-2406	326-2664	736
WFN	Water cooled heat pump reversible water side		182-2349	205-2610	745
Units with centrifugal c	ompressors				
WMX	Water/water chiller (with R134a)		280,1-324,2		753
WMG	Water/water chiller (with R1234ze)		282,3-312,4		756
WTX	Water/water chiller		222,9-1958,4		759
WTG	Water/water chiller (with R1234ze)		246,6-1959,4		764

VENICE-H

- Compact dimensions
- Quick & easy installation

Reversible water-cooled heat pump, gas side

Cooling capacity 6,9 ÷ 9,7 kW Heating capacity 8,3 ÷ 11,7 kW

DESCRIPTION

The water-cooled heat pumps are reversible units for the production of chilled and hot water. They are indoor units with scroll compressors, system side heat exchangers and a plate source, which fully meet the needs of the residential market: reduced size, easy installation, low noise levels.

FEATURES

- Cycle reversal on refrigerant circuit
- All versions are equipped with circulation pump, water tank, water filter and safety valve
- Complies with safety (EC) directive
- Differential pressure switch on the external circuit standard on heat pumps
- Flow-switch supplied in series only on the DHW side exchanger.
- Microprocessor control

- Control panel
- Plate heat exchanger
- Compact dimensions
- Metallic protective cabinet with rustproofing polyester paint RAL 9003
- Protection rating IP 24

ACCESSORIES

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

VPH: Pressure switch valve with bypass solenoid valve, during cooling mode operation the bypass valve is closed so the water flows exclusively through the circuit with the pressure switch. During heating mode operation the water flows through both branches of the circuit.

VT: Antivibration supports

ACCESSORIES COMPATIBILITY

Accessory	VENICE 20H	VENICE 25H	VENICE 30H
PR3	•	•	•
Pressure switch valve			
Accessory	VENICE 20H	VENICE 25H	VENICE 30H
VPH10	•		
VPH11		•	•
Antivibration			
Accessory	VENICE 20H	VENICE 25H	VENICE 30H
VT7	•	•	•

652 www.aermec.com VENICE-20-30-HP_Y_UN50_04

PERFORMANCE SPECIFICATIONS

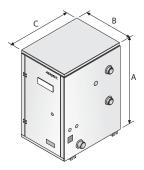
		VENICE 20H	VENICE 25H	VENICE 30H
Cooling performance 12 °C / 7 °C (1)				
Cooling capacity	kW	6,9	8,2	9,7
Input power	kW	1,9	2,2	2,6
Cooling total input current	A	9,0	11,0	13,0
EER	W/W	3,62	3,71	3,72
Water flow rate system side	l/h	1185	1409	1667
Useful head system side	kPa	63,0	61,0	59,0
Water flow rate source side	l/h	1495	1769	2095
Pressure drop source side	kPa	18	17	12
Heating performance 40 °C / 45 °C (2)				
Heating capacity	kW	8,3	10,0	11,7
Input power	kW	2,3	2,7	3,2
Heating total input current	A	12,0	14,0	16,0
COP	W/W	3,66	3,66	3,70
Water flow rate system side	l/h	1450	1729	2027
Useful head system side	kPa	48,0	44,0	41,0
Water flow rate source side	l/h	1791	2133	2505
Pressure drop source side	kPa	25	25	17

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

		VENICE 20H	VENICE 25H	VENICE 30H
SEER - 12/7 (EN14825: 2018) (1)				
SEER	W/W	3,66	3,94	4,02
Seasonal efficiency	%	143,4	154,6	157,8
UE 811/2013 performance in average amb	ient conditions (average) - 35 °C	: - Pdesignh ≤ 70 kW (2)		
Pdesignh	kW	11	13	16
SCOP	W/W	4,20	4,25	4,33
ηsh	%	160,00	162,00	165,00
Efficiency energy class		A++	A++	A++

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Efficiencies for low temperature applications (35 $^{\circ}$ C)


ELECTRIC DATA

		VENICE 20H	VENICE 25H	VENICE 30H
Power supply				
Power supply		230V~50Hz	230V~50Hz	230V~50Hz
Electric data				
Maximum current (FLA)	A	15,0	18,0	24,0
Peak current (LRA)	A	61,0	76,0	100,0

GENERAL TECHNICAL DATA

		VENICE 20H	VENICE 25H	VENICE 30H
Compressor				
Туре	type	Scroll	Scroll	Scroll
Number	no.	1	1	1
Circuits	no.	1	1	1
Refrigerant	type	R407C	R407C	R407C
System side heat exchanger				
Туре	type	Brazed plate	Brazed plate	Brazed plate
Number	no.	1	1	1
Connections (in/out)	Туре	Gas M	Gas M	Gas M
Sizes (in/out)	Ø	1″	1"	1"
Source side heat exchanger				
Туре	type	Brazed plate	Brazed plate	Brazed plate
Number	no.	1	1	1
Connections (in/out)	Туре	Gas M	Gas M	Gas M
Sizes (in/out)	Ø	1″	1"	1"
Sound data				
Sound power level	dB(A)	56,0	56,0	57,0
Sound pressure	dB(A)	48,0	48,0	49,0

DIMENSIONS

		VENICE 20H	VENICE 25H	VENICE 30H
Dimensions and weights				
A	mm	625	625	625
В	mm	404	404	404
C	mm	504	504	504
Empty weight	kg	103	106	109

WRL 026H - 161H

Reversible water-cooled heat pump, gas side

Cooling capacity 6 ÷ 40 kW Heating capacity 8 ÷ 48 kW

- High efficiency
- Production of hot water up to 60 °C
- Production of domestic hot water priority
- Suitable for geothermal applications

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers.

In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation. In fact the electrical and hydraulic connections are all located in the upper part of the unit, facilitating the installation and maintenance operations and also reducing the technical gaps and their position in as little space as possible.

VERSIONS

° Without storage tank **A** With storage tank

FEATURES

Operating field

Operation at full power with domestic hot water for the system up to

(for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible. The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

CONTROL MPC

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

KSAE: External air sensor.

PGD1: Allows you to control the unit at a distance.

SSM: Probe to be used with the mixer valve in applications with radiant panels. The probe requires the VMF-CRP area accessory as well.

TAH: Ambient terminal with temperature and humidity probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump and dehumidifier consent.

TAT: Ambient terminal with temperature probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump.

VT: Antivibration supports

VPHL: Pressure switch valve with bypass solenoid valve, during cooling mode operation the bypass valve is closed so the water flows exclusively through the circuit with the pressure switch. During heating mode $\,$ operation the water flows through both branches of the circuit.

ACCESSORIES COMPATIBILITY

Model	026	031	041	051	071	081	101	141	161
AER485P1	•	•	•	•	•	•	•	•	•
AERBACP	•	•	•	•	•	•	•	•	•
KSAE	•	•	•	•	•	•	•	•	•
PGD1	•	•	•	•	•	•	•	•	•
SSM	•	•	•	•	•	•	•	•	•
TAH	•	•	•	•	•	•	•	•	•
TAT	•	•	•	•	•	•	•	•	•

Antivibration

Version	Integrated hydronic kit, source side	Integrated hydronic kit user side	026	031	041	051	071
0	°,B,I,U,V	°,N,P	VT9	VT9	VT9	VT9	VT9
A	°,B,I,U,V	°,N,P	VT15	VT15	VT15	VT15	VT15
Version	Integrated hydronic source side	kit, Integrated hydror user side	nic kit 0	31	101	141	161
	Jource Jide	user side					
0	°,B,I,U,V	°,N,P	V	[9	VT15	VT15	VT15

Pressure switch valve

 ressure switch valve										
Ver	026	031	041	051	071	081	101	141	161	
°,A	VPHL1	VPHL1	VPHL2	VPHL2	VPHL3	VPHL3	VPHL4	VPHL4	VPHL4	

CONFIGURATOR

Field	Description	
1,2,3	WRL	
4,5,6	Size	
4,5,0	026, 031, 041, 051, 071, 081, 101, 141, 161	
7	Operating field	
Х	Electronic thermostatic expansion valve	
8	Model	
Н	Reversible heat pump, gas side	
9	Version	
0	Without storage tank	
A	With storage tank	
10	Heat recovery	
0	Without heat recovery	
11	Integrated hydronic kit, source side	
0	Without hydronic kit	
В	On-off pump (1)	
1	Inverter pump (2)	
U	Pump high head (3)	
V	Applications with bore hole water	
12	Integrated hydronic kit user side	
0	Without hydronic kit	
N	Pump high head (3)	
Р	On-off pump (1)	
13	Integrated hydronic kit, recovery side	
0	Without hydronic kit	
14	Soft-start	
0	Without soft-start	
S	With soft-start	
15	Power supply	
0	400V~3N 50Hz	
4	230V~3 50Hz (4)	
М	230V~ 50Hz (5)	

⁽¹⁾ For size WRL 051 ÷ 081. The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.

(2) Only for WRL 026 ÷ 081

(3) Only for WRL 101 ÷ 161

(4) Only for WRL 051 ÷ 141

(5) Only for WRL 026 ÷ 041

657

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

$WRL - (H^{\circ}) - (400V 3N \sim 50Hz)$

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	6,3	8,1	10,4	13,7	17,8	20,3	27,6	35,4	40,4
Input power	kW	1,6	2,3	2,3	3,0	4,2	5,0	6,1	8,5	10,1
Cooling total input current	A	4,0	4,0	6,0	7,0	9,0	10,0	13,0	17,0	19,0
EER	W/W	3,98	3,47	4,52	4,51	4,18	4,08	4,49	4,15	4,01
Water flow rate source side	l/h	1346	1782	2178	2870	3759	4312	5763	7501	8611
Pressure drop source side	kPa	13	16	19	20	24	27	28	37	44
Water flow rate system side	l/h	1085	1396	1798	2367	3058	3492	4748	6098	6964
Pressure drop system side	kPa	9	11	13	14	16	18	20	24	29
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,9	9,5	12,4	16,4	20,9	24,0	32,7	41,7	47,6
Input power	kW	2,1	2,4	3,0	4,0	5,2	6,1	8,1	10,5	12,3
Heating total input current	A	4,8	4,8	6,6	8,3	10,0	12,0	16,0	20,0	23,0
COP	W/W	3,84	3,96	4,08	4,07	4,01	3,94	4,05	3,97	3,87
Water flow rate source side	I/h	1714	2086	2759	3635	4611	5291	7248	9196	10445
Pressure drop source side	kPa	34	34	46	43	50	59	52	62	73
Water flow rate system side	l/h	1364	1644	2151	2842	3616	4165	5669	7217	8246
Pressure drop system side	kPa	20	18	28	28	32	38	35	43	51

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Technical data WRL (H°) - (230V ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	6,3	7,9	10,3	-	-	-	-	-	-
Input power	kW	1,7	1,9	2,4	-	-	-	-	-	-
Cooling total input current	A	9,0	11,0	14,0	-	-	-	-	-	-
EER	W/W	3,74	4,13	4,28	-	-	-	-	-	-
Water flow rate source side	l/h	1363	1678	2179	-	-	-	-	-	-
Pressure drop source side	kPa	14	16	19	-	-	-	-	-	-
Water flow rate system side	l/h	1085	1362	1781	-	-	-	-	-	-
Pressure drop system side	kPa	9	10	13	-	-	-	-	-	-
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,9	9,9	12,6	-	-	-	-	-	-
Input power	kW	2,1	2,6	3,3	-	-	-	-	-	-
Heating total input current	A	10,0	13,0	17,0	-	-	-	-	-	-
COP	W/W	3,85	3,89	3,82	-	-	-	-	-	-
Water flow rate source side	l/h	1717	2173	2745	-	-	-	-	-	-
Pressure drop source side	kPa	34	36	46	-	-	-	-	-	-
Water flow rate system side	l/h	1366	1723	2186	-	-	-	-	-	-
Pressure drop system side	kPa	20	22	29	-	-	-	-	-	-

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

$WRL - (H^{\circ}) - (400V 3N \sim 50Hz)$

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
Cooling performance 23 °C / 18 °C (1)										
Cooling capacity	kW	8,3	10,0	13,5	17,5	23,9	27,4	34,9	47,8	54,5
Input power	kW	1,6	1,9	2,4	3,3	4,4	5,2	6,6	9,0	10,7
Cooling total input current	A	4,1	3,0	6,0	7,6	9,2	10,0	14,0	17,0	19,0
EER	W/W	5,22	5,34	5,54	5,35	5,39	5,25	5,31	5,32	5,11
Water flow rate source side	l/h	1681	2039	2719	3547	4844	5557	7089	9679	11092
Pressure drop source side	kPa	20	21	30	31	40	45	42	62	73
Water flow rate system side	l/h	1428	1737	2330	3022	4136	4730	6040	8270	9438
Pressure drop system side	kPa	16	17	22	23	29	33	32	44	53
Heating performance 30 °C/35 °C(2)										
Heating capacity	kW	8,1	10,1	13,0	17,0	22,6	25,8	34,1	45,0	50,8
Input power	kW	1,6	1,9	2,5	3,2	4,3	5,1	6,4	8,7	10,3
Heating total input current	A	3,7	3,7	5,2	6,4	8,4	9,7	12,0	16,0	19,0
COP	W/W	5,03	5,38	5,29	5,33	5,24	5,06	5,31	5,18	4,91
Water flow rate source side	l/h	1397	1751	2246	2934	3893	4456	5888	7770	8761
Pressure drop source side	kPa	21	20	30	30	37	43	38	50	58
Water flow rate system side	l/h	1901	2418	3098	4045	5363	6102	8125	10710	11951
Pressure drop system side	kPa	42	46	58	53	68	78	65	84	95

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

$WRL (H^{\circ}) - (230V \sim 50Hz)$

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
Cooling performance 23 °C / 18 °C (1)										
Cooling capacity	kW	8,3	10,1	13,3	-	-	-	-	-	-
Input power	kW	1,6	2,0	2,5	-	-	-	-	-	-
Cooling total input current	A	8,1	11,0	14,0	-	-	-	-	-	-
EER	W/W	5,05	5,18	5,27	-	-	-	-	-	-
Water flow rate source side	l/h	1690	2070	2699	-	-	-	-	-	-
Pressure drop source side	kPa	22	24	29	-	-	-	-	-	-
Water flow rate system side	l/h	1428	1755	2295	-	-	-	-	-	-
Pressure drop system side	kPa	16	17	22	-	-	-	-	-	-
Heating performance 30 °C/35 °C(2)										
Heating capacity	kW	8,2	10,2	13,1	-	-	-	-	-	-
Input power	kW	1,6	1,9	2,6	-	-	-	-	-	-
Heating total input current	А	8,1	9,7	13,0	-	-	-	-	-	-
COP	W/W	5,05	5,27	5,01	-	-	-	-	-	-
Water flow rate source side	l/h	1409	1767	2263	-	-	-	-	-	-
Pressure drop source side	kPa	21	23	31	-	-	-	-	-	-
Water flow rate system side	l/h	1919	2430	3082	-	-	-	-	-	-
Pressure drop system side	kPa	42	45	58	-	-	-	-	-	-

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

ENERGY INDICES (REG. 2016/2281 EU)

$WRL - (H^{\circ}) - (400V 3N \sim 50Hz)$

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,64	3,39	4,31	4,53	4,20	4,13	4,81	4,49	4,36
Seasonal efficiency	%	142,7%	132,4%	169,4%	178,1%	165,1%	162,3%	189,4%	176,5%	171,4%
UE 811/2013 performance in average ambient conditi	ons (average) - 5	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	12	16	21	26	31	42	53	61
ηsh	%	141.0%	145.0%	151.0%	152.0%	151.0%	150.0%	175.0%	173.0%	167.0%
SCOP	W/W	3,73	3,83	3,98	4,00	3,98	3,95	4,58	4,53	4,38
Efficiency energy class		A++	A++	A+++						
UE 811/2013 performance in average ambient conditi	ons (average) - 3	5 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	11	14	17	23	30	35	45	60	68
ηsh	%	195.0%	210.0%	207.0%	212.0%	211.0%	205.0%	233.0%	226.0%	212.0%
SCOP	W/W	5,08	5,45	5,38	5,50	5,48	5,33	6,03	5,85	5,50
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Efficiencies for average temperature applications (55 °C)
 (3) Efficiencies for low temperature applications (35 °C)

WRL - (H°) - (230V ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,48	3,80	4,15	-	-	-	-	-	-
Seasonal efficiency	%	136,2%	148,8%	163,1%	-	-	-	-	-	-
UE 811/2013 performance in average ambient of	onditions (average) - 5	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	13	16	-	-	-	-	-	-
ηsh	%	142.0%	145.0%	142.0%	-	-	-	-	-	-
SCOP	W/W	3,75	3,83	3,75	-	-	-	-	-	-
Efficiency energy class		A++	A++	A++	-	-	-	-	-	-
UE 811/2013 performance in average ambient of	onditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	11	14	17	-	-	-	-	-	-
ηsh	%	198.0%	212.0%	199.0%	-	-	-	-	-	-
SCOP	W/W	5,15	5,50	5,18	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Efficiencies for average temperature applications (55 °C)
 (3) Efficiencies for low temperature applications (35 °C)

$WRL - (H ABP) - (400V 3N \sim 50Hz)$

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	4,47	4,07	5,37	5,40	4,96	4,85	5,17	4,75	4,67
Seasonal efficiency	%	175,9%	159,7%	211,8%	213,1%	195,3%	190,9%	203,7%	186,8%	183,9%
UE 811/2013 performance in average ambient condition	ıs (average) - 5	5°C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	12	16	21	26	30	41	52	60
ηsh	%	151.0%	155.0%	161.0%	161.0%	157.0%	155.0%	173.0%	170.0%	166.0%
SCOP	W/W	3,98	4,08	4,23	4,23	4,13	4,08	4,53	4,45	4,35
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++
UE 811/2013 performance in average ambient condition	ıs (average) - 3	5 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	10	13	17	22	30	34	44	59	66
ηsh	%	223.0%	238.0%	222.0%	237.0%	222.0%	210.0%	232.0%	230.0%	216.0%
SCOP	W/W	5,78	6,15	5,75	6,13	5,75	5,45	6,00	5,95	5,60
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++

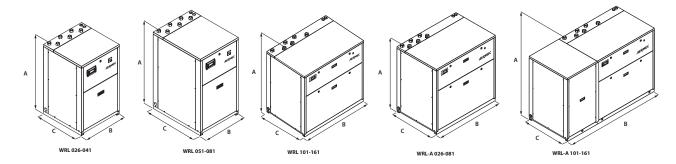
- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Efficiencies for average temperature applications (55 °C)
 (3) Efficiencies for low temperature applications (35 °C)

WRL - (H ABP) - (230V ~ 50Hz)

Size		026	031	041	051	071	081	101	141	161
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	4,21	4,63	5,14	-	-	-	-	-	-
Seasonal efficiency	%	165,5%	182,3%	202,7%	-	-	-	-	-	-
UE 811/2013 performance in average ambient conditi	ons (average) - 5	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	13	16	-	-	-	-	-	-
ηsh	%	152.0%	156.0%	152.0%	-	-	-	-	-	-
SCOP	W/W	4,00	4,10	4,00	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-
UE 811/2013 performance in average ambient conditi	ons (average) - 3	5 °C - Pdesignh	≤ 70 kW (3)							
Pdesignh	kW	11	13	17	-	-	-	-	-	-
ηsh	%	228.0%	243.0%	214.0%	-	-	-	-	-	-
SCOP	W/W	5,90	6,28	5,55	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA


Size		026	031	041	051	071	081	101	141	161
Power supply: °	'									
Electric data										
Maximum current (FLA)	A	8,5	9,0	11,0	13,0	20,0	23,0	23,0	37,0	43,0
Peak current (LRA)	A	34,0	37,0	50,0	66,0	75,0	75,0	88,0	91,0	94,0
Size		026	031	041	051	071	081	101	141	161
Power supply: M										
Electric data										
Maximum current (FLA)	A	19,0	22,0	26,0	-	-	-	-	-	-
Peak current (LRA)	A	63,0	84,0	99,0	-	-	-	-	-	-

GENERAL TECHNICAL DATA

Size			026	031	041	051	071	081	101	141	161
Compressor											
Туре	°,A	type					Scroll				
Number	°,A	no.	1	1	1	1	1	1	2	2	2
Circuits	°,A	no.	1	1	1	1	1	1	1	1	1
Refrigerant	°,A	type					R410A				
Source side heat exchanger											
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
System side heat exchanger											
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
Source side hydraulic connections											
Connections (in/out)	°,A	Туре					Gas - F				
Sizes (in/out)	°,A	Ø					1"1/4				
System side hydraulic connections											
Connections (in/out)	°,A	Туре					Gas - F				
Sizes (in/out)	°,A	Ø					1"1/4				
Sound data calculated in cooling mode (1)											
Sound power level	°,A	dB(A)	55,5	57,0	57,5	59,0	60,0	60,5	62,0	63,0	63,5
Saund arrassura laural (10 ms)	0	dB(A)	24,3	25,8	26,3	27,7	28,7	29,2	30,6	31,6	32,1
Sound pressure level (10 m)	A	dB(A)	24,1	25,6	26,1	27,6	28,6	29,1	30,5	31,5	32,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			026	031	041	051	071	081	101	141	161
Dimensions and weights											
Λ.	0	mm	976	976	976	1126	1126	1126	1126	1126	1126
A	Α	mm	1126	1126	1126	1126	1126	1126	1126	1126	1126
D	0	mm	605	605	605	605	605	605	1155	1155	1155
В	A	mm	1155	1155	1155	1155	1155	1155	1755	1755	1755
(•	mm	603	603	603	773	773	773	773	773	773
	Α	mm	773	773	773	773	773	773	773	773	773
Empty weight	0	kg	120	125	130	150	170	180	260	270	280
Empty weight	A	kg	190 (1)	200 (1)	210 (1)	230 (1)	250 (1)	260 (1)	340 (1)	350 (1)	360 (1)

⁽¹⁾ Units with two heat exchangers and storage tank, without pumps

WRL 026 -161

Water cooled heat pump reversible water side

Cooling capacity 6,6 ÷ 44,2 kW Heating capacity 7,5 ÷ 48,0 kW

- High efficiency
- Suitable for geothermal applications

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers.

In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation.

In fact, the electrical and hydraulic connections are all located at the top of the unit making it easy to install and maintain, also reducing the technical areas and their placement in the smallest space possible.

VERSIONS

° Without storage tank **A** With storage tank

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55 °C. (for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible. The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

MODUCONTROL CONTROL

The command panel of the unit allows the rapid setting of the working parameters of the machine, and their visualisation. The display consists of 4 figures and various LEDs for indicating the type of operational mode, the visualisation of the parameters set and of any alarms triggered. The card stores all the default settings and any modifications.

The regulation using an outside air temperature sensor (accessory) allows a dynamic control of the water temperature produced by increasing the energy efficiency of the system.

ACCESSORIES

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

KSAE: External air sensor.

 $\begin{tabular}{ll} \bf MODU-485BL: RS-485 & interface for supervision systems with MODBUS protocol. \end{tabular}$

PR3: Simplified remote panel. This makes it possible to carry out the unit's basic controls with the signalling of alarms. Can be made remote with shielded cable up to 150 m.

VT: Antivibration supports

VPL: Pressure switch valve complete with connections, piloted directly in relation to condensation pressure; the valve modulates the volume

of water needed to cool the condenser, thereby maintaining the condensation temperature unchanged.

ACCESSORIES COMPATIBILITY

Model	Ver	026	031	041	051	071	081	101	141	161
AERBACP	°,A	•	•	•	•	•	•	•	•	•
AERSET	°,A	•	•	•	•	•	•	•	•	•
KSAE	°,A						•	•	•	•
MODU-485BL	°,A	•					•		•	•
PR3	°,A								•	•

Antivibration

Version	Integrated hydronic kit, source side	Integrated hydronic kit user side	026	031	041	051	071
0	0	0	VT9	VT9	VT9	VT9	VT9
٥	B,I,U,V	N,P	VT9	VT9	VT9	VT9	VT9
A	°,B,I,U,V	°,N,P	VT15	VT15	VT15	VT15	VT15

Version	Integrated hydronic kit, source side	Integrated hydronic kit user side	081	101	141	161
0	0	0	VT9	VT15	VT15	VT15
0	U	N,P	VT9	VT15	VT15	VT15
0	B,I,V	N,P	VT9	VT15	VT15	-
A	°,B,I,U,V	°,N,P	VT15	VT15A	VT15A	VT15A

not available

Pressure switch valve

Ver	026	031	041	051	071	081	101	141	161
°,A	VPL1	VPL1	VPL2	VPL2	VPL3	VPL3	VPL4	VPL4	VPL4

CONFIGURATOR

CONFIGUR	
Field	Description
1,2,3	WRL
4,5,6	Size
-	026, 031, 041, 051, 071, 081, 101, 141, 161
/ 。	Operating field
	Standard mechanic thermostatic valve (1)
<u>Y</u>	Low temperature mechanic thermostatic valve (2)
8	Model
	Heat pump reversible on the water side
E	Evaporating unit (3)
9	Version
0	Without storage tank
A	With storage tank
10	Heat recovery
	Without heat recovery
D	With desuperheater
11	Integrated hydronic kit, source side
0	Without hydronic kit
В	On-off pump (4)
1	Inverter pump (5)
U	Pump high head (6)
	Applications with bore hole water
V	2-way modulating valve
12	Integrated hydronic kit user side
0	Without hydronic kit
N	Pump high head (6)
P	On-off pump (4)
13	Field for future development
0	Field not used
14	Soft-start
0	Without soft-start
S	With soft-start
15	Power supply
0	400V~3N 50Hz
M	230V~ 50Hz (7)

⁽¹⁾ Water produced from 4 °C ÷ 18 °C
(2) Water produced from 4 °C ÷ 18 °C
(3) Shipped with holding charge only
(4) For size WRL 051 ÷ 081. The speed of the inverter pump must be set upon commissioning, according to the useful static pressure required; once it has been set, the pump will work at a constant flow rate.
(5) Only for WRL 026 ÷ 081
(6) Only for WRL 026 ÷ 081
(7) Only for WRL 026 ÷ 041

PERFORMANCE SPECIFICATIONS

WRL - °

WAL -			***							
Size		026	031	041	051	071	081	101	141	161
Power supply: °										
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	6,7	8,4	11,3	14,7	19,3	21,9	29,5	38,5	43,9
Input power	kW	1,5	1,8	2,6	3,1	4,0	4,7	6,2	8,1	9,5
Cooling total input current	A	3,1	2,6	4,9	6,4	7,4	9,1	13,0	15,0	18,0
EER	W/W	4,49	4,74	4,39	4,70	4,77	4,63	4,72	4,75	4,62
Water flow rate source side	I/h	1396	1735	2375	3054	3978	4538	6100	7947	9077
Pressure drop source side	kPa	28	30	35	32	40	46	42	57	66
Water flow rate system side	l/h	1154	1447	1955	2541	3320	3770	5078	6638	7555
Pressure drop system side	kPa	15	17	23	21	26	30	25	34	38
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,7	9,3	12,6	16,3	21,0	24,0	32,5	42,1	48,0
Input power	kW	1,9	2,3	3,2	4,0	5,1	5,9	8,0	10,2	12,0
Heating total input current	A	4,1	3,4	6,1	8,2	9,2	11,0	16,0	18,0	23,0
COP	W/W	3,93	4,04	3,94	4,05	4,17	4,04	4,06	4,14	4,02
Water flow rate source side	l/h	1680	2053	2767	3602	4708	5325	7200	9414	10671
Pressure drop source side	kPa	32	34	46	42	52	60	50	68	76
Water flow rate system side	l/h	1326	1607	2181	2819	3647	4159	5629	7284	8315
Pressure drop system side	kPa	25	26	30	27	34	39	36	48	55
Power supply: M										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	6,6	8,3	11,3	-	-	-	-	-	-
Input power	kW	1,5	1,8	2,5	-	-	-	-	-	-
Cooling total input current	A	7,2	9,2	12,0	-	-	-	-	-	-
EER	W/W	4,30	4,50	4,56	-	-	-	-	-	-
Water flow rate source side	l/h	1386	1731	2359	-	-	-	-	-	-
Pressure drop source side	kPa	28	29	36	-	-	-	-	-	-
Water flow rate system side	I/h	1137	1430	1955	-	-	-	-	-	-
Pressure drop system side	kPa	15	17	23	-	-	-	-	-	-
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,6	9,4	12,5	-	-	-	-	-	-
Input power	kW	2,0	2,4	3,1	-	-	-	-	-	-
Heating total input current	A	9,3	12,0	15,0	-	-	-	-	-	-
COP	W/W	3,86	3,89	4,05	-	-	-	-	-	-
Water flow rate source side	I/h	1662	2053	2778	-	-	-		-	
Pressure drop source side	kPa	32	35	46	-	-	-	-	-	-
Water flow rate system side	I/h	1319	1626	2171	-	_	-		_	_
Pressure drop system side	kPa	25	26	30	_	_	_	_		_
. restare drop system side	KI U		20	30						

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

WRL - °

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,93	4,29	4,13	4,51	4,66	4,52	4,93	4,93	4,75
Seasonal efficiency	%	154,0%	168,5%	162,1%	177,3%	183,3%	177,8%	194,1%	194,0%	187,1%
UE 811/2013 performance in average ambient of	onditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	11	14	17	23	30	35	45	60	68
SCOP	W/W	5,08	5,45	5,38	5,50	5,48	5,33	6,03	5,85	5,50
ηsh	%	195.0%	210.0%	207.0%	212.0%	211.0%	205.0%	233.0%	226.0%	212.0%
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	3,77	4,13	4,27	-	-	-	-	-	-
Seasonal efficiency	%	147,9%	162,0%	167,6%	-	-	-	-	-	-
UE 811/2013 performance in average ambient of	conditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	11	14	17	-	-	-	-	-	-
SCOP	W/W	5,15	5,50	5,18	-	-	-	-	-	-
ηsh	%	198.0%	212.0%	199.0%	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for low temperature applications (35 °C)

PERFORMANCE SPECIFICATIONS

WRL ABP

Size		026	031	041	051	071	081	101	141	161
Power supply: °										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	6,8	8,5	11,4	14,9	19,4	22,0	29,8	38,9	44,2
Input power	kW	1,4	1,7	2,5	3,1	3,9	4,6	6,3	8,1	9,4
Cooling total input current	A	3,7	3,3	5,6	7,5	8,6	10,0	14,0	17,0	20,0
EER	W/W	4,75	5,02	4,62	4,84	4,93	4,78	4,75	4,79	4,69
Water flow rate source side	l/h	1396	1735	2375	3054	3978	4538	6100	7947	9077
Useful head source side	kPa	59	53	36	63	43	28	116	137	125
Water flow rate system side	l/h	1154	1447	1955	2541	3320	3770	5078	6638	7555
Useful head system side	kPa	74,0	70,0	56,0	79,0	66,0	56,0	148,0	164,0	157,0
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,6	9,2	12,5	16,1	20,9	23,8	32,2	41,6	47,6
Input power	kW	1,9	2,2	3,1	3,9	4,9	5,8	8,0	10,1	11,8
Heating total input current	A	4,7	4,0	6,7	9,3	10,0	13,0	18,0	20,0	25,0
COP	W/W	4,05	4,17	4,05	4,11	4,24	4,09	4,01	4,13	4,04
Water flow rate source side	l/h	1680	2053	2767	3602	4708	5325	7200	9414	10671
Useful head source side	kPa	52	43	16	46	20	4	90	121	109
Water flow rate system side	l/h	1326	1607	2181	2819	3647	4159	5629	7284	8315
Useful head system side	kPa	63,0	59,0	46,0	70,0	54,0	41,0	130,0	148,0	138,0
Power supply: M										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	6,7	8,4	11,4	-	-	-	-	-	-
Input power	kW	1,5	1,8	2,4	-	-	-	-	-	-
Cooling total input current	A	7,8	9,9	12,0	-	-	-	-	-	-
EER	W/W	4,54	4,75	4,80	-	-	-	-	-	-
Water flow rate source side	l/h	1386	1731	2359	-	-	-	-	-	-
Useful head source side	kPa	59	54	36	-	-	-	-	-	-
Water flow rate system side	l/h	1137	1430	1955	-	-	-	-	-	-
Useful head system side	kPa	74,0	70,0	56,0	-	-	-	-	-	-
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	7,5	9,3	12,4	-	-	-	-	-	-
Input power	kW	1,9	2,3	3,0	-	-	-	-	-	-
Heating total input current	A	9,9	13,0	15,0	-	-	-	-	-	-
COP	W/W	3,97	4,01	4,17	-	-	-	-	-	-
Water flow rate source side	l/h	1662	2053	2778	-	-	-	-	-	-
Useful head source side	kPa	52	43	16	-	-	-	-	-	-
Water flow rate system side	l/h	1319	1626	2171	-	-	-	-	-	-
Useful head system side	kPa	63,0	59,0	45,0	-	-	-	-	-	-

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

Size			026	031	041	051	071	081	101	141	161
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	E	kW	6,3	7,8	10,4	13,4	17,4	19,7	26,8	34,7	39,4
Input power	E	kW	1,7	2,0	2,8	3,6	4,5	5,3	7,2	9,1	10,6
Cooling total input current	E	A	3,0	3,0	5,0	7,0	8,0	10,0	14,0	17,0	21,0
EER	E	W/W	3,71	3,90	3,71	3,72	3,87	3,72	3,72	3,81	3,72
Water flow rate system side	E	l/h	1082	1340	1787	2302	2990	3385	4605	5962	6769
Pressure drop system side	E	kPa	13	15	20	17	21	25	21	28	31
Length of refrigerant lines from/to 0 - 1	0 m										
Gas line (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	15,9	15,9	18,0	18,0
Liquid line (C1)	E	Ø	9,5	9,5	9,5	12,7	12,7	12,7	15,9	18,0	18,0
Topping up the refrigerant gas (C1)	E	g/m	54	54	54	103	103	108	161	214	214

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

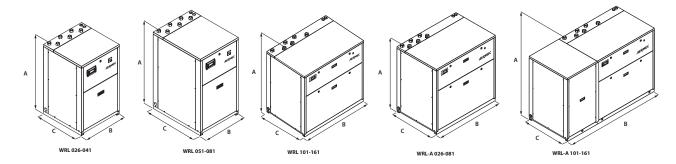
WRL ABP

Size	•	026	031	041	051	071	081	101	141	161
Power supply: °										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	5,00	5,37	5,22	5,38	5,62	5,30	5,31	5,27	5,21
Seasonal efficiency	%	196,9%	211,7%	205,8%	212,0%	221,7%	208,8%	209,2%	207,7%	205,5%
UE 811/2013 performance in average ambient	conditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	10	13	17	22	30	34	44	59	66
SCOP	W/W	5,78	6,15	5,75	6,13	5,75	5,45	6,00	5,95	5,60
ηsh	%	223.0%	238.0%	222.0%	237.0%	222.0%	210.0%	232.0%	230.0%	216.0%
Efficiency energy class		A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++	A+++
Power supply: M										
SEER - 12/7 (EN14825: 2018) (1)										
SEER	W/W	4,73	5,20	5,22	-	-	-	-	-	-
Seasonal efficiency	%	186,3%	205,1%	205,6%	-	-	-	-	-	-
UE 811/2013 performance in average ambient	conditions (average) - 3	5 °C - Pdesignh	≤ 70 kW (2)							
Pdesignh	kW	11	13	17	-	-	-	-	-	-
SCOP	W/W	5,90	6,28	5,55	-	-	-	-	-	-
ηsh	%	228.0%	243.0%	214.0%	-	-	-	-	-	-
Efficiency energy class		A+++	A+++	A+++	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

Size			026	031	041	051	071	081	101	141	161
Electric data											
Maximum aument (FLA)	0	Α	8,0	8,0	15,0	17,0	21,0	22,0	32,0	40,0	41,0
Maximum current (FLA)	M	A	18,0	21,0	34,0	-	-	-	-	-	-
Deal: surrent (LDA)	0	А	34,0	37,0	65,0	75,0	75,0	75,0	90,0	94,0	95,0
Peak current (LRA)	M	Δ	63.0	84.0	110 በ	_	_	_	_	_	_


GENERAL TECHNICAL DATA

Size			026	031	041	051	071	081	101	141	161
Compressor											
Туре	°,A	type					Scroll				
Number	°,A	no.	1	1	1	1	1	1	2	2	2
Circuits	°,A	no.	1	1	1	1	1	1	1	1	1
Refrigerant	°,A	type					R410A				
Refrigerant charge (1)	°,A	kg	0,8	0,9	1,2	1,6	1,9	2,0	3,6	4,4	4,7
Source side heat exchanger											
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
System side heat exchanger											
Туре	°,A	type					Brazed plate				
Number	°,A	no.	1	1	1	1	1	1	1	1	1
Source side hydraulic connections											
Connections (in/out)	°,A	Туре					Gas-F				
Sizes (in/out)	°,A	Ø					1"1/4				
System side hydraulic connections											-
Connections (in/out)	°,A	Туре					Gas-F				
Sizes (in/out)	°,A	Ø					1"1/4				
Sound data calculated in cooling mod	le (2)										
Sound power level	°,A	dB(A)	55,5	57,0	57,5	59,0	60,0	60,5	62,0	63,0	63,5
Cound avecause laurel (10 mg)	0	dB(A)	24,3	25,8	26,3	27,7	28,7	29,2	30,6	31,6	32,1
Sound pressure level (10 m)	A	dB(A)	24,1	25,6	26,1	27,6	28,6	29,1	30,5	31,5	32,0

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			026	031	041	051	071	081	101	141	161
Dimensions and weights											
Λ.	0	mm	976	976	976	1126	1126	1126	1126	1126	1126
A	Α	mm	1126	1126	1126	1126	1126	1126	1126	1126	1126
D	0	mm	605	605	605	605	605	605	1155	1155	1155
В	A	mm	1155	1155	1155	1155	1155	1155	1755	1755	1755
(•	mm	603	603	603	773	773	773	773	773	773
	Α	mm	773	773	773	773	773	773	773	773	773
Empty weight	0	kg	120	125	130	150	170	180	260	270	280
Empty weight	A	kg	190 (1)	200 (1)	210 (1)	230 (1)	250 (1)	260 (1)	340 (1)	350 (1)	360 (1)

⁽¹⁾ Units with two heat exchangers and storage tank, without pumps

WRL 180H - 650H

Reversible water-cooled heat pump, gas side

Cooling capacity 44,9 ÷ 157,4 kW Heating capacity 53,0 ÷ 183,3 kW

- High efficiency
- Suitable for geothermal applications
- Production of hot water up to 55 °C

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers.

In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation. In fact the electrical and hydraulic connections are all located in the upper part of the unit, facilitating the installation and maintenance operations and also reducing the technical gaps and their position in as little space as possible.

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55 °C. (for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible. The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

CONTROL MPC

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

KSAE: External air sensor.

PGD1: Allows you to control the unit at a distance.

SSM: Probe to be used with the mixer valve in applications with radiant panels. The probe requires the VMF-CRP area accessory as well.

TAH: Ambient terminal with temperature and humidity probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump and dehumidifier consent.

TAT: Ambient terminal with temperature probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with

the VMF-E6 panel, the VMF-CRP modules will be able to manage heat $\,$ recovery units, RAS, boiler, sanitary management, I/O control, pumps.

VT: Antivibration supports

ACCESSORIES COMPATIBILITY

Model	Ver	180	200	300	400	500	550	600	650
AER485P1	0	•	•	•	•	•	•	•	•
AERNET	0	•	•	•	•	•	•	•	•
KSAE	0	•	•	•	•	•	•	•	•
PGD1	0	•	•	•	•	•	•	•	•
SSM	0	•	•	•	•	•	•	•	•
TAH	0	•	•	•	•	•	•		
TAT	0	•	•	•	•	•	•	•	•
VMF-CRP	0	•			•	•	•		•

Antivibration

Version	Integrated hydronic kit user side	Integrated hydronic kit, source side	180	200	300	400	500	550	600	650
0	°.N.P	°.B.F.I.U.V	VT9	VT9	VT9	VT9	VT15	VT15	VT15	VT15

CONFIGURATOR

CU	INF	IGUNATUR
Fiel	d	Description
1,2,	,3	WRL
4,5,	,6	Size 180, 200, 300, 400, 500, 550, 600, 650
7		Operating field
	0	Standard mechanic thermostatic valve (1)
	Χ	Electronic thermostatic expansion valve
	Υ	Low temperature mechanic thermostatic valve (2)
8		Model
	Н	Reversible heat pump, gas side
9		Version
	0	Standard
10		Heat recovery
	0	Without heat recovery
	D	With desuperheater
11		Integrated hydronic kit, source side
	0	Without hydronic kit
	В	On-off pump

Fiel	d	Description
	F	Single low-head inverter pump
	1	High-head inverter pump
	U	Pump high head
		Applications with bore hole water
	٧	2-way modulating valve
12		Integrated hydronic kit user side
	0	Without hydronic kit
	N	Pump high head
	Р	Pump low head
13		Field for future development
	0	Field for future development
14		Soft-start
	0	Without soft-start
	S	With soft-start
15		Power supply
	0	400V ~ 3N 50Hz

⁽¹⁾ Water produced from 4 °C \div 18 °C (2) Water produced from 4 °C \div - 8 °C

PERFORMANCE SPECIFICATIONS

WRL - °

Size			180	200	300	400	500	550	600	650
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	٥	kW	44,9	59,6	64,8	79,5	93,0	120,1	140,1	157,4
Input power	0	kW	10,8	14,7	16,3	18,6	20,1	27,6	31,4	35,8
Cooling total input current	٥	A	20,0	25,0	28,0	32,0	36,0	52,0	60,0	69,0
EER	٥	W/W	4,15	4,06	3,97	4,27	4,63	4,34	4,46	4,39
Water flow rate source side	0	I/h	9520	12659	13823	16682	19331	25177	29250	32920
Pressure drop source side	٥	kPa	31	52	51	74	34	56	57	71
Water flow rate system side	٥	l/h	7732	10274	11168	13711	16013	20686	24139	27112
Pressure drop system side	٥	kPa	22	37	36	52	25	40	40	38
Heating performance 40 °C / 45 °C (2)										
Heating capacity	0	kW	53,0	70,9	76,6	92,6	106,4	143,7	164,2	183,3
Input power	٥	kW	12,9	17,7	19,1	22,6	24,0	33,1	37,2	42,7
Heating total input current	٥	A	23,0	29,0	31,0	37,0	41,0	56,0	64,0	74,0
COP	٥	W/W	4,10	4,00	4,01	4,10	4,44	4,34	4,41	4,30
Water flow rate source side	٥	l/h	11777	15734	17011	20840	24211	32704	37512	41689
Pressure drop source side	0	kPa	49	89	92	132	61	107	101	126
Water flow rate system side	0	I/h	9190	12277	13264	16046	18452	24913	28485	31788
Pressure drop system side	٥	kPa	30	52	49	72	32	58	56	70

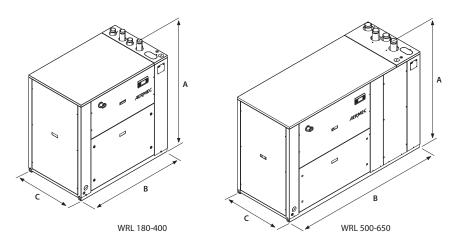
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ELECTRIC DATA

Size			180	200	300	400	500	550	600	650
Electric data										
Maximum current (FLA)	0	Α	32,6	41,8	45,2	52,1	59,0	99,0	112,0	125,0
Peak current (LRA)	0	A	119,0	123,0	125,0	167,0	174,0	265,0	310,0	323,0

ENERGY INDICES (REG. 2016/2281 EU)

Size			180	200	300	400	500	550	600	650
SEER - 12/7 (EN14825: 2018) (1)										
SEER	0	W/W	4,25	4,04	4,15	4,38	5,04	4,62	4,80	4,69
Seasonal efficiency	0	%	166,9%	158,5%	162,8%	172,3%	198,4%	181,7%	188,9%	184,5%
UE 813/2013 performance in average a	mbient conditio	ns (average) - 55	°C - Pdesignh ≤ 4	00 kW (2)						
Pdesignh	0	kW	68	91	98	119	137	185	212	236
ηsh	0	%	173.0%	170.0%	170.0%	175.0%	189.0%	186.0%	189.0%	184.0%
SCOP	0	W/W	4,53	4,45	4,45	4,58	4,93	4,85	4,93	4,80
Efficiency energy class	0		A+++	-	-	-	-	-	-	-
UE 813/2013 performance in average a	mbient conditio	ns (average) - 35	°C - Pdesignh ≤ 4	00 kW (3)						
Pdesignh	0	kW	79	-	-	-	-	-	-	-
ηsh	0	%	222.0%	-	-	-	-	-	-	-
SCOP	0	W/W	5,75	-	-	-	-	-	-	-
Efficiency energy class	0		A+++	-	-	-	-	-	-	-


⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)

GENERAL TECHNICAL DATA

Size		·	180	200	300	400	500	550	600	650
Compressor							'			
Туре	0	type				Sc	roll			
Compressor regulation	0	Туре				0r	-Off			
Number	0	no.	2	2	2	2	2	2	2	2
Circuits	0	no.	1	1	1	1	1	1	1	1
Refrigerant	0	type				R4	10A			
Source side heat exchanger										
Туре	0	type				Braze	d plate			
Number	0	no.	1	1	1	1	1	1	1	1
System side heat exchanger										
Туре	0	type				Braze	d plate			
Number	0	no.	1	1	1	1	1	1	1	1
Source side hydraulic connections										
Connections (in/out)	0	Туре				Groov	ed joints			
Sizes (in/out)	0	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2
System side hydraulic connections										
Connections (in/out)	0	Туре				Groov	ed joints			
Sizes (in/out)	0	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2
Sound data calculated in cooling mode (1)										
Sound power level	0	dB(A)	61,1	61,8	62,9	71,1	67,6	79,1	79,1	79,1
Sound pressure level (10 m)	0	dB(A)	29,6	30,3	31,4	39,6	36,0	47,5	47,5	47,5

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			180	200	300	400	500	550	600	650
Dimensions and weights										
A	0	mm	1380	1380	1380	1380	1380	1380	1380	1380
В	0	mm	1320	1320	1320	1320	2060	2060	2060	2060
(0	mm	845	845	845	845	845	845	845	845
Empty weight	0	kg	370	370	381	388	522	598	708	753

WRL 180 - 650

Water cooled heat pump reversible water side

Cooling capacity 49 ÷ 174 kW Heating capacity 55 ÷ 192 kW

- High efficiency
- Suitable for geothermal applications
- Production of hot water up to 55 °C

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers.

In the configuration with desuperheater, it is also possible to produce free-hot water.

The technological choices made, always oriented to the highest quality, ensure very easy installation. In fact the electrical and hydraulic connections are all located in the upper part of the unit, facilitating the installation and maintenance operations and also reducing the technical gaps and their position in as little space as possible.

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55 °C. (for more information, refer to the technical documentation).

Plug and play

All the units are equipped with scroll compressors and plate heat exchangers; the base and panelling are made of steel treated with RAL 9003 polyester paints.

The electric and hydraulic connections are all located on the upper part of the unit facilitating installation and maintenance. This allows reduced plant room space and installation in the smallest space possible. The heat pump can be supplied with all the components required for its installation in new systems and to replace other heat generators. It can be combined with low temperature emission systems such as floor heating or fan coils, but also with conventional radiators.

Version with Integrated hydronic kit

The standard unit is supplied with a water filter, differential pressure switch and safety valve already installed on the service and source side (and also on the recovery side, if present).

To obtain a solution that offers economic savings and facilitates installation, these units can be configured with an integrated hydronic kit on both hydraulic sides (service and source).

Low-head and high-head pumps are available, along with a modulating 2-way valve that can only be applied on the source side to reduce consumption in applications with groundwater.

CONTROL MPC

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

KSAE: External air sensor.

PGD1: Allows you to control the unit at a distance.

SSM: Probe to be used with the mixer valve in applications with radiant panels. The probe requires the VMF-CRP area accessory as well.

TAH: Ambient terminal with temperature and humidity probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump and dehumidifier consent.

TAT: Ambient terminal with temperature probe - 230V AC flush-mounting model that can command an On-Off valve or a zone pump.

VMF-CRP: Accessory module for controlling boilers, heat recover units and pumps (if associated with VMF-E5 / RCC panels); if associated with

the VMF-E6 panel, the VMF-CRP modules will be able to manage heat $\,$ recovery units, RAS, boiler, sanitary management, I/O control, pumps.

VT: Antivibration supports

ACCESSORIES COMPATIBILITY

Ver	180	200	300	400	500	550	600	650
Model: °, E, K								
	AER485P1, AERNET,							
0	KSAE, PGD1, SSM,							
	TAH, TAT, VMF-CRP							

Antivibration

Version	Integrated hydronic kit, source side	Integrated hydronic kit user side	180	200	300	400	500	550	600	650
0	°.B.F.I.U.V	°.N.P	VT9	VT9	VT9	VT9	VT15	VT15	VT15	VT15

CONFIGURATOR

Field	Description
1,2,3	WRL
4,5,6	Size 180, 200, 300, 400, 500, 550, 600, 650
7	Operating field
0	Standard mechanic thermostatic valve (1)
Х	Electronic thermostatic expansion valve
Υ	Low temperature mechanic thermostatic valve (2)
8	Model
0	Heat pump reversible on the water side
E	Evaporating unit (3)
K	Heat pump reversible on the water side with low pressure drops
9	Version
0	Standard
10	Heat recovery
0	Without heat recovery
D	With desuperheater
11	Integrated hydronic kit, source side
0	Without hydronic kit
В	On-off pump

Field	Description
F	Single low-head inverter pump
T	High-head inverter pump
U	Pump high head
	Applications with bore hole water
٧	2-way modulating valve
12	Integrated hydronic kit user side
0	Without hydronic kit
N	Pump high head
Р	Pump low head
13	Field for future development
0	Field for future development
14	Soft-start
0	Without soft-start
S	With soft-start
15	Power supply
0	400V~3N 50Hz

- (1) Water produced from 4 °C \div 18 °C (2) Water produced from 4 °C \div 8 °C (3) Shipped with holding charge only

PERFORMANCE SPECIFICATIONS

WRL - E

Size		180	200	300	400	500	550	600	650
Cooling performance 12 °C/7 °C(1)									
Cooling capacity	kW	46,0	60,1	69,6	80,1	90,6	121,3	140,2	158,7
Input power	kW	12,4	16,0	18,5	19,8	23,1	29,6	34,1	38,5
Cooling total input current	A	23,0	29,0	32,0	36,0	42,0	56,0	65,0	74,0
EER	W/W	3,71	3,76	3,76	4,05	3,92	4,10	4,11	4,12
Water flow rate system side	l/h	7903	10326	11958	13762	15566	20841	24088	27266
Pressure drop system side	kPa	23	39	39	56	25	42	47	57

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

WRL - °

Size		180	200	300	400	500	550	600	650
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	kW	49,7	64,3	74,4	85,9	99,8	129,5	150,1	169,0
Input power	kW	10,8	14,4	16,8	18,3	20,4	27,0	31,0	35,7
Cooling total input current	A	20,0	25,0	29,0	62,0	36,0	51,0	59,0	68,0
EER	W/W	4,59	4,47	4,42	4,69	4,90	4,80	4,84	4,73
Water flow rate source side	l/h	10336	13418	15531	17725	20550	26664	30860	34836
Pressure drop source side	kPa	27	46	62	81	32	52	57	72
Water flow rate system side	l/h	8549	11082	12824	14822	17186	22296	25844	29025
Pressure drop system side	kPa	27	43	46	60	30	49	53	67
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	55,8	72,6	84,1	95,6	110,7	143,6	166,1	187,7
Input power	kW	13,2	17,6	20,5	22,4	24,8	32,9	37,9	43,9
Heating total input current	A	24,0	30,0	34,0	38,0	44,0	61,0	71,0	82,0
COP	W/W	4,24	4,13	4,10	4,27	4,46	4,36	4,38	4,27
Water flow rate source side	l/h	12542	16257	18813	21745	25213	32709	37914	42683
Pressure drop source side	kPa	58	93	99	129	65	105	114	144
Water flow rate system side	l/h	9685	12580	14561	16557	19196	24909	28816	32553
Pressure drop system side	kPa	24	40	55	71	28	45	50	63

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WRL - K

WAL-V									
Size		180	200	300	400	500	550	600	650
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	kW	49,7	66,3	76,7	88,6	99,8	133,5	154,6	174,1
Input power	kW	10,8	14,4	16,9	18,3	20,4	26,7	30,8	35,6
Cooling total input current	А	20,0	25,0	29,0	32,0	36,0	51,0	59,0	68,0
EER	W/W	4,59	4,61	4,55	4,85	4,50	5,00	5,02	4,90
Water flow rate source side	l/h	10336	13753	15919	18173	20550	27338	31642	35716
Pressure drop source side	kPa	27	48	65	85	32	55	60	76
Water flow rate system side	l/h	8549	11414	13209	15267	17186	22965	26619	29967
Pressure drop system side	kPa	27	34	42	48	30	24	33	41
Heating performance 40 °C / 45 °C (2)									
Heating capacity	kW	55,8	74,3	86,1	97,9	110,7	147,1	170,1	192,1
Input power	kW	13,2	17,5	20,5	22,2	24,8	32,3	37,3	43,1
Heating total input current	A	24,0	30,0	34,0	38,0	44,0	61,0	71,0	82,0
COP	W/W	4,24	4,24	4,20	4,40	4,46	4,56	4,56	4,46
Water flow rate source side	l/h	12542	16745	19337	22397	25213	33690	39052	43963
Pressure drop source side	kPa	58	73	90	103	65	52	71	88
Water flow rate system side	l/h	9685	12876	14904	16953	19196	25504	29507	33331
Pressure drop system side	kPa	24	42	57	74	28	48	52	66

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

WRL°

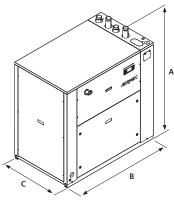
Size		180	200	300	400	500	550	600	650
SEER - 12/7 (EN14825: 2018) (1)									
SEER	W/W	4,65	4,55	4,54	4,74	5,31	5,04	5,12	4,97
Seasonal efficiency	%	182,8%	178,9%	178,5%	186,4%	209,3%	198,7%	201,7%	195,8%
UE 813/2013 performance in average ambient co	onditions (average) - 55 °(C - Pdesignh ≤ 40	0 kW (2)						
Pdesignh	kW	68	91	98	119	137	185	212	236
ηsh	%	173.0%	170.0%	170.0%	175.0%	189.0%	186.0%	189.0%	184.0%
SCOP	W/W	4,53	4,45	4,45	4,58	4,93	4,85	4,93	4,80
Efficiency energy class		A+++	-	-	-	-	-	-	-
UE 813/2013 performance in average ambient co	onditions (average) - 35 °(: - Pdesignh ≤ 40	0 kW (3)						
Pdesignh	kW	79	-	-	-	-	-	-	-
ηsh	%	222.0%	-	-	-	-	-	-	-
SCOP	W/W	5,75	-	-	-	-	-	-	-
Efficiency energy class		A+++	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)

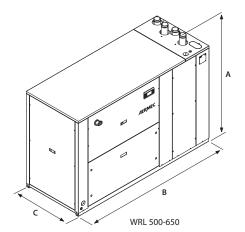
WRL K

WILL									
Size		180	200	300	400	500	550	600	650
SEER - 12/7 (EN14825: 2018) (1)									
SEER	W/W	4,65	4,71	4,67	4,90	5,31	5,31	5,35	5,19
Seasonal efficiency	%	182,8%	185,3%	183,6%	192,9%	209,3%	209,2%	210,9%	204,6%
UE 813/2013 performance in average ambient	conditions (average) - 55 °	C - Pdesignh ≤ 40	00 kW (2)						
Pdesignh	kW	68	91	98	119	137	185	212	236
ηsh	%	173.0%	170.0%	170.0%	175.0%	189.0%	186.0%	189.0%	184.0%
SCOP	W/W	4,53	4,45	4,45	4,58	4,93	4,85	4,93	4,80
Efficiency energy class		A+++	-	-	-	-	-	-	-
UE 813/2013 performance in average ambient	conditions (average) - 35 °	C - Pdesignh ≤ 40	0 kW (3)						
Pdesignh	kW	79	-	-	-	-	-	-	-
ηsh	%	222.0%	-	-	-	-	-	-	-
SCOP	W/W	5,75	-	-	-	-	-	-	-
Efficiency energy class		A+++	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Efficiencies for average temperature applications (55 °C)
(3) Efficiencies for low temperature applications (35 °C)


ELECTRIC DATA

Size			180	200	300	400	500	550	600	650
Electric data										
Maximum current (FLA)	°,E,K	Α	32,6	41,8	45,2	52,1	59,0	99,0	112,0	125,0
Peak current (LRA)	°,E,K	A	119,0	123,0	125,0	167,0	174,0	265,0	310,0	323,0


GENERAL TECHNICAL DATA

Size			180	200	300	400	500	550	600	650
Compressor										
Туре	°,E,K	type				Sc	roll			
Compressor regulation	°,E,K	Туре				0n	-Off			
Number	°,E,K	no.	2	2	2	2	2	2	2	2
Circuits	°,E,K	no.	1	1	1	1	1	1	1	1
Refrigerant	°,E,K	type				R4	10A			
Definement sharms (1)	°,K	kg	6,0	7,0	6,8	7,2	9,0	14,5	16,8	16,5
Refrigerant charge (1)	E	kg	Holding charge							
Source side heat exchanger										
Tune	°,K	type				Braze	d plate			
Туре	E	type								_
Number	°,K	no.	1	1	1	1	1	1	1	1
Number	E	no.	-	-	-	-	-	-	-	-
System side heat exchanger										
Туре	°,E,K	type				Braze	d plate			
Number	°,E,K	no.	1	1	1	1	1	1	1	1
Source side hydraulic connections										
Compositions (in Jose)	°,K	Type				Groove	d joints			_
Connections (in/out)	E	Type								
Sizes (in/out)	°,K	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2" 1/2	2"1/2
Sizes (III/Out)	E	Ø								
System side hydraulic connections										
Connections (in/out)	°,E,K	Type				Groove	d joints			_
Sizes (in/out)	°,E,K	Ø	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2	2"1/2
Sound data calculated in cooling mode (2)									
Sound power level	°,E,K	dB(A)	61,1	61,8	62,9	71,1	67,6	79,1	79,1	79,1
Sound pressure level (10 m)	°,E,K	dB(A)	29,6	30,3	31,4	39,6	36,0	47,5	47,5	47,5

DIMENSIONS

Size			180	200	300	400	500	550	600	650
Dimensions and weights										
A	°,E,K	mm	1380	1380	1380	1380	1380	1380	1380	1380
В	°,E,K	mm	1320	1320	1320	1320	2060	2060	2060	2060
C	°,E,K	mm	845	845	845	845	845	845	845	845
Emptyweight	°,K	kg	375	375	381	388	518	594	670	715
Empty weight	E	kg	-	-	-	-	-	-	-	-

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

WRK

Cooling capacity 38,9 ÷ 165,9 kW Heating capacity 48,5 ÷ 207,7 kW

- Optimised for heating in centralised systems.
- Production of hot water at high temperature up to 68°C.
- · Independent from the gas network.
- DHW production.

DESCRIPTION

Water source heat pump with reverse cycle valve. The unit can produce chilled and hot water but it is optimized for high temperature hot water production, making it a perfect solution for DHW applications. It can also work with low source temperatures which make it possible to work with geothermal applications.

VERSIONS

° Standard

L Standard silenced

FEATURES

Extended operating range

Particular attention has been given to winter operation, ensuring the production of hot water up to 68°C.

Plug and play

All units are equipped with scroll compressors with steam injection and brazed plate heat exchangers. The base and panels are made of steel treated with polyester paints RAL 9003.

The heat pump can be supplied with all the components required for its installation in new systems and in retrofit applications. It can be combined with low temperature emission systems such as in floor radiant heating or fan coils, but also with conventional radiators.

Integrated hydronic kit

Integrated hydronic kit containing the main hydraulic components; available with various configurations with one or two pumps, high or low head, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

 The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

VT: Antivibration supports

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

T6: Double safety valve with exchange cock, both on the high and low pressure branches.

ACCESSORIES COMPATIBILITY

Model	Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
AFD40FD1	0						•	•	•	•	•
AER485P1	L	•	•	•	•	•	•	•	•	•	•
AFDDACD	0						•	•	•	•	•
AERBACP	L	•	•	•		•	•				•
AFONET	0						•	•	•	•	•
AERNET	L		•				•				
DCD4	0										
PGD1	L										

Antivibration

Version	Integrated hydronic kit user side	Integrated hydronic kit, source side	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	٥	٥	-	-	-	-	-	AVX345	AVX342	AVX342	AVX342	AVX342
0	°,M	J,K,U,W	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
0	N	۰	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
0	0	J,K,U,W	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
0	Р	۰	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
0	0	Q,R,V,Z	-	-	-	-	-	AVX313	AVX343	AVX343	AVX343	AVX343
0	M,0	0	-	-	-	-	-	AVX313	AVX343	AVX343	AVX343	AVX343
0	N,P	Q,R,V,Z	-	-	-	-	-	AVX343	AVX343	AVX343	AVX344	AVX344
L	0	0	-	-	-	-	-	AVX345	AVX342	AVX342	AVX342	AVX342
L	°,M	J,K,U,W	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
L	N	0	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
L	0	J,K,U,W	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
L	Р	0	-	-	-	-	-	AVX343	AVX343	AVX343	AVX343	AVX343
L	٥	Q,R,V,Z	-	-	-	-	-	AVX313	AVX343	AVX343	AVX343	AVX343
Ĺ	M,0	0	-	-	-	-	-	AVX313	AVX343	AVX343	AVX343	AVX343
Ĺ	N,P	Q,R,V,Z	-	-	-	-	-	AVX343	AVX343	AVX343	AVX344	AVX344

- not available

Version	Integrated hydronic kit user side	Integrated hydronic kit, source side	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	0	°,J,K,Q,R,U,V,W,Z	-	-	-	-	-	-	-	-	-	-
0	М	°,J,K,U,W	-	-	-	-	-	-	-	-	-	-
0	N	°,Q,R,V,Z	-	-	-	-	-	-	-	-	-	-
0	0	°,J,K,U,W	-	-	-	-	-	-	-	-	-	-
0	Р	°,Q,R,V,Z	-	-	-	-	-	-	-	-	-	-
L	0	٥	VT9	VT9	VT9	VT9	VT9	-	-	-	-	-
L	0	J,K,Q,R,U,V,W,Z	VT15	VT15	VT15	VT15	VT15	-	-	-	-	-
L	М	°,J,K,U,W	VT15	VT15	VT15	VT15	VT15	-	-	-	-	-
L	N	°,Q,R,V,Z	VT15	VT15	VT15	VT15	VT15	-	-	-	-	-
L	0	°,J,K,U,W	VT15	VT15	VT15	VT15	VT15	-	-	-	-	-
L	Р	°,Q,R,V,Z	VT15	VT15	VT15	VT15	VT15	-	-	-	-	-

⁻ not available

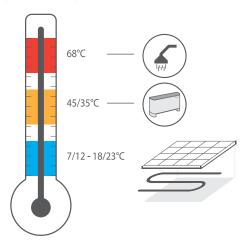
Electronic device for peak current reduction.

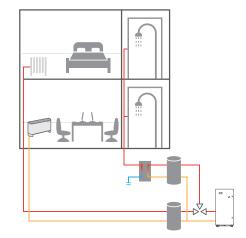
Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	-	-	-	-	-	DREWRK0500 (1)	DREWRK0550 (1)	DREWRK0600 (1)	DREWRK0650 (1)	DREWRK0700 (1)
L	DREWRK0200 (1)	DREWRK0280 (1)	DREWRK0300 (1)	DREWRK0330 (1)	DREWRK0350 (1)	DREWRK0500 (1)	DREWRK0550 (1)	DREWRK0600 (1)	DREWRK0650 (1)	DREWRK0700 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction.

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	-	-	-	-	-	RIFWRK0500	RIFWRK0550	RIFWRK0600	RIFWRK0650	RIFWRK0700
L	RIFWRK0200	RIFWRK0280	RIFWRK0300	RIFWRK0330	RIFWRK0350	RIFWRK0500	RIFWRK0550	RIFWRK0600	RIFWRK0650	RIFWRK0700


A grey background indicates the accessory must be assembled in the factory


Double safety valve.

Ver	0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
0	-	-	-	-	-	T6WRK2	T6WRK2	T6WRK2	T6WRK2	T6WRK2
L	T6WRK1	T6WRK1	T6WRK1	T6WRK1	T6WRK1	T6WRK2	T6WRK2	T6WRK2	T6WRK2	T6WRK2

A grey background indicates the accessory must be assembled in the factory

APPLICATION EXAMPLES

WRK units are used in building renovations, where centralised boilers need replacing, while maintaining the existing distribution system and terminals (e.g. radiators) at the same time, to ensure the production of domestic hot water. This situation is typical when operating in contexts such as public buildings, but also in the case of centralised residential systems such as condominiums, where costs must be limited without changing the distribution system, while also offering a renewable energy source, represented precisely by heat pumps. Being able to upgrade a building without involving the distribution system also eliminates the inconveniences associated with the renovation of the premises, ensuring the continuity of the property's use, saving time and money.

CONFIGURATOR

Field	Description
1,2,3	WRK
4,5,6,7	Size 0200, 0280, 0300, 0330, 0350, 0500, 0550, 0600, 0650, 0700
8	Operating field
0	Standard mechanic thermostatic valve
9	Model
Н	Heat pump
10	Version
0	Standard
L	Standard silenced (1)
11	Evaporator
0	Standard
12	Heat recovery
0	Without heat recovery
D	With desuperheater
13	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
14	Integrated hydronic kit user side

Field	Description
0	Without hydronic kit
М	Single pump low head
N	Pump low head + stand-by pump
0	Single pump high head
Р	Pump high head + stand-by pump
15	Integrated hydronic kit, source side (2)
0	Without hydronic kit
J	Single low-head inverter pump
K	Single high-head inverter pump
Q	Single high-head inverter pump + stand-by pump
R	Single low-head inverter pump + stand-by pump
U	Single pump low head
٧	Pump low head + stand-by pump
W	Single pump high head
Z	Pump high head + stand-by pump
16	Field for future development
0	Field for future development

- (1) The size 0200-0280-0300-0330-0350 only available in low noise version (L) (2) Heat pumps R and Q are availables only for sizes $0500\div0700$

PERFORMANCE SPECIFICATIONS 12 °C/7 °C - 40 °C/45 °C

WRK-H°

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 12 °C/7 °C (1)											
Cooling capacity	kW	-	-	-	-	-	96,2	110,9	130,0	145,8	166,1
Input power	kW	-	-	-	-	-	21,5	24,0	28,6	33,3	37,4
Cooling total input current	A	-	-	-	-	-	48,0	50,0	62,0	86,0	89,0
EER	W/W	-	-	-	-	-	4,47	4,63	4,55	4,38	4,44
Water flow rate source side	l/h	-	-	-	-	-	20140	23075	27128	30634	34797
Pressure drop source side	kPa	-	-	-	-	-	25	25	25	24	25
Water flow rate system side	l/h	-	-	-	-	-	16552	19082	22366	25077	28566
Pressure drop system side	kPa	-	-	-	-	-	17	17	17	16	17
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	-	-	-	-	-	120,8	137,7	163,1	187,1	207,9
Input power	kW	-	-	-	-	-	26,4	29,7	35,4	41,2	45,4
Heating total input current	А	-	-	-	-	-	52,0	56,0	69,0	92,0	95,0
COP	W/W	-	-	-	-	-	4,58	4,64	4,61	4,55	4,58
Water flow rate source side	l/h	-	-	-	-	-	27658	31618	37369	42704	47563
Pressure drop source side	kPa	-	-	-	-	-	49	49	50	47	50
Water flow rate system side	I/h	-	-	-	-	-	20958	23884	28290	32459	36068
Pressure drop system side	kPa	-	-	-	-	-	28	27	28	27	28

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WRK-HL

WIK - IIL											
Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 12 °C / 7 °C (1)											
Cooling capacity	kW	38,9	54,4	65,0	74,1	83,5	96,2	110,9	130,0	145,8	166,1
Input power	kW	8,6	12,0	14,3	16,8	18,8	21,5	24,0	28,6	33,3	37,4
Cooling total input current	A	20,0	25,0	31,0	43,0	45,0	48,0	50,0	62,0	86,0	89,0
EER	W/W	4,54	4,54	4,54	4,41	4,43	4,47	4,63	4,55	4,38	4,44
Water flow rate source side	l/h	8131	11358	13570	15551	17498	20140	23075	27128	30634	34797
Pressure drop source side	kPa	19	23	24	25	26	25	25	25	24	25
Water flow rate system side	l/h	6699	9362	11186	12754	14363	16552	19082	22366	25077	28566
Pressure drop system side	kPa	13	16	16	17	17	17	17	17	16	17
Heating performance 40 °C / 45 °C (2)											
Heating capacity	kW	48,4	68,6	81,6	93,4	104,0	120,8	137,7	163,1	187,1	207,9
Input power	kW	10,6	14,8	17,8	20,8	22,9	26,4	29,7	35,4	41,2	45,4
Heating total input current	A	21,0	28,0	35,0	46,0	48,0	52,0	45,0	69,0	92,0	95,0
COP	W/W	4,57	4,62	4,58	4,48	4,54	4,58	4,64	4,61	4,55	4,58
Water flow rate source side	l/h	11062	15751	18684	21290	23771	27658	31618	37369	42704	47563
Pressure drop source side	kPa	37	45	47	49	50	49	49	50	47	50
Water flow rate system side	I/h	8397	11904	14149	16207	18041	20958	23884	28290	32459	36068
Pressure drop system side	kPa	21	26	27	28	29	28	27	28	27	28

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

PERFORMANCE SPECIFICATIONS 23 °C/ 18 °C - 30 °C/ 35 °C

WRK-H°

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	-	-	-	-	-	126,3	144,8	169,8	189,7	217,3
Input power	kW	-	-	-	-	-	21,7	23,3	29,3	33,4	39,0
Cooling total input current	A	-	-	-	-	-	47,0	47,0	62,0	84,0	91,0
EER	W/W	-	-	-	-	-	5,82	6,20	5,80	5,69	5,58
Water flow rate source side	l/h	-	-	-	-	-	25317	28767	34057	38166	43828
Pressure drop source side	kPa	-	-	-	-	-	39	39	40	37	40
Water flow rate system side	l/h	-	-	-	-	-	21826	25015	29337	32770	37528
Pressure drop system side	kPa	-	-	-	-	-	29	29	29	28	29
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	-	-	-	-	-	116,4	132,7	155,6	178,3	198,1
Input power	kW	-	-	-	-	-	20,7	23,0	27,5	32,1	35,4
Heating total input current	A	-	-	-	-	-	42,0	44,0	54,0	73,0	75,0
COP	W/W	-	-	-	-	-	5,62	5,77	5,66	5,56	5,60
Water flow rate source side	l/h	-	-	-	-	-	16656	19095	22309	25455	28334
Pressure drop source side	kPa	-	-	-	-	-	18	18	18	17	18
Water flow rate system side	l/h	-	-	-	-	-	20118	22943	26905	30825	34248
Pressure drop system side	kPa	-	-	-	-	-	25	25	25	24	25

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

WRK-HL

Size		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Cooling performance 23 °C / 18 °C (1)											
Cooling capacity	kW	50,9	71,0	84,9	96,4	109,2	126,3	144,8	169,8	189,7	217,3
Input power	kW	8,8	11,7	14,7	16,9	19,8	21,7	23,3	29,3	33,4	39,0
Cooling total input current	A	20,0	24,0	31,0	42,0	46,0	47,0	47,0	62,0	84,0	91,0
EER	W/W	5,81	6,10	5,78	5,69	5,53	5,82	6,20	5,80	5,69	5,58
Water flow rate source side	l/h	10217	14150	17036	19386	22038	25317	28767	34057	38166	43828
Pressure drop source side	kPa	30	36	37	39	41	39	39	40	37	40
Water flow rate system side	l/h	8796	12274	14672	16662	18865	21826	25015	29337	32770	37528
Pressure drop system side	kPa	22	27	28	29	30	29	29	29	28	29
Heating performance 30 °C / 35 °C (2)											
Heating capacity	kW	46,4	66,1	77,8	89,0	100,1	116,4	132,7	155,6	178,3	198,1
Input power	kW	8,3	11,5	13,8	16,2	18,2	20,7	23,0	27,5	32,1	35,4
Heating total input current	A	17,0	22,0	28,0	36,0	39,0	42,0	44,0	54,0	73,0	75,0
COP	W/W	5,60	5,76	5,66	5,51	5,49	5,62	5,77	5,66	5,56	5,60
Water flow rate source side	l/h	6629	9514	11157	12694	14269	16656	19095	22309	25455	28334
Pressure drop source side	kPa	13	17	17	17	18	18	18	18	17	18
Water flow rate system side	I/h	8016	11435	13458	15390	17310	20118	22943	26905	30825	34248
Pressure drop system side	kPa	19	24	24	25	26	25	25	25	24	25

⁽¹⁾ Date 14511:2022; Water user side 23 °C / 18 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 30 °C / 35 °C; Water source side 10 °C / 5 °C

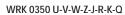
ENERGY INDICES (REG. 2016/2281 EU)

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
SEER - 12/7 (EN14825: 2018) (1)												
	0	W/W	-	-	-	-	-	5,33	5,46	5,28	5,38	5,28
SEER	L	W/W	4,75	5,14	5,04	5,04	4,97	5,33	5,46	5,28	5,38	5,28
Seasonal efficiency	٥	%	-	-	-	-	-	210,2%	215,4%	208,2%	212,2%	208,2%
	L	%	187,0%	202,6%	198,6%	198,6%	195,8%	210,2%	215,4%	208,2%	212,2%	208,2
UE 811/2013 performance in average a	mbient conditio	ns (average) -	55 °C - Pdesig	nh ≤ 70 kW (2)							
F.W. :	0		-	-	-	-	-	-	-	-	-	-
Efficiency energy class	L		A+++	-	-	-	-	-	-	-	-	-
21.1	0	kW	-	-	-	-	-	157	179	212	244	271
Pdesignh	L	kW	63	89	106	122	135	157	179	212	244	271
ηsh	0	%	-	-	-	-	-	191.0%	195.0%	194.0%	193.0%	192.0%
	L	%	181.0%	187.0%	185.0%	181.0%	182.0%	191.0%	195.0%	194.0%	193.0%	192.0%
SCOP	0	W/W	-	-	-	-	-	4,98	5,08	5,05	5,03	5,00
	L	W/W	4,73	4,88	4,83	4,73	4,75	4,98	5,08	5,05	5,03	5,00

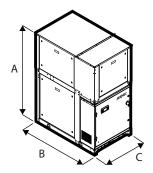
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C)

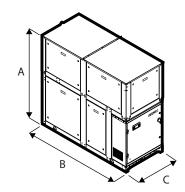
ELECTRIC DATA

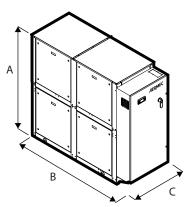
Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Electric data												<u>.</u>
Maximum current (FLA)	0	A	-	-	-	-	-	75,0	84,0	104,0	130,0	132,0
	L	A	32,0	42,0	52,0	65,0	66,0	75,0	84,0	104,0	130,0	132,0
Peak current (LRA)	0	А	-	-	-	-	-	216,0	181,0	218,0	271,5	273,0
	L	A	144,0	139,0	166,0	206,5	207,0	216,0	181,0	218,0	271,5	273,0


GENERAL TECHNICAL DATA

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Compressor												
-	0	type	-	-	-	-	-	Scroll	Scroll	Scroll	Scroll	Scroll
Туре	L	type	Scroll									
N. I	0	no.	-	-	-	-	-	3	4	4	4	4
Number	L	no.	2	2	2	2	2	3	4	4	4	4
Complete	0	no.	-	-	-	-	-	2	2	2	2	2
Circuits	L	no.	2	2	2	2	2	2	2	2	2	2
Refrigerant	0	type	-	-	-	-	-	R410A	R410A	R410A	R410A	R410A
Reingerant	L	type	R410A									
Defrigorant charge (1)	0	kg	-	-	-	-	-	13,0	16,0	18,0	22,0	24,0
Refrigerant charge (1)	L	kg	6,0	8,0	9,0	10,0	11,0	13,0	16,0	18,0	22,0	24,0
Source side heat exchanger												
Time	0	type	-	-	-	-	-	Brazed plate				
Туре	L	type	Brazed plate									
Number	0	no.	-	-	-	-	-	1	1	1	1	1
Number	L	no.	1	1	1	1	1	1	1	1	1	1
System side heat exchanger												
Time	0	type	-	-	-	-	-	Brazed plate				
Туре	L	type	Brazed plate									
Monther	0	no.	-	-	-	-	-	1	1	1	1	1
Number	L	no.	1	1	1	1	1	1	1	1	1	1
Source side hydraulic connections												
Commention (in fact)	0	Туре	-	-	-	-	-	Grooved joints				
Connections (in/out)	L	Туре	Grooved joints									
Cinco (in (aut)	0	Ø	-	-	-	-	-	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
Sizes (in/out)	L	Ø	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
System side hydraulic connections												
Commention of the food	0	Туре	-	-	-	-	-	Grooved joints				
Connections (in/out)	L	Туре	Grooved joints									
Since (in least)	0	Ø	-	-	-	-	-	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
Sizes (in/out)	L	Ø	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"	2 1/2"
Sound data calculated in cooling mode (2	2)											
County and a supplied	0	dB(A)	-	-	-	-	-	81,6	82,2	81,6	82,7	83,4
Sound power level	L	dB(A)	71,6	73,9	72,4	74,0	75,6	76,3	77,0	75,9	77,5	78,0
6 1 1/40	0	dB(A)	-	-	-	-	-	49,9	50,5	49,9	51,0	51,7
Sound pressure level (10 m)	L	dB(A)	40,1	42,4	40,9	42,5	44,1	44,6	45,3	44,2	45,8	46,3


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


DIMENSIONS


WRK 0350 °

Size			0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
Dimensions and weights without hydro	onic kit											
Δ.	0	mm	-	-	-	-	-	1840	1840	1840	1840	1840
A	L	mm	1675	1675	1675	1675	1675	1885	1885	1885	1885	1885
D	0	mm	-	-	-	-	-	2155	2155	2155	2155	2155
В	L	mm	1265	1265	1265	1265	1265	2155	2155	2155	2155	2155
	0	mm	-	-	-	-	-	800	800	800	800	800
C	L	mm	800	800	800	800	800	800	800	800	800	800
Dimensions and weights with pump/s												
Δ.	0	mm	-	-	-	-	-	1840	1840	1840	1840	1840
A	L	mm	1675	1675	1675	1675	1675	1885	1885	1885	1885	1885
D	0	mm	-	-	-	-	-	3090	3090	3090	3090	3090
В	L	mm	1890	1890	1890	1890	1890	3090	3090	3090	3090	3090
	0	mm	-	-	-	-	-	800	800	800	800	800
	L	mm	800	800	800	800	800	800	800	800	800	800
Integrated	d Integrated											
Version hydronic ki	it hydronic kit,		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700

	Version	•	Integrated hydronic kit,		0200	0280	0300	0330	0350	0500	0550	0600	0650	0700
		user side	source side											
_	0	0	0	kg	-	-	-	-	-	755	840	865	890	920
_	۰	٥	J/K/U/W	kg	-	-	-	-	-	935	1020	1045	1085	1115
_	0	0	Q/R/V/Z	kg	-	-	-	-	-	1005	1090	1115	1170	1200
	0	M/0	0	kg	-	-	-	-	-	900	985	1010	1045	1075
_	0	M/0	J/K/U/W	kg	-	-	-	-	-	990	1075	1100	1150	1180
	0	M	Q/R/V/Z	kg	-	-	-	-	-	-	-	-	-	-
	0	N	J/K/U/W	kg	-	-	-	-	-	-	-	-	-	-
	0	0	Q/R/V/Z	kg	-	-	-	-	-	-	-	-	-	-
	0	Р	J/K/U/W	kg	-	-	-	-	-	-	-	-	-	-
_	0	N/P	0	kg	-	-	-	-	-	970	1055	1080	1125	1155
	0	N/P	Q/R/V/Z	kg	-	-	-	-	-	1130	1215	1240	1315	1340
Empty weight –	L	0	0	kg	495	550	565	570	580	930	1015	1040	1065	1095
_	L	0	J/K/U/W	kg	665	720	735	740	750	1155	1240	1265	1305	1335
	L	0	Q/R/V/Z	kg	690	745	760	765	775	1225	1310	1335	1390	1420
_	L	M/0	0	kg	665	720	730	740	750	1120	1205	1230	1265	1295
	L	M/0	J/K/U/W	kg	695	755	765	775	785	1210	1295	1320	1370	1400
=	L	М	Q/R/V/Z	kg	-	-	-	-	-	-	-	-	-	-
_	L	N	J/K/U/W	kg	-	-	-	-	-	-	-	-	-	-
_	L	0	Q/R/V/Z	kg	-	-	-	-	-	-	-	-	-	-
-	L	Р	J/K/U/W	kg	-	-	-	-	-	-	-	-	-	-
_	L	N/P	0	kg	690	745	760	765	775	1190	1275	1300	1345	1375
_	L	N/P	Q/R/V/Z	kg	750	805	820	825	835	1350	1435	1460	1535	1560

⁻ not available

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WWB 0300-0900

Water-water heat pumps only

Heating capacity 56,7 ÷ 265,9 kW

- Optimised to produce high temperature hot water
- Can be used with any air or water cooled heat pump
- Max. processed water temperature: 80
- Max inlet temperature on source side: 45 °C

DESCRIPTION

WWB is a range of irreversible water-water heat pumps that produce high temperature water with a low or medium temperature source. Internal unit suitable for use in centralised residential systems, in systems that serve hotels and other forms of accommodation, and for applications in the tertiary and industrial sectors.

FEATURES

Maximum energy efficiency

Aermec, which has focused for years on energy efficiency, designed the WWB units with the aim of guaranteeing high efficiency both with full and partial loads.

Operating field

With its wide operating range, it can be integrated with numerous applications and is a valid alternative to boilers and all conventional systems used to produce high temperature hot water since it also uses existing systems.

Production of hot water up to 80 $^{\circ}\text{C}$ (Max inlet temperature on source side 45 $^{\circ}\text{C}$).

Constructional characteristics of unit

- Optimised plate heat exchangers with low pressure drops.
- 2 cooling circuits, 1 compressor per circuit.
- Scroll compressors for high condensing temperatures.
- Compact size for easier installation.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit.

CONTROL

Control unit accessible externally with touch-screen user interface, multilingual display of all operating parameters.

Optimised control logic for use with low and medium temperature heat pumps.

Complies with safety (EC) and electromagnetic compatibility directives. Removable slide-out electrical panel with opening side (LH/RH side) configurator option

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

VT: Antivibration supports

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0300	0330	0350	0550	0600	0700	0800	0900
AER485P1	L	•	•	•	•	•	•	•	•
AERBACP	L	•	•	•	•	•	•	•	•
AERNET	L	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	L	•	•	•	•	•	•	•	•
PGD1	L	•				•	•		•

MULTICHILLER_EVO: Contact the factory for compatibility of the accessory with the type of implant envisaged.

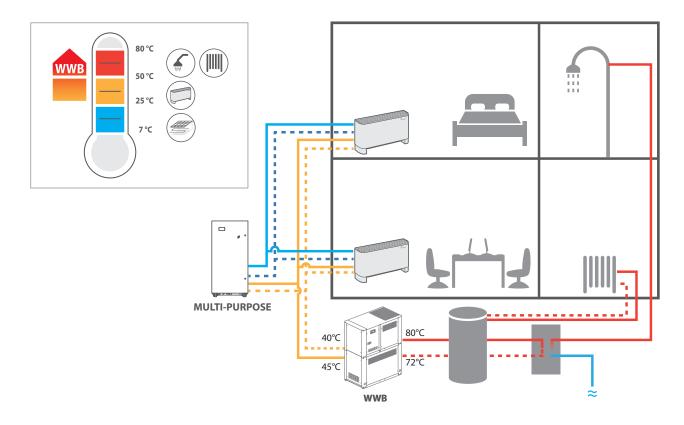
Antivibration

Ver	0300	0330	0350	0550	0600	0700	0800	0900
	VT9	VT9	VT9	VT9	VT15	VT15	VT15	VT15

Power factor correction

Ver	0300	0330	0350	0550	0600	0700	0800	0900
L	RIFWWB0300	RIFWWB0330	RIFWWB0350	RIFWWB0550	RIFWWB0600	RIFWWB0700	RIFWWB0800	RIFWWB0900

A grey background indicates the accessory must be assembled in the factory


CONFIGURATOR

Field	Description
1,2,3	WWB
4,5,6,7	Size 0300, 0330, 0350, 0550, 0600, 0700, 0800, 0900
8	Operating field (1)
Х	Standard
9	Model
Н	Heat pump
10	Version

Field	Description
L	Silenced
11	Power supply
0	400V ~ 3 50Hz
S	400V ~ 3 50Hz with Soft-Start
12	Electrical panel version
0	Standard opening (LH)
R	Reverse opening (RH)

⁽¹⁾ Evaporator water up to $+5^{\circ}$ C. Electronic thermostatic valve as standard.

Example of four-pipe system

PERFORMANCE SPECIFICATIONS

Size			0300	0330	0350	0550	0600	0700	0800	0900
Heating performances (Water user sig	de 70 °C / 78 °C; Wa	ter source side 4	5 °C / 40 °C) (1)							
Heating capacity	L	kW	70,3	77,7	93,2	114,6	143,7	181,7	220,5	265,9
Input power	L	kW	16,7	18,0	21,6	27,7	34,7	44,3	55,4	66,4
Heating total input current	L	A	29,0	30,0	36,0	46,0	61,0	71,0	89,0	104,0
COP	L	W/W	4,22	4,31	4,33	4,14	4,14	4,11	3,98	4,00
Water flow rate system side	L	l/h	7721	8537	10243	12592	15787	19973	24229	29221
Pressure drop system side	L	kPa	18	22	31	21	33	24	35	24
Water flow rate source side	L	l/h	9339	10400	12491	15141	18986	23950	28791	34785
Pressure drop source side	L	kPa	12	15	10	15	8	12	16	23
Heating performances (Water user sid	de 70 °C / 78 °C; Wa	ter source side 3	5 °C / 30 °C) (2)							
Heating capacity	L	kW	56,7	62,7	75,2	92,4	115,9	146,5	177,8	214,4
Input power	L	kW	16,3	17,6	21,0	27,0	33,9	43,2	54,0	64,7
Heating total input current	L	A	28,0	29,0	35,0	45,0	59,0	70,0	87,0	102,0
COP	L	W/W	3,48	3,56	3,58	3,42	3,42	3,39	3,29	3,31
Water flow rate system side	L	l/h	6228	6886	8262	10157	12734	16110	19543	23570
Pressure drop system side	L	kPa	12	14	20	14	22	15	23	16
Water flow rate source side	L	l/h	7008	7820	9396	11340	14221	17924	21486	25974
Pressure drop source side	L	kPa	7	9	6	8	4	7	9	13

⁽¹⁾ Date 14511:2022; Water user side 70 °C / 78 °C; Water source side 45 °C / 40 °C (2) Date 14511:2022; Water user side 70 °C / 78 °C; Water source side 35 °C / 30 °C

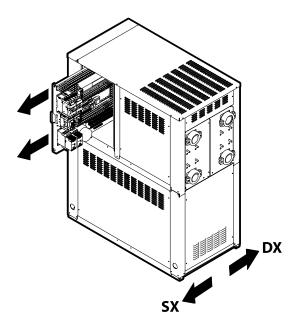
ENERGY DATA

Size			0300	0330	0350	0550	0600	0700	0800	0900
UE 813/2013 performance in avera	age ambient conditio	ns (average) - 55	°C - Pdesignh ≤ 4	100 kW (1)						
Pdesignh	L	kW	46	51	61	76	95	120	145	175
ηsh	L	%	176.0%	180.0%	180.0%	175.0%	174.0%	174.0%	169.0%	171.0%
SCOP	L	W/W	4,60	4,69	4,69	4,56	4,55	4,56	4,43	4,49
Efficiency energy class	L		A++	A++	A++	-	-	-	-	-

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

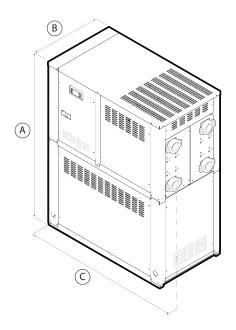
ELECTRIC DATA

Size			0300	0330	0350	0550	0600	0700	0800	0900
Power supply: °										
Electric data										
Maximum current (FLA)	L	A	30,9	32,2	38,2	50,2	64,6	79,8	94,6	113,7
Peak current (LRA)	L	А	110,4	127,1	137,1	165,1	206,3	264,9	319,3	366,9
Power supply: S										
Electric data										
Maximum current (FLA)	L	А	30,9	32,2	38,2	50,2	64,6	79,8	94,6	113,7
Peak current (LRA)	L	A	53,4	60,5	66,3	81,1	101,9	129,9	156,1	180,9


GENERAL TECHNICAL DATA

Size			0300	0330	0350	0550	0600	0700	0800	0900
Compressor										
Туре	L	type				Sc	roll			
Compressor regulation	L	Туре				0n	-Off			
Number	L	no.	2	2	2	2	2	2	2	2
Circuits	L	no.	2	2	2	2	2	2	2	2
Refrigerant	L	type				R1	34a			
Refrigerant load circuit 1 (1)	L	kg	2,8	2,8	3,6	4,4	6,5	7,7	8,0	9,9
Refrigerant load circuit 2 (1)	L	kg	2,8	2,8	3,5	4,3	6,3	7,5	7,8	9,7
Source side heat exchanger										
Туре	L	type				Braze	d plate			
Number	L	no.	1	1	1	1	1	1	1	1
Connections (in/out)	L	Type				Groove	d joints			
Sizes (in/out)	L	Ø	2"	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2
System side heat exchanger										
Туре	L	type				Braze	d plate			
Number	L	no.	1	1	1	1	1	1	1	1
Connections (in/out)	L	Туре				Groove	d joints			
Sizes (in/out)	L	Ø	2"	2"	2"	2"	2"	2"1/2	2"1/2	2"1/2
Sound data calculated in cooling mode (2)										
Sound power level	L	dB(A)	71,8	71,8	71,8	75,1	78,3	79,3	80,4	82,4
Sound pressure level (10 m)	L	dB(A)	40,2	40,2	40,2	43,5	46,7	47,7	48,9	50,9

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Removal of electrical panel

Electrical panel version	Configurator option
Sx - LH side	° (Standard)
Dx - RH side	R

DIMENSIONS

Size			0300	0330	0350	0550	0600	0700	0800	0900
Dimensions and weights										
A	L	mm	1650	1650	1650	1650	1650	1650	1650	1650
В	L	mm	710	710	710	710	710	710	710	710
С	L	mm	1300	1300	1300	1300	1300	1300	1300	1300
Weights										
Weight empty + packaging	L	kg	420	425	440	455	500	715	760	820
Weight functioning	L	kg	415	420	440	460	510	730	775	840

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WWM

Water cooled heat pump reversible water side

Cooling capacity 96 kW Heating capacity 110 kW

- Compact module
- Single or dual refrigerant circuit
- Reliable and modular
- Max 2 levels of stackable units
- Up to 36 connectable units (see the modularity options)
- Easy installation and maintenance

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

These are indoor units with hermetic scroll compressors, system side heat exchanger and plate source.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

FEATURES

The precise choice of components, the special configuration, and the possibility to connect several independent modules and manage them as if they were a single unit are all aspects that guarantee maximum output at full load, whilst ensuring continuous adaptation to the real service needs.

Bus Bar, to facilitate the electrical connections.

Modularity

Thanks to its modular construction, the installation can be adapted to suit specific system development needs whilst guaranteeing improved safety and reliability.

As a result, the cooling capacity can be easily increased over time, at a limited cost.

WWM consists of independent 96 kW modules that can be linked together to reach a capacity of 3456 kW.

With WWM, you can combine up to 36 units designed to minimise the overall dimensions.

The modules are easy to install and link together from the hydronic point of view, thanks to the connections with grooved joints.

Refrigerant circuit

The refrigerant circuit can easily be disconnected from the unit, maintaining all the functions of the hydronic circuit to ensure correct system operation.

Hydraulic components

WWM version PN10 has the **switch**; WWM version PN21 mounts the **transmitter**.

Fitted as standard, with **butterfly shut-off valves** on both hydronic lines for disconnecting the circuit when maintenance needs to be carried out.

In the event of a variable flow rate, the **motorised hydronic valves** can intercept one module or more in order to reduce the flow rate when there is a low thermal load level.

Very quie

The WWM units stand out for their quiet operation.

Accurate unit sound-proofing, using good-quality sound absorbent material, means all the units work at low noise levels.

Units in parallel

The MULTICHILLER_EVO (accessory) allows up to 9 units to be managed in parallel mode.

This accessory allow to maximise the total efficency to the system under to work load, external air temperature conditions and water produced. Each unit has its own electrical panel, guaranteeing continuity even if one module malfunctions or goes into lockout.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The adjustment system includes the complete management of alarms and the alarm log.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible

to save a log file with all the connected unit datas in the personal terminal for post analysis.

KWWM: Kit containing 4 caps with a diameter of 6" for the water man-

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

FACTORY FITTED ACCESSORIES

CRATE_WWM°: Special crate for transport **CRATE_WWMH-A:** Special crate for transport

KITIDRO_WWM: Water filter with connection pipe (diameter 6") with drain tap and additional bulb well (diameter 1/2") available to the install-

KREC_WWM: Cable entries box in order to facilitate the electrical installation.

ACCESSORIES COMPATIBILITY

Accessory	WWM05001°	WWM05001H	WWM05002°	WWM05002H
AER485P1	•	•	•	•
AERBACP	•	•	•	•
AERNET	•	•	•	•
KWWM	•	•	•	•
MULTICHILLER EVO	•	•	•	•

For the control with MULTICHILLER EVO, nr.1 accessory AER485P1 is mandatory for every WWM of the system.

Special crate for transport

Accessory	WWM05001°	WWM05001H	WWM05002°	WWM05002H
CRATE_WWM°	•		•	
CRATE_WWMH-A		•		•

■ CRATE_WWM°: 100 kg, CRATE_WWMH-A: 130 kg

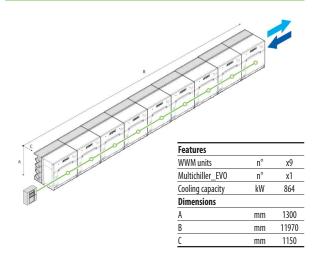
Cable entries box

Accessory	WWM05001°	WWM05001H	WWM05002°	WWM05002H
KREC_WWM	•	•	•	

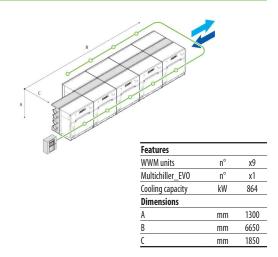
Water filter

Accessory	WWM05001°	WWM05001H	WWM05002°	WWM05002H
KITIDRO WWM		•		

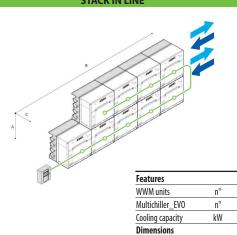
CONFIGURATOR

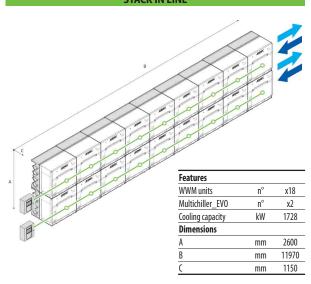

Field	Description
1,2,3	WWM
4,5,6,7	Size 0500
8	Operating field (1)
0	Standard mechanic thermostatic valve
9	Model
1	Single refrigerant circuit
2	Double refrigerant circuit
10	Hydraulic pressure rating
1	145 psi (PN10)
3	300 psi (PN21)
11	Hydraulic headers kit
0	No headers provided
Н	6" Headers kit - PN21 standard carbon steel pipes declared in accordance with EN 10255

Field	Description
12	Power connection
0	Without bus bars
В	With bus bars
13	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
14	Electrical panel SCCR
0	10 kA control panel
15	Peak current reduction
0	Without power factor device
R	With power factor device (2)
16	Field for future development
0	

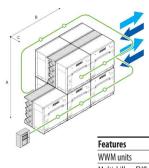

- (1) Water produced up to +4 $^{\circ}$ C (2) Factory installed

MODULARITY OPTIONS


CONFIGURATION 1: IN LINE


CONFIGURATION 2: BACK TO BACK

CONFIGURATION 3.1: STACK IN LINE



CONFIGURATION 3.2: STACK IN LINE

CONFIGURATION4.1: STACK IN LINE BACK TO BACK

В

 Features

 WWM units
 n°
 x9

 Multichiller_EVO
 n°
 x1

 Cooling capacity
 kW
 864

 Dimensions
 mm
 2600

 B
 mm
 3990

 C
 mm
 1850

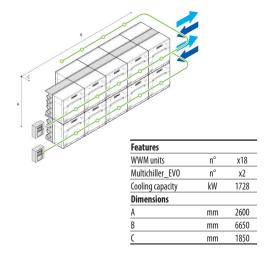
х9

х1

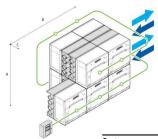
864

2600

6650

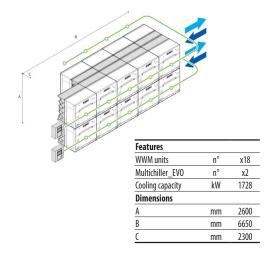

1150

mm


mm

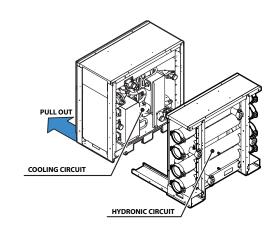
mm

CONFIGURATION 4.2: STACK IN LINE BACK TO BACK



CONFIGURATION 5.1: STACK IN LINE BACK TO BACK DOUBLE

Features		
WWM units	n°	х9
Multichiller_EVO	n°	х1
Cooling capacity	kW	864
Dimensions		•
A	mm	2600
В	mm	3990
C	mm	2300


CONFIGURATION 5.2: STACK IN LINE BACK TO BACK DOUBLE

CONFIGURATION 5.3: STACK IN LINE BACK TO BACK DOUBLE

EASY MAINTENANCE

PERFORMANCE SPECIFICATIONS

WWM - Single refrigerant circuit "1" - Double refrigerant circuit "2"

		WWM05001°	WWM05002°
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	kW	96,0	95,2
Input power	kW	20,3	20,0
Cooling total input current	A	40,0	40,0
EER	W/W	4,74	4,76
Water flow rate source side	l/h	20046	19895
Pressure drop source side	kPa	34	23
Water flow rate system side	l/h	16528	16384
Pressure drop system side	kPa	24	17
Heating performance 40 °C / 45 °C (2)			
Heating capacity	kW	109,2	110,0
Input power	kW	24,8	24,1
Heating total input current	A	48,0	48,0
COP	W/W	4,41	4,57
Water flow rate system side	l/h	18943	19092
Pressure drop system side	kPa	30	21
Water flow rate source side	l/h	24430	24809
Pressure drop source side	kPa	52	39

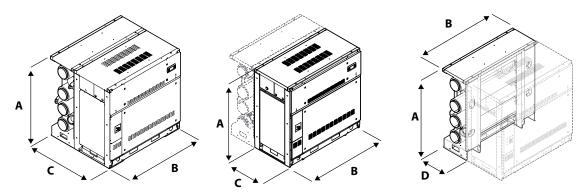
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY DATA

		WWM05001°	WWM05002°			
SEER - 12/7 (EN14825:2018) with stand	SEER - 12/7 (EN14825:2018) with standard fans (1)					
SEER	W/W	6,12	5,37			
Seasonal efficiency	%	241,8%	211,8%			
UE 813/2013 performance in average	ambient conditions (average) - 55 °C - Pd	esignh ≤ 400 kW (2)				
Pdesignh	kW	138	140			
SCOP	W/W	4,83	4,68			
ηsh	%	185.0%	179.0%			

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


		WWM05001°	WWM05002°
Electric data			
Maximum current (FLA)	A	62,0	62,0
Peak current (LRA)	A	148,9	148,9

GENERAL TECHNICAL DATA

		WWM05001°	WWM05002°
Compressor			
Туре	type	Scroll	Scroll
Number	no.	2	2
Circuits	no.	1	2
Refrigerant	type	R410A	R410A
Source side heat exchanger			
Туре	type	Brazed plate	Brazed plate
Number	no.	1	1
Connections (in/out)	Туре	Grooved joints	Grooved joints
Sizes (in/out)	Ø	6"	6"
System side heat exchanger			
Туре	type	Brazed plate	Brazed plate
Number	no.	1	1
Connections (in/out)	Туре	Grooved joints	Grooved joints
Sizes (in/out)	Ø	6"	6"
Sound data calculated in cooling mode ((1)		
Sound power level	dB(A)	81,0	81,0
Sound pressure level (10 m)	dB(A)	49,5	49,5
·	·	·	<u> </u>

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

		WWM05001°	WWM05001H	WWM05002°	WWM05002H
Dimensions and weights					
A	mm	1300	1300	1300	1300
В	mm	1330	1330	1330	1330
C	mm	775	1150	775	1150
D	mm	-	452	-	452
Weights					
Weight empty + packaging	kg	700	930	700	930
Weight functioning	kg	711	1042	711	1042
Empty weight + packaging (with bus bars)	kg	736	966	736	966
Weight functioning (with bus bars)	kg	747	1078	747	1078
Hydraulic headers kit					
Weight empty + packaging	kg	-	230	-	230
Weight functioning	kg	-	330	-	330

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577
www.aermec.com

NXW 0503 - 1654

Water cooled heat pump reversible water side

Cooling capacity 111 ÷ 511 kW Heating capacity 127 ÷ 582 kW

- Installation versatility also for geothermal applications.
- Options of 1 or 2 pumps on both source and user side.
- Reversible on hydraulic side in heat pump

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications. Indoor units with hermetic scroll compressors and plate heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18 °C, and the possibility to produce also negative temperature water down to -10°C for the evaporator and hot water for the condenser up to 55 °C. (for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Option integrated hydronic kit, source and user side

The built-in hydronic module includes the main water circuit components; it is available in varius configurations with one or two pumps with high or low head both on the system side and the source side, to obtain a solution that allows you to save money and to facilitate installation.

CONTROL PCO

Microprocessor adjustment, with display LCD which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and the ad adjustment includes complete management of the alarms and their log.

You also have the possibility to:

Check two units in parallel Master-Slave

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
AER485P1	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	°,L	•	•		•		•				•			•

Antivibration

Version	Integrated hydroni	c Integrated hydronic	0503	0553	0604	0654	0704	0754	0804
version	kit user side	kit, source side	0505	0555	0004	0034	0/04	0/34	0004
0	0	0	AVX319	AVX319	AVX301	AVX301	AVX301	AVX303	AVX310
0	0	J,K,U,W	AVX320	AVX320	AVX320	AVX320	AVX320	AVX312	AVX651
0	M,0	0	AVX320	AVX320	AVX320	AVX320	AVX320	AVX312	AVX651
0	0	V,Z	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	М	J,K,U,V,W,Z	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	N	°,J,K,U,W	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	0	J,K,U,V,W,Z	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	Р	°,J,K,U,W	AVX320	AVX320	AVX309	AVX309	AVX309	AVX312	AVX651
0	N,P	V,Z	AVX309	AVX309	AVX310	AVX310	AVX310	AVX312	AVX651
L	0	0	AVX309	AVX309	AVX310	AVX303	AVX303	AVX310	AVX314
L	0	J,K,U,W	AVX321	AVX321	AVX311	AVX311	AVX651	AVX651	AVX652
L	M,0	0	AVX321	AVX321	AVX311	AVX311	AVX651	AVX651	AVX652
L	0	V,Z	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	М	J,K,U,W	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	N	0	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	0	J,K,U,W	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	Р	0	AVX311	AVX311	AVX311	AVX311	AVX651	AVX651	AVX652
L	М	V,Z	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	N	J,K,U,W	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	0	V,Z	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	Р	J,K,U,W	AVX311	AVX311	AVX312	AVX312	AVX651	AVX651	AVX652
L	N,P	V,Z	AVX312	AVX312	AVX312	AVX310	AVX651	AVX651	AVX652

Version	Integrated hydronic kit user side	Integrated hydronic kit, source side	0904	1004	1254	1404	1504	1654
0	0	0	AVX314	AVX316	AVX316	AVX315	AVX330	AVX330
0	0	J,K,U,W	AVX655	AVX653	AVX654	AVX654	AVX334	AVX337
0	M,N,O	0	AVX655	AVX653	AVX654	AVX654	AVX334	AVX337
0	0	V,Z	AVX655	AVX653	AVX654	AVX654	AVX337	-
0	M,0	J,K,U,W	AVX665	AVX653	AVX654	AVX654	AVX337	AVX335
0	M,0	V,Z	AVX655	AVX653	AVX654	AVX654	AVX340	-
0	N	J,K,U,W	AVX665	AVX653	AVX654	AVX654	AVX340	AVX335
0	N	V,Z	AVX665	AVX653	AVX654	AVX654	AVX335	-
0	P	0	AVX655	AVX653	AVX654	AVX654	-	-
0	Р	J,K,U,V,W,Z	AVX665	AVX653	AVX654	AVX654	-	-
L	0	0	AVX314	AVX315	AVX315	AVX317	AVX331	AVX331
L	0	J,K,U,W	AVX653	AVX654	AVX659	AVX659	AVX335	AVX338
L	M,0	0	AVX653	AVX654	AVX659	AVX659	AVX335	AVX338
L	0	V,Z	AVX653	AVX654	AVX659	AVX659	AVX338	-
L	М	J,K,U,W	AVX653	AVX654	AVX659	AVX659	AVX338	AVX339
L	N	0	AVX653	AVX654	AVX659	AVX659	AVX338	AVX339
L	0	J,K,U,W	AVX653	AVX654	AVX659	AVX659	AVX338	AVX339
L	M,N,O	V,Z	AVX653	AVX654	AVX659	AVX659	AVX339	-
L	N	J,K,U,W	AVX653	AVX654	AVX659	AVX659	AVX339	AVX341
L	Р	°,J,K,U,V,W,Z	AVX653	AVX654	AVX659	AVX659	-	-

⁻ not available

Power factor correction

Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
°,L	RIF98	RIF98	RIF95	RIF95	RIF95	RIF95	RIF95	RIF96	RIF97	RIF97	RIF97	RIF97	RIF97

A grey background indicates the accessory must be assembled in the factory

Device for peak current reduction

Ver	0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
°,L	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)	DRE801 (1)	DRE901 (1)	DRE1001 (1)	DRE1251 (1)	DRE1401 (1)	DRE1500 (1)	DRE1650 (1)

⁽¹⁾ Only for supplies of 400V 3N ~ 50Hz and 400V 3 ~ 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NXW
4,5,6,7	Size
4,3,0,7	0503, 0553, 0604, 0654, 0704, 0754, 0804, 0904, 1004, 1254, 1404, 1504, 1654
8	Operating field
0	Standard mechanic thermostatic valve (1)
X	Electronic thermostatic expansion valve (1)
Υ	Low temperature mechanic thermostatic valve (2)
9	Model
0	Heat pump reversible on the water side
K	Heat pump reversible on the water side with low pressure drops
10	Version
0	Standard
L	Standard silenced
11	Evaporator
0	Standard
E	Evaporating unit (3)
12	Heat recovery
0	Without heat recovery
D	With desuperheater (4)
T	With total recovery (5)
13	Power supply
0	$400V\sim3$ 50Hz with magnet circuit breakers
5	$500V \sim 3$ 50Hz with magnet circuit breakers (6)
14	Integrated hydronic kit user side
0	Without hydronic kit
M	Single pump low head
N	Pump low head + stand-by pump
0	Single pump high head
Р	Pump high head + stand-by pump (7)
15	Integrated hydronic kit, source side
0	Without hydronic kit
J	Single low-head inverter pump (7)
K	Single high-head inverter pump (7)
U	Single pump low head
V	Pump low head + stand-by pump (8)
W	Pump high head
Z	Pump high head + stand-by pump (8)

PERFORMANCE SPECIFICATIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Cooling performance 12 °C/7 °C(1)															
Cooling capacity	°,L	kW	111,8	120,7	148,7	166,7	188,7	222,7	257,6	291,6	325,7	354,6	384,6	453,9	511,4
Input power	°,L	kW	23,0	24,8	30,6	34,4	38,9	45,6	53,0	60,3	66,5	72,6	78,7	92,3	104,0
Cooling total input current	°,L	Α	48,0	51,0	58,0	63,0	86,0	94,0	102,0	120,0	138,0	140,0	143,0	160,0	178,0
EER	°,L	W/W	4,87	4,86	4,86	4,85	4,85	4,88	4,86	4,84	4,90	4,88	4,89	4,92	4,92
Water flow rate source side	°,L	l/h	23047	24886	30656	34332	38866	45790	52970	60075	67065	73041	79190	93374	105103
Pressure drop source side	°,L	kPa	25	29	29	37	37	45	60	38	29	34	36	36	47
Water flow rate system side	°,L	l/h	19243	20789	25600	28692	32472	38314	44327	50169	56011	60993	66147	78063	87938
Pressure drop system side	°,L	kPa	30	35	32	40	43	47	49	55	35	36	36	36	40
Heating performance 40 °C / 45 °C (2)															
Heating capacity	°,L	kW	127,6	137,8	170,0	190,3	215,4	253,7	293,5	332,9	371,5	404,7	438,7	517,1	582,0
Input power	°,L	kW	27,6	29,9	36,3	40,9	46,4	54,5	63,3	72,3	79,0	86,2	93,3	109,5	123,4
Heating total input current	°,L	Α	57,0	60,0	68,0	73,0	100,0	109,0	119,0	140,0	161,0	163,0	166,0	186,0	207,0
COP	°,L	W/W	4,62	4,61	4,69	4,66	4,64	4,66	4,64	4,60	4,70	4,69	4,70	4,72	4,71
Water flow rate source side	°,L	l/h	29340	31697	39235	43975	49768	58721	67938	76891	85844	93480	101380	119642	134776
Pressure drop source side	°,L	kPa	70	81	75	94	101	110	115	129	82	85	85	85	94
Water flow rate system side	°,L	l/h	22142	23905	29490	33021	37384	44030	50933	57790	64513	70265	76175	89802	101065
Pressure drop system side	°,L	kPa	23	27	27	34	34	42	55	35	27	31	33	33	43
(*) **	04.1-04.111														

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C

Water produced from 4 °C ÷ 18 °C
 Water produced from 4 °C ÷ -10 °C; for the avalability with the heat recovery we advise you to contact us
 Shipped with holding charge only.
 The desuperheater must be isolated in heating mode. In cooling mode, a water temperature no lower than 35 °C must always be guaranteed on the heat exchanger inlet.

⁽⁵⁾ Options not available for condensing unit, and for models with pump/s (6) Only for 0804 ÷ 1004 sizes (7) Not available for size 1504 ÷ 1654 (8) Not available for size 1654

ENERGY INDICES (REG. 2016/2281 EU)

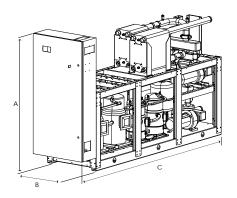
Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,50	5,85	5,79	5,77	5,84	5,81	5,52	6,30	6,42	6,37	6,38	6,49	6,48
Seasonal efficiency	°,L	%	217,0%	231,0%	228,6%	227,8%	230,6%	229,4%	217.8%	248,8%	253,8%	251,6%	252,0%	256,4%	256,2%
SEPR - (EN 14825: 2018) High temperatu	re (2)														
SEPR	0	W/W	-	-	-	-	-	-	-	7,90	7,90	7,80	7,80	8,00	8,00
SEPK	L	W/W	-	-	-	-	-	-	-	7,93	7,90	7,78	7,80	8,00	8,02
UE 813/2013 performance in average an	nbient conditi	ons (averag	e) - 55 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	164	177	218	244	277	326	377	-	-	-	-	-	-
SCOP	°,L	W/W	5,10	5,05	5,18	5,10	5,10	5,10	5,08	-	-	-	-	-	-
ηsh	°,L	%	196.0%	194.0%	199.0%	196.0%	196.0%	196.0%	195.0%	-	-	-	-	-	-

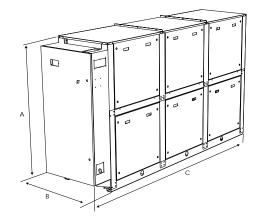
⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Electric data															
Maximum current (FLA)	°,L	Α	75,0	80,0	96,0	107,0	122,0	146,0	169,0	193,0	217,0	231,0	248,0	267,0	296,0
Peak current (LRA)	۰,۱	A	240.0	245.0	227.0	238.0	289.0	319.0	341.0	398.0	422.0	490.0	504.0	601.0	630.0

GENERAL TECHNICAL DATA


Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Compressor															
Туре	°,L	type							Scroll						
Compressor regulation	°,L	Туре							0n-0ff						
Number	°,L	no.	3	3	4	4	4	4	4	4	4	4	4	4	4
Circuits	°,L	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R410A						
Refrigerant charge (1)	°,L	kg	13,2	12,5	15,6	15,6	18,0	22,0	26,0	33,0	38,0	44,0	44,0	46,0	53,0
Source side heat exchanger															
Туре	°,L	type							Brazed plate	<u>!</u>					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						9	rooved join	ts					
Size (in)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	3"	3"	3"	3"	3"	3"
Size (out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"	3"
System side heat exchanger															
Туре	°,L	type							Brazed plate						
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						9	Frooved join	ts					
Size (in)	°,L	Ø	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3″	3"
Size (out)	°,L	Ø	2"1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"
Sound data calculated in cooling mode (2)															
Cound notice land	0	dB(A)	78,0	79,0	79,0	80,0	82,0	86,0	88,0	88,0	88,0	90,0	90,0	93,0	95,0
Sound power level —	L	dB(A)	72,0	73,0	73,0	74,0	76,0	80,0	82,0	82,0	82,0	84,0	84,0	86,0	87,0
Cound procesure level (10 m)	0	dB(A)	46,4	47,4	47,4	48,4	50,4	54,3	56,3	56,3	56,3	58,3	58,3	61,3	63,3
Sound pressure level (10 m)	L	dB(A)	40,3	41,3	41,3	42,3	44,3	48,3	50,3	50,3	50,3	52,3	52,3	54,3	55,3


www.aermec.com

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Dimensions and weights															
A	0	mm	1835	1835	1835	1835	1835	1775	1775	1820	1820	1820	1820	1820	1820
A	L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
В	°,L	mm	800	800	800	800	800	800	800	800	800	800	800	800	800
(٥	mm	1795	1795	1795	1795	1795	2420	2420	2420	2420	2420	2420	2420	2420
	L	mm	2090	2090	2090	2090	2090	2420	2420	2420	2420	2420	2420	2420	2420
Empty weight —	0	kg	578	582	682	690	727	882	989	1180	1417	1461	1539	1613	1721
	L	kg	750	755	854	863	900	1054	1187	1378	1615	1659	1737	1811	1919

The weight of the unit does not include the hydronic kit and accessories.

NXW 0503H - 1654H

Reversible water-cooled heat pump, gas side

Cooling capacity 106 ÷ 477 kW Heating capacity 125 ÷ 565 kW

- Installation versatility also for geothermal applications.
- Options of 1 or 2 pumps on both source and user side.
- Production of hot water up to 55 °C

DESCRIPTION

Water-water offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

These are indoor units with hermetic scroll compressors, system side heat exchanger and plate source.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-18°C, and the possibility to produce also negative temperature water down to -8°C for the evaporator and hot water for the condenser up to 55°C. (for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Option integrated hydronic kit, source and user side

Possibility of integrated hydronic kit containing the main hydraulic components and available with various configurations.

CONTROL PCO

Microprocessor adjustment, with display LCD which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and the ad adjustment includes complete management of the alarms and their log.

You also have the possibility to:

- Check two units in parallel Master-Slave
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0503	0553	0604	0654	0704	0754	0804
AER485P1	°,L	•	•	•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•	•
AERNET	°,L	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,L	•	•	•		•	•	•
PGD1	°,L	•	•	•	•	•	•	•
Model	Ver	0904	1004	1254		1404	1504	1654
Model AER485P1	Ver °,L	0904 •	1004	1254		1404 •	1504	1654
	Ver °,L °,L	. · · ·		1254		1404		1654 •
AER485P1 AERBACP	Ver °,L °,L °,L		•			1404 • •		
AER485P1	Ver °,L °,L °,L °,L		•			1404 • • •		

Antivibration

Version	Integrated hydroni	c Integrated hydronic	0503	0553	0604	0654	0704	0754	0804
version	kit user side	kit, source side	0503	0555	0004	0034	0/04	0/34	0804
0	0	0	AVX319	AVX319	AVX301	AVX301	AVX302	AVX310	AVX310
0	0	J,K,U,W	AVX320	AVX320	AVX320	AVX309	AVX309	AVX651	AVX651
0	M,0	0	AVX320	AVX320	AVX320	AVX309	AVX309	AVX651	AVX651
0	٥	V,Z	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	М	J,K,U,W	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	N	0	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	0	J,K,U,W	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	Р	0	AVX320	AVX320	AVX303	AVX309	AVX311	AVX651	AVX651
0	М	V,Z	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	N	J,K,U,W	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	0	V,Z	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	Р	J,K,U,W	AVX309	AVX309	AVX303	AVX311	AVX312	AVX651	AVX651
0	N,P	V,Z	AVX309	AVX309	AVX312	AVX312	AVX312	AVX651	AVX651
L	0	0	AVX309	AVX309	AVX310	AVX303	AVX304	AVX314	AVX314
L	0	J,K,U,W	AVX311	AVX311	AVX311	AVX311	AVX651	AVX652	AVX665
L	M,0	٥	AVX311	AVX311	AVX311	AVX311	AVX651	AVX652	AVX665
L	0	V,Z	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	М	J,K,U,W	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	N	٥	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	0	J,K,U,W	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	P	٥	AVX311	AVX311	AVX312	AVX313	AVX651	AVX652	AVX665
L	М	V,Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665
L	N	J,K,U,V,W,Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665
L	0	V,Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665
L	Р	J,K,U,V,W,Z	AVX312	AVX312	AVX312	AVX313	AVX651	AVX652	AVX665

Version	Integrated hydronic kit user side	Integrated hydronic kit, source side	0904	1004	1254	1404	1504	1654
0	0	0	AVX314	AVX316	AVX315	AVX317	AVX330	AVX331
0	0	J,K,U,W	AVX665	AVX654	AVX654	AVX654	AVX337	AVX336
0	M,0	0	AVX665	AVX654	AVX654	AVX654	AVX337	AVX336
0	0	V,Z	AVX665	AVX654	AVX654	AVX654	AVX336	-
0	М	J,K,U,W	AVX665	AVX654	AVX654	AVX654	AVX336	AVX335
0	N	0	AVX665	AVX654	AVX654	AVX654	AVX336	AVX335
0	0	J,K,U,W	AVX665	AVX654	AVX654	AVX654	AVX336	AVX335
0	M,0	V,Z	AVX665	AVX654	AVX654	AVX654	AVX335	-
0	N	J,K,U,W	AVX665	AVX654	AVX654	AVX654	AVX335	AVX339
0	N	V,Z	AVX665	AVX654	AVX654	AVX654	-	-
0	Р	°,J,K,U,V,W,Z	AVX665	AVX654	AVX654	AVX654	-	-
L	0	0	AVX315	AVX317	AVX317	AVX318	AVX331	AVX333
L	0	J,K,U,W	AVX653	AVX659	AVX659	AVX659	AVX338	AVX338
L	0	V,Z	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	М	°,J,K,U,W	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	N	0	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	0	°,J,K,U,W	AVX653	AVX659	AVX659	AVX659	AVX338	AVX341
L	M,0	V,Z	AVX653	AVX659	AVX659	AVX659	AVX339	-
L	N	J,K,U,W	AVX653	AVX659	AVX659	AVX659	AVX339	AVX341
L	N	V,Z	AVX653	AVX659	AVX659	AVX659	AVX341	-
L	Р	°,J,K,U,V,W,Z	AVX653	AVX659	AVX659	AVX659	-	-

⁻ not available

Power factor correction

	Ver	0503	0553	0604	0654	0704	0754	0804
Ī	°,L	RIF98	RIF98	RIF95	RIF95	RIF95	RIF95	RIF95

A grey background indicates the accessory must be assembled in the factory $% \left(x\right) =\left(x\right) +\left(x\right)$

Ver	0904	1004	1254	1404	1504	1654
°,L	RIF96	RIF97	RIF97	RIF97	RIF97	RIF97

A grey background indicates the accessory must be assembled in the factory

Device for peak current reduction

Ver	0503	0553	0604	0654	0704	0754	0804
°,L	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)	DRE801 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Ver	0904	1004	1254	1404	1504	1654
°,L	DRE901 (1)	DRE1001 (1)	DRE1251 (1)	DRE1401 (1)	DRE1500 (1)	DRE1650 (1)

(1) Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NXW
4,5,6,7	Size 0503, 0553, 0604, 0654, 0704, 0754, 0804, 0904, 1004, 1254, 1404, 1504, 1654
8	Operating field (1)
0	Standard mechanic thermostatic valve
Χ	Electronic thermostatic expansion valve
9	Model
Н	Heat pump
10	Version
0	Standard
L	Standard silenced
11	Evaporator
0	Standard
12	Heat recovery
0	Without heat recovery
D	With desuperheater (2)
13	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
5	500V ~ 3 50Hz with magnet circuit breakers (3)
14	Integrated hydronic kit user side
0	Without hydronic kit
М	Single pump low head
N	Pump low head + stand-by pump
0	Single pump high head
Р	Pump high head + stand-by pump (4)
15	Integrated hydronic kit, source side
0	Without hydronic kit
J	Single low-head inverter pump
K	Single high-head inverter pump
U	Single pump low head
٧	Pump low head + stand-by pump (5)
W	Pump high head
Z	Pump high head + stand-by pump (5)

⁽¹⁾ Water produced from 4 °C ÷ 18 °C
(2) The desuperheater must be isolated in heating mode. In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
(3) Only for 0804 ÷ 1004 sizes
(4) The hydronic kit P is not available for sizes 1504 and 1654
(5) The hydronic kits V and Z are not available for size 1654

PERFORMANCE SPECIFICATIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Cooling performance 12 °C/7 °C(1)															
Cooling capacity	°,L	kW	105,9	113,8	140,8	159,8	180,7	211,6	242,7	277,7	313,6	341,7	369,7	423,6	477,0
Input power	°,L	kW	23,8	25,7	31,1	35,3	40,2	47,1	54,2	62,2	70,4	76,6	82,7	94,8	106,7
Cooling total input current	°,L	Α	49,0	52,0	60,0	65,0	87,0	95,0	104,0	122,0	140,0	144,0	147,0	164,0	183,0
EER	°,L	W/W	4,45	4,43	4,52	4,52	4,50	4,49	4,47	4,47	4,45	4,46	4,47	4,47	4,47
Water flow rate source side	°,L	l/h	22173	23854	29402	33334	37744	44198	50635	58078	65694	71514	77333	88547	99702
Pressure drop source side	°,L	kPa	25	29	28	35	35	42	55	36	28	32	34	41	44
Water flow rate system side	°,L	l/h	18212	19586	24225	27490	31098	36424	41750	47764	53949	58759	63570	72837	82027
Pressure drop system side	°,L	kPa	17	20	19	24	24	29	38	24	19	22	24	29	30
Heating performance 40 °C / 45 °C (2)															
Heating capacity	°,L	kW	125,4	135,8	165,8	187,6	210,4	269,6	310,2	325,2	365,6	399,8	434,0	500,6	565,2
Input power	°,L	kW	27,9	30,2	36,8	41,8	46,9	55,6	64,6	72,6	80,8	88,6	96,4	111,2	124,9
Heating total input current	°,L	Α	54,0	57,0	66,0	72,0	94,0	105,0	115,0	135,0	154,0	160,0	165,0	181,0	202,0
COP	°,L	W/W	4,49	4,49	4,51	4,49	4,48	4,85	4,80	4,48	4,52	4,51	4,50	4,50	4,52
Water flow rate source side	°,L	l/h	28545	30928	37776	42774	47928	62567	71944	74067	83306	91109	98905	114256	129207
Pressure drop source side	°,L	kPa	43	49	46	58	58	46	61	58	46	52	58	66	71
Water flow rate system side	°,L	l/h	21762	23561	28776	32552	36508	46797	53844	56470	63485	69420	75355	86926	98135
Pressure drop system side	°,L	kPa	24	28	26	33	32	31	40	33	26	30	32	41	43

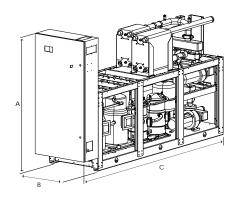
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

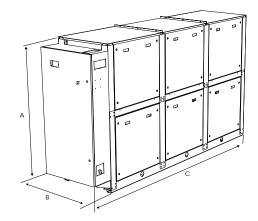
ENERGY INDICES (REG. 2016/2281 EU)

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,39	5,38	5,53	5,60	5,38	5,60	5,27	5,77	5,88	5,94	5,97	6,43	6,44
Seasonal efficiency	°,L	%	212,6%	212,2%	218,2%	221,0%	212,2%	221,0%	207.8%	227,8%	232,2%	234,5%	235,6%	254,2%	254,7%
SEPR - (EN 14825: 2018) High temperature (2)														
SEPR	°,L	W/W	-	-	-	-	-	-	-	7,03	7,06	7,06	7,03	-	-
UE 813/2013 performance in average ambie	nt condit	tions (average	e) - 55 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	161	175	213	241	271	320	368	-	-	-	-	-	-
SCOP	°,L	W/W	4,95	4,93	4,95	4,93	4,93	4,90	4,80	-	-	-	-	-	-
nsh	°,L	%	190.0%	189.0%	190.0%	189.0%	189.0%	188.0%	184.0%	-	-	-	-	-	-

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.
(3) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Electric data															
Maximum current (FLA)	°,L	Α	75,0	80,0	96,0	107,0	122,0	146,0	169,0	193,0	217,0	231,0	248,0	267,0	296,0
Peak current (LRA)	°,L	Α	240,0	245,0	227,0	238,0	289,0	319,0	341,0	398,0	422,0	490,0	504,0	601,0	630,0


GENERAL TECHNICAL DATA

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Compressor															
Туре	°,L	type							Scroll						
Compressor regulation	°,L	Туре							0n-0ff						
Number	°,L	no.	3	3	4	4	4	4	4	4	4	4	4	4	4
Circuits	°,L	no.	2	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R410A						
Refrigerant charge (1)	°,L	kg	13,0	13,0	17,0	17,0	20,0	22,0	26,0	36,0	54,0	54,0	58,0	60,0	62,0
Source side heat exchanger															
Туре	°,L	type							Brazed plate						
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Туре						(rooved joint	ts					
Size (in)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	3"	3"	3"	3"	3"	3"
Size (out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"	3"
System side heat exchanger															
Туре	°,L	type							Brazed plate	1					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,L	Type						(Grooved joint	ts					
Size (in)	°,L	Ø	2" 1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"	3"
Size (out)	°,L	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"	3"
Sound data calculated in cooling mode (2)					-										
Canada a anna Ianal	0	dB(A)	78,0	79,0	79,0	80,0	82,0	86,0	88,0	88,0	88,0	90,0	90,0	93,0	95,0
Sound power level —	L	dB(A)	72,0	73,0	73,0	74,0	76,0	80,0	82,0	82,0	82,0	84,0	84,0	86,0	87,0
C d	0	dB(A)	46,4	47,4	47,4	48,4	50,4	54,3	56,3	56,3	56,3	58,3	58,3	61,3	63,3
Sound pressure level (10 m)	L	dB(A)	40,3	41,3	41,3	42,3	44,3	48,3	50,3	50,3	50,3	52,3	52,3	54,3	55,3

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0503	0553	0604	0654	0704	0754	0804	0904	1004	1254	1404	1504	1654
Dimensions and weights															
A	0	mm	1835	1835	1835	1835	1835	1775	1775	1820	1820	1820	1820	1820	1820
A	L	mm	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
В	°,L	mm	800	800	800	800	800	800	800	800	800	800	800	800	800
(٥	mm	1795	1795	1795	1795	1795	2420	2420	2420	2420	2420	2420	2420	2420
	L	mm	2090	2090	2090	2090	2090	2420	2420	2420	2420	2420	2420	2420	2420
Emptyweight	0	kg	628	633	734	743	791	948	1042	1275	1545	1577	1657	1687	1825
Empty weight	L	kg	801	805	907	915	963	1121	1240	1473	1743	1774	1855	1885	2023

The weight of the unit does not include the hydronic kit and accessories.

WS 0601 - 2802

- · High efficiency all in Class A Eurovent
- Optimised for low condenser temperatures
- Optimised for geothermal applications
- Available also R513A (XP10) refrigerant gas

Water cooled heat pump reversible water side

Cooling capacity 147 ÷ 700 kW Heating capacity 164 ÷ 778 kW

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water from 4 to 16° C, and the possibility to produce negative temperature water (down to -6° C) on the evaporator and hot water (up to 50° C) on the condenser. (for more information, refer to the technical documentation).

Units mono or dual-circuit

Depending on the size, the units are one-circuit or two-circuit models to ensure maximum efficiency with full loads as well as partial loads and guarantee operation continuity if one of the circuits stop.

They are equipped with screw compressors and system and source side plate heat exchangers.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP. SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

AKW: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
AER485P1	°,L	•	•	•	•	•								
AER485P1 x n° 2 (1)	°,L						•	•	•	•	•	•	•	•
AERBACP	°,L	•		•		•	•	•	•	•	•	•	•	•
AERNET	°,L				•					•	•	•		•
MULTICHILLER_EVO	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	°,L	•			•	•			•	•	•			•

(1) x Indicates the quantity of accessories to match.

Antivibration

Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Evaporator: °													
°,L	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661
Evaporator: E													
°,L	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661

Power factor correction

Ver	0601	0701	0801	0901	1101	1202	1402
°,L	-	RIF161	RIF161	RIF201	RIF241	RIF161 x2	RIF161 x2

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	1602	1802	2002	2202	2502	2802
°,L	RIF161 x2	RIF201 x 2	RIF201+RIF241	RIF241 x2	RIF301 x2	RIF301 x2

A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	0601	0701	0801	0901	1101	1202	1402
L	AKW (1)						

(1) Available only in low noise version
A grey background indicates the accessory must be assembled in the factory

Ver	1602	1802	2002	2202	2502	2802
L	AKW (1)					

(1) Available only in low noise version A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2	WS
3,4,5,6	Size 0601, 0701, 0801, 0901, 1101, 1202, 1402, 1602, 1802, 2002, 2202, 2502, 2802
7	Operating field
0	Standard mechanic thermostatic valve (1)
Х	Electronic thermostatic expansion valve (1)
Υ	Low temperature mechanic thermostatic valve (2)
Z	Low temperature electronic thermostatic valve (2)
8	Model
0	Heat pump reversible on the water side
9	Heat recovery
0	Without heat recovery
D	With desuperheater (3)
T	With total recovery (4)
10	Version
0	Standard

Field	Description
L	Standard silenced
11	Evaporator
0	Standard
Е	Evaporating unit (5)
12	Power supply
0	400V ~ 3 50Hz with fuses
2	230V ~ 3 50Hz with fuses
4	230V ~ 3 50Hz with magnet circuit breakers
5	500V ~ 3 50Hz with fuses
8	400V ~ 3 50Hz with magnet circuit breakers
9	500V ~ 3 50Hz with magnet circuit breakers

(1) Water produced from 4 °C ÷ 16 °C
(2) Water produced from 4 °C ÷ -6 °C; for the avalability with the heat recovery we advise you to contact us
(3) In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.
(4) Option not available for condenserless unit.
(5) Shipped with holding charge only.

PERFORMANCE SPECIFICATIONS

WS - °/L

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Cooling performance 12 °C/7 °C(1)															
Cooling capacity	°,L	kW	147,7	186,9	212,2	233,8	299,0	308,6	369,1	421,6	469,8	545,6	599,8	654,3	700,4
Input power	°,L	kW	29,1	36,6	81,8	46,0	58,7	605,6	72,8	83,2	92,7	106,7	117,2	128,1	136,8
Cooling total input current	°,L	A	56,0	67,0	74,0	83,0	95,0	110,0	133,0	149,0	167,0	179,0	190,0	219,0	235,0
EER	°,L	W/W	5,08	5,11	5,07	5,08	5,09	5,10	5,07	5,06	5,07	5,11	5,12	5,11	5,12
Water flow rate source side	°,L	l/h	30238	38269	43508	47922	61258	63078	75593	86332	96177	111478	122506	133608	142894
Pressure drop source side	°,L	kPa	33	23	22	22	25	47	36	39	43	48	52	58	65
Water flow rate system side	°,L	l/h	25421	32148	36495	40212	51431	53088	63476	72492	80788	93813	103143	112508	120438
Pressure drop system side	°,L	kPa	23	17	15	16	18	33	25	27	30	33	35	39	44
Heating performance 40 °C / 45 °C (2)															
Heating capacity	°,L	kW	164,9	208,7	237,3	261,4	334,0	343,7	412,1	470,6	524,2	607,2	667,2	727,6	778,0
Input power	°,L	kW	36,8	46,3	52,9	58,1	74,2	76,9	92,2	105,5	117,7	135,5	148,8	162,8	174,1
Heating total input current	°,L	A	70,0	84,0	94,0	105,0	120,0	138,0	168,0	188,0	210,0	225,0	240,0	275,0	296,0
COP	°,L	W/W	4,48	4,51	4,49	4,50	4,50	4,47	4,47	4,46	4,46	4,48	4,48	4,47	4,47
Water flow rate system side	°,L	l/h	28611	36218	41197	45370	57987	59660	71552	81718	91025	105442	115854	126347	135087
Pressure drop system side	°,L	kPa	29	21	19	20	23	42	32	35	38	43	46	52	58
Water flow rate source side	°,L	l/h	37525	47456	53873	59360	75920	78366	93702	107011	119257	138485	152256	166081	177787
Pressure drop source side	°,L	kPa	49	37	33	34	39	73	54	59	65	72	77	85	96

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C

Performance specifications Evaporating units

WS - E

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Evaporator: E															
Cooling performance 12 °C/7 °C(1)															
Cooling capacity	°,L	kW	134,5	167,9	189,2	216,7	264,4	276,7	333,2	381,0	431,7	489,8	542,5	591,7	629,6
Input power	°,L	kW	34,7	42,2	48,2	55,0	67,0	69,3	84,4	96,5	109,9	122,0	134,1	146,8	157,0
Cooling total input current	°,L	Α	63,0	75,0	85,0	96,0	111,0	127,0	151,0	170,0	192,0	207,0	222,0	252,0	270,0
EER	°,L	W/W	3,88	3,98	3,92	3,94	3,94	3,99	3,95	3,95	3,93	4,01	4,05	4,03	4,01
Water flow rate system side	°,L	l/h	23108	28849	32512	37238	45248	47546	57251	65458	74169	84147	93212	101661	108175
Pressure drop system side	°,L	kPa	18	13	12	12	14	25	19	20	23	25	27	30	34

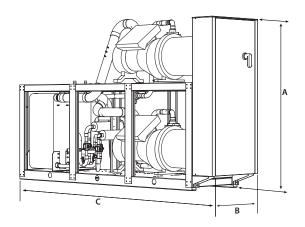
⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,58	5,80	6,09	6,04	5,96	6,22	6,24	6,39	6,39	6,38	6,38	6,42	6,39
Seasonal efficiency	°,L	%	220,2%	229,0%	240,6%	238.6%	235,2%	245,7%	246,6%	252,5%	252,6%	252,1%	252,2%	253,9%	252,7%
SEPR - (EN 14825: 2018) High temperatur	e (2)														
SEPR	°,L	W/W	-	-	-	-	7,77	7,97	7,99	8,11	8,01	8,04	8,01	8,05	8,01
UE 813/2013 performance in average am	bient conditi	ons (averag	e) - 35 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	229	290	330	363	-	-	-	-	-	-	-	-	-
SCOP	°,L	W/W	5,98	6,10	6,30	6,25	-	-	-	-	-	-	-	-	-
ηsh	°,L	%	231.0%	236.0%	244.0%	242.0%	-	-	-	-	-	-	-	-	-

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.
(3) Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA


Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Electric data															
Maximum current (FLA)	°,L	Α	90,7	98,0	112,0	128,0	156,0	168,0	196,0	224,0	256,0	284,0	312,0	354,0	380,0
Peak current (LRA)	°,L	Α	147,0	140,0	163,0	192,0	246,0	194,1	198,5	228,0	262,6	316,6	324,7	388,1	448,1

WS-0601-2802-HP-W_Y_UN50_08 706 www.aermec.com

GENERAL TECHNICAL DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Compressor															
Туре	°,L	type							Screw						
Compressor regulation	°,L	Туре							On-Off						
Number	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Circuits	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Refrigerant	°,L	type			-	-			R134a						
Refrigerant charge (1)	°,L	kg	18,0	22,0	22,0	25,0	38,0	36,0	42,0	44,0	50,0	59,0	68,0	70,0	80,0
System side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Source side heat exchanger					-	-									
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Sizes (in/out)	°,L	Ø			-	-			3"						
Source side hydraulic connections															
Connections (in/out)	°,L	Туре			-	-		(Grooved join	ts					
Sizes (in/out)	°,L	Ø							3"						
Sound data calculated in cooling mode	(2)														
County and a county level	0	dB(A)	86,1	86,8	87,1	87,8	87,1	89,1	89,8	90,1	90,8	90,5	90,1	91,3	91,8
Sound power level	L	dB(A)	78,1	78,8	79,1	79,9	78,1	81,1	81,8	82,1	82,9	82,1	81,1	83,4	84,1
Second and the Land (10 and	0	dB(A)	54,3	55,0	55,3	56,0	55,3	57,2	57,9	58,3	59,0	58,6	58,2	59,3	59,9
Sound pressure level (10 m)	L	dB(A)	46,3	47,0	47,3	48,1	46,3	49,2	50,0	50,2	51,0	50,2	49,2	51,5	52,2

DIMENSIONS

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Dimensions and weights															
<u> </u>	0	mm	1775	1775	1775	1775	1775	1975	1975	1975	2005	1985	2065	2065	2065
A	L	mm	1775	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120	2120
В	°,L	mm	810	810	810	810	810	810	810	810	810	810	810	810	810
С	°,L	mm	2960	2960	2960	2960	3360	2960	2960	2960	2960	3360	3360	3360	3360
Faranta	0	kg	1101	1251	1301	1357	1788	1738	2071	2140	2212	2648	3050	3131	3131
Empty weight	L	kg	1229	1379	1429	1485	1934	1966	2299	2368	2440	2905	3307	3388	3388

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

HWS 0601 - 2802

Water cooled heat pump reversible water side

Cooling capacity 147 ÷ 369 kW Heating capacity 165 ÷ 778 kW

- High efficiency all in Class A Eurovent
- Unit optimised for high condenser temperatures.
- Optimised for geothermal applications
- Available also R513A (XP10) refrigerant gas

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-16 $^{\circ}$ C, and the possibility to produce also hot water for the condenser up to 60 $^{\circ}$ C. (for more information, refer to the technical documentation).

Units mono or dual-circuit

Depending on the size, the units are one-circuit or two-circuit models to ensure maximum efficiency with full loads as well as partial loads and guarantee operation continuity if one of the circuits stop.

They are equipped with screw compressors and system and source side plate heat exchangers.

Integral acoustic enclosure

For all versions, if required, it is available the integral acoustic enclosure, which can further reduce the sound level.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

Possibility to control two units in a Master-Slave configuration The presence of a programmable timer allows functioning time periods and a possible second set-point to be set. The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

AKW: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

708 www.aermec.com HWS-0601-2802-HP-W_Y_CE50_07

ACCESSORIES COMPATIBILITY

Model	Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
AER485P1	°,L	•	•	•	•	•								
AER485P1 x n° 2 (1)	°,L						•	•		•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,L		•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	°,L		•	•	•	•	•	•	•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Antivibration

Version	Heat recovery	Evaporator	0601	0701	0801	0901	1101	1202	1402
0	0	0	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658
0	°,D	E	-	AVX668	AVX668	AVX668	AVX669	-	AVX670
0	D	٥	-	AVX651	AVX652	AVX652	AVX654	AVX658	AVX658
0	T	٥	-	AVX652	AVX655	AVX655	AVX657	-	AVX662
L	0	0	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658
L	°,D	E	-	AVX668	AVX668	AVX668	AVX669	-	AVX670
L	D	٥	-	AVX651	AVX652	AVX652	AVX654	AVX658	AVX658
L	T	0	-	AVX652	AVX655	AVX655	AVX657	-	AVX662

Version	Heat recovery	Evaporator	1602	1802	2002	2202	2502	2802
0	0	0	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661
0	0	E	AVX670	AVX670	AVX671	AVX672	AVX672	AVX672
0	D	°,E	-	-	-	-	-	-
0	T	0	-	-	-	-	-	-
L	0	0	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661
L	0	E	AVX670	AVX670	AVX671	AVX672	AVX672	AVX672
L	D	°,E	-	-	-	-	-	-
L	Ţ	0	-	-	-	-	-	-

⁻ not available

Power factor correction

Ver	0601	0701	0801	0901	1101	1202	1402
°,L	-	RIF161	RIF161	RIF201	RIF241	-	RIF161 x2

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver	1602	1802	2002	2202	2502	2802
°,L	RIF161 x2	RIF201 x 2	RIF201+RIF241	RIF241 x2	RIF301 x2	RIF301 x2

A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
L	AKW (1)												

⁽¹⁾ Available only in low noise version

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	HWS
4,5,6,7	Size 0601, 0701, 0801, 0901, 1101, 1202, 1402, 1602, 1802, 2002, 2202, 2502, 2802
8	Operating field
0	Standard mechanic thermostatic valve
Х	Electronic thermostatic expansion valve
9	Model
0	Heat pump reversible on the water side
10	Heat recovery
0	Without heat recovery
D	With desuperheater (1)
T	With total recovery (2)
11	Version
0	Standard
L	Standard silenced

Field	Description
12	Evaporator
0	Standard
Е	Evaporating unit (3)
13	Power supply
0	400V ~ 3 50Hz with fuses
2	230V ~ 3 50Hz with fuses
4	230V ~ 3 50Hz with magnet circuit breakers
5	500V ~ 3 50Hz with fuses
8	400V ~ 3 50Hz with magnet circuit breakers
9	500V ~ 3 50Hz with magnet circuit breakers

- In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet. The desuperheater is not available for size for 0601 to 1202 and from 1602 to 2802.
 The desuperheater and total recovery are not available for sizes 0601 and 1202 and size up 1602 to 2802; T are not compatible with E
 Shipped with holding charge only. Option not available for size 0601 and 1202.

PERFORMANCE SPECIFICATIONS

HWS - °/L

Size			0601	0701	0801	0901	1101	1202	1402
Cooling performance 12 °C / 7 °C (1)									
Cooling capacity	°,L	kW	146,7	178,8	212,7	233,7	293,7	293,7	356,6
Input power	°,L	kW	31,7	38,0	43,2	49,2	59,7	63,5	76,8
Cooling total input current	°,L	A	56,0	66,0	74,0	82,0	101,0	112,0	132,0
EER	°,L	W/W	4,63	4,70	4,92	4,75	4,92	4,62	4,64
Water flow rate source side	°,L	l/h	30474	37085	43795	48419	60454	60948	73996
Pressure drop source side	°,L	kPa	40	27	27	26	31	53	50
Water flow rate system side	°,L	l/h	25256	30754	36596	40204	50513	50513	61337
Pressure drop system side	°,L	kPa	29	20	20	19	23	38	36
Heating performance 40 °C / 45 °C (2)									
Heating capacity	°,L	kW	163,9	199,3	234,8	260,1	324,0	327,5	397,5
Input power	°,L	kW	38,0	45,4	51,6	58,8	71,4	76,3	92,2
Heating total input current	°,L	A	66,0	78,0	88,0	97,0	120,0	133,0	157,0
COP	°,L	W/W	4,31	4,39	4,55	4,42	4,54	4,29	4,31
Water flow rate source side	°,L	l/h	36968	45016	53566	58847	73936	73936	89780
Pressure drop source side	°,L	kPa	62	43	43	41	49	81	77
Water flow rate system side	°,L	l/h	28421	34581	40752	45134	56255	56843	69010
Pressure drop system side	°,L	kPa	35	23	23	23	27	46	43

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Size			1602	1802	2002	2202	2502	2802
Heating performance 40 °C / 45 °C (1)							
Heating capacity	°,L	kW	465,7	522,8	584,8	646,9	730,9	799,6
Input power	°,L	kW	104,0	121,3	133,2	145,1	165,9	181,5
Heating total input current	°,L	A	176,0	195,0	218,0	241,0	277,0	280,0
COP	°,L	W/W	4,48	4,31	4,39	4,46	4,41	4,40
Water flow rate source side	°,L	l/h	106378	118198	133036	147873	166735	182932
Pressure drop source side	°,L	kPa	86	88	96	103	114	137
Water flow rate system side	°,L	l/h	80851	90770	101543	112315	126902	138328
Pressure drop system side	°,L	kPa	48	50	54	58	65	79

⁽¹⁾ Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Performance specifications Evaporating units

HWS - E

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Evaporator: E															
Cooling performance 12 °C/7 °C(1)															
Cooling capacity	°,L	kW	-	163,0	192,0	212,0	263,0	-	326,0	385,0	428,0	481,0	539,0	601,0	676,0
Input power	°,L	kW	-	41,0	47,0	54,0	66,0	-	82,0	93,0	108,0	120,0	132,0	146,0	159,0
Cooling total input current	°,L	А	-	72,0	81,0	90,0	113,0	-	144,0	162,0	180,0	204,0	226,0	254,0	272,0
EER	°,L	W/W	-	3,98	4,09	3,93	3,98	-	3,98	4,14	3,96	4,01	4,08	4,12	4,25
Water flow rate system side	°,L	l/h	-	28005	32988	36424	45186	-	56011	66147	73535	82641	92606	103259	116144
Pressure drop system side	°,L	kPa	-	20	20	19	23	-	36	40	41	45	48	53	62

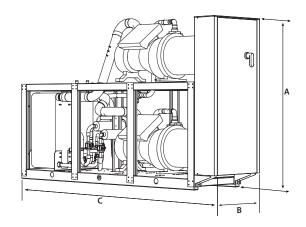
⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0601	0701	0801	0901	1101	1202	1402
SEER - 12/7 (EN14825: 2018) (1)									
SEER	°,L	W/W	5,01	5,28	5,57	5,43	5,59	5,36	5,42
Seasonal efficiency	°,L	%	197,4%	208,2%	219.8%	214.2%	220,6%	211,4%	213,6%
UE 813/2013 performance in average a	mbient conditior	ıs (average) - 55 °(C - Pdesignh ≤ 400 k	(W (2)					
Pdesignh	°,L	kW	215	257	293	330	-	-	-
SCOP	°,L	W/W	4,55	4,60	4,73	4,58	-	-	-
ηsh	°,L	%	174.0%	176.0%	181.0%	175.0%	-	-	-

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Electric data															
Maximum current (FLA)	°,L	Α	105,0	124,0	144,0	162,0	182,0	210,0	248,0	288,0	324,0	344,0	364,0	430,0	430,0
Peak current (LRA)	°,L	Α	180,0	163,0	192,0	229,0	300,0	285,0	287,0	336,0	391,0	462,0	482,0	575,0	575,0

GENERAL TECHNICAL DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Compressor															
Туре	°,L	type							Screw						
Compressor regulation	°,L	Туре							0n-0ff						
Number	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Circuits	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R134a						
System side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Source side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Sizes (in/out)	°,L	Ø							3″						
Source side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Sizes (in/out)	°,L	Ø							3″						
Sound data calculated in cooling mode (I)														
Carrad manusar larval	0	dB(A)	85,0	86,0	86,0	86,0	92,0	88,0	89,0	89,0	89,0	93,0	95,0	95,0	95,0
Sound power level	L	dB(A)	77,0	78,0	78,0	78,0	84,0	80,0	81,0	81,0	81,0	85,0	87,0	87,0	87,0
C d (10)	0	dB(A)	53,2	54,2	54,2	54,2	60,2	56,2	57,2	57,2	57,2	61,1	63,1	63,1	63,1
Sound pressure level (10 m)	L	dB(A)	45,2	46,2	46,2	46,2	52,2	48,1	49,1	49,1	49,1	53,1	55,1	55,1	55,1

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Dimensions and weights															
Α	٥	mm	1775	1775	1775	1775	1775	1975	1975	1975	2005	1985	2065	2065	2065
	L	mm	1775	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120	2120
В	°,L	mm	810	810	810	810	810	810	810	810	810	810	810	810	810
C	°,L	mm	2960	2960	2960	2960	3360	2960	2960	2960	2960	3360	3360	3360	3360
Empty weight	°,L	kg	1101	1251	1301	1357	1788	1738	2028	2097	2169	2598	3000	3095	3095

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

HWSG

- Use of the new ecological gas R1234ze
- Unit optimised for high condenser temperatures.
- Production of hot water from condenser up to 65° C.

Cooling capacity 110 ÷ 396 kW Heating capacity 122 ÷ 595 kW

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Production of chilled water up to 4°C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 65°C .

Units mono or dual-circuit

Depending on the size, the units are one-circuit or two-circuit models to ensure maximum efficiency with full loads as well as partial loads and guarantee operation continuity if one of the circuits stop.

They are equipped with screw compressors and system and source side plate heat exchangers dedicated to use of the new HFO R1234ze gas.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430, with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL

pCO⁵ control type

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-RUS protocol

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

ACCESSORIES COMPATIBILITY

Model	Ver	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
AER485P1	°,L	•	•	•	•	•								
AER485P1 x n° 2 (1)	°,L						•	•		•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,L		•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
PRV3	°,L		•	•	•	•	•	•	•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Antivibration

/er	0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
 °,L	AVX651	AVX651	AVX652	AVX652	AVX656	AVX658	AVX658	AVX658	AVX659	AVX667	AVX661	AVX661	AVX661

CONFIGURATOR

Field	Description
1,2,3,4	HWSG
5,6,7,8	Size 0601, 0701, 0801, 0901, 1101, 1202, 1402, 1602, 1802, 2002, 2202, 2502, 2802
9	Operating field
X	Electronic thermostatic expansion valve (1)
Z	Low temperature electronic thermostatic valve (2)
10	Model
0	Optimised for high condenser temperatures
11	Heat recovery
0	Without heat recovery
D	With desuperheater (3)
T	With total recovery (3)
12	Version
0	Standard
L	Standard silenced
13	Evaporator
0	Standard
14	Power supply
0	400V ~ 3 50Hz with fuses

⁽¹⁾ Water produced from $4 \,^{\circ}\text{C} \div 16 \,^{\circ}\text{C}$ (2) Water produced from $-5 \,^{\circ}\text{C} \div 4 \,^{\circ}\text{C}$ (3) Order management

PERFORMANCE SPECIFICATIONS

HWSG - °/L

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002
Cooling performance 12 °C/7 °C(1)												
Cooling capacity	°,L	kW	110,5	135,1	156,5	176,0	215,8	221,7	271,4	315,9	354,9	396,8
Input power	°,L	kW	23,2	27,7	31,3	35,6	43,2	46,2	57,0	63,9	73,6	80,7
Cooling total input current	°,L	А	48,0	55,0	61,0	66,0	82,0	96,0	111,0	122,0	132,0	149,0
EER	°,L	W/W	4,77	4,87	5,00	4,94	4,99	4,80	4,76	4,94	4,82	4,92
Water flow rate system side	°,L	l/h	19007	23236	26907	30255	37102	38143	46690	54329	61030	68240
Pressure drop system side	°,L	kPa	16	11	10	11	12	24	32	21	23	25
Water flow rate source side	°,L	l/h	22875	27903	32183	36261	44378	45808	56089	64986	73289	81668
Pressure drop source side	°,L	kPa	23	16	15	15	17	34	47	31	34	36
Heating performance 40 °C / 45 °C (2)												
Heating capacity	°,L	kW	122,8	149,7	172,4	194,4	237,8	245,8	301,0	348,2	393,1	437,6
Input power	°,L	kW	27,7	33,1	37,3	42,5	51,6	55,2	68,3	76,4	88,0	96,5
Heating total input current	°,L	А	58,0	65,0	72,0	78,0	97,0	114,0	131,0	145,0	157,0	176,0
COP	°,L	W/W	4,43	4,52	4,62	4,57	4,61	4,45	4,41	4,56	4,47	4,53
Water flow rate system side	°,L	l/h	21319	25989	29942	33756	41288	42668	52248	60463	68263	75995
Pressure drop system side	°,L	kPa	20	14	13	13	15	29	41	27	30	31
Water flow rate source side	°,L	l/h	27820	34012	39384	44285	54307	55832	68342	79522	89331	99885
Pressure drop source side	°,L	kPa	35	24	22	23	26	50	69	46	50	54

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Size			2202	2502	2802
Heating performance 40 °C / 45 °C (1))				
Heating capacity	°,L	kW	488,6	540,8	595,5
Input power	°,L	kW	106,1	119,3	131,9
Heating total input current	°,L	A	196,0	225,0	240,0
COP	°,L	W/W	4,60	4,53	4,52
Water flow rate system side	°,L	l/h	84852	93902	103410
Pressure drop system side	°,L	kPa	34	37	45
Water flow rate source side	°,L	l/h	112042	123541	136133

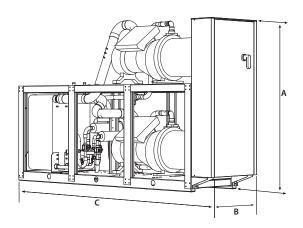
Pressure drop source side ',L kf
(1) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002
SEER - 12/7 (EN14825: 2018) (1)												
Seasonal efficiency	°,L	%	205,9%	214,4%	222,6%	221,7%	221,9%	210,8%	211,5%	228,3%	223,0%	226,4%
SEER	°,L	W/W	5,22	5,44	5,64	5,62	5,62	5,35	5,36	5,78	5,65	5,74
UE 813/2013 performance in average a	mbient conditio	ns (average) -	55 °C - Pdesig	nh ≤ 400 kW (2)							
Pdesignh	°,L	kW	155	188	217	245	299	309	379	-	-	-
SCOP	°,L	W/W	4,52	4,62	4,72	4,69	4,69	4,63	4,60	-	-	-
ηsh	°,L	%	173.0%	177.0%	181.0%	179.0%	181.0%	177.0%	176.0%	-	-	-

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Electric data															
Maximum current (FLA)	°,L	Α	75,6	95,6	104,4	115,9	143,2	151,2	191,2	208,8	231,8	259,1	286,4	323,8	352,0
Peak current (LRA)	°,L	A	180,0	163,0	192,0	229,0	267,0	255,6	258,6	296,4	344,9	372,2	410,2	475,9	490,0

GENERAL TECHNICAL DATA

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Compressor															
Туре	°,L	type							Screw						
Compressor regulation	°,L	Туре							On/Off						
Number	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Circuits	°,L	no.	1	1	1	1	1	2	2	2	2	2	2	2	2
Refrigerant	°,L	type							R1234ze						
Refrigerant load circuit 1 (1)	°,L	kg	18,0	20,0	22,0	25,0	38,0	18,0	20,5	21,5	25,0	25,0	33,0	35,0	39,0
Refrigerant load circuit 2 (1)	°,L	kg	-	-	-	-	-	18,0	20,0	22,0	25,0	30,0	18,0	20,5	21,5
System side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
Source side heat exchanger															
Туре	°,L	type							Brazed plate	2					
Number	°,L	no.	1	1	1	1	1	1	1	1	1	1	1	1	1
System side hydraulic connections															
Connections (in/out)	°,L	Type						(Grooved join	ts					
Size (in) (2)	°,L	Ø							3″						
Size (out) (2)	°,L	Ø							3″						
Source side hydraulic connections															
Connections (in/out)	°,L	Туре						(Grooved join	ts					
Size (in)	°,L	Ø							3"						
Size (out)	°,L	Ø							3″						
Sound data calculated in cooling mode (3)														
Count manual and	0	dB(A)	87,0	86,0	86,0	86,0	92,0	89,0	90,0	89,0	89,0	93,0	95,0	95,0	95,0
Sound power level	L	dB(A)	78,9	78,0	78,0	78,0	84,0	81,0	81,9	81,0	81,0	85,0	87,0	87,0	87,0
County and a second (10 mg)	0	dB(A)	55,2	54,2	54,2	54,2	60,2	57,2	58,1	57,2	57,2	61,1	63,1	63,1	63,1
Sound pressure level (10 m)	L	dB(A)	47,1	46,2	46,2	46,2	52,2	49,1	50,0	49,1	49,1	53,1	55,1	55,1	55,1

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

DIMENSIONS

Size			0601	0701	0801	0901	1101	1202	1402	1602	1802	2002	2202	2502	2802
Dimensions and weights															
<u> </u>	0	mm	1775	1775	1775	1775	1775	1975	1975	1975	2005	1985	2065	2065	2065
A	L	mm	1775	1775	1775	1775	1775	2120	2120	2120	2120	2120	2120	2120	2120
В	°,L	mm	810	810	810	810	810	810	810	810	810	810	810	810	810
(°,L	mm	2960	2960	2960	2960	3360	2960	2960	2960	2960	3360	3360	3360	3360
Emptyweight	0	kg	1101	1251	1301	1357	1788	1738	2028	2097	2169	2598	3000	3095	3095
Empty weight	L	kg	1229	1379	1429	1485	1934	1966	2256	2325	2397	2855	3257	3352	3352

 $\label{lem:continuous} \mbox{Aermec reserves the right to make any modifications deemed necessary.}$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

⁽²⁾ Size
(3) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

WSH

- Reversing valve
- Optional electronic expansion valve which allows: cooling down to -6 °C
- Modulating capacity control 25-100%

Cooling capacity 165,8 ÷ 269,7 kW Heating capacity 183,3 ÷ 300,3 kW

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

High-efficiency screw compressors, with silent functioning and with cooling capacity adjustment via continuous modulation from 40 to 100%. (25-100% with electronic valve OPTION which is to be requested when placing the order)

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Full-load operation with the production of chilled water 4-16 °C, and the possibility to produce also negative temperature water down to -6 °C for the evaporator and hot water for the condenser up to 55 °C. (for more information, refer to the technical documentation).

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP. SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PRV3: Allows you to control the chiller at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

AKW: Acoustic kit that lowers the noise level even further, thanks to the special coating on the panelling or on those components that produce the most noise in the unit. Available for the low noise version only.

ACCESSORIES COMPATIBILITY

Model	Ver	0701	0801	0901	1101
AER485P1	°,L	•	•	•	•
AERBACP	°,L	•	•	•	•
AERNET	°,L	•	•	•	•
MULTICHILLER_EVO	°,L	•	•		•
PRV3	°,L	•	•	•	•

Antivibration

Ver	0701	0801	0901	1101
°,L	AVX665	AVX665	AVX665	AVX666

Power factor correction

Ver	0701	0801	0901	1101
°,L	RIF161	RIF161	RIF201	RIF241

A grey background indicates the accessory must be assembled in the factory

Acoustic kit

Ver	0701	0801	0901	1101
L	AKW (1)	AKW (1)	AKW (1)	AKW (1)

(1) Available only in low noise version
A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Description
WSH
Size 0701, 0801, 0901, 1101
Operating field
Standard mechanic thermostatic valve (1)
Low temperature electronic thermostatic valve (2)
Model
Reversible heat pump, gas side
Heat recovery
Without heat recovery
With desuperheater (3)
Version
Standard
Standard silenced
Condenser
PED regulation
Power supply
400V ~ 3 50Hz
230V ~ 3 50Hz with fuses
230V ~ 3 50Hz with magnet circuit breakers
500V ~ 3 50Hz with fuses
400V ~ 3 50Hz with magnet circuit breakers
500V ~ 3 50Hz with magnet circuit breakers

Water produced up to +4 °C
 Water produced up to +4 °C. For different temperature please contact the factory.
 In cooling mode, a water temperature no lower than 35°C must always be guaranteed on the heat exchanger inlet.

PERFORMANCE SPECIFICATIONS

WSH - °/L

Size			0701	0801	0901	1101
Cooling performance 12 °C/7 °C(1)						
Cooling capacity	°,L	kW	165,8	195,7	216,7	269,7
Input power	°,L	kW	37,1	42,3	48,3	58,8
Cooling total input current	°,L	A	65,0	73,0	81,0	100,0
EER	°,L	W/W	4,47	4,63	4,48	4,59
Water flow rate source side	°,L	l/h	34669	40687	45310	56133
Pressure drop source side	°,L	kPa	30	31	30	36
Water flow rate system side	°,L	l/h	28521	33675	37283	46389
Pressure drop system side	°,L	kPa	23	24	22	27
Heating performance 40 °C / 45 °C (2	2)					
Heating capacity	°,L	kW	183,3	210,3	237,3	300,3
Input power	°,L	kW	45,4	51,6	58,7	74,4
Heating total input current	°,L	А	81,0	91,0	101,0	131,0
COP	°,L	W/W	4,04	4,08	4,05	4,03
Water flow rate source side	°,L	l/h	40419	46517	52342	66297
Pressure drop source side	°,L	kPa	42	42	39	51
Water flow rate system side	°,L	l/h	31805	36498	41190	52140
Pressure drop system side	°,L	kPa	24	23	23	29

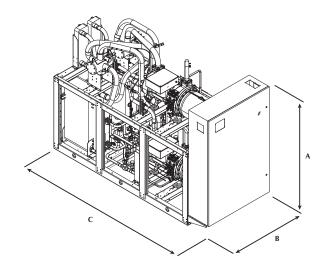
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			0701	0801	0901	1101					
SEER - 12/7 (EN14825: 2018) (1)											
SEER	°,L	W/W	5,04	5,47	5,29	5,11					
Seasonal efficiency	°,L	%	198,6%	215,8%	208.6%	201,3%					
UE 813/2013 performance in aver	UE 813/2013 performance in average ambient conditions (average) - 55 °C - Pdesignh ≤ 400 kW (2)										
Pdesignh	°,L	kW	249	285	322	-					
SCOP	°,L	W/W	4,20	4,25	4,23	-					
ηsh	°,L	%	160.0%	162.0%	161.0%	-					

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0701	0801	0901	1101
Electric data						
Maximum current (FLA)	°,L	A	124,0	144,0	162,0	182,0
Peak current (LRA)	°,L	A	163,0	192,0	229,0	300,0

GENERAL TECHNICAL DATA

Size	·	·	0701	0801	0901	1101
Compressor						
Туре	°,L	type		Bi-	vite	
Compressor regulation	°,L	Туре		On	-Off	
Number	°,L	no.	1	1	1	1
Circuits	°,L	no.	1	1	1	1
Refrigerant	°,L	type		R1	34a	
System side heat exchanger						
Туре	°,L	type		Braze	d plate	
Number	°,L	no.	1	1	1	1
Connections (in/out)	°,L	Туре		Groove	ed joints	
Sizes (in/out)	°,L	Ø			3"	
Source side heat exchanger						
Туре	°,L	type		Braze	d plate	
Number	°,L	no.	1	1	1	1
Connections (in/out)	°,L	Туре		Groove	ed joints	
Sizes (in/out)	°,L	Ø			3"	
Sound data calculated in cooling m	ode (1)					
Causad manuar laural	0	dB(A)	86,0	86,0	86,0	92,0
Sound power level	L	dB(A)	78,0	78,0	78,0	84,0
C	0	dB(A)	54,1	54,1	54,1	60,1
Sound pressure level (10 m)	L	dB(A)	46,1	46,1	46,1	52,1

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0701	0801	0901	1101
Dimensions and weights						
A	0	mm	2050	2050	2050	2050
A	L	mm	2120	2120	2120	2120
В	°,L	mm	809	809	809	809
С	°,L	mm	2960	2960	2960	3360
Empty weight	0	kg	1391	1443	1506	1946
Empty weight	L	kg	1622	1674	1737	2206

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WFGI

Water cooled heat pump reversible water side

Cooling capacity 217 ÷ 1765 kW Heating capacity 243 ÷ 1960 kW

- Production of hot water from condenser up to 65° C.
- Production of chilled water down to -8°C

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 20 $^{\circ}$ C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 65 $^{\circ}$ C depending on the model.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 1-2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

All units are equipped with an inverter compressor combined with an on-off compressor (two-circuit sizes) or two on/off compressors (three-circuit sizes), with R1234ze (A2L) refrigerant.

The R515B refrigerant with this type of gas is also available on the configurator. Performances do not vary when the refrigerant gas available on the configurator varies.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 x n° 3: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

ACCESSORIES COMPATIBILITY

Model	Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	A	•	•	•	•	•	•	•		•		•										
AER485P1 x n° 2 (1)	A								•		•		•	•	•	•	•	•				
AER485P1 x n° 3 (1)	°,A																		•		•	•
AFDDACD	٥																					
AERBACP	A			•	•	•		•			•	•	•	•			•	•	•	•	•	
AFDNIFT	٥																		•			
AERNET	A		•	•	•	•	•			•		•										
AERSET	A		•	•	•	•	•			•	•	•	•				•	•	•	•		•
MULTICUULED EVO	0																		•	•	•	•
MULTICHILLER_EVO	A		•	•	•	•			•	•	•	•	•			•	•		•	•		•
DCD1	0																		•			
PGD1	A																					

⁽¹⁾ x Indicates the quantity of accessories to match.

Antivibration

minivioral	ion												
Version	Set-up	Heat recovery	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
0	°,L	°,D,T	-	-	-	-	-	-	-	-	-	-	-
Α	0	0	AVX680	AVX680	AVX681	AVX687	AVX687	AVX682	AVX685	AVX673	AVX683	AVX674	AVX683
Α	L	0	AVX681	AVX681	AVX681	AVX682	AVX682	AVX682	AVX683	AVX674	AVX683	AVX674	AVX683
A	°,L	D,T	-	-	-	-	-	-	-	AVX674	-	AVX674	-
Version	Set-up	Heat recovery	3202	3602	4202	480)2	5602	6402	6703	7203	8403	9603
0	°,L	°,D,T	-	-	-	-		-	-	Contact us.	Contact us.	Contact us.	Contact us.
Α	٥	°,D	AVX679	AVX679	AVX679	AVX6	578	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
Α	L	٥	AVX679	AVX679	AVX679	AVX6	578	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.

AVX678

AVX678

AVX678

AVX678

AVX678

AVX678

Contact us.

Power factor correction

Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
A	-	-	-	-	-	-	-	RIFWFI2502	-	RIFWFI2802	-

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

D,T

_	Ver	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
	0	-	-	-	-	-	-	RIFWFI6703	RIFWFI7203	RIFWFI8403	RIFWFI9603
	A	RIFWFI3202	RIFWFI3602	RIFWFI4202	RIFWFI4802	RIFWFI5602	RIFWFI6402	RIFWFI6703	RIFWFI7203	RIFWFI8403	RIFWFI9603

A grey background indicates the accessory must be assembled in the factory

For the size of the units with the RIF accessory we ask you to contact the headquarters.

AVX679

AVX679

AVX679

AVX679

AVX678

AVX678

Isolating kit

Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
A	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15	ISG1	ISG15
A grey background indicates the accessor	y must be assembled	in the factory									
Ver	3202	3602	4202	4802	5602	6	402	6703	7203	8403	9603
٥	-	-	-	-	-		-	ISG7	ISG8	ISG8	ISG8
A	ISG2	ISG2	ISG2	ISG3	ISG3	J	SG3	ISG7	ISG8	ISG8	ISG8

A grey background indicates the accessory must be assembled in the factory

not available

CONFIGURATOR

Field	Description
1,2,3,4	WFGI
5,6,7,8	Size 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
9	Model
	Standard condensation
Н	Optimised for high condensation
10	Version
0	Standard (1)
Α	High efficiency
11	Operating field
Χ	Electronic thermostatic expansion valve
Z	Double electronic thermostatic for low temperature
12	Set-up
0	Standard without hood
K	Super low noise with hood (2)
L	Silenced with hood

Field		Description
13		Heat recovery
	0	Without heat recovery
	D	With desuperheater (3)
	T	With total recovery (3)
14		Evaporator
	0	Standard
	E	Evaporating unit
15		Power supply
	0	400V ~ 3 50Hz with fuses
	8	400V ~ 3 50Hz with magnet circuit breakers (4)
16		Refrigerant gas (5)
	0	R1234ze
	G	R515B

- (1) Only for sizes from 6703 to 9603
 (2) Only for units with R515B
 (3) Not available for the condenserless "E"
 (4) Not available for 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2801, 3201 size
 (5) Performances do not vary when the refrigerant gas available on the configurator varies.

MODEL PERFORMANCE DATA (°) - FOR TEMPERATURES WATER PRODUCED UP TO +55°C

WFGI 1101 - 3201 - model (°) version A - aas R1234ze

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: °										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	216,8	255,6	285,6	324,6	366,2	407,0	484,9	545,9	586,5
Input power	kW	41,8	50,3	55,3	62,1	73,8	83,3	92,6	102,6	112,2
Cooling total input current	A	74,0	87,0	95,0	106,0	125,0	140,0	152,0	170,0	187,0
EER	W/W	5,19	5,08	5,17	5,23	4,96	4,89	5,24	5,32	5,23
Water flow rate source side	l/h	44248	52351	58332	66233	75332	83987	98906	111058	119737
Pressure drop source side	kPa	30	33	29	26	22	21	24	24	21
Water flow rate system side	l/h	37296	43987	49124	55816	62963	69984	83363	93854	100830
Pressure drop system side	kPa	22	24	24	15	18	13	20	26	14
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	243,2	292,8	321,7	365,6	419,7	467,2	540,0	606,5	655,5
Input power	kW	55,2	66,1	70,6	77,1	94,3	106,3	118,0	131,1	142,3
Heating total input current	А	97,0	114,0	120,0	131,0	159,0	178,0	193,0	215,0	236,0
COP	W/W	4,41	4,43	4,56	4,74	4,45	4,40	4,58	4,63	4,61
Water flow rate system side	l/h	42220	50823	55848	63486	72879	81140	93796	105337	113866
Pressure drop system side	kPa	27	31	27	23	20	20	22	22	19
Water flow rate source side	l/h	55079	66427	73525	84200	95108	105386	123347	139074	149713
Pressure drop source side	kPa	48	56	54	34	41	29	45	58	32

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 2502 - 9603 - model (°) version A - gas R1234ze

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °													
Cooling performance 12 °C/7 °C(1)													
Cooling capacity	kW	506,3	571,0	664,9	737,9	869,3	989,2	1096,6	1223,1	1323,2	1463,2	1605,2	1765,9
Input power	kW	96,8	107,6	125,2	143,4	166,7	185,8	206,7	234,8	238,3	265,7	299,4	337,5
Cooling total input current	A	171,0	192,0	215,0	245,0	273,0	311,0	346,0	396,0	407,0	468,0	519,0	591,0
EER	W/W	5,23	5,31	5,31	5,15	5,22	5,32	5,30	5,21	5,55	5,51	5,36	5,23
Water flow rate source side	I/h	102932	115945	135099	150773	177155	200809	223021	249142	267794	296179	326287	360505
Pressure drop source side	kPa	61	55	46	30	45	50	36	51	11	24	23	22
Water flow rate system side	l/h	87066	98181	114326	126885	149451	170077	188509	210265	227441	251516	275910	303500
Pressure drop system side	kPa	45	35	33	41	32	44	34	43	26	31	29	17
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	564,4	631,4	731,6	821,0	966,2	1093,4	1212,3	1370,1	1454,7	1611,8	1770,0	1960,8
Input power	kW	124,9	136,1	155,8	181,8	211,1	235,7	260,5	299,0	300,1	334,7	374,9	420,6
Heating total input current	A	218,0	241,0	264,0	306,0	343,0	390,0	431,0	498,0	507,0	582,0	643,0	732,0
COP	W/W	4,52	4,64	4,70	4,52	4,58	4,64	4,65	4,58	4,85	4,82	4,72	4,66
Water flow rate system side	l/h	97998	109633	127054	142602	167814	189909	210585	237978	252762	280014	307509	340678
Pressure drop system side	kPa	56	50	41	27	41	45	32	46	10	22	20	20
Water flow rate source side	I/h	129450	145407	168838	187634	221376	252011	278815	314719	336930	373381	407768	449226
Pressure drop source side	kPa	99	76	73	89	70	96	73	96	56	69	63	37

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 6703 - 9603 - model (°) version ° - gas R1234ze

Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C (1)					
Cooling capacity	kW	1309,2	1445,9	1559,4	1729,0
Input power	kW	242,2	267,6	299,6	340,9
Cooling total input current	A	396,0	475,0	525,0	588,0
EER	W/W	5,40	5,40	5,20	5,07
Water flow rate source side	l/h	265488	293277	318297	354161
Pressure drop source side	kPa	44	39	34	41
Water flow rate system side	l/h	225045	248539	268020	297184
Pressure drop system side	kPa	27	29	22	26
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1443,5	1597,2	1729,1	1928,5
nput power	kW	304,0	336,2	373,6	425,5
Heating total input current	A	493,0	592,0	650,0	729,0
COP	W/W	4,75	4,75	4,63	4,53
Water flow rate system side	l/h	250744	277455	300382	335030
Pressure drop system side	kPa	39	35	30	37
Water flow rate source side	l/h	333379	368962	396107	439877
Pressure drop source side	kPa	59	64	49	58

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Energy indices (Reg. 2016/2281 EU)

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: °										
SEER - 12/7 (EN14825: 2018) (1)										
Seasonal efficiency	%	343,60	349,90	351,60	353,90	361,00	361,00	360,80	362,20	361,40
SEER	W/W	8,67	8,82	8,87	8,92	9,10	9,10	9,10	9,13	9,11
SEPR - (EN 14825: 2018) High temperature (2)										-
SEPR	W/W	9,70	9,80	9,60	9,30	9,80	9,40	9,50	9,20	9,10

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	%	-	-	-	-	-	-	-	-	335.7%	337.9%	329.7%	326.0%
A	%	340.8%	345.4%	342.7%	347.3%	346.2%	347.8%	355.7%	349.1%	355.8%	353.7%	354.5%	349.3%
0	W/W	-	-	-	-	-	-	-	-	8,47	8,52	8,32	8,23
А	W/W	8,60	8,71	8,64	8,76	8,73	8,77	8,97	8,80	8,97	8,92	8,94	8,81
re (2)													
0	W/W	-	-	-	-	-	-	-	-	8,80	8,70	8,60	8,70
A	W/W	9,30	9,40	8,90	9,00	9,10	9,10	9,20	9,20	8,90	8,90	9,00	9,00
	A	A %	° % - A % 340.8% ° W/W - A W/W 8,60 re (2) ° W/W -	° % A % 340.8% 345.4% ° W/W A W/W 8,60 8,71 re (2) ° W/W	° % A % 340.8% 345.4% 342.7% ° W/W A W/W 8,60 8,71 8,64 re (2) ° W/W	° %	° %	° %	° %	° %	° % - - - - - - - - 335.7% A % 340.8% 345.4% 342.7% 347.3% 346.2% 347.8% 355.7% 349.1% 355.8% ° W/W - - - - - - - 8,47 A W/W 8,60 8,71 8,64 8,76 8,73 8,77 8,97 8,80 8,97 re(2) ° W/W - - - - - - - - 8,80	° % -	° % - - - - - - - - - - 345.9% 329.7% A % 340.8% 345.4% 342.7% 347.3% 346.2% 347.8% 355.7% 349.1% 355.8% 353.7% 354.5% ° W/W - - - - - - - - 8,32 A W/W 8,60 8,71 8,64 8,76 8,73 8,77 8,97 8,80 8,97 8,92 8,94 re (2)

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Calculation performed with VARIABLE water flow rate.

Size			1101	1251	1401
Model: °					
UE 813/2013 performance in average am	bient conditions (average) - 55 °C - Pdesignh ≤ 40	0 kW (1)		
Pdesignh	٥	kW	-	-	-
ruesigiiii	Α	kW	300,00	368,00	399,00
CCOD	٥	W/W	-	-	-
SCOP	Α	W/W	5,25	5,25	5,33
	٥	%	-	-	-
ηsh	A	%	202,00	202,00	205,00

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

Electric data

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °																							
Electric data																							
Maximum aument (FLA)	٥	А	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	682,4	765,6	849,2	957,6
Maximum current (FLA) -	Α	Α	158,9	180,6	184,4	201,3	220,8	247,5	280,9	309,0	315,2	331,4	342,7	368,6	408,3	456,2	523,3	582,2	663,0	682,4	765,4	849,2	957,6
Deals surrent (LDA)	0	А	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1063,0	1177,0	1391,0	1583,0
Peak current (LRA)	Α	Α	23,0	23,0	23,0	23,0	23,0	23,0	23,0	498,0	23,0	592,0	23,0	641,0	689,0	837,0	934,0	1124,0	1287,0	1063,0	1177,0	1391,0	1583,0

MODEL PERFORMANCE DATA (H) - FOR TEMPERATURES WATER PRODUCED UP TO +65°C

WFGI 1101 - 3201 - model (H) version A - gas R1234ze

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: H										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	220,0	254,8	289,6	327,4	357,5	399,0	482,6	542,2	593,6
Input power	kW	41,7	49,5	57,4	64,3	73,6	83,0	96,5	109,7	118,6
Cooling total input current	A	76,0	87,0	99,0	109,0	123,0	138,0	158,0	181,0	197,0
EER	W/W	5,28	5,14	5,04	5,09	4,85	4,81	5,00	4,94	5,00
Water flow rate source side	l/h	44780	52069	59378	67087	73813	82562	99166	111592	122023
Pressure drop source side	kPa	30	33	29	26	22	21	24	24	21
Water flow rate system side	l/h	37844	43840	49813	56306	61471	68609	82982	93228	102044
Pressure drop system side	kPa	22	24	24	15	18	13	20	26	14
Heating performance 40 °C / 45 °C (2)										
Heating capacity	kW	242,3	283,1	322,4	364,4	402,1	448,3	537,9	604,7	657,2
Input power	kW	50,8	60,1	69,5	77,0	88,8	100,0	114,2	129,4	134,3
Heating total input current	A	91,0	105,0	118,0	130,0	148,0	165,0	186,0	211,0	222,0
СОР	W/W	4,77	4,71	4,64	4,73	4,53	4,48	4,71	4,67	4,89
Water flow rate system side	I/h	42056	49149	55968	63270	69832	77853	93424	105035	114165
Pressure drop system side	kPa	27	29	26	23	19	19	22	22	19
Water flow rate source side	l/h	55990	65269	74006	83856	91549	101626	123761	139042	152399
Pressure drop source side	kPa	48	54	54	33	40	28	45	59	32

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 2502 - 9603 - model (H) version A - gas R1234ze

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	511,3	581,3	664,4	741,3	869,2	988,5	1083,6	1218,4	1312,3	1450,5	1588,3	1759,4
Input power	kW	100,0	114,5	129,9	146,9	170,3	191,3	214,6	243,5	249,2	279,2	314,2	360,4
Cooling total input current	А	182,0	205,0	225,0	248,0	291,0	326,0	370,0	411,0	449,0	491,0	556,0	651,0
EER	W/W	5,11	5,08	5,11	5,04	5,10	5,17	5,05	5,00	5,27	5,20	5,06	4,88
Water flow rate source side	l/h	104337	118851	135775	151933	177734	201586	222077	249762	267707	296196	325814	363151
Pressure drop source side	kPa	61	55	46	30	45	50	36	51	11	24	23	22
Water flow rate system side	l/h	87940	99961	114232	127463	149434	169953	186288	209453	225564	249326	273015	302384
Pressure drop system side	kPa	45	35	33	41	32	44	34	43	26	31	29	17
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	563,1	641,8	731,2	822,8	961,9	1089,6	1200,8	1381,7	1445,1	1599,5	1759,3	1964,0
Input power	kW	120,6	137,4	154,1	177,9	203,8	229,4	255,3	289,7	297,6	333,6	372,8	425,2
Heating total input current	Α	216,0	243,0	263,0	295,0	344,0	385,0	434,0	479,0	530,0	579,0	651,0	763,0
COP	W/W	4,67	4,67	4,75	4,63	4,72	4,75	4,70	4,77	4,86	4,79	4,72	4,62
Water flow rate system side	l/h	97770	111434	126975	142910	167067	189246	208586	239997	251090	277882	305657	341230
Pressure drop system side	kPa	54	49	41	26	40	44	31	47	10	22	20	20
Water flow rate source side	I/h	130239	148043	169179	189222	222144	252647	276929	320765	334856	370130	405298	448896
Pressure drop source side	kPa	99	76	73	90	70	96	74	100	56	69	64	37

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGI 6703 - 9603 - model (H) version ° - gas R1234ze

Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	1298,6	1433,8	1544,1	1739,6
Input power	kW	252,7	280,5	312,9	362,4
Cooling total input current	A	449,0	491,0	553,0	649,0
EER	W/W	5,14	5,11	4,93	4,80
Water flow rate source side	I/h	265376	293300	317856	359510
Pressure drop source side	kPa	44	39	34	41
Water flow rate system side	I/h	223228	246460	265406	299001
Pressure drop system side	kPa	27	29	22	26
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1433,5	1584,7	1718,0	1945,1
Input power	kW	300,7	334,3	369,6	428,4
Heating total input current	A	530,0	579,0	649,0	761,0
COP	W/W	4,77	4,74	4,65	4,54
Water flow rate system side	l/h	249013	275290	298460	337909
Pressure drop system side	kPa	39	35	30	36
Water flow rate source side	l/h	331388	365876	394002	443875
Pressure drop source side	kPa	59	64	49	58

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Energy indices (Reg. 2016/2281 EU)

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: H										
SEER - 12/7 (EN14825: 2018) (1)										
Seasonal efficiency	%	314,30	316,20	304,40	314,40	296,40	301,70	310,30	314,20	317,80
SEER	W/W	7,93	7,98	7,69	7,94	7,49	7,62	7,83	7,93	8,02
SEPR - (EN 14825: 2018) High temperature (2)										
SEPR	W/W	9,10	9,00	8,70	8,90	8,40	8,40	8,80	8,60	8,90

(1) Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Calculation performed with VARIABLE water flow rate.

Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H														
SEER - 12/7 (EN14825: 2018) (1)														
	0	%	-	-	-	-	-	-	-	-	287.7%	286.9%	287.6%	281.6%
Seasonal efficiency	A	%	294.9%	295.7%	300.5%	291.4%	301.0%	304.5%	309.3%	298.9%	302.4%	297.7%	302.9%	295.0%
CLLD	0	W/W	-	-	-	-	-	-	-	-	7,27	7,25	7,27	7,12
SEER	A	W/W	7,45	7,47	7,59	7,36	7,60	7,69	7,81	7,55	7,64	7,52	7,65	7,45
SEPR - (EN 14825: 2018) High temperat	ure (2)													
CEDD	0	W/W	-	-	-	-	-	-	-	-	8,20	8,20	8,30	8,30
SEPR	A	W/W	8,60	8,60	8,50	8,60	8,50	8,60	8,50	8,60	8,60	8,50	8,70	8,70

(1) Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Size			1101	1251	1401
Model: H				.251	
UE 813/2013 performance in average an	bient conditions (a	verage) - 55 °C - Pdesignh ≤ 400	kW (1)		
	0	kW	-	-	-
Pdesignh	A	kW	296,00	348,00	395,00
ccop	0	W/W	-	-	-
SCOP	A	W/W	5,45	5,43	5,23
	0	%	-	-	-
ηsh	A	%	210,00	209,00	201.00

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

Electric data

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H																							
Electric data																							
Maximum aument (FLA)	0	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	853,0	939,0	1047,0	1178,0
Maximum current (FLA)	A	А	155,0	177,0	201,0	222,0	262,0	296,0	349,0	343,0	390,0	389,0	415,0	422,0	488,0	559,0	644,0	719,0	797,0	853,0	939,0	1047,0	1178,0
Deals assument (LDA)	0	А	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1179,0	1297,0	1527,0	1737,0
Peak current (LRA)	A	Α	23,0	23,0	23,0	23,0	23,0	23,0	23,0	494,0	23,0	545,0	23,0	661,0	730,0	885,0	1002,0	1198,0	1357,0	1179,0	1297,0	1527,0	1737,0

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

Model performance data (°) - for condensing temperatures up to 55°C

Model output data WFGI° - AE - gas R1234ze

- July and the second s										
Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: °										
Cooling performance 12 °C / 7 °C - gas R1234ze (1)										
Cooling capacity	kW	198,0	231,1	256,8	292,1	326,6	363,6	437,8	493,2	519,6
Input power	kW	51,6	61,8	66,8	75,1	88,4	100,0	109,4	123,5	136,2
Cooling total input current	А	92,0	108,0	115,0	128,0	151,0	168,9	184,0	206,0	227,0
EER	W/W	3,83	3,74	3,85	3,89	3,69	3,64	4,00	3,99	3,82
Evaporator water flow rate	l/h	34021	39713	44127	50189	56115	62473	75211	84731	89274
Pressure drop evaporator side	kPa	17	20	19	12	15	11	17	21	12
Length of refrigerant lines from/to 0 - 10 m										
Gas line (C1)	Ø	54,0	67,0	67,0	67,0	76,0	76,0	89,0	89,0	89,0
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	_	_

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °													
Cooling performance 12 °C / 7 °C - gas R1234ze (1)													
Cooling capacity	kW	453,9	510,4	593,1	659,9	765,6	890,9	975,6	1082,9	1179,9	1316,9	1449,4	1574,0
Input power	kW	116,3	128,9	149,1	172,3	195,5	215,5	242,5	277,6	290,6	321,6	361,5	409,6
Cooling total input current	Α	207,0	229,0	256,0	293,0	327,0	370,0	411,0	471,0	488,0	555,0	616,0	700,0
EER	W/W	3,90	3,96	3,98	3,83	3,92	4,13	4,02	3,90	4,06	4,09	4,01	3,84
Evaporator water flow rate	l/h	77982	87695	101893	113381	131535	153062	167617	186047	202720	226251	249032	270431
Pressure drop evaporator side	kPa	36	28	26	33	27	35	26	33	20	26	25	14
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Model output data WFGI° - °E - gas R1234ze

Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C - gas R1234ze (1)					
Cooling capacity	kW	1146,9	1278,8	1388,3	1517,0
Input power	kW	291,2	322,2	361,3	409,8
Cooling total input current	A	489,0	556,0	615,0	700,0
EER	W/W	3,94	3,97	3,84	3,70
Evaporator water flow rate	I/h	197057	219704	238518	260630
Pressure drop evaporator side	kPa	20	23	17	21
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Model performance data (H) - for condensing temperatures up to 60°C

Model output data - model WFGIH - AE - gas R1234ze

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: H										
Cooling performance 12 °C/7 °C - gas R1234ze (1)										
Cooling capacity	kW	198,0	231,1	256,8	292,1	326,6	363,6	437,8	493,2	519,6
Input power	kW	51,6	61,8	66,8	75,1	88,4	100,0	109,4	123,5	136,2
Cooling total input current	A	92,0	108,0	115,0	128,0	151,0	168,9	184,0	206,0	227,0
EER	W/W	3,83	3,74	3,85	3,89	3,69	3,64	4,00	3,99	3,82
Evaporator water flow rate	l/h	34021	39713	44127	50189	56115	62473	75211	84731	89274
Pressure drop evaporator side	kPa	17	20	19	12	15	11	17	21	12
Length of refrigerant lines from/to 0 - 10 m										
Gas line (C1)	Ø	54,0	67,0	67,0	67,0	76,0	76,0	89,0	89,0	89,0
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	-

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C/7 °C - gas R1234ze (1)													
Cooling capacity	kW	453,9	510,4	593,1	659,9	765,6	890,9	975,6	1082,9	1179,9	1316,9	1449,4	1574,0
Input power	kW	116,3	128,9	149,1	172,3	195,5	215,5	242,5	277,6	290,6	321,6	361,5	409,6
Cooling total input current	А	207,0	229,0	256,0	293,0	327,0	370,0	411,0	471,0	488,0	555,0	616,0	700,0
EER	W/W	3,90	3,96	3,98	3,83	3,92	4,13	4,02	3,90	4,06	4,09	4,01	3,84
Evaporator water flow rate	I/h	77982	87695	101893	113381	131535	153062	167617	186047	202720	226251	249032	270431
Pressure drop evaporator side	kPa	36	28	26	33	27	35	26	33	20	26	25	14
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Model output data - model WFGIH - $^\circ$ E - gas R1234ze

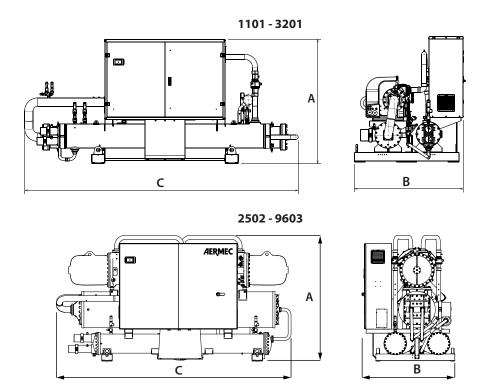
Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C / 7 °C - gas R1234ze (1)					
Cooling capacity	kW	1146,9	1278,8	1388,3	1517,0
Input power	kW	291,2	322,2	361,3	409,8
Cooling total input current	A	489,0	556,0	615,0	700,0
EER	W/W	3,94	3,97	3,84	3,70
Evaporator water flow rate	l/h	197057	219704	238518	260630
Pressure drop evaporator side	kPa	20	23	17	21
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

GENERAL TECHNICAL DATA

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Compressor																							
Туре	°,A	type											Screw										
Compressor regulation	°,A	Туре	- 1	- 1	- 1	- 1	- 1	- 1	- 1	1/1	- 1	1/1	- 1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Circuits	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Refrigerant	°,A	type											R1234ze	<u>.</u>									
Refrigerant load circuit 1 (1)		kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
herrigerant toda circuit 1 (1)	A	kg	59,0	57,0	72,0	66,0	61,0	85,0	81,0	50,0	110,0	53,0	104,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Refrigerant load circuit 2 (1)		kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
herrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	-	-	50,0	-	53,0	-	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Refrigerant load circuit 3 (1)	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
herrigerant load circuit 3 (1)	A	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
System side heat exchanger																							
Туре	°,A	type										She	ell and to	ıbe									
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре										Gro	oved joi	nts									
Source side heat exchanger																							
Туре	°,A	type										She	ell and to	ıbe									
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Connections (in/out)	°,A	Туре										Gro	oved joi	nts									

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


SOUND DATA

Sound data calculated with functioning in cooling mode - R1234ze gas

Size		1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Refrigerant gas: °																						
Standard equipment																						
Sound power level (1)	dB(A)	94,0	95,8	96,1	97,0	97,1	97,2	97,3	97,3	97,3	97,7	98,0	98,8	98,8	98,9	98,9	99,3	100,0	99,5	100,6	101,0	102,0
Silenced equipment																						
Sound power level (1)	dB(A)	90,0	91,8	92,1	93,0	93,1	93,2	93,3	93,3	93,3	93,7	94,0	94,8	94,8	94,9	94,9	95,3	96,0	95,5	96,6	97,0	98,0
(1) Cound nower: calculated in agreement with	the Standar	4 HMILEN	ISO 061	14.2 in	complia	nco witl	h that ro	auoctor	hy Euro	wont co	rtificatio	n										

⁽¹⁾ Sound power: calculated in agreement with the Standard UNI EN ISO 9614-2, in compliance with that requested by Eurovent certification.

DIMENSIONS

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °, H																							
Dimensions and weights - standard config	uration																						
Α.	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
Α –	Α	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
D	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В —	А	mm	1510	1560	1610	1610	1610	1610	1610	1645	1630	1645	1630	1675	1675	1685	1875	1875	2000	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
_	Α	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4380	4380	4395	4500	4580	4580	5650	5650	5650	5650
F	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8740	9680	9900	10000
Empty weight —	Α	kg	2020	2030	2230	2410	2450	2670	3090	3710	3530	3980	3570	5160	5220	5710	6440	6680	6770	9730	11440	11980	12060
Dimensions and weights - quiet configurat	ion																						
A .	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
Α –	Α	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
D.	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В	Α	mm	1525	1560	1610	1610	1610	1615	1615	1645	1630	1645	1630	1675	1675	1685	1875	1875	2000	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
_	Α	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4630	4630	4600	5015	5060	5060	5650	5650	5650	5650
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9270	10240	10510	10610
Empty weight —	Α	kg	2180	2190	2390	2570	2610	2830	3280	4020	3720	4290	3760	5500	5560	6050	6810	7080	7170	10260	12000	12590	12670

[■] For the sizes of D-T-E versions please contact the factory.

WFGN

Water cooled heat pump reversible water side

Cooling capacity 136 ÷ 1727 kW Heating capacity 153 ÷ 1921 kW

- Production of hot water up to 55°C.
- Production of chilled water down to -8°C.

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 16 °C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 55 °C.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 1-2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

They are equipped with screw compressors and system and source side shell and tube heat exchangers dedicated to use of the new HFO R1234ze gas (A2L).

The R515B refrigerant with this type of gas is also available on the configurator. Performances do not vary when the refrigerant gas available on the configurator varies.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 \mathbf{x} \mathbf{n}° **3:** RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

AERSET: It makes it possible to automatically compensate for the operation setting of the unit to which it is connected, based on a 0-10V MODBUS input signal. Mandatory accessory MODU-485BL.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

Contact us.

Contact us.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	A					•	•		•	•															
AER485P1 x n° 2 (1)	A											•		•		•	•	•		•					
AER485P1 x n° 3 (1)	°,A																					•	•	•	•
AFDDACD	٥																					•	•	•	
AERBACP	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AFDNIFT	0																								
AERNET	A			•			•	•	•	•			•		•	•	•		•	•			•	•	
AERSET	A	•	•	•	•	•	•	•	•	•	•		•		•										
MUUTICUULED EVO	٥																					•	•	•	
MULTICHILLER_EVO	A	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•		•	•	•		•	•
DCD1	0																								
PGD1	A																								•

(1) x Indicates the quantity of accessories to match.

Antivibration

	tion													
Version	Set-up	Heat recovery	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
0	°,L	°,D,T	-	-	-	-	-	-	-	-	-	-	-	-
A	0	0	AVX680	AVX680	AVX680	AVX681	AVX681	AVX681	AVX682	AVX682	AVX683	AVX683	AVX673	AVX683
A	L	0	AVX680	AVX680	AVX680	AVX681	AVX681	AVX681	AVX682	AVX685	AVX683	AVX683	AVX674	AVX683
A	°,L	D,T	-	-	-	-	-	-	-	-	-	-	AVX674	-
Version	Set-up	Heat	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
		recovery						1002				7203	0403	7003
0	°,L	°,D,T	-	-	-	-	-	-	-	-	Contact us.	Contact us.	Contact us.	Contact us.
° A	°,L		- AVX674	- AVX683	- AVX679	- AVX679			- AVX678	- AVX678				
A A	,L	°,D,T		- AVX683 AVX683		- AVX679 AVX678	-	-	-	-	Contact us.	Contact us.	Contact us.	Contact us.
A	,L	°,D,T	AVX674		AVX679		- AVX678	- AVX678	- AVX678	- AVX678	Contact us.	Contact us.	Contact us.	Contact us.

Power factor correction

Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
A	RIFWFN0701	RIFWFN0801	RIFWFN0901	RIFWFN1101	RIFWFN1251	RIFWFN1401	RIFWFN1601	RIFWFN1801	RIFWFN2101	RIFWFN2401	RIFWFN2502	RIFWFN2801
Ver	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	-	-	RIFWFN6703	RIFWFN7203	RIFWFN8403	RIFWFN9603
A	RIFWFN2802	RIFWFN3201	RIFWFN3202	RIFWFN3602	RIFWFN4202	RIFWFN4802	RIFWFN5602	RIFWFN6402	RIFWFN6703	RIFWFN7203	RIFWFN8403	RIFWFN9603

AVX678

AVX678

AVX678

AVX676

AVX678

AVX676

AVX678

AVX676

Contact us.

Contact us.

Contact us.

Contact us.

Contact us.

Contact us.

For the size of the units with the RIF accessory we ask you to contact the headquarters.

AVX674

AVX674

AVX678

AVX678

AVX678

AVX678

Isolating kit

Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
A	ISG10	ISG10	ISG10	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15
Ver	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	-	-	-	-	-	-	-	-	ISG5	ISG5	ISG6	ISG6
A	ISG1	ISG15	ISG2	ISG2	ISG2	ISG3	ISG3	ISG3	ISG7	ISG8	ISG8	ISG8

CONFIGURATOR

Field	Description
1,2,3,4	WFGN
5,6,7,8	Size 0701, 0801, 0901, 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
9	Model
0	Heat pump reversible on the water side
10	Version
0	Standard (1)
Α	High efficiency
11	Operating field
Χ	Electronic thermostatic expansion valve
Z	Double electronic thermostatic for low temperature
12	Set-up
0	Standard
K	Super low noise with hood (2)
L	Silenced with hood
13	Heat recovery
0	Without heat recovery
D	With desuperheater (3)
T	With total recovery (3)
14	Evaporator
0	Standard
E	Evaporating unit
15	Power supply
0	400V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit
2	230V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (4)
4	230V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (4)
5	500V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (4)
8	400V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit
9	500V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (4)
16	Refrigerant gas (5)
0	R1234ze
G	R515B

PERFORMANCE SPECIFICATIONS

WFGN 0701-3201 - version A - gas R1234ze

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	136,1	154,8	173,8	221,3	239,8	272,3	335,7	370,1	434,3	490,7	545,3	596,9
Input power	kW	26,0	29,7	33,8	41,4	45,0	51,2	61,5	69,0	78,1	88,5	100,0	109,9
Cooling total input current	A	52,0	57,0	63,0	70,0	83,0	96,0	107,0	119,0	130,0	156,0	173,0	193,0
EER	W/W	5,24	5,21	5,15	5,35	5,33	5,32	5,46	5,37	5,56	5,55	5,45	5,43
Water flow rate system side	l/h	23410	26632	29906	38077	41247	46844	57740	63636	74675	84359	93748	102619
Pressure drop system side	kPa	22	25	24	22	21	22	16	20	15	21	25	15
Water flow rate source side	l/h	27751	31586	35551	44983	48779	55416	68103	75234	87855	99259	110576	121174
Pressure drop source side	kPa	21	20	19	24	21	18	18	18	19	19	19	18
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	153,1	172,4	196,2	245,2	267,2	303,2	369,1	408,3	478,4	547,5	601,0	663,0
Input power	kW	32,6	37,2	42,4	51,8	56,4	64,2	76,0	85,4	96,3	109,6	123,2	137,5
Heating total input current	A	64,0	71,0	79,0	87,0	103,0	119,0	131,0	146,0	160,0	191,0	210,0	240,0
COP	W/W	4,69	4,63	4,63	4,74	4,73	4,73	4,86	4,78	4,97	4,99	4,88	4,82
Water flow rate system side	l/h	26569	29919	34065	42555	46384	52636	64078	70908	83096	95098	104400	115170
Pressure drop system side	kPa	20	18	17	22	19	16	16	16	17	18	17	17
Water flow rate source side	I/h	35233	39544	45008	56537	61580	69831	85443	94274	111358	127787	139586	153205
Pressure drop source side	kPa	49	55	55	48	47	48	34	44	34	48	57	34

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

⁽¹⁾ Only for sizes from 6703 to 9603(2) Only for units with R515B(3) Not available for the condenserless "E"

⁽⁴⁾ The 230V and 500V power supplies are only available for sizes 0701 - 0801 - 0901 - 1101 - 1251 - 1401 - 2502 - 2802
(5) Performances do not vary when the refrigerant gas available on the configurator varies.

WFGN 2502-9603 - version A - gas R1234ze

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Cooling performance 12 °C / 7 °C (1)													
Cooling capacity	kW	489,1	556,6	675,8	750,2	879,3	995,4	1100,3	1217,3	1315,3	1454,9	1594,7	1727,0
Input power	kW	91,4	103,5	125,1	138,3	159,8	180,3	202,1	225,0	236,7	262,9	296,7	326,6
Cooling total input current	Α	166,0	192,0	214,0	237,0	261,0	312,0	346,0	388,0	386,0	466,0	515,0	577,0
EER	W/W	5,35	5,38	5,40	5,42	5,50	5,52	5,45	5,41	5,56	5,53	5,38	5,29
Water flow rate system side	l/h	84115	95704	116204	128995	151168	171142	189154	209277	226089	250084	274117	296820
Pressure drop system side	kPa	42	33	34	42	35	44	33	41	25	31	30	17
Water flow rate source side	l/h	99161	112842	136932	152026	177654	200961	222817	246414	266044	294386	324122	352026
Pressure drop source side	kPa	53	50	49	31	51	51	42	62	19	18	18	21
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	545,1	618,4	747,2	833,5	967,0	1093,6	1204,7	1333,7	1457,0	1601,3	1761,4	1921,0
Input power	kW	116,1	130,9	155,9	173,0	198,3	224,8	248,9	277,7	293,3	326,6	365,9	400,0
Heating total input current	Α	208,0	240,0	264,0	291,0	320,0	383,0	421,0	473,0	473,0	571,0	627,0	702,0
COP	W/W	4,70	4,73	4,79	4,82	4,88	4,87	4,84	4,80	4,97	4,90	4,81	4,80
Water flow rate system side	l/h	94650	107376	129767	144768	167936	189943	209256	231650	253135	278220	306025	333765
Pressure drop system side	kPa	49	45	44	28	45	46	37	55	17	16	16	19
Water flow rate source side	I/h	126174	143007	173413	193793	225352	255129	279883	310087	339613	372508	407744	443369
Pressure drop source side	kPa	95	74	77	96	79	98	73	91	56	70	66	37

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFGN 6703-9603 - version ° - gas R1234ze

Size		6703	7203	8403	9603
Cooling performance 12 °C/7 °C (1)					
Cooling capacity	kW	1300,7	1439,0	1554,8	1692,4
Input power	kW	239,3	265,4	297,1	329,6
Cooling total input current	A	396,0	475,0	525,0	588,0
EER	W/W	5,44	5,42	5,23	5,13
Water flow rate system side	l/h	223578	247357	267235	290895
Pressure drop system side	kPa	26	29	22	26
Water flow rate source side	l/h	263609	291721	317119	346049
Pressure drop source side	kPa	39	39	33	39
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1444,7	1588,0	1725,3	1890,3
Input power	kW	296,0	328,4	364,3	404,7
Heating total input current	A	485,0	583,0	639,0	716,0
COP	W/W	4,88	4,83	4,74	4,67
Water flow rate system side	l/h	250963	275857	299728	328385
Pressure drop system side	kPa	36	35	29	35
Water flow rate source side	l/h	335840	368447	397507	434518
Pressure drop source side	kPa	59	65	48	58

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801
SEER - 12/7 (EN14825: 2018) (1)												
SEER	W/W	6,71	6,96	6,87	6,43	6,80	6,79	6,69	6,69	7,01	6,99	6,58
Seasonal efficiency	%	265,30	275,30	271,70	254,00	269,00	268,40	264,60	264,70	277,20	276,70	260,30
SEPR - (EN 14825: 2018) High temperature (2)												
SEPR	W/W	8,20	8,00	8,20	8,00	8,00	8,00	8,00	7,90	8,10	8,10	8,10
(4) C. L. L. C	IVADIADIE											

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature. (2) Calculation performed with VARIABLE water flow rate.

Size			6703	7203	8403	9603
SEER - 12/7 (EN14825: 2018) (1)						
SEER	°,A	W/W	7,11	7,14	7,03	6,94
Seasonal efficiency	°,A	%	281,30	282,50	278,30	274,40
SEPR - (EN 14825: 2018) High ter	mperature (2)					
SEPR	°,A	W/W	8,10	8,20	8,20	8,30

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.

(2)	Calculation	performed	with \	VARIABLE	water f	low rate.

Size			0701	0801	0901	1101	1251	1401
UE 813/2013 performance in average am	bient condition	s (average) - 55 °C - I	Pdesignh ≤ 400 kW (1)					
Dalasianda	0	kW	-	-	-	-	-	-
Pdesignh	A	kW	197,00	219,00	253,00	312,00	339,00	384,00
CCOR	0	W/W	-	-	-	-	-	-
SCOP	A	W/W	4,65	4,70	4,65	4,75	5,00	4,98
	0	%	-	-	-	-	-	-
ηsh	A	%	178,00	180,00	178,00	182,00	192,00	191,00

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

WFGN - version AE - gas R1234ze

WFGN - version AE - gas K1234ze													
Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Evaporator: E													
Cooling performance 12 °C/7 °C - gas R1234ze (1)													
Cooling capacity	kW	121,0	137,5	154,5	196,6	214,1	243,2	297,4	329,0	390,9	442,4	480,9	529,0
Input power	kW	31,4	35,9	40,9	50,0	54,7	62,2	74,1	83,1	93,9	106,2	119,1	131,5
Cooling total input current	A	58,0	65,0	73,0	83,0	97,0	111,0	125,0	140,0	154,0	183,0	203,0	226,0
EER	W/W	3,85	3,83	3,77	3,93	3,92	3,91	4,02	3,96	4,16	4,17	4,04	4,02
Evaporator water flow rate	I/h	20792	23621	26548	33776	36780	41778	51103	56534	67168	76005	110092	90893
Pressure drop evaporator side	kPa	31	35	35	31	31	32	22	29	22	30	35	21
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	42,0	54,0	54,0	54,0	67,0	67,0	67,0	76,0	76,0	89,0	89,0	89,0
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	28,0	35,0	35,0	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
(1) Service side water 12 $^{\circ}$ C / 7 $^{\circ}$ C; Condensing temperatu	ire 45 ℃												
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Evaporator: E													
Cooling performance 12 °C/7 °C - gas R1234ze (1)													
Cooling capacity	kW	435,2	495,4	598,4	665,6	796,3	895,9	964,3	1068,0	1165,6	1325,4	1443,9	1565,4
Input power	kW	109,2	124,2	148,1	164,9	188,7	212,3	238,2	262,9	279,7	316,3	354,8	392,2
Cooling total input current	A	193,0	222,0	250,0	279,0	310,0	365,0	405,0	451,0	459,0	545,0	603,0	673,0
EER	W/W	3,99	3,99	4,04	4,04	4,22	4,22	4,05	4,06	4,17	4,19	4,07	3,99
Evaporator water flow rate	I/h	74770	85110	102813	114362	136819	153933	165685	183500	200259	227721	248077	268953
Pressure drop evaporator side	kPa	60	48	49	63	50	63	45	56	34	46	43	24
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	54,0	54,0	54,0	54,0
•													

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

WFGN - version °E - gas R1234ze

Size		6703	7203	8403	9603
Evaporator: E					
Cooling performance 12 °C/7 °C - gas R1234ze (1)					
Cooling capacity	kW	1129,2	1283,0	1378,4	1504,1
Input power	kW	282,3	319,1	356,8	394,8
Cooling total input current	A	463,0	549,0	606,0	676,0
EER	W/W	4,00	4,02	3,86	3,81
Evaporator water flow rate	I/h	194017	220439	236821	258428
Pressure drop evaporator side	kPa	35	41	30	36
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

ELECTRIC DATA

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402
Electric data																					
Maximum current (FLA)	A	106,0	119,0	136,0	162,0	183,0	208,0	243,0	275,0	305,0	350,0	365,0	389,0	416,0	427,0	486,0	549,0	609,0	700,0	777,0	854,0
Peak current (LRA)	A	163	192	229	300	314	341	436	465	586	650	440	805	486	917	601	650	792	890	1070	1210
Size							67	03			72	03			84	03			96	03	
Electric data																					
Maximum current (FLA)	°,A		ŀ	l .			91.	3,0			105	0,0			116	6,0			128	31,0	

GENERAL TECHNICAL DATA

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
Compressor																
Туре	°,A	type							Scr	rew						
Compressor regulation	°,A	Туре							On-	-Off						
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	2	1	2	1
Circuits	°,A	no.	1	1	1	1	1	1	1	1	1	1	2	1	2	1
Refrigerant	°,A	type							R12	34ze						
Deficience the design is 1/1	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Refrigerant load circuit 1 (1)	A	kg	41,0	41,0	38,0	59,0	57,0	72,0	66,0	61,0	85,0	81,0	50,0	110,0	53,0	104,0
Define we want local singuist 2 (1)	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Refrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	-	-	-	-	-	50,0	-	53,0	-
Refrigerant load circuit 3 (1)	°,A	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-
System side heat exchanger		-														
Туре	°,A	type							Shell a	nd tube						
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре							Groove	d joints						
Source side heat exchanger																
Туре	°,A	type							Shell a	nd tube						
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	2	1	2	1
Connections (in/out)	°,A	Туре							Groove	d joints						
(1) The load indicated in the table is an es	stimated and preli	iminary value	. The final	value of th	e refrigera	nt load is ind	licated on	the unit's t	echnical lab	el. For furth	ner inform	ation conta	ct the office	2.		
Size			37	202	3602	4202		4802	5602	640	2	6703	7203	84	03	9603
Compressor					3002	1202		1002	3002	0.10		0,03	7203		-	7005
Туре	°,A	type							9	crew						
Compressor regulation	°,A	Туре								n-Off						
Number	°,A	no.		2	2	2		2	2	2		3	3		}	3
Circuits	°,A	no.		2	2	2		2	2	2		3	3			3
Refrigerant	°,A	type								1234ze					<u> </u>	
	0	kg		_	_	_		-	-	-		107,0	115,0	130	5.0	157,0
Refrigerant load circuit 1 (1)	A	ka	8	1,0	71,0	70,0		123.0	124,0	121,		106,0	104.0	110		120.0
	0	kg		-	-	-		-	-	-		107,0	115,0	130	, -	157,0
Refrigerant load circuit 2 (1)	A	kg	8	1,0	71,0	70,0	1	123,0	124,0	121,		106,0	104,0	110	, .	120,0
	0	kg		-	-	-		-	-	- 121,		107,0	115,0	130		157,0
Refrigerant load circuit 3 (1)	A	kg		_	_	_		_	_	_		106,0	104,0	110		120,0
6		ny										100,0	10-1,0	110	,,~	120,0

SOUND DATA

System side heat exchanger

Source side heat exchanger

Туре

Туре

Number

Number

Connections (in/out)

Connections (in/out)

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Refrigerant gas: °																										
Standard equipment																										
C (1)	0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	97,0	97,2	99,5	100,0
Sound power level (1)	A	dB(A)	87,7	88,0	87,7	89,1	90,3	91,3	90,5	90,7	93,2	92,5	93,5	94,8	94,0	94,2	94,0	94,5	95,0	95,5	97,5	98,0	97,0	97,2	99,5	100,0
Silenced equipment																										
Cound nouse lovel (1)	0	dB(A)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	93,0	93,2	95,5	96,0
Sound power level (1)	A	dB(A)	83,7	84,0	83,7	85,1	86,3	87,3	86,5	86,7	89,2	88,5	89,5	90,8	90,0	90,2	90,0	90,5	91,0	91,5	93,5	94,0	93,0	93,2	95,5	96,0

Shell and tube

Grooved joints

Shell and tube

1

type

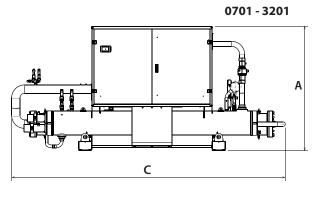
no.

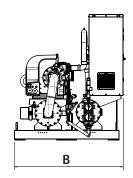
Туре

type

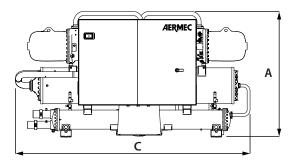
no.

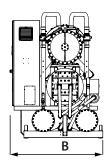
°,A


°,A


°,A

Туре Grooved joints (1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


⁽¹⁾ Sound power: calculated in agreement with the Standard UNI EN ISO 9614-2, in compliance with that requested by Eurovent certification.


DIMENSIONS

2502 - 9603

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402
Set-up: °																					
Dimensions and weights																					
<u>A</u>	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	2000	1920	2075	1920	2195	2195	2340	2432	2440	2432
В	mm	1450	1450	1450	1510	1550	1610	1610	1610	1610	1610	1500	1630	1500	1630	1575	1575	1585	1775	1775	1820
C	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4320	4290	4345	4290	4380	4380	4395	4535	4605	4605
Empty weight	kg	1610	1630	1630	2120	2130	2350	2940	2980	3260	3320	3810	3820	4100	3870	5690	5750	6300	6670	6970	7070
Set-up: L																					
Dimensions and weights																					
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	2000	1920	2075	1920	2195	2195	2340	2432	2440	2432
В	mm	1450	1450	1450	1540	1600	1610	1610	1610	1630	1630	1500	1645	1500	1645	1575	1575	1585	1775	1775	1820
C	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4320	4290	4345	4290	4650	4650	4600	5015	5150	5150
Empty weight	kg	1770	1790	1790	2280	2290	2510	3120	3170	3450	3510	4120	4030	4410	4080	6050	6120	6670	7040	7420	7490
Size															84	03			96	03	
Set-up:°																					
Dimensions and weights																					
A	°,A		mı	m			22	50			22	50			22	50			22	50	
В	°,A		mı	m			22	00			22	00			22	00			22	.00	
r	0		mı	m			56	50			56	50			56	50			56	50	
	A		mı	m			68	40			68	40			68	40			68	40	
Empty weight			k]			93	30			99	10			101	130			102	200	
Empty weight	A		k]			103	20			116	570			122	270			123	360	
Set-up: L																					
Dimensions and weights																					
A	°,A		mı	m			22	50			22	50			22	50			22	50	
В	°,A		mı	m			22	00			22	00			22	00			22	.00	
ſ	•		mı	m			56	50			56	50			56	50			56	50	
	Α		mı	m			68	40			68	40			68	40			68	40	
Empty weight	•		k]			98	90			104	170			107	760			108	830	
Linipty weight	A		k]			108	80			122	230			129	950			129	990	

■ For the sizes of D-T-E versions please contact the factory.

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WFI

Water cooled heat pump reversible water side

Cooling capacity 291 ÷ 2406 kW Heating capacity 326 ÷ 2664 kW

- Condenser side hot water production up to 60°C.
- Production of chilled water down to -8°C.
- Available also R513A refrigerant gas

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 16° C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 60° C depending on the model.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 1-2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

All units are equipped with an inverter compressor combined with an on-off compressor (two-circuit sizes) or two on/off compressors (three-circuit sizes) with R134a refrigerant.

The R513A (XP10) refrigerant with this type of gas is also available on the configurator. On average, the units have a yield > 2% and an EER < 3% compared to the same size with R134a.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 x n° 3: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

ACCESSORIES COMPATIBILITY

Model	Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	А																					
AER485P1 x n° 2 (1)	A								•		•		•	•	•	•	•	•				
AER485P1 x n° 3 (1)	°,A																		•	•	•	•
AFDDACD	0																		•	•	•	•
AERBACP -	A				•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
AFDNET	0																		•	•	•	•
AERNET -	A																•	•		•	•	•
MUITICUILLED EVO	0																		•	•	•	•
MULTICHILLER_EVO -	A	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•
DCD1	0																		•	•	•	•
PGD1 -	А	•		•	•	•	•	•	•		•	•	•		•	•						

(1) x Indicates the quantity of accessories to match.

Antivibration

Version	Set-up	Heat recovery	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
0	°,K,L	°,D,T	-	-	-	-	-	-	-	-	-	-	-
A	0	0	AVX680	AVX680	AVX681	AVX687	AVX687	AVX682	AVX685	AVX673	AVX683	AVX674	AVX683
A	K	0	AVX681	AVX681	AVX688	AVX682	AVX682	AVX685	AVX683	Contact us.	AVX683	Contact us.	AVX683
A	L	0	AVX681	AVX681	AVX681	AVX682	AVX682	AVX682	AVX683	AVX674	AVX683	AVX674	AVX683
A	°,L	D,T	-	-	-	-	-	-	-	AVX674	-	AVX674	-
A	K	D,T	-	-	-	-	-	-	-	Contact us.	-	Contact us.	-

Version	Set-up	Heat recovery	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	°,K,L	°,D,T	-	-	-	-	-	-	Contact us.	Contact us.	Contact us.	Contact us.
Α	0	°,D	AVX679	AVX679	AVX679	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
Α	L	٥	AVX679	AVX679	AVX679	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
Α	K	°,D,T	Contact us.									
Α	0	T	AVX679	AVX679	AVX678	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
Α	L	D,T	AVX679	AVX679	AVX678	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.

not available

Power factor correction

Ver	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201
А	_	-	-	_	-	-	_	RIFWFI2502	_	RIFWFI2802	_

The accessory cannot be fitted on the configurations indicated with - A grey background indicates the accessory must be assembled in the factory

Ver 3202 3602 4202 4802 5602 6402 6703 7203 8403 9603 RIFWFI9603 RIFWFI7203 RIFWFI8403 RIFWFI6703 RIFWFI3202 RIFWFI3602 RIFWFI4202 RIFWFI4802 RIFWFI5602 RIFWFI6402 RIFWFI6703 RIFWFI7203 RIFWFI8403 RIFWFI9603

A grey background indicates the accessory must be assembled in the factory

1101

For the size of the units with the RIF accessory we ask you to contact the headquarters.

1401

1251

Isolating kit Ver

A	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15	ISG1	ISG15
A grey background i	indicates the accessory	/ must be assemble	d in the factory								
Ver	3202	3602	4202	4802	5602	6	402	6703	7203	8403	9603
Ver °	3202	3602 -	4202	4802	5602 -		402 -	6703 ISG5	7203 ISG5	8403 ISG6	9603 ISG6

1801

2101

2401

2502

2801

2802

3201

1601

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	WFI
4,5,6,7	Size 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
8	Model
0	Standard condensation
Н	Optimised for high condensation
9	Version
0	Standard (1)
Α	High efficiency
10	Operating field
Χ	Electronic thermostatic expansion valve (2)
Z	Double electronic thermostatic for low temperature (3)
11	Set-up
0	Standard without hood
K	Super silenced
L	Silenced with hood
12	Heat recovery
0	Without heat recovery
D	With desuperheater (4)
T	With total recovery (4)
13	Evaporator
0	Standard
E	Evaporating unit
14	Power supply
0	400V ~ 3 50Hz with fuses
8	400V ~ 3 50Hz with magnet circuit breakers (5)
15	Refrigerant gas
0	R134a
G	R513A (XP10) (6)

MODEL PERFORMANCE DATA (°) - FOR TEMPERATURES WATER PRODUCED UP TO +55°C

WFI 1101 - 3201 - model (°) version A - gas R134a

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: °										
Cooling performance 12 °C / 7 °C - gas R134a (1)										
Cooling capacity	kW	291,4	339,7	388,2	433,5	496,2	552,0	635,3	714,7	783,3
Input power	kW	55,9	66,5	75,6	85,1	98,6	111,6	122,5	138,9	148,8
Cooling total input current	A	95,0	111,0	125,0	140,0	161,0	181,0	199,0	223,0	241,0
EER	W/W	5,21	5,11	5,13	5,09	5,03	4,95	5,19	5,15	5,26
Water flow rate source side	l/h	59350	69394	79271	88730	101760	113566	129637	145972	159590
Pressure drop source side	kPa	42	41	36	32	30	30	33	33	31
Water flow rate system side	l/h	50123	58428	66772	74535	85331	94907	109229	122894	134668
Pressure drop system side	kPa	38	43	45	27	32	24	35	45	26
Heating performances 40 °C / 45 °C - gas R134a (2)										
Heating capacity	kW	326,0	387,7	437,0	490,2	566,3	631,1	707,9	798,2	873,1
Input power	kW	74,3	88,1	97,5	106,3	126,9	143,0	156,9	178,5	189,7
Heating total input current	A	125,0	144,0	158,0	173,0	204,0	230,0	251,0	281,0	305,0
COP	W/W	4,39	4,40	4,48	4,61	4,46	4,41	4,51	4,47	4,60
Water flow rate system side	l/h	56587	67319	75890	85131	98344	109614	122953	138630	151661
Pressure drop system side	kPa	39	39	33	29	28	28	30	29	28
Water flow rate source side	l/h	74024	88235	99938	112439	128897	142918	161620	182106	199956
Pressure drop source side	kPa	83	98	101	61	74	54	76	98	57

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

⁽¹⁾ Only for sizes from 6703 to 9603 (2) Water produced from 0 °C ÷ 16 °C (3) Water produced from -8 °C up to 10 °C

⁽⁴⁾ Not available for the condenserless "E" (5) Not available for 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2801, 3201 size (6) For further details refer to the technical documentation or to the Magellano selection program.

WFI 2502 - 9603 - model (°) version A - gas R134a

	2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
kW	670,0	757,4	889,1	1002,3	1143,6	1304,6	1441,8	1621,2	1771,2	1940,6	2167,0	2406,5
kW	127,4	144,9	168,9	192,8	218,4	244,5	275,3	309,9	327,6	362,0	410,0	458,2
Α	214,0	244,0	277,0	315,0	351,0	399,0	446,0	497,0	527,0	597,0	667,0	751,0
W/W	5,26	5,23	5,26	5,20	5,24	5,34	5,24	5,23	5,41	5,36	5,29	5,25
l/h	136129	154084	180866	204404	232973	264813	293658	330152	359034	393872	440716	490182
kPa	55	58	48	46	44	47	48	48	38	31	32	40
l/h	115215	130225	152866	172295	196591	224275	247834	278670	304461	333577	372486	413608
kPa	53	43	38	27	31	44	31	39	45	54	57	33
kW	746,2	839,5	979,7	1112,5	1270,4	1441,8	1597,0	1815,3	1951,6	2145,2	2391,0	2664,3
kW	165,1	183,8	210,4	242,5	276,5	310,2	346,1	394,1	414,4	459,6	518,3	573,6
Α	273,0	305,0	341,0	394,0	441,0	499,0	556,0	624,0	656,0	743,0	826,0	931,0
W/W	4,52	4,57	4,66	4,59	4,59	4,65	4,61	4,61	4,71	4,67	4,61	4,64
l/h	129578	145788	170162	193225	220670	250442	277422	315345	339051	372698	415418	462891
kPa	50	51	42	41	40	42	43	44	34	28	28	36
I/h	171302	192864	225753	254786	291203	332319	366559	417106	451025	495203	550498	612203
kPa	118	95	82	60	67	97	69	88	98	118	125	73
	kW A W/W I/h kPa I/h kPa kW kW A W/W I/h kPa I/h kPa	kW 670,0 kW 127,4 A 214,0 W/W 5,26 I/h 136129 kPa 55 I/h 115215 kPa 53 kW 746,2 kW 165,1 A 273,0 W/W 4,52 I/h 129578 kPa 50 I/h 171302	kW 670,0 757,4 kW 127,4 144,9 A 214,0 244,0 W/W 5,26 5,23 I/h 136129 154084 kPa 55 58 I/h 115215 130225 kPa 53 43 kW 746,2 839,5 kW 165,1 183,8 A 273,0 305,0 W/W 4,52 4,57 I/h 129578 145788 kPa 50 51 I/h 171302 192864 kPa 118 95	kW 670,0 757,4 889,1 kW 127,4 144,9 168,9 A 214,0 244,0 277,0 W/W 5,26 5,23 5,26 I/h 136129 154084 180866 kPa 55 58 48 I/h 115215 130225 152866 kPa 53 43 38 kW 746,2 839,5 979,7 kW 165,1 183,8 210,4 A 273,0 305,0 341,0 W/W 4,52 4,57 4,66 I/h 129578 145788 170162 kPa 50 51 42 I/h 171302 192864 225753 kPa 118 95 82	kW 670,0 757,4 889,1 1002,3 kW 127,4 144,9 168,9 192,8 A 214,0 244,0 277,0 315,0 W/W 5,26 5,23 5,26 5,20 I/h 136129 154084 180866 204404 kPa 55 58 48 46 I/h 115215 130225 152866 172295 kPa 53 43 38 27 kW 746,2 839,5 979,7 1112,5 kW 165,1 183,8 210,4 242,5 A 273,0 305,0 341,0 394,0 W/W 4,52 4,57 4,66 4,59 I/h 129578 145788 170162 193225 kPa 50 51 42 41 I/h 171302 192864 225753 254786 kPa 118 95 82	kW 670,0 757,4 889,1 1002,3 1143,6 kW 127,4 144,9 168,9 192,8 218,4 A 214,0 244,0 277,0 315,0 351,0 W/W 5,26 5,23 5,26 5,20 5,24 I/h 136129 154084 180866 204404 232973 kPa 55 58 48 46 44 I/h 115215 130225 152866 172295 196591 kPa 53 43 38 27 31 kW 746,2 839,5 979,7 1112,5 1270,4 kW 165,1 183,8 210,4 242,5 276,5 A 273,0 305,0 341,0 394,0 441,0 W/W 4,52 4,57 4,66 4,59 4,59 I/h 129578 145788 170162 193225 220670 kPa 50	kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 kW 127,4 144,9 168,9 192,8 218,4 244,5 A 214,0 244,0 277,0 315,0 351,0 399,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 I/h 136129 154084 180866 204404 232973 264813 kPa 55 58 48 46 44 47 I/h 115215 130225 152866 172295 196591 224275 kPa 53 43 38 27 31 44 kW 746,2 839,5 979,7 1112,5 1270,4 1441,8 kW 165,1 183,8 210,4 242,5 276,5 310,2 A 273,0 305,0 341,0 394,0 441,0 499,0 W/W 4,52 4,57 4,66 4,59	kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 I/h 136129 154084 180866 204404 232973 264813 293658 kPa 55 58 48 46 44 47 48 I/h 115215 130225 152866 172295 196591 224275 247834 kPa 53 43 38 27 31 44 31 kW 746,2 839,5 979,7 1112,5 1270,4 1441,8 1597,0 kW 165,1 183,8 210,4 242,5 276,5 310,2 346,1 A 273,0 305,	kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 1621,2 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 309,9 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 497,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 5,23 I/h 136129 154084 180866 204404 232973 264813 293658 330152 kPa 55 58 48 46 44 47 48 48 I/h 115215 130225 152866 172295 196591 224275 247834 278670 kPa 53 43 38 27 31 44 31 39 kW 746,2 839,5 979,7 1112,5 1270,4 1441,8 1597,0 1815,3 kW 165,1 <th< td=""><td>kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 1621,2 1771,2 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 309,9 327,6 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 497,0 527,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 5,23 5,41 I/h 136129 154084 180866 204404 232973 264813 293658 330152 359034 kPa 55 58 48 46 44 47 48 48 38 I/h 115215 130225 152866 172295 196591 224275 247834 278670 304461 kPa 53 43 38 27 31 44 31 39 45 kW 746,2 839,5 979,7 1</td><td>kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 1621,2 1771,2 1940,6 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 309,9 327,6 362,0 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 497,0 527,0 597,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 5,23 5,41 5,36 I/h 136129 154084 180866 204404 232973 264813 293658 330152 359034 393872 kPa 55 58 48 46 44 47 48 48 38 31 I/h 115215 130225 152866 172295 196591 224275 247834 278670 304461 333577 kPa 53 43 38 27 31 44 31</td><td>kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 1621,2 1771,2 1940,6 2167,0 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 309,9 327,6 362,0 410,0 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 497,0 527,0 597,0 667,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 5,23 5,41 5,36 5,29 I/h 136129 154084 180866 204404 232973 264813 293658 330152 359034 393872 440716 kPa 55 58 48 46 44 47 48 48 38 31 32 I/h 115215 130225 152866 172295 196591 224275 247834 278670 30461 333577 372486</td></th<>	kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 1621,2 1771,2 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 309,9 327,6 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 497,0 527,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 5,23 5,41 I/h 136129 154084 180866 204404 232973 264813 293658 330152 359034 kPa 55 58 48 46 44 47 48 48 38 I/h 115215 130225 152866 172295 196591 224275 247834 278670 304461 kPa 53 43 38 27 31 44 31 39 45 kW 746,2 839,5 979,7 1	kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 1621,2 1771,2 1940,6 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 309,9 327,6 362,0 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 497,0 527,0 597,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 5,23 5,41 5,36 I/h 136129 154084 180866 204404 232973 264813 293658 330152 359034 393872 kPa 55 58 48 46 44 47 48 48 38 31 I/h 115215 130225 152866 172295 196591 224275 247834 278670 304461 333577 kPa 53 43 38 27 31 44 31	kW 670,0 757,4 889,1 1002,3 1143,6 1304,6 1441,8 1621,2 1771,2 1940,6 2167,0 kW 127,4 144,9 168,9 192,8 218,4 244,5 275,3 309,9 327,6 362,0 410,0 A 214,0 244,0 277,0 315,0 351,0 399,0 446,0 497,0 527,0 597,0 667,0 W/W 5,26 5,23 5,26 5,20 5,24 5,34 5,24 5,23 5,41 5,36 5,29 I/h 136129 154084 180866 204404 232973 264813 293658 330152 359034 393872 440716 kPa 55 58 48 46 44 47 48 48 38 31 32 I/h 115215 130225 152866 172295 196591 224275 247834 278670 30461 333577 372486

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C

WFI 6703 - 9603 - model (°) version ° - gas R134a

Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C - gas R134a (1)					
Cooling capacity	kW	1723,4	1905,7	2114,5	2327,9
Input power	kW	331,7	366,9	409,8	463,6
Cooling total input current	A	522,0	592,0	659,0	744,0
EER	W/W	5,20	5,19	5,16	5,02
Water flow rate source side	l/h	350768	387913	431371	476493
Pressure drop source side	kPa	73	69	58	71
Water flow rate system side	l/h	296246	327572	363441	400118
Pressure drop system side	kPa	47	51	39	46
Heating performances 40 °C / 45 °C - gas R134a (2)					
Heating capacity	kW	1909,4	2114,9	2342,8	2593,9
Input power	kW	418,2	463,2	513,0	581,3
Heating total input current	A	651,0	737,0	817,0	922,0
COP	W/W	4,57	4,57	4,57	4,46
Water flow rate system side	l/h	331680	367403	407019	450652
Pressure drop system side	kPa	65	62	52	63
Water flow rate source side	l/h	438855	486287	537130	592236
Pressure drop source side	kPa	103	112	85	102

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C

Energy indices (Reg. 2016/2281 EU)

znergy marces (negr zo ro).		' /																					
Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °																							
SEER - 12/7 (EN14825: 2018) . refrigerant g	jas R134a (1)																					
Concornal officionsy	0	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	319,80	319,20	318,20	313,60
Seasonal efficiency —	Α	%	337,10	343,20	342,80	348,90	348,20	350,10	347,00	339,20	351,20	340,00	355,00	341,70	340,20	337,90	340,30	343,50	344,30	343,10	341,00	340,50	342,50
SEER -	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,07	8,06	8,03	7,92
JEER -	Α	W/W	8,50	8,66	8,65	8,80	8,78	8,83	8,75	8,56	8,86	8,58	8,95	8,62	8,58	8,52	8,58	8,66	8,68	8,65	8,60	8,59	8,64
SEPR - (EN 14825: 2018) High temperature	e - refrigerar	nt gas R'	134a (2)																			
SEPR -	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,60	8,60	8,40	8,40
JETN -	A	W/W	9,40	9,40	9,30	8,70	9,30	8,90	9,10	9,10	9,00	9,00	8,90	8,90	8,80	8,90	8,80	8,90	8,90	9,00	8,80	8,60	8,80

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Electric data

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °																							
Gas R134a																							
Manimum surrent (FLA)	0	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	862,9	965,5	1077,5	1211,4
Maximum current (FLA)	A	Α	163,0	189,0	206,0	226,0	262,0	300,0	329,0	354,5	371,0	395,1	405,0	447,5	511,1	576,7	647,2	724,3	824,0	862,9	965,5	1077,5	1211,4
Deals surrount (LDA)	0	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1176,0	1301,0	1533,0	1744,0
Peak current (LRA)	A	Α	23,0	23,0	23,0	23,0	23,0	23,0	23,0	506,0	23,0	550,0	23,0	666,0	730,0	889,0	982,0	1179,0	1355,0	1176,0	1301,0	1533,0	1744,0

MODEL PERFORMANCE DATA (H) - FOR TEMPERATURES WATER PRODUCED UP TO +60°C

WFI 1101 - 3201 - model (H) version A - gas R134a

Size		1101	1251	1401	1601	1801	2101	2401	2801	3201
Model: H										
Cooling performance 12 °C/7 °C - gas R134a (1)										
Cooling capacity	kW	294,7	338,4	389,7	436,1	479,8	540,5	637,9	703,6	781,8
Input power	kW	57,3	67,1	79,0	87,4	98,3	110,3	127,2	142,1	162,7
Cooling total input current	Α	98,0	112,0	129,0	143,0	159,0	177,0	206,0	228,0	262,0
EER	W/W	5,15	5,05	4,94	4,99	4,88	4,90	5,02	4,95	4,80
Water flow rate source side	l/h	60130	69281	80074	89564	98879	111372	130851	144597	161585
Pressure drop source side	kPa	44	41	37	32	30	30	33	32	33
Water flow rate system side	l/h	50692	58217	67029	74994	82505	92934	109677	120988	134409
Pressure drop system side	kPa	39	44	46	26	32	24	35	43	27
Heating performances 40 °C / 45 °C - gas R134a (2)										
Heating capacity	kW	325,5	376,9	434,9	486,7	538,4	604,0	709,5	783,3	871,3
Input power	kW	70,4	82,2	96,5	105,2	119,3	133,5	151,5	168,8	185,2
Heating total input current	Α	118,0	135,0	155,0	170,0	190,0	212,0	241,0	265,0	295,0
COP	W/W	4,63	4,58	4,51	4,63	4,51	4,52	4,68	4,64	4,71
Water flow rate system side	l/h	56513	65431	75521	84523	93497	104898	123224	136049	151346
Pressure drop system side	kPa	39	37	33	29	27	27	29	29	29
Water flow rate source side	l/h	74998	86674	99584	111688	122874	137657	163575	180444	200734
Pressure drop source side	kPa	86	97	100	58	71	52	78	97	59

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFI 2502 - 9603 - model (H) version A - gas R134a

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kW	672,4	770,8	886,7	999,1	1145,7	1305,1	1454,0	1620,1	1770,6	1939,2	2161,5	2375,7
Input power	kW	132,4	153,1	173,5	195,9	224,6	254,6	288,9	327,3	340,1	376,7	435,1	482,5
Cooling total input current	Α	226,0	257,0	285,0	316,0	364,0	415,0	475,0	543,0	567,0	621,0	715,0	806,0
EER	W/W	5,08	5,04	5,11	5,10	5,10	5,13	5,03	4,95	5,21	5,15	4,97	4,92
Water flow rate source side	l/h	137384	157768	181226	204349	234273	266548	297970	332858	360998	396033	443977	488997
Pressure drop source side	kPa	53	55	48	48	49	48	50	46	36	32	32	38
Water flow rate system side	l/h	115641	132532	152452	171756	196959	224366	249941	278496	304349	333335	371531	408313
Pressure drop system side	kPa	54	44	36	27	32	44	32	40	46	54	51	30
Heating performances 40 °C / 45 °C - gas R134a (2)													
Heating capacity	kW	741,6	852,1	975,8	1106,1	1267,8	1441,2	1611,1	1842,1	1948,7	2138,6	2398,1	2642,8
Input power	kW	160,3	184,4	206,0	235,2	268,6	305,3	343,0	388,6	408,5	453,9	520,2	571,4
Heating total input current	Α	268,0	305,0	334,0	376,0	431,0	490,0	558,0	633,0	669,0	732,0	838,0	945,0
COP	W/W	4,63	4,62	4,74	4,70	4,72	4,72	4,70	4,74	4,77	4,71	4,61	4,62
Water flow rate system side	l/h	128783	147970	169486	192116	220216	250335	279872	320004	338539	371554	416652	459154
Pressure drop system side	kPa	47	48	42	42	44	43	44	42	32	28	29	33
Water flow rate source side	I/h	171266	196282	225782	254976	292792	333536	371554	426498	451814	494844	551546	606152
Pressure drop source side	kPa	118	96	80	60	71	97	71	93	101	118	113	66

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C

WFI 6703 - 9603 - model (H) version ° - gas R134a

Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C / 7 °C - gas R134a (1)					
Cooling capacity	kW	1706,6	1904,2	2109,2	2298,6
Input power	kW	343,5	381,7	434,3	486,5
Cooling total input current	A	561,0	616,0	705,0	796,0
EER	W/W	4,97	4,99	4,86	4,72
Water flow rate source side	l/h	349811	390073	434460	475234
Pressure drop source side	kPa	73	70	59	70
Water flow rate system side	l/h	293360	327313	362530	395080
Pressure drop system side	kPa	47	51	38	46
Heating performances 40 °C / 45 °C - gas R134a (2)					
Heating capacity	kW	1891,1	2108,3	2348,6	2571,3
Input power	kW	411,1	457,6	515,2	578,0
Heating total input current	A	662,0	727,0	826,0	933,0
COP	W/W	4,60	4,61	4,56	4,45
Water flow rate system side	l/h	328503	366257	408016	446727
Pressure drop system side	kPa	64	62	52	62
Water flow rate source side	l/h	435501	485905	538185	586506
Pressure drop source side	kPa	104	112	85	101

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

Energy indices (Reg. 2016/2281 EU)

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H																							
SEER - 12/7 (EN14825: 2018) . refrigerant g	as R134a (1))																					
Seasonal efficiency —	0	%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	279,70	281,00	284,80	278,60
Seasonal efficiency —	Α	%	306,80	310,90	296,50	309,10	297,30	306,60	308,50	298,00	314,60	297,10	315,60	301,30	295,40	301,80	303,60	307,30	298,00	297,80	295,60	296,90	297,50
SEER -	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7,07	7,10	7,20	7,04
SEER	Α	W/W	7,75	7,85	7,49	7,80	7,51	7,74	7,79	7,53	7,94	7,50	7,97	7,61	7,46	7,62	7,67	7,76	7,53	7,52	7,47	7,50	7,51
SEPR - (EN 14825: 2018) High temperature	- refrigeran	it gas R1	134a (2)																			
SEPR -	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8,40	8,30	8,20	8,10
JLTN —	Α	W/W	9,20	9,10	9,10	8,50	9,00	8,60	8,80	8,80	8,80	8,80	8,70	8,60	8,40	8,60	8,50	8,60	8,60	8,70	8,60	8,40	8,50

⁽¹⁾ Calculation performed with VARIABLE water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with VARIABLE water flow rate.

Electric data

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H																							
Gas R134a																							
Maximum current (FLA)	•	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	954,0	1052,0	1180,0	1290,0
Maximum current (FLA)	A	Α	165,0	190,0	216,0	237,0	274,0	308,0	356,0	378,0	387,0	428,0	418,0	473,0	535,0	616,0	704,0	787,0	864,0	954,0	1357,0	1180,0	1290,0
Dook current (LDA)	۰	Α	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1234,0	1357,0	1595,0	1784,0
Peak current (LRA)	A	A	23,0	23,0	23,0	23,0	23,0	23,0	23,0	507,0	23,0	560,0	23,0	676,0	742,0	897,0	1009,0	1203,0	1359,0	1234,0	1052,0	1595,0	1784,0

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

Model performance data (°) - for condensing temperatures up to 55°C

Model output data - model WFI° - AE - gas R134a

Size			1101	1251	1401	16	01	1801	2101	2401	2	801	3201
Model: °													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kW		261,4	307,5	351,6	393	3,3	441,4	493,3	571,6	6	42,9	693,1
Input power	kW		68,4	80,8	90,0	100	0,3	117,7	133,8	145,8	1	64,9	178,0
Cooling total input current	Α		119,0	139,0	152,0	168	8,0	197,0	222,0	240,0	2	69,0	292,0
EER	W/V	l	3,82	3,81	3,91	3,9	92	3,75	3,69	3,92	3	3,90	3,89
Evaporator water flow rate	l/h		44906	52830	60402	675	574	75833	84756	98206	5 11	10455	119091
Pressure drop evaporator side	kPa		31	36	37	2	1	27	20	28		36	21
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø		54,0	67,0	67,0	67	',0	76,0	76,0	89,0	8	89,0	89,0
Gas line (C2)	Ø		-	-	-	-	-	-	-	-		-	-
Gas line (C3)	Ø		-	-	-		-	-	-	-		-	-
Liquid line (C1)	Ø		35,0	42,0	42,0	42	2,0	42,0	54,0	54,0	5	54,0	54,0
Liquid line (C2)	Ø		-	-	-	-	-	-	-	-		-	-
Liquid line (C3)	Ø		-	-	-		-	-	-	-		-	-
(1) Service side water 12 °C / 7 °C; Condensing temperature	e 45 ℃												
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °													
Cooling performance 12 °C/7 °C - gas R134a (1)													
Cooling capacity	kW	603,1	688,5	797,4	899,3	1008,4	1169,8	1287,8	1439,2	1558,1	1742,4	1896,4	2110,0
Cooling capacity Input power	kW kW	603,1 152,9	688,5 171,4	797,4 198,1	899,3 229,9	1008,4 259,8	1169,8 287,4	1287,8 323,9	1439,2 364,6	1558,1 386,3	1742,4 431,2	1896,4 481,0	2110,0 540,3
							,-		,				
Input power	kW	152,9	171,4	198,1	229,9	259,8	287,4	323,9	364,6	386,3	431,2	481,0	540,3
Input power Cooling total input current	kW A	152,9 261,4	171,4 292,5	198,1 330,2	229,9 380,6	259,8 424,7	287,4 476,4	323,9 532,4	364,6 600,3	386,3 631,3	431,2 709,7	481,0 792,6	540,3 891,2
Input power Cooling total input current EER	kW A W/W	152,9 261,4 3,94	171,4 292,5 4,02	198,1 330,2 4,03	229,9 380,6 3,91	259,8 424,7 3,88	287,4 476,4 4,07	323,9 532,4 3,98	364,6 600,3 3,95	386,3 631,3 4,03	431,2 709,7 4,04	481,0 792,6 3,94	540,3 891,2 3,91
Input power Cooling total input current EER Evaporator water flow rate	kW A W/W I/h	152,9 261,4 3,94 103615	171,4 292,5 4,02 118287	198,1 330,2 4,03 137003	229,9 380,6 3,91 154508	259,8 424,7 3,88 173247	287,4 476,4 4,07 200980	323,9 532,4 3,98 221262	364,6 600,3 3,95 247268	386,3 631,3 4,03 267705	431,2 709,7 4,04 299365	481,0 792,6 3,94 325826	540,3 891,2 3,91 362526
Input power Cooling total input current EER Evaporator water flow rate Pressure drop evaporator side	kW A W/W I/h	152,9 261,4 3,94 103615	171,4 292,5 4,02 118287	198,1 330,2 4,03 137003	229,9 380,6 3,91 154508	259,8 424,7 3,88 173247	287,4 476,4 4,07 200980	323,9 532,4 3,98 221262	364,6 600,3 3,95 247268	386,3 631,3 4,03 267705	431,2 709,7 4,04 299365	481,0 792,6 3,94 325826	540,3 891,2 3,91 362526
Input power Cooling total input current EER Evaporator water flow rate Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m	kW A W/W I/h kPa	152,9 261,4 3,94 103615 43	171,4 292,5 4,02 118287 35	198,1 330,2 4,03 137003 29	229,9 380,6 3,91 154508 22	259,8 424,7 3,88 173247 25	287,4 476,4 4,07 200980 35	323,9 532,4 3,98 221262 25	364,6 600,3 3,95 247268 31	386,3 631,3 4,03 267705 35	431,2 709,7 4,04 299365 43	481,0 792,6 3,94 325826 39	540,3 891,2 3,91 362526 24
Input power Cooling total input current EER Evaporator water flow rate Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m Gas line (C1)	kW A W/W I/h kPa	152,9 261,4 3,94 103615 43	171,4 292,5 4,02 118287 35	198,1 330,2 4,03 137003 29 67,0	229,9 380,6 3,91 154508 22	259,8 424,7 3,88 173247 25	287,4 476,4 4,07 200980 35	323,9 532,4 3,98 221262 25	364,6 600,3 3,95 247268 31	386,3 631,3 4,03 267705 35	431,2 709,7 4,04 299365 43	481,0 792,6 3,94 325826 39 88,9	540,3 891,2 3,91 362526 24 88,9
Input power Cooling total input current EER Evaporator water flow rate Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m Gas line (C1) Gas line (C2)	kW A W/W I/h kPa Ø	152,9 261,4 3,94 103615 43	171,4 292,5 4,02 118287 35 67,0 67,0	198,1 330,2 4,03 137003 29 67,0 67,0	229,9 380,6 3,91 154508 22 76,0 76,0	259,8 424,7 3,88 173247 25 76,0 76,0	287,4 476,4 4,07 200980 35	323,9 532,4 3,98 221262 25 88,9 88,9	364,6 600,3 3,95 247268 31 88,9 88,9	386,3 631,3 4,03 267705 35 76,0 76,0	431,2 709,7 4,04 299365 43 88,9 88,9	481,0 792,6 3,94 325826 39 88,9 88,9	540,3 891,2 3,91 362526 24 88,9 88,9
Input power Cooling total input current EER Evaporator water flow rate Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m Gas line (C1) Gas line (C2) Gas line (C3)	kW A W/W I/h kPa Ø Ø	152,9 261,4 3,94 103615 43 67,0	171,4 292,5 4,02 118287 35 67,0 67,0	198,1 330,2 4,03 137003 29 67,0 67,0	229,9 380,6 3,91 154508 22 76,0 76,0	259,8 424,7 3,88 173247 25 76,0 76,0	287,4 476,4 4,07 200980 35 88,9 88,9	323,9 532,4 3,98 221262 25 88,9 88,9	364,6 600,3 3,95 247268 31 88,9 88,9 42,0	386,3 631,3 4,03 267705 35 76,0 76,0	431,2 709,7 4,04 299365 43 88,9 88,9 88,9	481,0 792,6 3,94 325826 39 88,9 88,9 88,9	540,3 891,2 3,91 362526 24 88,9 88,9 88,9

Liquid line (C3) Ø
(1) Service side water 12 °C/7 °C; Condensing temperature 45 °C

Model output data - model WFI° - °E - gas R134a

Size		6703	7203	8403	9603
Model: °					
Cooling performance 12 °C/7 °C - gas R134a (1)					
Cooling capacity	kW	1515,4	1689,7	1833,1	2021,9
Input power	kW	387,7	429,0	481,0	541,3
Cooling total input current	A	633,0	713,0	793,0	893,0
EER	W/W	3,91	3,94	3,81	3,74
Evaporator water flow rate	I/h	260358	290307	314947	347392
Pressure drop evaporator side	kPa	37	40	29	35
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

Model performance data (H) - for condensing temperatures up to 60°C

Model output data - model WFIH - AE - gas R134a

Size			1101	1251	1401	16	01	1801	2101	2401	2	801	3201
Model: H													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kV	V	260,1	304,6	351,5	39	3,7	432,7	485,1	579,1	6	38,3	697,1
Input power	kV	V	65,4	76,0	88,4	97	7,7	111,1	123,1	143,8	1	58,6	176,5
Cooling total input current	A		113,0	129,0	148,0	16.	2,0	180,0	200,0	235,0	2	57,0	290,0
EER	W/	W	3,98	4,01	3,98	4,	03	3,89	3,94	4,03	4	4,02	3,95
Evaporator water flow rate	1/1	ı	44694	52328	60399	676	637	74335	83339	99495	5 10	19670	119762
Pressure drop evaporator side	kP	a	31	35	37	2	1	26	19	29		36	21
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø		54,0	67,0	67,0	67	7,0	76,0	76,0	88,9	8	38,9	88,9
Gas line (C2)	Ø		-	-	-		-	-	-	-		-	-
Gas line (C3)	Ø		-	-	-		-	-	-	-		-	-
Liquid line (C1)	Ø		35,0	42,0	42,0	42	2,0	42,0	54,0	54,0		54,0	54,0
Liquid line (C2)	Ø		-	-	-		-	-	-	-		-	-
Liquid line (C3)	Ø		-	-	-		-	-	-	-		-	-
(1) Service side water 12 °C / 7 °C; Condensing temperature	ıre 45 ℃												
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: H													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kW	602,3	690,5	794,5	897,8	1009,4	1177,8	1297,5	1436,1	1566,5	1750,8	1908,3	2101,3
Input power	kW	147,9	170,4	193,3	218,4	248,4	284,6	324,0	361,7	383,8	424,1	485,5	536,4
Cooling total input current	Α	256,5	291,2	322,9	358,5	412,8	473,1	536,1	602,7	646,0	707,3	806,6	899,1
EER	W/W	4,07	4,05	4,11	4,11	4,06	4,14	4,01	3,97	4,08	4,13	3,93	3,92
Evaporator water flow rate	I/h						202254	222020	246737	269151	300804	327864	361031
Evaporator water now rate	I/N	103477	118635	136501	154254	173418	202354	222930	240/3/	207131	300001	32,00.	
Pressure drop evaporator side	kPa	103477 43	118635 35	136501 29	154254 22	173418 25	36	26	31	36	44	40	24
•													24
Pressure drop evaporator side													24 88,9
Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m	kPa	43	35	29	22	25	36	26	31	36	44	40	
Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m Gas line (C1)	kPa Ø	43 67,0	35 67,0	29 67,0	76,0	25 76,0	36 88,9	26 88,9	31 88,9	36 76,0	88,9	40 88,9	88,9
Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m Gas line (C1) Gas line (C2)	kPa Ø Ø	43 67,0	67,0 67,0	67,0 67,0	76,0 76,0	76,0 76,0	36 88,9 88,9	88,9 88,9	88,9 88,9	76,0 76,0	88,9 88,9	88,9 88,9	88,9 88,9
Pressure drop evaporator side Length of refrigerant lines from/to 0 - 10 m Gas line (C1) Gas line (C2) Gas line (C3)	kPa Ø Ø Ø	67,0 67,0	67,0 67,0 -	67,0 67,0 -	76,0 76,0 -	76,0 76,0	36 88,9 88,9	88,9 88,9 -	88,9 88,9 42,0	76,0 76,0 76,0	88,9 88,9 88,9	88,9 88,9 88,9	88,9 88,9 88,9

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

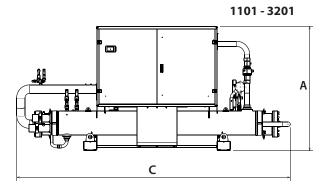
Model output data - model WFIH - °E - gas R134a

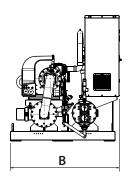
Size		6703	7203	8403	9603
Model: H					
Cooling performance 12 °C/7 °C - gas R134a (1)					
Cooling capacity	kW	1524,4	1698,4	1844,7	2016,4
Input power	kW	383,7	425,2	483,3	533,7
Cooling total input current	A	645,8	709,0	803,3	895,1
EER	W/W	3,97	3,99	3,82	3,78
Evaporator water flow rate	I/h	261912	291802	316947	346444
Pressure drop evaporator side	kPa	38	40	29	35
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 $^{\circ}$ C / 7 $^{\circ}$ C; Condensing temperature 45 $^{\circ}$ C

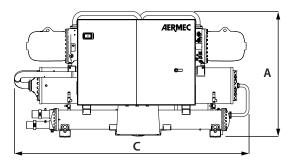
GENERAL TECHNICAL DATA

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Compressor																							
Туре	°,A	type											Screw										
Compressor regulation	°,A	Туре	- 1	- 1	- 1	- 1	1	- 1	- 1	l+1	- 1	l+1	- 1	1+1	1+I	1+1	1+1	1+1	1+1	2+1	2+1	2+1	2+1
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Circuits	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Refrigerant	°,A	type											R134a										
Deficiency at least singuist 1 (1)	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
Refrigerant load circuit 1 (1)	A	kg	59,0	57,0	72,0	66,0	61,0	85,0	81,0	50,0	110,0	53,0	104,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Deficience to be defined to 2 (1)	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
Refrigerant load circuit 2 (1)	A	kg	-	-	-	-	-	-	-	50,0	-	53,0	-	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Refrigerant load circuit 3 (1)	°,A	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
System side heat exchanger																							
Туре	°,A	type										She	ell and to	ube									
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре										Gro	oved joi	ints									
Source side heat exchanger																							
Туре	°,A	type										She	ell and to	ube									
Number	°,A	no.	1	1	1	1	1	1	1	2	1	2	1	2	2	2	2	2	2	3	3	3	3
Connections (in/out)	°,A	Туре										Gro	oved joi	ints									

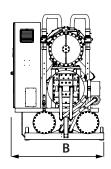

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.


SOUND DATA

Sound data calculated with functioning in cooling mode - R134a gas


| | | 1101 | 1251 | 1401 | 1601 | 1801
 | 2101 | 2401
 | 2502 | 2801
 | 2802
 | 3201 | 3202
 | 3602
 | 4202 | 4802
 | 5602 | 6402 | 6703 | 7203 | 8403 | 9603 |
|---|-------|--|---|--|--
--
--|---
--
--|---------

---|---
---|--|---------|--|---------|---------|
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| 0 | dB(A) | - | - | - | - | -
 | - | -
 | - | -
 | -
 | - | -
 | -
 | - | -
 | - | - | 99,2 | 98,9 | 100,0 | 100,5 |
| A | dB(A) | 94,0 | 95,8 | 96,1 | 97,0 | 97,1
 | 97,2 | 97,3
 | 96,9 | 97,3
 | 97,4
 | 98,0 | 97,9
 | 98,0
 | 98,8 | 98,8
 | 98,6 | 98,9 | 99,2 | 98,9 | 100,0 | 100,5 |
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| 0 | dB(A) | - | - | - | - | -
 | - | -
 | - | -
 | -
 | - | -
 | -
 | - | -
 | - | - | 92,3 | 91,3 | 92,8 | 93,0 |
| A | dB(A) | 86,1 | 88,0 | 88,2 | 89,1 | 89,2
 | 89,3 | 89,3
 | 89,3 | 89,3
 | 89,6
 | 89,8 | 90,3
 | 90,5
 | 91,5 | 91,1
 | 91,2 | 91,3 | 92,3 | 91,3 | 92,8 | 93,0 |
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| 0 | dB(A) | - | - | - | - | -
 | - | -
 | - | -
 | -
 | - | -
 | -
 | - | -
 | - | - | 89,4 | 88,4 | 89,8 | 90,0 |
| A | dB(A) | 83,1 | 85,0 | 85,3 | 86,2 | 86,3
 | 86,4 | 86,3
 | 86,3 | 86,4
 | 86,7
 | 86,8 | 87,4
 | 87,5
 | 88,5 | 88,1
 | 88,2 | 88,8 | 89,4 | 88,4 | 89,8 | 90,0 |
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| 0 | dB(A) | - | - | - | - | -
 | - | -
 | - | -
 | -
 | - | -
 | -
 | - | -
 | - | - | 99,5 | 100,6 | 101,0 | 102,0 |
| A | dB(A) | 94,0 | 95,8 | 96,1 | 97,0 | 97,1
 | 97,2 | 97,3
 | 97,3 | 97,3
 | 97,7
 | 98,0 | 98,8
 | 98,8
 | 98,9 | 98,9
 | 99,3 | 100,0 | 99,5 | 100,6 | 101,0 | 102,0 |
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| 0 | dB(A) | - | - | - | - | -
 | - | -
 | - | -
 | -
 | - | -
 | -
 | - | -
 | - | - | 94,4 | 94,6 | 94,6 | 94,9 |
| A | dB(A) | 86,1 | 88,0 | 88,2 | 89,1 | 89,2
 | 89,3 | 89,3
 | 89,5 | 89,3
 | 90,0
 | 89,8 | 91,6
 | 91,9
 | 92,7 | 92,4
 | 92,5 | 92,6 | 94,4 | 94,6 | 94,6 | 94,9 |
| | | | | | |
 | |
 | |
 |
 | |
 |
 | |
 | | | | | | |
| 0 | dB(A) | - | - | - | - | -
 | - | -
 | - | -
 | -
 | - | -
 | -
 | - | -
 | - | - | 91,5 | 91,6 | 91,6 | 91,9 |
| A | dB(A) | 83,1 | 85,0 | 85,3 | 86,2 | 86,3
 | 86,4 | 86,3
 | 86,5 | 86,4
 | 87,0
 | 86,8 | 88,6
 | 89,0
 | 89,7 | 89,5
 | 89,6 | 90,0 | 91,5 | 91,6 | 91,6 | 91,9 |
| | A | ** dB(A) A dB(A) ** | ° dB(A) - A dB(A) 94,0 ° dB(A) - A dB(A) 86,1 ° dB(A) - A dB(A) 83,1 ° dB(A) - A dB(A) 94,0 ° dB(A) - A dB(A) - | ° dB(A) A dB(A) 94,0 95,8 ° dB(A) A dB(A) 86,1 88,0 ° dB(A) A dB(A) 83,1 85,0 ° dB(A) A dB(A) 94,0 95,8 ° dB(A) A dB(A) 86,1 88,0 ° dB(A) A dB(A) A dB(A) A dB(A) | ° dB(A) A dB(A) 86,1 88,0 88,2 ° dB(A) A dB(A) 86,1 88,0 85,3 ° dB(A) A dB(A) 83,1 85,0 85,3 ° dB(A) A dB(A) 94,0 95,8 96,1 ° dB(A) A dB(A) 86,1 88,0 88,2 ° dB(A) A dB(A) 86,1 88,0 88,2 | ° dB(A) - <td>° dB(A) A dB(A) 86,1 88,0 88,2 89,1 89,2 ° dB(A) A dB(A) 83,1 85,0 85,3 86,2 86,3 ° dB(A) A dB(A) 83,1 85,0 85,3 86,2 86,3 ° dB(A) A dB(A) 84,0 94,0 95,8 96,1 97,0 97,1 ° dB(A) A dB(A) 86,1 88,0 88,2 89,1 89,2 ° dB(A)</td> <td>° dB(A) -<td>° dB(A)</td><td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -
- -<td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td></td></td></td></td></td></td></td> | ° dB(A) A dB(A) 86,1 88,0 88,2 89,1 89,2 ° dB(A) A dB(A) 83,1 85,0 85,3 86,2 86,3 ° dB(A) A dB(A) 83,1 85,0 85,3 86,2 86,3 ° dB(A) A dB(A) 84,0 94,0 95,8 96,1 97,0 97,1 ° dB(A) A dB(A) 86,1 88,0 88,2 89,1 89,2 ° dB(A) | ° dB(A) - <td>° dB(A)</td> <td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -
 - -<td>° dB(A) -<td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td></td></td></td></td></td></td> | ° dB(A) | ° dB(A) - <td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -
 - -<td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td></td></td></td></td></td> | ° dB(A) - <td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -
- -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td></td></td></td></td> | ° dB(A) - <td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td></td></td></td> | ° dB(A) -
 - - - - - - - - - - - - - - <td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td></td></td> | ° dB(A) - <td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A) -
- -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td></td> | ° dB(A) - <td>° dB(A) -<td>° dB(A) -<td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td></td> | ° dB(A) - <td>° dB(A) -<td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td></td> | ° dB(A) - <td>° dB(A) -<td>° dB(A)</td><td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td><td>° dB(A)</td><td>° dB(A)</td></td> | ° dB(A) - <td>° dB(A)</td> <td>° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td> <td>° dB(A)</td> <td>° dB(A)</td> | ° dB(A) | ° dB(A) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | ° dB(A) | ° dB(A) |


⁽¹⁾ Sound power: calculated in agreement with the Standard UNI EN ISO 9614-2, in compliance with that requested by Eurovent certification.

Unit dimensions and weights °/H in standard configuration

Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °, H																							
Dimensions and weights - standard confi	guration																						
Α.	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
A	A	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
P	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В	Α	mm	1510	1560	1610	1610	1610	1610	1610	1645	1630	1600	1630	1675	1675	1685	1875	1900	1950	2200	2200	2200	2200
(0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
C	Α	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4380	4380	4395	4500	4580	4580	5650	5650	5650	5650
Emptyweight	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8740	9680	9900	10000
Empty weight	Α	kg	2020	2030	2230	2410	2450	2670	3090	3710	3530	3980	3570	5160	5220	5710	6440	6680	6770	9730	11440	11980	12060

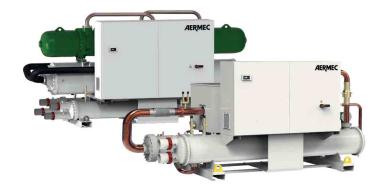
Unit dimensions and weights °/H in silenced configuration

<i>c</i> :				4254	4404	4404	4004	2404	2404	2502	2004	2002	2204	2202	2402	4202	4000	E / 0.3		/703	7202	0.403	~~~
Size			1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Model: °, H																							
Dimensions and weights - quiet configura	tion																						
A.	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
Α -	Α	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
D.	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В -	А	mm	1525	1560	1610	1610	1610	1615	1615	1645	1630	1600	1630	1675	1675	1685	1875	1900	1950	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
-	Α	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4630	4630	4600	5015	5060	5060	5650	5650	5650	5650
Former and a	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9270	10240	10510	10610
Empty weight	Α	kg	2180	2190	2390	2570	2610	2830	3280	4020	3720	4290	3760	5500	5560	6050	6810	7080	7170	10260	12000	12590	12670
Super silenced equipment dimensions and	d weights																						
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2250	2250	2250	2250
Α -	Α	mm	1720	1790	1865	1865	1865	1887	1887	2131	1920	2131	1920	2195	2195	2340	2455	2440	2432	2250	2250	2250	2250
D.	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2200	2200	2200	2200
В -	Α	mm	1525	1560	1610	1610	1610	1615	1615	1645	1630	1600	1630	1675	1675	1685	1875	1900	1950	2200	2200	2200	2200
	0	mm	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5650	5650	5650	5650
-	Α	mm	3460	3463	3585	4100	4100	4140	4240	4320	4290	4345	4290	4630	4630	4600	5015	5060	5060	5650	5650	5650	5650
	0	kg	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9890	10890	11230	11330
Empty weight	A	kg	2370	2380	2580	2760	2800	3020	3500	4400	3940	4670	3980	5910	5970	6460	7240	7550	7640	10880	12650	13310	13390

■ For the sizes of D-T-E versions please contact the factory.

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com


WFN

Water cooled heat pump reversible water side

Cooling capacity 182 ÷ 2349 kW Heating capacity 205 ÷ 2610 kW

- Production of hot water up to 55°C.
- Production of chilled water down to -8°C.

DESCRIPTION

Units for internal installation offering chilled/hot water, designed to mit air conditioning needs in residential/commercial complexes or industrial applications.

Compact and flexible, perfect alignment to the requested load thanks to an accurate control algorithm.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

A High efficiency

FEATURES

Operating field

Production of chilled water up to 16 °C of water produced on the evaporator side, but also suitable for use in heat pump mode with condenser water temperature up to 55 °C.

With option Z (double electronic expansion valve) the unit is capable to produce chilled water temperature from -8°C up to 10°C.

Mono, bi-tri circuit unit

Unit with 2-3 refrigerant circuits designed to provide maximum efficiency at full load, ensuring high efficiency at partial loads also and ensuring continuity in case one of the circuits stops.

They are equipped with screw compressors and system and source side shell and tube heat exchangers with R134a refrigerant.

The R513A (XP10) refrigerant with this type of gas is also available on the configurator. On average, the units have a yield > 2% and an EER < 3% compared to the same size with R134a.

For further details refer to the technical documentation or to the Magellano selection program.

Electronic expansion valve

The possibility to use electronic expansion valve, offers significant benefits, especially when the chiller is working with partial loads, increasing the energy efficiency of the unit. Standard for all sizes.

CONTROL PCO₅

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

Adjustment includes complete management of the alarms and their log.

Possibility to control two units in a Master-Slave configuration

The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.

The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AER485P1 x n° 2: RS-485 interface for supervision systems with MOD-BUS protocol.

AER485P1 x n° 3: RS-485 interface for supervision systems with MOD-BUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ISG: Insulation kit for condensers. Mandatory accessory for machine functioning in heat pump; standard in units with desuperheater or with heat recovery.

ACCESSORIES COMPATIBILITY

Model	Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
AER485P1	Α	•	•	•	•	•	•	•	•	•	•		•		•										
AER485P1 x n° 2 (1)	Α											•		•		•		•		•					
AER485P1 x n° 3 (1)	°,A																					•	•	•	•
AERBACP	0																					•	•	•	
AERDACF	Α	•		•		•	•	•	•	•		•	•	•		•	•	•	•	•		•		•	
AERNET	0																					•	•	•	
ACRIVET	Α	•		•		•		•		•		•		•		•		•		•		•		•	
MULTICULLED EVO	0																					•	•	•	•
MULTICHILLER_EVO	Α	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
DCD1	0																					•	•	•	•
PGD1 ——	A	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•

(1) x Indicates the quantity of accessories to match.

Antivibration

Version	Set-up	Heat recovery	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
0	°,K,L	°,D,T	-	-	-	-	-	-	-	-	-	-	-	-
A	0	0	AVX680	AVX680	AVX680	AVX681	AVX681	AVX681	AVX682	AVX682	AVX683	AVX683	AVX673	AVX683
А	K	0	AVX680	AVX680	AVX680	AVX681	AVX681	AVX688	AVX683	AVX683	AVX683	AVX683	Contact us.	AVX686
А	L	0	AVX680	AVX680	AVX680	AVX681	AVX681	AVX681	AVX682	AVX685	AVX683	AVX683	AVX674	AVX683
А	°,L	D,T	-	-	-	-	-	-	-	-	-	-	AVX674	-
Α	K	D,T	-	-	-	-	-	-	-	-	-	-	Contact us.	-

Version	Set-up	Heat recovery	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
0	°,K,L	°,D,T	-	-	-	-	-	-	-	-	Contact us.	Contact us.	Contact us.	Contact us.
A	0	0	AVX674	AVX683	AVX679	AVX679	AVX678	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
A	K	0	Contact us.	AVX686	Contact us.									
A	L	0	AVX674	AVX683	AVX678	AVX678	AVX678	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
A	0	D	AVX674	-	AVX679	AVX679	AVX678	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
Α	0	Ţ	AVX674	-	AVX678	AVX678	AVX678	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
Α	L	D	AVX674	-	AVX678	AVX678	AVX678	AVX678	AVX678	AVX678	Contact us.	Contact us.	Contact us.	Contact us.
Α	K	D,T	Contact us.	-	Contact us.									
Α	L	Ţ	AVX674	-	AVX678	AVX678	AVX678	AVX676	AVX676	AVX676	Contact us.	Contact us.	Contact us.	Contact us.

⁻ not available

Power factor correction

Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801
A	RIFWFN0701	RIFWFN0801	RIFWFN0901	RIFWFN1101	RIFWFN1251	RIFWFN1401	RIFWFN1601	RIFWFN1801	RIFWFN2101	RIFWFN2401	RIFWFN2502	RIFWFN2801
A grey background indicates the accessory n	ust ha accamble	ad in the factor	v									
A grey background indicates the accessory in	iust ne assembli	eu III tile lactor	y									
Ver	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
			,	3602	4202	4802	5602	6402	6703 RIFWFN6703			

A grey background indicates the accessory must be assembled in the factory

Isolating kit

_																									
	Ver	0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2502	2801	2802	3201	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ISG5	ISG5	ISG6	ISG6
	A	ISG10	ISG10	ISG10	ISG10	ISG11	ISG12	ISG13	ISG13	ISG14	ISG14	ISG1	ISG15	ISG1	ISG15	ISG2	ISG2	ISG2	ISG3	ISG3	ISG3	ISG7	ISG8	ISG8	ISG8

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

747

CONFIGURATOR

Field	Description
1,2,3	WFN
4,5,6,7	Size 0701, 0801, 0901, 1101, 1251, 1401, 1601, 1801, 2101, 2401, 2502, 2801, 2802, 3201, 3202, 3602, 4202, 4802, 5602, 6402, 6703, 7203, 8403, 9603
8	Model
0	Heat pump reversible on the water side
9	Version
0	Standard (1)
A	High efficiency
10	Operating field
Х	Electronic thermostatic expansion valve (2)
Z	Double electronic thermostatic for low temperature (3)
11	Set-up
0	Standard
K	Super silenced
L	Silenced with hood
12	Heat recovery
0	Without heat recovery
D	With desuperheater (4)
T	With total recovery (4)

Field	Description
13	Evaporator
0	Standard
E	Evaporating unit
14	Power supply
0	400V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (5)
2	230V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit (5)
4	230V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (5)
5	500V/3/50Hz with fuses on compressors and magnet circuit breakers on auxiliary circuit
8	400V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit
9	500V/3/50Hz with magnet circuit breakers on compressors and auxiliary circuit (5)
15	Refrigerant gas
0	R134a
G	R513A (XP10)

- (1) Only for sizes from 6703 to 9603

- (1) Unity for Sizes from 6/03 to 960 °C (-2) Water produced from -8 °C up to 10 °C (-3) Water produced from -8 °C up to 10 °C (-4) Not available for the condenserless "E" (-5) The 230V and 500V power supplies are only available for sizes 0701 0801 0901 1101 1251 1401 2502 2802

PERFORMANCE SPECIFICATIONS

WFN 0701 - 3201 - version A - gas R134a

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Cooling performance 12 °C/7 °C (1)													
Cooling capacity	kW	182,1	207,2	232,9	295,9	322,1	370,3	448,8	504,1	579,3	655,9	719,6	788,4
Input power	kW	35,2	40,2	45,6	55,9	60,5	68,8	83,9	95,0	106,4	120,6	136,6	149,7
Cooling total input current	A	63,0	71,0	79,0	91,0	104,0	120,0	138,0	156,0	170,0	200,0	223,0	248,0
EER	W/W	5,18	5,16	5,11	5,30	5,32	5,38	5,35	5,31	5,45	5,44	5,27	5,27
Water flow rate system side	l/h	31347	35658	40063	50900	55401	63688	77171	86683	99596	112777	123733	135542
Pressure drop system side	kPa	40	46	46	40	40	41	28	35	27	37	45	27
Water flow rate source side	l/h	37125	42261	47577	60109	65418	75101	91161	102491	117368	132862	146434	160587
Pressure drop source side	kPa	37	37	34	44	37	33	33	33	33	34	33	32
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	204,8	230,6	262,5	327,5	358,1	410,4	494,2	556,2	639,5	733,2	796,8	879,7
Input power	kW	44,4	50,8	57,8	70,4	76,6	87,1	104,0	118,2	131,8	150,4	169,5	188,1
Heating total input current	Α	78,0	88,0	98,0	113,0	130,0	149,0	170,0	191,0	209,0	246,0	272,0	308,0
COP	W/W	4,61	4,54	4,54	4,65	4,68	4,71	4,75	4,70	4,85	4,87	4,70	4,68
Water flow rate system side	l/h	35533	40021	45575	56858	62177	71260	85815	96600	111065	127339	138391	152791
Pressure drop system side	kPa	34	33	31	40	33	29	30	29	30	31	29	29
Water flow rate source side	l/h	47178	52944	60295	75577	82711	94940	114197	128417	148521	170834	184231	202358
Pressure drop source side	kPa	90	101	103	88	89	91	61	78	61	85	101	60

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

WFN 2502 - 9603 - version A - gas R134a

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Cooling performance 12 °C/7 °C (1)													
Cooling capacity	kW	652,3	746,8	905,7	1024,5	1164,3	1325,5	1446,9	1589,7	1721,1	1960,7	2149,5	2349,3
Input power	kW	121,4	137,8	167,7	189,5	213,7	242,9	270,4	296,6	317,6	359,9	406,3	445,4
Cooling total input current	A	208,0	239,0	275,0	310,0	341,0	401,0	447,0	493,0	509,0	598,0	667,0	739,0
EER	W/W	5,37	5,42	5,40	5,41	5,45	5,46	5,35	5,36	5,42	5,45	5,29	5,28
Water flow rate system side	l/h	112179	128411	155723	176117	200144	227870	248717	273259	295856	337027	369472	403784
Pressure drop system side	kPa	51	41	38	29	33	45	32	38	43	55	51	30
Water flow rate source side	l/h	132175	151199	183520	207646	235653	268115	293728	322600	348857	396964	437212	478412
Pressure drop source side	kPa	49	50	49	49	50	49	48	46	34	32	32	36
Heating performance 40 °C / 45 °C (2)													
Heating capacity	kW	726,4	828,1	1001,4	1138,6	1283,2	1459,8	1589,2	1809,3	1911,8	2159,8	2376,5	2610,0
Input power	kW	154,8	174,8	209,3	234,9	264,8	302,9	332,5	371,1	396,0	450,7	504,3	547,7
Heating total input current	A	260,0	298,0	339,0	381,0	418,0	492,0	545,0	606,0	624,0	733,0	812,0	900,0
COP	W/W	4,69	4,74	4,78	4,85	4,85	4,82	4,78	4,88	4,83	4,79	4,71	4,77
Water flow rate system side	I/h	126142	143812	173923	197757	222889	253571	276062	314312	332129	375231	412895	453465
Pressure drop system side	kPa	45	45	44	45	45	44	43	44	31	28	28	32
Water flow rate source side	I/h	168271	191878	232387	264585	298364	339696	368017	421779	444410	502013	549582	603144
Pressure drop source side	kPa	114	92	85	65	73	101	70	91	97	122	112	66

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C

WFN 6703 - 9603 - version ° - gas R134a

Size		6703	7203	8403	9603
Cooling performance 12 °C/7 °C(1)					
Cooling capacity	kW	1691,1	1925,6	2120,1	2310,0
Input power	kW	322,4	364,9	407,2	452,6
Cooling total input current	A	505,0	594,0	660,0	733,0
EER	W/W	5,00	5,00	5,00	5,00
Water flow rate system side	l/h	290696	330989	364406	397041
Pressure drop system side	kPa	46	52	39	46
Water flow rate source side	l/h	343740	390980	431894	471655
Pressure drop source side	kPa	70	70	58	69
Heating performance 40 °C / 45 °C (2)					
Heating capacity	kW	1885,5	2129,2	2348,8	2575,2
Input power	kW	401,0	454,4	501,6	558,6
Heating total input current	A	619,0	728,0	803,0	893,0
COP	W/W	5,00	5,00	5,00	5,00
Water flow rate system side	l/h	327527	369895	408061	447398
Pressure drop system side	kPa	64	63	52	62
Water flow rate source side	l/h	436659	493020	542047	593071
Pressure drop source side	kPa	105	115	86	103

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C

ENERGY INDICES (REG. 2016/22	81 EU)												
Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Refrigerant gas: °														
SEER - 12/7 (EN14825: 2018) . re	frigerant gas R134a (1)												
CLLD	0	W/W	-	-	-	-	-	-	-	-	-	-	-	-
SEER	A	W/W	6,64	6,87	6,80	6,55	6,76	6,83	6,79	6,85	6,94	6,94	6,62	6,75
Casanal afficients	0	%	-	-	-	-	-	-	-	-	-	-	-	-
Seasonal efficiency	A	%	262,60	271,70	269,00	259,00	267,50	270,00	268,40	270,90	274,50	274,50	261,70	267,10
(1) Calculation performed with VA	RIABLE water flow rate a	nd VARIABLE	outlet tempe	rature.										
Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Refrigerant gas: °														
SEER - 12/7 (EN14825: 2018) . re	frigerant gas R134a (1)												
CEED	0	W/W	-	-	-	-	-	-	-	-	6,85	7,02	6,98	6,88
SEER	Α	W/W	7,06	7,19	7,07	7,23	7,24	7,18	7,01	7,14	7,37	7,44	7,31	7,34
C	0	%	-	-	-	-	-	-	-	-	270.8%	277.7%	276.2%	272.3%
Seasonal efficiency	Δ	0/6	279 5%	284 6%	279.8%	296 3%	286 5%	284 3%	277 3%	282.4%	291 9%	294 5%	289 5%	290.4%

	- A	/0 217.5/0	201.070 277.070	270.370 200.370	201.370 277	7/0 202.4/0 271.7/0	274.570 207.570 270.
1) Calculation performed with	n VARIABLE water flow rate and	/ARIABLE outlet temper	rature.				
Size			070	1	0801	0901	1101
Refrigerant gas: °							
UE 813/2013 performance in	n average ambient conditions	(average) - 55 °C - Pde	esignh ≤ 400 kW (1)				
Ddacianh	•	kW	-		-	-	-
Pdesignh	A	kW	264,	00	294,00	339,00	417,00
COD	٥	W/W	-		-	-	-
SCOP	A	W/W	4,5	8	4,63	4,55	4,73
	0	%	-		-	-	-
ηsh	Α	%	175	00	177 00	174 00	181 00

296.3%

286.5%

284.3%

277.3%

282.4%

291.9%

294.5%

289.5%

290.4%

279.5%

284.6%

279.8%

PERFORMANCE SPECIFICATIONS EVAPORATING UNITS

WFN - AE- gas R134a

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Evaporator: E													
Cooling performance 12 °C/7 °C - gas R134a (1)													
Cooling capacity	kW	162,7	185,3	208,6	264,5	289,4	331,9	398,9	449,2	519,2	588,2	640,8	701,8
Input power	kW	41,4	47,2	53,8	65,8	71,8	81,7	98,8	111,7	125,2	141,5	158,8	175,4
Cooling total input current	Α	74,0	83,0	94,0	109,0	124,0	141,0	164,0	185,0	203,0	236,0	263,0	290,0
EER	W/W	3,93	3,92	3,88	4,02	4,03	4,06	4,04	4,02	4,15	4,16	4,03	4,00
Evaporator water flow rate	l/h	27948	31843	35845	45444	49721	57032	68528	77175	89209	101057	110092	120581
Pressure drop evaporator side	kPa	32	36	37	32	32	33	22	28	22	30	36	21
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	42,0	54,0	54,0	54,0	67,0	67,0	67,0	76,0	76,0	89,0	89,0	89,0
Gas line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Gas line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C1)	Ø	28,0	35,0	35,0	35,0	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	-	-	-	-	-	-	-	-	-	-	-	-
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	-	-	-	-

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

⁽¹⁾ Efficiencies for average temperature applications (55 °C)

Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Evaporator: E													
Cooling performance 12 °C / 7 °C - gas R134a (1)													
Cooling capacity	kW	584,6	668,6	803,3	911,8	1043,5	1186,8	1284,6	1414,9	1544,3	1758,8	1912,5	2076,9
Input power	kW	143,3	163,2	196,5	222,8	249,8	283,2	317,9	349,1	373,7	422,6	474,7	523,3
Cooling total input current	Α	246,7	282,2	326,3	368,7	405,5	472,6	525,9	578,3	606,7	705,8	785,6	867,1
EER	W/W	4,08	4,10	4,09	4,09	4,18	4,19	4,04	4,05	4,13	4,16	4,03	3,97
Evaporator water flow rate	I/h	100443	114870	138020	156649	179280	203906	220716	243093	265322	302189	328596	356829
Pressure drop evaporator side	kPa	41	33	30	23	27	36	25	30	35	44	40	23
Length of refrigerant lines from/to 0 - 10 m													
Gas line (C1)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	67,0	67,0	67,0	76,0	76,0	88,9	88,9	88,9	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	-	-	-	-	-	-	-	42,0	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	42,0	42,0	42,0	42,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	-	-	-	-	-	-	-	-	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

WFN - °E - gas R134a

Size		6703	7203	8403	9603
Evaporator: E					
Cooling performance 12 °C/7 °C - gas R134a (1)					
Cooling capacity	kW	1500,1	1704,7	1830,1	1998,5
Input power	kW	375,4	424,4	474,7	524,9
Cooling total input current	A	609,0	708,0	786,0	869,0
EER	W/W	4,00	4,02	3,86	3,81
Evaporator water flow rate	I/h	257735	292888	314432	343357
Pressure drop evaporator side	kPa	36	41	29	35
Length of refrigerant lines from/to 0 - 10 m					
Gas line (C1)	Ø	76,0	88,9	88,9	88,9
Gas line (C2)	Ø	76,0	88,9	88,9	88,9
Gas line (C3)	Ø	76,0	88,9	88,9	88,9
Liquid line (C1)	Ø	54,0	54,0	54,0	54,0
Liquid line (C2)	Ø	54,0	54,0	54,0	54,0
Liquid line (C3)	Ø	54,0	54,0	54,0	54,0

⁽¹⁾ Service side water 12 °C / 7 °C; Condensing temperature 45 °C

ELECTRIC DATA

Size			0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Electric data														
Maximum current (FLA)		Α	106,0	119,0	136,0	162,0	183,0	208,0	243,0	275,0	305,0	350,0	389,0	427,0
Peak current (LRA)		Α	166,0	195,0	232,0	303,0	317,0	344,0	439,0	468,0	589,0	653,0	808,0	920,0
Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Electric data														
Maximum current (FLA)	0	Α	-	-	-	-	-	-	-	-	913,0	1050,0	1166,0	1281,0
Maximum current (FLA)	A	А	365,0	416,0	486,0	549,0	609,0	700,0	777,0	854,0	913,0	1050,0	1166,0	1281,0
Dook surrent (LDA)	0	Α	-	-	-	-	-	-	-	-	1198,0	1353,0	1585,0	1774,0
Peak current (LRA)	A	А	500,0	552,0	682,0	743,0	894,0	1003,0	1197,0	1347,0	1198,0	1353,0	1585,0	1774,0

GENERAL TECHNICAL DATA

WFN - A

Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Compressor													
Туре	type						Scr	ew					
Compressor regulation	Туре						On-	-Off					
Number	no.	1	1	1	1	1	1	1	1	1	1	1	1
Circuits	no.	1	1	1	1	1	1	1	1	1	1	1	1
Refrigerant	type						R1:	34a					
Refrigerant load circuit 1 (1)	kg	41,0	41,0	38,0	59,0	57,0	72,0	66,0	61,0	85,0	81,0	110,0	104,0
System side heat exchanger													
Туре	type						Shell ar	nd tube					
Number	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	Туре						Groove	d joints					
Sizes (in/out)	Ø	4"	4"	4"	4"	5"	6"	6"	6"	6"	6"	8"	8"
Source side heat exchanger													
Туре	type						Shell ar	nd tube					
Number	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	Туре						Groove	d joints					
Sizes (in/out)	Ø	3"	3"	3"	3″	4"	4"	4"	4"	5"	5"	6"	6"

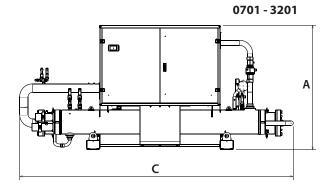
⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

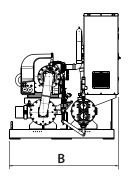
Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Compressor														
Туре	°,A	type						Sci	rew					
Compressor regulation	°,A	Туре						0n	-Off					
Number	°,A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Circuits	°,A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Refrigerant	°,A	type						R1	34a					
Definement lead singuist 1 (1)	0	kg	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 1 (1)	A	kg	50,0	53,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
Definement lead singuit 2 (1)	0	kg	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 2 (1)	A	kg	50,0	53,0	81,0	71,0	70,0	123,0	124,0	121,0	106,0	104,0	110,0	120,0
D. f	0	kg	-	-	-	-	-	-	-	-	107,0	115,0	136,0	157,0
Refrigerant load circuit 3 (1)	A	kg	-	-	-	-	-	-	-	-	106,0	104,0	110,0	120,0
System side heat exchanger														
Туре	°,A	type						Shell a	nd tube					
Number	°,A	no.	1	1	1	1	1	1	1	1	1	1	1	1
Connections (in/out)	°,A	Туре						Groove	d joints					
Sizes (in/out)	°,A	Ø	8"	8"	8"	8"	10"	10"	10"	10"	10"	10"	10"	10"
Source side heat exchanger														
Туре	°,A	type						Shell a	nd tube					
Number	°,A	no.	2	2	2	2	2	2	2	2	3	3	3	3
Connections (in/out)	°,A	Туре						Groove	d joints					
C: (:- /4)	0	Ø	-	-	-	-	-	-	-	-	5"	5"	6"	6"
Sizes (in/out)	A	Ø	4"	4"	4"	4"	5"	6"	6"	6"	-	-	-	-

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

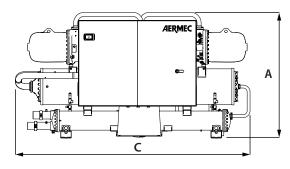
SOUND DATA

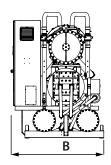
Sound data calculated with functioning in cooling mode - R134a gas


Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Set-up: °													
Sound data calculated in cooling mode (1)													
Sound power level	dB(A)	81,2	80,0	81,6	79,1	82,3	85,7	81,6	82,4	83,9	84,0	87,4	84,9
Set-up: K													
Sound data calculated in cooling mode (1)													
Sound power level	dB(A)	78,0	78,2	77,9	79,8	80,4	80,9	81,1	81,5	84,3	82,6	85,1	84,5
Set-up: L													
Sound data calculated in cooling mode (1)													
Sound power level	dB(A)	81,0	81,2	80,9	82,8	83,4	83,9	84,1	84,5	87,3	85,5	88,1	87,5


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Set-up: °														
Sound data calculated in cooling mode (1)														
County named and	0	dB(A)	-	-	-	-	-	-	-	-	97,0	97,2	99,5	100,0
Sound power level —	Α	dB(A)	93,5	94,0	94,0	94,5	95,0	95,5	97,5	98,0	97,0	97,2	99,5	100,0
Set-up: K														
Sound data calculated in cooling mode (1)														
Cound nouse lovel	0	dB(A)	-	-	-	-	-	-	-	-	88,1	87,3	89,8	90,3
Sound power level —	Α	dB(A)	83,6	83,6	84,5	85,2	86,1	85,6	87,8	88,3	88,1	87,3	89,8	90,3
Set-up: L														
Sound data calculated in cooling mode (1)														
Cound navor lovel	0	dB(A)	-	-	-	-	-	-	-	-	91,1	90,2	92,8	93,3
Sound power level —	Α	dB(A)	86,6	86,6	87,5	88,2	89,1	88,5	90,8	91,3	91,1	90,2	92,8	93,3


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).


DIMENSIONS

2502 - 9603

WFN 0701-9603 ver. A

WFN 0/01-9603 Ver. A													
Size		0701	0801	0901	1101	1251	1401	1601	1801	2101	2401	2801	3201
Dimensions and weights - standard configuration													
<u>A</u>	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	1920	1920
В	mm	1450	1450	1450	1510	1550	1610	1610	1610	1610	1610	1630	1630
C	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4290	4290
Empty weight	kg	1610	1630	1630	2120	2130	2350	2940	2980	3260	3320	3820	3870
Dimensions and weights - quiet configuration													
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	1920	1920
В	mm	1450	1450	1450	1540	1600	1610	1610	1610	1630	1630	1645	1645
C	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4290	4290
Empty weight	kg	1770	1790	1790	2280	2290	2510	3120	3170	3450	3510	4030	4080
Super silenced equipment dimensions and weights													
A	mm	1720	1720	1720	1720	1790	1865	1865	1865	1887	1887	1920	1920
В	mm	1450	1450	1450	1540	1600	1610	1610	1610	1630	1630	1645	1645
C	mm	3480	3480	3480	3470	3445	3560	4100	4100	4140	4252	4290	4290
Empty weight	kg	1960	1980	1980	2470	2480	2700	3340	3390	3670	3730	4280	4330
Size		2502	2802	3202	3602	4202	4802	5602	6402	6703	7203	8403	9603
Dimensions and weights - standard configuration													
Dilliensions and Meights - Standard Configuration													
A Name of the standard configuration	mm	2000	2075	2195	2195	2340	2432	2440	2432	2250	2250	2250	2250
	mm mm	2000 1500	2075 1500	2195 1575	2195 1575	2340 1585	2432 1845	2440 1800	2432 1800	2250 2200	2250 2200	2250 2200	2250 2200
A													
A	mm	1500	1500	1575	1575	1585	1845	1800	1800	2200	2200	2200	2200
A B C	mm mm	1500 4320	1500 4345	1575 4380	1575 4380	1585 4395	1845 4535	1800 4605	1800 4605	2200 6840	2200 6840	2200 6840	2200 6840
A B C Empty weight	mm mm	1500 4320	1500 4345	1575 4380	1575 4380	1585 4395	1845 4535	1800 4605	1800 4605	2200 6840	2200 6840	2200 6840	2200 6840
A B C Empty weight	mm mm kg	1500 4320 3810	1500 4345 4100	1575 4380 5690	1575 4380 5750	1585 4395 6300	1845 4535 6670	1800 4605 6970	1800 4605 7070	2200 6840 10320	2200 6840 11670	2200 6840 12270	2200 6840 12360
A B C Empty weight Dimensions and weights - quiet configuration A	mm mm kg mm	1500 4320 3810 2000	1500 4345 4100 2075	1575 4380 5690 2195	1575 4380 5750 2195	1585 4395 6300 2340	1845 4535 6670 2432	1800 4605 6970 2440	1800 4605 7070 2432	2200 6840 10320 2250	2200 6840 11670 2250	2200 6840 12270 2250	2200 6840 12360 2250
A B C Empty weight Dimensions and weights - quiet configuration A	mm mm kg mm mm	1500 4320 3810 2000 1500	1500 4345 4100 2075 1500	1575 4380 5690 2195 1575	1575 4380 5750 2195 1575	1585 4395 6300 2340 1585	1845 4535 6670 2432 1845	1800 4605 6970 2440 1800	1800 4605 7070 2432 1800	2200 6840 10320 2250 2200	2200 6840 11670 2250 2200	2200 6840 12270 2250 2200	2200 6840 12360 2250 2200
A B C Empty weight Dimensions and weights - quiet configuration A B C	mm kg mm mm mm	1500 4320 3810 2000 1500 4320	1500 4345 4100 2075 1500 4345	1575 4380 5690 2195 1575 4650	1575 4380 5750 2195 1575 4650	1585 4395 6300 2340 1585 4600	1845 4535 6670 2432 1845 5015	1800 4605 6970 2440 1800 5150	1800 4605 7070 2432 1800 5150	2200 6840 10320 2250 2200 6840	2200 6840 11670 2250 2200 6840	2200 6840 12270 2250 2200 6840	2200 6840 12360 2250 2200 6840
A B C Empty weight Dimensions and weights - quiet configuration A B C Empty weight	mm kg mm mm mm	1500 4320 3810 2000 1500 4320	1500 4345 4100 2075 1500 4345	1575 4380 5690 2195 1575 4650	1575 4380 5750 2195 1575 4650	1585 4395 6300 2340 1585 4600	1845 4535 6670 2432 1845 5015	1800 4605 6970 2440 1800 5150	1800 4605 7070 2432 1800 5150	2200 6840 10320 2250 2200 6840	2200 6840 11670 2250 2200 6840	2200 6840 12270 2250 2200 6840	2200 6840 12360 2250 2200 6840
A B C Empty weight Dimensions and weights - quiet configuration A B C Empty weight	mm kg mm mm mm mm kg	1500 4320 3810 2000 1500 4320 4120	1500 4345 4100 2075 1500 4345 4410	1575 4380 5690 2195 1575 4650 6050	1575 4380 5750 2195 1575 4650 6120	1585 4395 6300 2340 1585 4600 6670	1845 4535 6670 2432 1845 5015 7040	1800 4605 6970 2440 1800 5150 7420	1800 4605 7070 2432 1800 5150 7490	2200 6840 10320 2250 2200 6840 10880	2200 6840 11670 2250 2200 6840 12230	2200 6840 12270 2250 2200 6840 12950	2200 6840 12360 2250 2200 6840 12990
A B C Empty weight Dimensions and weights - quiet configuration A B C Empty weight Super silenced equipment dimensions and weights A	mm kg mm mm kg mm mm kg	1500 4320 3810 2000 1500 4320 4120	1500 4345 4100 2075 1500 4345 4410	1575 4380 5690 2195 1575 4650 6050	1575 4380 5750 2195 1575 4650 6120	1585 4395 6300 2340 1585 4600 6670	1845 4535 6670 2432 1845 5015 7040	1800 4605 6970 2440 1800 5150 7420	1800 4605 7070 2432 1800 5150 7490	2200 6840 10320 2250 2200 6840 10880	2200 6840 11670 2250 2200 6840 12230	2200 6840 12270 2250 2200 6840 12950	2200 6840 12360 2250 2200 6840 12990

WFN 6703-9603 ver. °

Size		6703	7203	8403	9603
Dimensions and weights - standard configuration					
A	mm	2250	2250	2250	2250
3	mm	2200	2200	2200	2200
	mm	5650	5650	5650	5650
Empty weight	kg	9330	9910	10130	10200
Dimensions and weights - quiet configuration					
A	mm	2250	2250	2250	2250
В	mm	2200	2200	2200	2200
(mm	5650	5650	5650	5650
Empty weight	kg	9890	10470	10760	10830
Super silenced equipment dimensions and weights					
A	mm	2250	2250	2250	2250
В	mm	2200	2200	2200	2200
(mm	5650	5650	5650	5650
Empty weight	kg	10540	11120	11510	11580

[■] For the sizes of D-T-E versions please contact the factory.

[■] For the size of the units with the RIF accessory we ask you to contact the headquarters.

WMX

Water-water chiller

Cooling capacity 280,1 ÷ 324,2 kW

- High efficiency also at partial loads ESEER 8,4
- Compact design
- · Extremely flexible and reliable

DESCRIPTION

Indoor unit for the production of chilled water, equipped with magnetic levitation centrifugal compressors and system side, flooded source heat exchangers that guarantee a 50% reduction of the refrigerant load in comparison to conventional flooded heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made, always oriented to the highest quality and efficiency can reach 5.71 EER values (class A for the working conditions Eurovent).

EFFICIENCY

A High efficiency

U Very high efficiency

Both units can be silenced.

FFATURES

- 5 times lighter than an equivalent screw compressor.
- Extremely compact wide to allow access through a standard doorway.
- High efficiency with generously sizes heat exchanger.

Two-stage, oil-free centrifugal compressor with latestgeneration magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

Provided with inverter technology that permits capacity modulation down to 30% A version.

Built-in device to reduce starting current (only 6 Amps!)

Operating field

Water produced from 20 $^{\circ}$ C up to 45 $^{\circ}$ C on Condenser side and from 5 $^{\circ}$ C up to 20 $^{\circ}$ C on Evaporator side.

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PTW: Allows you to control the unit at a distance.

CONFIGURATOR

Field	Description
1,2,3	WMX
4,5,6	Size
	300
7	Efficiency
Α	High efficiency

Field	Description
U	Very high efficiency
8	Version
0	Standard
L	Silenced

PERFORMANCE SPECIFICATIONS

Size			300
Efficiency: A			
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	°,L	kW	324,2
Input power	°,L	kW	60,3
Cooling total input current	°,L	A	94,0
EER	°,L	W/W	5,37
Water flow rate system side	°,L	I/h	55761
Pressure drop system side	°,L	kPa	34
Water flow rate source side	°,L	l/h	65750
Pressure drop source side	°,L	kPa	41
Efficiency: U			
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	°,L	kW	280,1
Input power	°,L	kW	48,9
Cooling total input current	°,L	A	78,0
EER	°,L	W/W	5,72
Water flow rate system side	°,L	l/h	48180
Pressure drop system side	°,L	kPa	25
Water flow rate source side	°,L	l/h	56338
Pressure drop source side	°,L	kPa	30

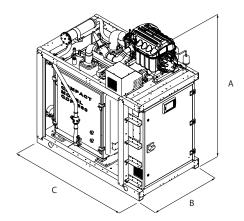
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			300
SEER - 12/7 (EN14825: 2018) (1)			
SEER	A	W/W	8,99
SECK	U	W/W	9,04
Concernal officiency	A	%	356,6%
Seasonal efficiency	U	%	358,5%
SEPR - (EN 14825: 2018) High temperatur	re (2)		
SEPR	A	W/W	9,70
SEPK	U	W/W	10,35

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA


Size			300
Efficiency: A, U			
Electric data			
Maximum current (FLA)	°,L	A	135,0
Peak current (LRA)	°,L	A	6,0

GENERAL TECHNICAL DATA

Size			300
Efficiency: A, U			
Compressor			
Туре	°,L	type	Centrifugal
Compressor regulation	°,L	Туре	Inverter
Number	°,L	no.	1
Circuits	°,L	no.	1
Refrigerant	°,L	type	R134a
Source side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
System side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact with Spray system
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
Size			300
Efficiency: A			
Sound data calculated in cooling	mode (1)		
Cound nowar lavel	0	dB(A)	90,0
Sound power level	L	dB(A)	84,0
Efficiency: U			
Sound data calculated in cooling	mode (1)		
Cound navor lavel	0	dB(A)	85,0
Sound power level	L	dB(A)	78,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			300
Efficiency: A, U			
Dimensions and weights			
Λ.	0	mm	1905
A	L	mm	1942
В	°,L	mm	1041
C	°,L	mm	1770
Emptyweight	•	kg	2025
Empty weight	L	kg	2210

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WMG

Water-water chiller

Cooling capacity 282,3 ÷ 312,4 kW

- High efficiency also at partial loads ESEER 8,4
- Compact design
- · Extremely flexible and reliable

DESCRIPTION

Indoor unit for the production of chilled water, equipped with magnetic levitation centrifugal compressors and system side, flooded source heat exchangers that guarantee a 50% reduction of the refrigerant load in comparison to conventional flooded heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made, always oriented to the highest quality and efficiency can reach 5.71 EER values (class A for the working conditions Eurovent).

EFFICIENCY

A High efficiency

U Very high efficiency

Both units can be silenced.

FFATURES

- 5 times lighter than an equivalent screw compressor.
- Extremely compact wide to allow access through a standard doorway.
- High efficiency with generously sizes heat exchanger.

HFO R1234ze refrigerant gas

HFO R1234ze is a mixture featuring:

da ODP = 0 e GWP (Global Warming Potential) = 7, R134a GWP = 1430:

with thermodynamic properties that guarantee and sometimes improve efficiencies achieved with HFC refrigerants.

Two-stage, oil-free centrifugal compressor with latestgeneration magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

Provided with inverter technology that permits capacity modulation down to 30% A version.

Built-in device to reduce starting current (only 6 Amps!)

Operating field

Water produced from 20 $^{\circ}$ C up to 55 $^{\circ}$ C on Condenser side and from 5 $^{\circ}$ C up to 20 $^{\circ}$ C on Evaporator side.

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PTW: Allows you to control the unit at a distance.

CONFIGURATOR

Field	Description
1,2,3	WMG
4,5,6	Size 300
7	Efficiency
Α	High efficiency

Field		Description
	U	Very high efficiency
8		Version
	0	Standard
	L	Silenced

PERFORMANCE SPECIFICATIONS

Size			300
Efficiency: A			
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	°,L	kW	312,4
Input power	°,L	kW	57,6
Cooling total input current	°,L	A	85,0
EER	°,L	W/W	5,42
Water flow rate system side	°,L	I/h	53731
Pressure drop system side	°,L	kPa	31
Water flow rate source side	°,L	l/h	63303
Pressure drop source side	°,L	kPa	36
Efficiency: U			
Cooling performance 12 °C/7 °C(1)			
Cooling capacity	°,L	kW	282,3
Input power	°,L	kW	49,1
Cooling total input current	°,L	A	74,0
EER	°,L	W/W	5,75
Water flow rate system side	°,L	l/h	48548
Pressure drop system side	°,L	kPa	25
Water flow rate source side	°,L	l/h	56739
Pressure drop source side	°,L	kPa	29

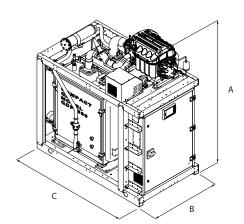
⁽¹⁾ Date 14511:2022; Water user side 12 $^{\circ}$ C / 7 $^{\circ}$ C; Water source side 30 $^{\circ}$ C / 35 $^{\circ}$ C

ENERGY INDICES (REG. 2016/2281 EU)

Size			300
SEER - 12/7 (EN14825: 2018) (1)			
CEED	A	W/W	8,88
SEER	U	W/W	8,91
Concornal officiones	A	%	352,0%
Seasonal efficiency	U	%	353,4%
SEPR - (EN 14825: 2018) High ten	nperature (2)		
SEPR	A	W/W	9,96
	U	W/W	10,37

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature. (2) Calculation performed with FIXED water flow rate.

ELECTRIC DATA


Size			300
Efficiency: A, U			
Electric data			
Maximum current (FLA)	°,L	A	150,0
Peak current (LRA)	°,L	A	6,0

GENERAL TECHNICAL DATA

Size			300
Efficiency: A, U			
Compressor			
Туре	°,L	type	Centrifugal
Compressor regulation	°,L	Туре	Inverter
Number	°,L	no.	1
Circuits	°,L	no.	1
Refrigerant	°,L	type	R1234ze
Source side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
System side heat exchanger			
Туре	°,L	type	Shell and tube - flooded compact with Spray system
Number	°,L	no.	1
Connections (in/out)	°,L	Туре	Grooved joints
Sizes (in/out)	°,L	Ø	4"
Size			300
Efficiency: A			
Sound data calculated in cooling	mode (1)		
Cound nowar lavel	0	dB(A)	90,0
Sound power level	L	dB(A)	85,0
Efficiency: U			
Sound data calculated in cooling	mode (1)		
Cound navor lovel	0	dB(A)	84,0
Sound power level	L	dB(A)	78,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			300
Efficiency: A, U Dimensions and weights			
Dimensions and weights			
Α.	0	mm	1905
A	L	mm	1942
В	°,L	mm	1041
С	°,L	mm	1770
Emptywoight	0	kg	2065
Empty weight	L	kg	2250

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WTX

Water-water chiller

Cooling capacity 222,9 ÷ 1958,4 kW

- High efficiency ESEER up to 9
- Extended operating range
- Possibility of selecting between heat exchangers with 1 or 2 passes on water side

DESCRIPTION

Indoor unit producing chilled water equiped with magnetic levitation centrifugal compressors and shell & tube heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made always focus on maximum quality and efficiency, thereby achieving EER > 6 values (class A for Eurovent operating conditions).

EFFICIENCY

A High efficiency
U Very high efficiency
Both units can be silenced.

FEATURES

Two-stage, oil-free centrifugal compressor with latestgeneration magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

The compressor is equipped with an inverter for continuous load modulation by varying rpm (from 30% to 100%).

Built-in device to reduce starting current (only 6 Amps!)

Operating field

Water produced from 15 $^{\circ}$ C up to 50 $^{\circ}$ C on Condenser side and from 5 $^{\circ}$ C up to 25 $^{\circ}$ C on Evaporator side.

Flooded Evaporator with subcooler

Subcooler effect

- Superheats compressor gas intake;
- Subcools thermostatic valve fluid intake;
- Increases chiller yield and ensures gas suction from compressor.

Condenser

— With refrigerant on shell side and water on pipe side

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

759

ACCESSORIES COMPATIBILITY

Model	Ver	1300	1350	2300	2350	3300	3325	3350	4325	4350
AER485P1	A,U	•	•	•	•	•	•	•	•	•
AERBACP	A,U	•	•	•	•	•	•	•	•	•
FL	A,U	•	•	•	•	•	•	•	•	•
MUITICHILLER EVO	A.U									•

■ With the MULTICHILLER_EVO accessory, it is necessary to add AER485P1 for each connected unit.

Antivibration

Ver	1300	1350	2300	2350	3300	3325	3350	4325	4350
A,U	AVX (1)								

(1) Contact us.

CONFIGURATOR

Field	Description
1,2,3	WTX
4,5,6,7	Size 1300, 1350, 2300, 2350, 3300, 3325, 3350, 4325, 4350
8	Efficiency
A	High efficiency
U	Very high efficiency
9	Exchanger
1	One pass on water side (1)

EXCHANGERS

Over-sized tube core exchangers ensure excellent performances at full and partial loads.

Flooded evaporator: with level adjustment through an electronic valve controlled by a level sensor.

Backflow condenser: with refrigerant on shell side and water on tube side

■ From size 1300 to 2350, heat exchangers have 2 passes on the water side

Field	Description
2	Two passes on water side
10	Version
0	Standard
L	Silenced
11	Power supply
0	400V ~ 3 50Hz with circuit breakers on compressors and auxiliary circuit

(1) Option available only for size from 3300 to 4350.

Starting from size WTX 3300, heat exchangers are available as versions with one or two passes on the water side, to meet any plant installation requirement. The dimensions of the two configurations ensure similar performances (same approach to heat exchangers). The difference is that the version with two passes on the water side due offers the convenience of water connections all on the same side, against a generally higher but nonetheless limited drop in pressure compared to the version with one pass on the water side.

761

PERFORMANCE SPECIFICATIONS

WTX - A

Size		1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1										
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	-	-	-	-	1054,4	1214,3	1466,1	1716,2 (2)	1955,0 (2)
Input power	kW	-	-	-	-	211,4	219,9	281,6	315,3	375,1
Cooling total input current	A	-	-	-	-	317,0	356,0	435,0	503,0	580,0
EER	W/W	-	-	-	-	4,99	5,52	5,21	5,44	5,21
Water flow rate system side	l/h	-	-	-	-	181266	208751	252017	294970	336022
Pressure drop system side	kPa	-	-	-	-	32	39	31	24	31
Water flow rate source side	l/h	-	-	-	-	218376	247239	301544	350417	402059
Pressure drop source side	kPa	-	-	-	-	31	38	31	42	31
Exchanger: 2										
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	351,3	488,5	702,8	899,4	1054,3	1215,9	1466,0	1715,9 (2)	1958,4 (2)
Input power	kW	70,8	94,3	141,8	164,1	212,6	220,6	283,8	318,8	380,0
Cooling total input current	A	106,0	145,0	212,0	255,0	317,0	356,0	435,0	503,0	580,0
EER	W/W	4,96	5,18	4,96	5,48	4,96	5,51	5,17	5,38	5,15
Water flow rate system side	l/h	60422	84006	120844	154630	181266	209053	252017	294970	336647
Pressure drop system side	kPa	32	30	40	33	54	77	54	60	82
Water flow rate source side	l/h	72792	100515	145584	183481	218376	247235	301544	350417	402062
Pressure drop source side	kPa	31	33	35	28	28	35	33	41	53

WTX - U

WIX-O										
Size		1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	-	-	-	-	669,0	869,6	1002,7	1179,6	1336,9
Input power	kW	-	-	-	-	112,2	144,9	166,9	195,3	222,3
Cooling total input current	Α	-	-	-	-	180,0	237,0	273,0	316,0	364,0
EER	W/W	-	-	-	-	5,96	6,00	6,01	6,04	6,01
Water flow rate system side	l/h	-	-	-	-	115004	149476	172333	202737	229777
Pressure drop system side	kPa	-	-	-	-	12	18	14	10	14
Water flow rate source side	l/h	-	-	-	-	135049	175273	202156	237660	269542
Pressure drop source side	kPa	-	-	-	-	12	17	13	17	13
Exchanger: 2										
Cooling performance 12 °C/7 °C(1)										
Cooling capacity	kW	222,9	334,1	445,9	559,7	669,0	840,1	1006,1	1191,4	1342,6
Input power	kW	37,5	55,9	75,1	94,3	112,5	140,7	167,2	198,4	223,4
Cooling total input current	А	60,0	91,0	120,0	158,0	180,0	237,0	273,0	316,0	364,0
EER	W/W	5,95	5,98	5,94	5,93	5,95	5,97	6,02	6,01	6,01
Water flow rate system side	l/h	38335	57444	76669	96214	115004	144425	172942	204799	230804
Pressure drop system side	kPa	12	13	16	12	21	32	24	26	37
Water flow rate source side	l/h	45016	67385	90033	113067	135049	169344	202690	240041	270255
Pressure drop source side	kPa	12	14	13	10	10	15	14	18	23

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

ENERGY INDICES (REG. 2016/2281 EU)

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1											
SEER - 12/7 (EN14825: 2018) (1)											
SEER	A	W/W	-	-	-	-	8,25	8,64	8,78	8,76	8,95
SEEK	U	W/W	-	-	-	-	9,70	9,54	9,85	9,59	9,92
Casanal efficiency	Α	%	-	-	-	-	326,8%	342,6%	348,2%	347,2%	354,8%
Seasonal efficiency	U	%	-	-	-	-	384,8%	378,4%	390,8%	380,6%	393,7%
SEPR - (EN 14825: 2018) High tempe	rature (2)										
CEDD	A	W/W	-	-	-	-	8,75	9,92	9,33	9,71	9,35
SEPR	U	W/W	-	-	-	-	11,80	11,36	11,44	11,49	11,47
Exchanger: 2											
SEER - 12/7 (EN14825: 2018) (1)											
SEER	A	W/W	8,40	8,59	8,19	8,76	8,03	8,34	8,45	8,32	8,39
DEEK	U	W/W	9,69	9,07	9,47	9,73	9,54	9,31	9,66	9,28	9,60
Casaral officianas	A	%	332,9%	340,6%	324,5%	347,3%	318,1%	330,4%	334,9%	329,8%	332,6%
Seasonal efficiency	U	%	384,4%	359,9%	375,6%	386,3%	378,6%	369,5%	383,5%	368,1%	380,8%
SEPR - (EN 14825: 2018) High tempe	rature (2)										
CEDD	A	W/W	8,26	9,17	8,25	9,70	8,64	9,75	9,17	9,48	9,08
SEPR	U	W/W	11,65	11,34	11,62	11,17	11,70	11,20	11,37	11,30	11,31

www.aermec.com

⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C
(2) Sizes 4325 and 4350 not included in the EUROVENT certification programme because Cooling capacity > 1500 kW

⁽¹⁾ Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
(2) Calculation performed with FIXED water flow rate.

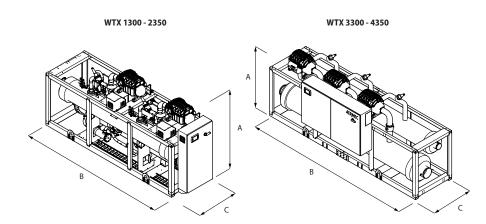
ELECTRIC DATA

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Electric data											
Maximum current (FLA)	A,U	Α	135,0	210,0	270,0	420,0	405,0	405,0	630,0	630,0	630,0
Peak current (LRA)	A.U	A	6.0	6.0	141.0	216.0	276.0	276.0	426.0	426.0	426.0

GENERAL TECHNICAL DATA

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Compressor											
Туре	A,U	type					Centrifugal - Oil Free	2			
Compressor regulation	A,U	Туре					Inverter				
Number	A,U	no.	1	1	2	2	3	3	3	4	4
Circuits	A,U	no.	1	1	1	1	1	1	1	1	1
Refrigerant	A,U	type					R134a				
Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1											
System side heat exch	nanger										
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	-	-	-	1	1	1	1	1
Connections (in/out)	A,U	Туре	-	-	-	-	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints
Sizes (in/out)	A,U	Ø	-	-	-	-	6"	10"	10"	6"	8"
Source side heat exch	anger										
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	-	-	-	1	1	1	1	1
Connections (in/out)	A,U	Туре	-	-	-	-	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints
Sizes (in/out)	A,U	Ø	-	-	-	-	6"	6"	10"	8"	8"
Exchanger: 2											
System side heat exch	nanger										
Туре	A,U	type	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,U	Туре	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints				
Sizes (in/out)	A,U	Ø	5"	5"	5"	6"	6"	10"	6"	8"	8"
Source side heat exch	anger										
Туре	A,U	type	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,U	Туре	Grooved joints	Grooved joints	Grooved joints	Grooved joints	Grooved joints				
Sizes (in/out)	A,U	Ø	5"	5"	6"	6"	6"	6"	8"	8"	8"

SOUND DATA


Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Efficiency: A											
Sound data calculated in cooling mode (1)										
Cound nowar loval	٥	dB(A)	90,0	91,0	93,0	93,5	96,0	95,5	97,0	98,5	100,0
Sound power level	L	dB(A)	84,0	85,0	87,0	87,5	90,0	89,5	91,0	92,5	94,0
Efficiency: U											
Sound data calculated in cooling mode (1)										
Cound nouse lovel	0	dB(A)	87,0	88,0	90,0	88,0	90,0	91,0	94,0	94,0	97,0
Sound power level	L	dB(A)	81,0	82,0	84,0	82,0	84,0	85,0	88,0	88,0	91,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Efficiency: A											
Sound data calculated in cooling mode	(1)										
Cound mouse lovel	0	dB(A)	90,0	91,0	93,0	93,5	96,0	95,5	97,0	98,5	100,0
Sound power level	L	dB(A)	84,0	85,0	87,0	87,5	90,0	89,5	91,0	92,5	94,0
Efficiency: U											
ound data calculated in cooling mode	(1)										
ound power level	0	dB(A)	87,0	88,0	90,0	88,0	90,0	91,0	94,0	94,0	97,0
	L	dB(A)	81,0	82,0	84,0	82,0	84,0	85,0	88,0	88,0	91,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1300	1350	2300	2350	3300	3325	3350	4325	4350
Exchanger: 1											
Dimensions and weights											
A	A,U	mm	-	-	-	-	1970	2010	2010	2010	2280
В	A,U	mm	-	-	-	-	4966	4966	4966	4966	4966
C	A,U	mm	-	-	-	-	1640	1640	1640	1640	1732
Empty weight	A,U	kg	-	-	-	-	4090	4430	5120	5690	6640
Weight functioning	A,U	kg	-	-	-	-	4430	4810	5620	6250	7450
Exchanger: 2											
Dimensions and weights											
A	A,U	mm	1850	1950	1970	2010	2240	2280	2280	2280	2280
В	A,U	mm	3040	3040	3340	3440	3990	3990	3990	4966	4966
C	A,U	mm	1000	1000	1240	1240	1732	1732	1836	1836	1836
Empty weight	A,U	kg	2190	2370	2770	3390	5440	5730	6630	7200	7380
Weight functioning	A,U	kg	2350	2560	3010	3740	6170	6480	7540	8160	8400

All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WTG

Water-water chiller

Cooling capacity 246,6 ÷ 1959,4 kW

- · Extended operating range
- Possibility of selecting between heat exchangers with 1 or 2 passes on water side

DESCRIPTION

Indoor unit producing chilled water equiped with magnetic levitation centrifugal compressors and shell & tube heat exchangers.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

The technological choices made always focus on maximum quality and efficiency, thereby achieving EER > 6 values (class A for Eurovent operating conditions).

EFFICIENCY

A High efficiency
U Very high efficiency
Both units can be silenced.

FEATURES

Two-stage, oil-free centrifugal compressor with latestgeneration magnetic levitation

Oil-free operation without mechanical friction it is possible thanks to the use of magnetic levitation bearings that also ensure the total absence of vibration and low frequency noise.

The compressor is equipped with an inverter for continuous load modulation by varying rpm (from 30% to 100%).

Built-in device to reduce starting current (only 6 Amps!)

Operating field

Water produced from 15 $^{\circ}$ C up to 50 $^{\circ}$ C on Condenser side and from 5 $^{\circ}$ C up to 25 $^{\circ}$ C on Evaporator side.

Flooded Evaporator

Evaporator

— Low charge content

Condenser

— With refrigerant on shell side and water on pipe side

Acoustic chiller enclosure (option)

in galvanised sheet metal of suitable thickness insulated on the inside with sound-proofing material.

CONTROL

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

ACCESSORIES

 $\mbox{\bf AER485P1:}\ \mbox{RS-485}$ interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

AVX: Spring anti-vibration supports.

ACCESSORIES COMPATIBILITY

Model	Ver	1310	1490	2310	2490	3310	3400	3490	4400	4490
AER485P1	A,U	•	•	•	•	•	•	•	•	•
AERBACP	A,U	•	•	•	•	•	•	•	•	•
FL	A,U	•	•		•	•		•	•	•
MULTICHILLER EVO	A.U		•	•	•		•	•	•	

■ With the MULTICHILLER_EVO accessory, it is necessary to add AER485P1 for each connected unit.

Antivibration

Ver	1310	1490	2310	2490	3310	3400	3490	4400	4490
A,U	AVX (1)								

(1) Contact us.

CONFIGURATOR

Field	Description
1,2,3	WTG
4,5,6,7	Size 1310, 1490, 2310, 2490, 3310, 3400, 3490, 4400, 4490
8	Version
A	High efficiency
U	Very high efficiency
9	Exchanger
1	One pass on water side

Fiel	d	Description
	2	Two passes on water side
10		Set-up
	0	Standard
	L	Silenced
11		Power supply
	0	400V ~ 3 50Hz with circuit breakers on compressors and auxiliary circuit
12		Refrigerant gas
	0	R1234ze

EXCHANGERS

Over-sized tube core exchangers ensure excellent performances at full and partial loads.

Flooded evaporator: with level adjustment through an electronic valve controlled by a level sensor.

Backflow condenser: with refrigerant on shell side and water on tube side.

■ From size 1310 to 2490, heat exchangers have 2 passes on the water side

Starting from size WTX 3310, heat exchangers are available as versions with one or two passes on the water side, to meet any plant installation requirement. The dimensions of the two configurations ensure similar performances (same approach to heat exchangers). The difference is that the version with two passes on the water side due offers the convenience of water connections all on the same side, against a generally higher but nonetheless limited drop in pressure compared to the version with one pass on the water side.

PERFORMANCE SPECIFICATIONS

WTG - A

Size		1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	-	-	-	-	1049,5	1199,4	1409,4	1679,3 (2)	1955,0 (2)
Input power	kW	-	-	-	-	194,3	202,4	245,0	286,4	334,3
Cooling total input current	А	-	-	-	-	310,0	324,0	389,0	457,0	532,0
EER	W/W	-	-	-	-	5,40	5,93	5,75	5,86	5,85
Water flow rate system side	l/h	-	-	-	-	180402	206174	242254	288643	336022
Pressure drop system side	kPa	-	-	-	-	24	32	27	29	28
Water flow rate source side	l/h	-	-	-	-	213103	240238	283553	336857	392518
Pressure drop source side	kPa	-	-	-	-	23	23	24	27	19
Exchanger: 2										
Cooling performance 12 °C / 7 °C (1)										
Cooling capacity	kW	349,7	469,7	699,6	899,3	1049,3	1199,2	1409,2	1679,2 (2)	1958,5 (2)
Input power	kW	66,4	81,4	132,2	158,8	196,5	204,4	248,0	290,2	339,1
Cooling total input current	A	106,0	130,0	211,0	250,0	310,0	324,0	389,0	457,0	532,0
EER	W/W	5,27	5,77	5,29	5,66	5,34	5,87	5,68	5,79	5,78
Water flow rate system side	l/h	60134	80751	120268	154630	180402	206174	242254	288643	336647
Pressure drop system side	kPa	24	14	22	50	45	49	40	44	46
Water flow rate source side	l/h	71250	94518	142500	181033	213103	240238	283553	336857	393148
Pressure drop source side	kPa	23	18	23	32	33	32	42	47	39

WTG - U

W10-0										
Size		1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1										
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	-	-	-	-	736,7	869,6	999,1	1159,6	1336,9
Input power	kW	-	-	-	-	120,2	140,2	153,5	186,2	211,9
Cooling total input current	А	-	-	-	-	205,0	233,0	254,0	311,0	349,0
EER	W/W	-	-	-	-	6,13	6,20	6,51	6,23	6,31
Water flow rate system side	l/h	-	-	-	-	126626	149476	171729	199301	229777
Pressure drop system side	kPa	-	-	-	-	12	17	14	14	13
Water flow rate source side	l/h	-	-	-	-	147066	173222	197868	230962	265867
Pressure drop source side	kPa	-	-	-	-	16	22	18	19	18
Exchanger: 2										
Cooling performance 12 °C/7 °C (1)										
Cooling capacity	kW	246,4	334,3	492,9	669,8	736,6	869,5	999,1	1159,5	1342,8
Input power	kW	40,1	50,9	80,1	105,5	120,7	140,3	154,1	187,0	212,7
Cooling total input current	A	69,0	85,0	137,0	173,0	205,0	233,0	254,0	311,0	349,0
EER	W/W	6,15	6,57	6,16	6,35	6,10	6,20	6,48	6,20	6,31
Water flow rate system side	l/h	42371	57462	84741	115160	126626	149476	171729	199301	230804
Pressure drop system side	kPa	12	7	11	28	22	26	20	21	22
Water flow rate source side	l/h	49186	66178	98371	132989	147066	173222	197868	230962	266902
Pressure drop source side	kPa	11	9	11	17	16	16	20	22	18

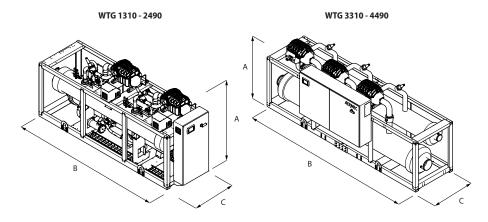
⁽¹⁾ Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C

ELECTRIC DATA

Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Electric data											
Maximum current (FLA)	A,U	А	150,0	217,0	300,0	434,0	450,0	651,0	651,0	868,0	868,0
Peak current (LRA)	A,U	A	6,0	6,0	156,0	223,0	306,0	440,0	440,0	657,0	657,0

⁽¹⁾ Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C
(2) Sizes 4400 and 4490 not included in the EUROVENT certification programme because Cooling capacity > 1500 kW

GENERAL TECHNICAL DATA


Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Compressor											
Туре	A,U	type					Centrifugal - Oil Fr	ee			
Compressor regulation	A,U	Туре					Inverter				
Number	A,U	no.	1	1	2	2	3	3	3	4	4
Circuits	A,U	no.	1	1	1	1	1	1	1	1	1
Refrigerant	A,U	type					R1234ze				
Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1											
System side heat exchanger											
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	-	-	-	1	1	1	1	1
Source side heat exchanger											
Туре	A,U	type	-	-	-	-	Shell and tube	Shell and tube	Shell and tube	Shell and tube	Shell and tube
Number	A,U	no.	-	-	-	-	1	1	1	1	1
Exchanger: 2											
System side heat exchanger											
Туре	A,U	type					Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1
Source side heat exchanger											
Туре	A,U	type					Shell and tube				
Number	A,U	no.	1	1	1	1	1	1	1	1	1

SOUND DATA

Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Set-up:°											
Sound data calculated in cooling mode (1)										
Complement of the complement o	A	dB(A)	89,0	91,0	92,0	94,0	94,0	93,0	96,0	94,0	97,0
Sound power level	U	dB(A)	86,0	88,0	89,0	91,0	91,0	93,0	93,0	94,0	94,0

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			1310	1490	2310	2490	3310	3400	3490	4400	4490
Exchanger: 1											
Dimensions and weights											
A	A,U	mm	-	-	-	-	2010	2010	2010	2280	2280
В	A,U	mm	-	-	-	-	4966	4966	4966	4966	4966
C	A,U	mm	-	-	-	-	1640	1640	1640	1732	1732
Exchanger: 2											
Dimensions and weights											
A	A,U	mm	1850	1970	2010	2280	2280	2280	2280	2280	2280
В	A,U	mm	3040	3040	3340	4390	3990	3990	4966	4966	4966
C	A,U	mm	1000	1240	1240	1332	1732	1836	1836	1836	1836

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MULTI-PURPOSE

Thanks to the special architecture of the refrigerant circuit and advanced control logic, the multi-purpose heat pump is able to simultaneously satisfy different installation requirements and to independently modulate the power delivered on each of them.

The ability to simultaneously meet the demand of the hot and cold circuit, whatever the proportion of the load on the two circuits may be, derives from the capacity of its control to switch the operation between the various possible modes.

Air flow rate Cool. Cap. Heat. Cap. **MULTI-PURPOSE** Page (m³/h) (kW) (kW) NRP 0200-0750 43-185 46-205 Air-water multipurpose (plate heat exchanger) NRP 0804-3606 Air-water multipurpose (plate heat exchanger) 208-988 207-963 Multifunction unit with multiple temperature level capability 164-491 CPS 176-505 788 NXP 0500-1650 Water-water multipurpose (plate heat exchanger) 108-502 122-549

NRP 0200-0750

Air-water multipurpose

Cooling capacity 43 ÷ 185 kW Heating capacity 46 ÷ 205 kW

- · High efficiency also at partial loads
- Units designed for 2 or 4-pipe systems
- Simultaneous and independent production of hot and chilled water
- Compact dimensions

DESCRIPTION

Multipurpose external units designed for 2 or 4-pipe systems. With just one unit simultaneous and independent requests for hot and chilled water can be accommodated all year round.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency **E** Silenced high efficiency

FEATURES

Operating field

Working at full load up to -15 $^{\circ}$ C outside air temperature in winter, and up to 46 $^{\circ}$ C in summer. Hot water production up to 55 $^{\circ}$ C (for more details refer to the selection software and technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Option integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

CONTROL PCO⁵

770

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

— Possibility to control two units in a Master-Slave configuration

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

GP: Anti-intrusion grid.

VT: Antivibration supports

www.aermec.com

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
AER485P1	Α							•	•	•	•	•	•
AER403F I	E	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	Α							•	•	•	•	•	•
AENDACP	E	•	•	•	•	•			•	•	•		
AFDNET	Α							•	•	•	•	•	•
AERNET	E	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER EVO	Α							•	•	•	•	•	•
MULIICHILLER_EVU	E	•	•	•	•	•	•	•	•	•	•	•	•
PGD1	A							•		•	•	•	
PGD1	E	•	•	•	•	•	•	•	•	•	•	•	•

Anti-intrusion grid

Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
A	-	-	-	-	-	-	GP2 x 2 (1)	GP2 x 3 (1)	GP10 x 3 (1)			
E	GP3	GP3	GP3	GP4	GP4	GP4	GP2 x 2 (1)	GP2 x 3 (1)	GP10 x 3 (1)			

⁽¹⁾ x _ indicates the quantity to buy

Antivibration

Version	Integrated hydronic kit user side	Integrated hydronic kit, recovery side	0200	0240	0280
Α	00	00,R1,R2,R3,R4			
A	01,02,03,04,05,06,07,08	00,61,62,65,64	<u> </u>	<u> </u>	<u> </u>
A	P1,P2,P3,P4	00,R1,R2,R3,R4	<u> </u>	<u> </u>	
E	00,P1,P2,P3,P4	00,R1,R2,R3,R4	- VT17	 VT17	- VT17
E			VT13	VT13	VT17 VT13
t	01,02,03,04,05,06,07,08	00	V113	V113	V113
Version	Integrated hydronic kit user side	Integrated hydronic kit, recovery side	0300	0330	0350
A	00	00,R1,R2,R3,R4	-	-	-
A	01,02,03,04,05,06,07,08	00	-	-	-
A	P1,P2,P3,P4	00,R1,R2,R3,R4	-	-	-
E	00,P1,P2,P3,P4	00,R1,R2,R3,R4	VT17	VT17	VT17
E	01,02,03,04,05,06,07,08	00	VT13	VT13	VT13
Version	Integrated hydronic kit user side	Integrated hydronic kit, recovery side	0500	0550	0600
Α	00	00,R1,R2,R3,R4	VT11	VT11	VT11
A	01,02,03,04,05,06,07,08	00	VT11	VT11	VT11
A	P1,P2,P3,P4	00,R1,R2,R3,R4	VT11	VT11	VT11
E	00	00,R1,R2,R3,R4	VT11	VT11	VT11
E	01,02,03,04,05,06,07,08	00	VT11	VT11	VT11
E	P1,P2,P3,P4	00,R1,R2,R3,R4	VT11	VT11	VT11
Version	Integrated hydronic kit user side	Integrated hydronic kit, recovery side	0650	0700	0750
A	00	00,R1,R2,R3,R4	VT11	VT22	VT23
A	01,02,03,04,05,06,07,08	00	VT11	VT22	VT23
A	P1,P2,P3,P4	00,R1,R2,R3,R4	VT11	VT22	VT23
E	00	00,R1,R2,R3,R4	VT11	VT22	VT23
E	01,02,03,04,05,06,07,08	00	VT11	VT22	VT23
E	P1,P2,P3,P4	00,R1,R2,R3,R4	VT11	VT22	VT23

not available

Device for peak current reduction

Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Power supply: °												
A	-	-	-	-	-	-	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)
E	DRE281 (1)	DRE281 (1)	DRE281 (1)	DRE301 (1)	DRE331 (1)	DRE351 (1)	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz, x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
A	-	-	-	-	-	-	RIF52	RIF52	RIF53	RIF53	RIF53	RIF53
E	RIF54	RIF54	RIF50	RIF50	RIF50	RIF51	RIF52	RIF52	RIF53	RIF53	RIF53	RIF53

A grey background indicates the accessory must be assembled in the factory

CONFIGURATOR

Field	Description
1,2,3	NRP
4,5,6,7	Size 0200, 0240, 0280, 0300, 0330, 0350, 0500, 0550, 0600, 0650, 0700, 0750
8	Version
Α	High efficiency
E	Silenced high efficiency (1)
9	System type
2	2-pipe system
4	4-pipe system
10	Coils
0	Copper-aluminium
R	Copper pipes-copper fins
S	Copper pipes-Tinned copper fins
V	Copper pieps-Coated aluminium fins
11	Fans
0	Standard (2)
J	Inverter (3)
M	Oversized (4)
12	Power supply
0	400V ~ 3N 50Hz with magnet circuit breakers
1	220V ~ 3 50Hz with magnet circuit breakers (5)
13,14	Integrated hydronic kit user side
00	Without hydronic kit
01	Storage tank with low head pump
02	Storage tank with low head pump + stand-by pump
03	Storage tank with high head pump
04	Storage tank with high head pump + stand-by pump
05	Storage tank with holes for heaters and single low head pump (6)
06	Storage tank with holes for heaters and pump low head + stand-by pump (6)
07	Storage tank with holes for heaters and single high head pump (6)
08	Storage tank with holes for heaters and pump high head + stand-by pump (6)
P1	Single pump low head
P2	Pump low head + stand-by pump
P3	Single pump high head
P4	Pump high head + stand-by pump
15,16	Integrated hydronic kit, recovery side
00	Without hydronic kit
R1	Single pump low head
R2	Pump low head + stand-by pump
R3	Single pump high head
R4	Pump high head + stand-by pump

- (1) The size up 0200 to 0350 are only available in the silenced versions (E)
 (2) As standard in sizes from 0500 to 0750
 (3) Standard for size from 0200 to 0350 without useful static pressure, option for other sizes
 (4) Available only for size from 0200 to 0350
 (5) Not available for size 0750
 (6) Storage tanks with holes for supplementary heaters (not provided) are sent from the factory with plastic protection caps. Before loading the system, if the installation of one or all resistances is not expected, all plastic caps must be replaced with the special caps, commonly commercially available.

PERFORMANCE SPECIFICATIONS

NRP - 2-pipe system version A

Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 2-pipe system (1)													
Cooling capacity	kW	-	-	-	-	-	-	99,8	103,7	123,7	140,7	159,7	184,6
Input power	kW	-	-	-	-	-	-	32,4	36,0	44,1	50,5	55,2	64,6
Cooling total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
EER	W/W	-	-	-	-	-	-	3,08	2,89	2,80	2,79	2,89	2,86
Water flow rate system side	l/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop system side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Heating system side 2-pipe system (2)													
Heating capacity	kW	-	-	-	-	-	-	106,3	112,3	137,3	152,3	173,3	205,4
Input power	kW	-	-	-	-	-	-	32,6	35,1	41,3	45,8	53,8	62,8
Heating total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
COP	W/W	-	-	-	-	-	-	3,26	3,20	3,33	3,33	3,22	3,27
Water flow rate system side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop system side	kPa	-	-	-	-	-	-	43	46	46	57	67	84
Heating domestic hot water side 2-pipe system	(3)												
Heating capacity	kW	-	-	-	-	-	-	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	-	-	-	-	-	-	32,5	34,9	41,3	45,7	53,5	62,3
Heating total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
СОР	W/W	-	-	-	-	-	-	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate domestic hot water side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	-	-	-	-	-	-	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 2	oipes (4)												
Cooling capacity	kW	-	-	-	-	-	-	103,3	111,3	133,8	148,5	169,2	202,7
Recovered heating power	kW	-	-	-	-	-	-	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	-	-	-	-	-	-	30,8	32,9	43,2	48,0	52,5	63,0
Water flow rate system side	l/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop system side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Water flow rate domestic hot water side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	-	-	-	-	_	-	30	34	51	48	35	49

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side 40 °C/45 °C; (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 2-pipe system version E

Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 2-pipe system (1)													
Cooling capacity	kW	42,9	49,9	55,9	63,9	67,9	79,8	94,8	98,8	115,8	130,7	152,7	178,7
Input power	kW	13,9	16,5	18,9	20,8	23,2	27,0	35,2	38,9	48,3	55,5	61,9	70,6
Cooling total input current	A	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
EER	W/W	3,08	3,02	2,97	3,07	2,93	2,96	2,70	2,54	2,40	2,35	2,47	2,53
Water flow rate system side	l/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop system side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Heating system side 2-pipe system (2)													
Heating capacity	kW	46,1	53,2	60,1	75,2	80,2	84,2	106,3	112,3	137,3	152,3	173,3	205,4
Input power	kW	13,3	15,6	17,7	22,4	23,9	25,6	32,6	35,1	41,3	45,7	53,8	62,8
Heating total input current	A	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
COP	W/W	3,47	3,42	3,40	3,36	3,36	3,28	3,26	3,20	3,33	3,33	3,22	3,27
Water flow rate system side	l/h	7995	9211	10428	13035	13904	14599	18423	19466	23812	26417	30067	35629
Pressure drop system side	kPa	30	43	26	41	31	35	43	46	46	56	67	85
Heating domestic hot water side 2-pipe system (3)													
Heating capacity	kW	46,1	53,1	60,1	75,2	80,2	84,1	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	13,2	15,4	17,7	22,3	24,0	25,5	32,5	34,9	41,3	45,7	53,5	62,3
Heating total input current	Α	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
COP	W/W	3,49	3,44	3,40	3,37	3,35	3,30	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate domestic hot water side	I/h	7995	9211	10428	13035	13904	14599	18423	19466	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	13	17	21	33	38	19	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 2 pipes	(4)												
Cooling capacity	kW	45,6	52,4	58,3	68,9	74,0	87,1	103,3	111,4	133,9	148,5	169,2	202,7
Recovered heating power	kW	58,1	67,1	75,1	88,2	95,2	111,1	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	13,2	15,5	17,8	20,5	22,5	25,5	30,7	32,8	43,1	47,9	52,5	62,9
Water flow rate system side	l/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop system side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Water flow rate domestic hot water side	l/h	7995	9211	10428	13035	13904	14599	18423	19446	23810	26417	30067	35629
Pressure drop domestic hot water side	kPa	13	17	21	33	38	19	30	34	51	48	35	49

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side 40 °C/45 °C;
(4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 4-pipe system version A

Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 4-pipe system (1)													
Cooling capacity	kW	-	-	-	-	-	-	99,8	103,7	123,7	140,7	159,7	184,6
Input power	kW	-	-	-	-	-	-	32,4	36,0	44,1	50,5	55,2	64,6
Cooling total input current	A	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
EER	W/W	-	-	-	-	-	-	3,08	2,89	2,80	2,79	2,89	2,86
Water flow rate system side	l/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop system side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Heating system side 4-pipe system (2)													
Heating capacity	kW	-	-	-	-	-	-	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	-	-	-	-	-	-	32,5	39,9	41,3	45,7	53,5	62,3
Heating total input current	А	-	-	-	-	-	-	55,0	59,0	72,0	82,0	88,0	113,0
COP	W/W	-	-	-	-	-	-	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate system side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop system side	kPa	-	-	-	-	-	-	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 4 pip	es (3)												
Cooling capacity	kW	-	-	-	-	-	-	103,3	111,3	133,8	148,5	169,2	202,7
Recovered heating power	kW	-	-	-	-	-	-	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	-	-	-	-	-	-	30,8	32,9	43,2	48,0	52,5	63,0
Water flow rate cold side	l/h	-	-	-	-	-	-	17181	17868	21305	24225	27490	31785
Pressure drop cold side	kPa	-	-	-	-	-	-	37	39	37	48	56	67
Water flow rate hot side	l/h	-	-	-	-	-	-	18423	19466	23810	26417	30067	35629
Pressure drop hot side	kPa	-	-	-	-	-	-	30	34	51	48	35	49

- (1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 4-pipe system version E

NAP - 4-pipe system version E													
Size		0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling system side 4-pipe system (1)													
Cooling capacity	kW	42,9	49,9	55,9	63,9	67,9	79,8	94,8	98,8	115,8	130,7	152,7	178,7
Input power	kW	13,9	16,5	18,9	20,8	23,2	27,0	35,2	38,9	48,3	55,5	61,9	70,6
Cooling total input current	A	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
EER	W/W	3,08	3,02	2,97	3,07	2,93	2,96	2,70	2,54	2,40	2,35	2,47	2,53
Water flow rate system side	l/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop system side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Heating system side 4-pipe system (2)													
Heating capacity	kW	46,1	53,1	60,1	75,2	80,2	84,1	106,2	112,2	137,3	152,3	173,4	205,3
Input power	kW	13,2	15,4	17,7	22,3	24,0	25,5	32,5	34,9	41,3	45,7	53,5	62,3
Heating total input current	A	28,0	33,0	38,0	41,0	45,0	52,0	60,0	64,0	79,0	91,0	99,0	120,0
COP	W/W	3,49	3,44	3,40	3,37	3,35	3,30	3,27	3,21	3,32	3,34	3,24	3,29
Water flow rate system side	l/h	7995	9211	10428	13035	13904	14599	18423	19466	23810	26417	30067	35629
Pressure drop system side	kPa	13	17	21	33	38	19	30	34	51	48	35	49
Simultaneous operation (heating + cooling), 4 pip	es (3)												
Cooling capacity	kW	45,6	52,4	58,3	68,9	74,0	87,1	103,3	111,4	133,9	148,5	169,2	202,7
Recovered heating power	kW	58,1	67,1	75,1	88,2	95,2	111,1	132,2	142,2	174,3	193,3	218,4	261,3
Input power	kW	13,2	15,5	17,8	20,5	22,5	25,5	30,7	32,8	43,1	47,9	52,5	62,9
Water flow rate cold side	I/h	7388	8591	9621	10996	11683	13745	16322	17009	19930	22507	26287	30754
Pressure drop cold side	kPa	26	37	22	29	22	31	34	35	32	41	51	63
Water flow rate hot side	l/h	7995	9211	10428	13035	13904	14599	18423	19466	23810	26417	30067	35629
Pressure drop hot side	kPa	13	17	21	33	38	19	30	34	51	48	35	49

- (1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

ENERGY DATA

Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Cooling capacity with low leaving water	temp (UE n° 2	2016/2281)												
SEER	Α	W/W	-	-	-	-	-	-	3,62	3,34	3,78	3,83	3,86	3,92
DEEK	E	W/W	3,78	3,74	3,77	3,70	3,74	4,00	3,53	3,29	3,67	3,72	3,75	3,76
wee.	A	%	-	-	-	-	-	-	141,60	130,60	148,00	150,10	151,30	153,70
ηςς	E	%	148,20	146,50	147,70	145,00	146,50	157,10	138,10	128,50	143,60	145,70	146,90	147,50
UE 813/2013 performance in average am	bient conditi	ons (average) - 35 °C - Pd	esignh ≤ 40	0 kW (1)									
Ddaeianh	А	kW	-	-	-	-	-	-	90,00	95,00	116,00	129,00	147,00	174,00
Pdesignh	E	kW	39,00	45,00	51,00	64,00	68,00	71,00	90,00	95,00	116,00	129,00	147,00	174,00
ccon	А	W/W	-	-	-	-	-	-	3,53	3,50	3,60	3,68	3,55	3,60
SCOP	E	W/W	3,60	3,53	3,55	3,50	3,50	3,43	3,53	3,50	3,70	3,68	3,55	3,60
nch	А	%	-	-	-	-	-	-	138,00	137,00	145,00	144,00	139,00	141,00
ηsh	E	%	141,00	138,00	139,00	137,00	137,00	134,00	138,00	137,00	145,00	144,00	139,00	141,00

⁽¹⁾ Efficiencies for low temperature applications (35 °C)

ELECTRIC DATA

Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Power supply: °														
Electric data														
Manimon and (ELA)	A	A	-	-	-	-	-	-	76,0	81,0	100,0	112,0	122,0	144,0
Maximum current (FLA)	E	А	36,0	41,0	46,0	53,0	58,0	63,0	76,0	81,0	100,0	112,0	122,0	144,0
DI	A	А	-	-	-	-	-	-	214,0	220,0	232,0	243,0	261,0	320,0
Peak current (LRA)	E	A	119,0	150,0	155,0	184,0	190,0	200,0	214,0	220,0	232,0	243,0	261,0	320,0

Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Compressor														
Туре	A	type	-	-	-	-	-	-	Scroll	Scroll	Scroll	Scroll	Scroll	Scroll
.,,pc	E	type						Sc	roll					
Number	A	no.	-	-	-	-	-	-	3	3	4	4	4	4
	E	no.	2	2	2	2	2	2	3	3	4	4	4	4
Circuits	A	no.	-	-	-	-	-	-	2	2	2	2	2	2
	E	no.	2	2	2	2	2	2	2	2	2	2	2	2
Refrigerant	A	type	-	-	-	-	-	-	R410A	R410A	R410A	R410A	R410A	R410A
nenigerant	E	type		-				R4	10A					
Refrigerant charge (1)	A	kg	-	-	-	-	-	-	33,0	33,0	-	-	-	-
nemgerant charge (1)	E	kg	16,0	16,0	16,0	20,0	20,0	20,0	33,0	33,0	-	-	-	-
2-pipe system - System side he	at exchanger (hot/cold)												
Tuno	A	type	-	-	-	-	-	-		Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed pla
Туре	E	type						Braze	d plate					
Number	A	no.	-	-	-	-	-	-	1	1	1	1	1	1
Nulliber	E	no.	1	1	1	1	1	1	1	1	1	1	1	1
Commonstions (in Joseph)	А	Type	-	-	-	-	-	-	G.s.	G.s.	G.s.	G.s.	G.s.	G.s.
Connections (in/out)	E	Туре						G	.S.					
C: (:)	A	Ø	-	-	-	-	-	-	2"1/2	2"1/2	2" 1/2	2"1/2	2" 1/2	3"
Size (in)	E	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2″1/2	2″1/2	2"1/2	2″1/2	2"1/2	3"
G. ()	A	Ø	-	-	-	-	-	-	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	3"
Size (out)	E	Ø	2"1/2	2" 1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	3"
2-pipe system - Recovery side	heat exchange	r (domestic l												
	A	type	-	-	-	-	-	-	Brazed plate	Brazed pla				
Туре	E	type						Braze	d plate					
	A	no.	-	-	-	-	-	-	2	2	2	2	2	2
Number	E	no.	2	2	2	2	2	2	2	2	2	2	2	2
	A	Type				-				G.s.	G.s.	G.s.	G.s.	G.s.
Manifold connection (in/out)	E	Type						G	.S.	0.51	0.51	0.51	0.51	
	A	Ø	_	-	-	-	-	-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
Manifold diameter (in)	E	Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
	A	Ø			- 1/2			-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
Manifold diameter (out)	F	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
4-pipe system - System side he			2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	2 1/2	
+ pipe system - system side no	A	type	_	_	_		-	_	Rrazed nlate	Brazed plate	Rrazed nlate	Rrazad nlata	Rrazad nlata	Brazed nla
Туре	E								d plate	Diazcu piate	Diazeu piate	Diazeu piate	Diazcu piate	Diazcu pia
	A	type					_	Diaze	1	1	1	1	1	1
Number	E	no.	1	1	1	1		1	1	1	1	1	1	1
		no.	-	-	-	-	-	-						
Connections (in/out)	A E	Type							G.S. .S.	G.s.	G.S.	G.s.	G.s.	G.s.
		Туре								2// 1 /2	2// 1 /2	2// 1 /2	2//1/2	2"
Size (in)	A	Ø	- 2//1/2	- 2// 1/2	2//1/2	- 2// 1 / 2	- 2// 1/2	- 2//1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
	E	Ø	2″1/2	2″1/2	2″1/2	2″ 1/2	2"1/2	2″1/2	2"1/2	2"1/2	2"1/2	2"1/2	2″1/2	
Size (out)	A	Ø	-	-	-		-	-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
	E	Ø	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2″1/2	2"1/2	2″1/2	2"1/2	2″1/2	2″1/2	3"
4-pipe system - Recovery side				-										
Туре	A	type	-	-	-	-	-			Brazed plate	Brazed plate	Brazed plate	Brazed plate	Brazed pla
71.	E	type						Braze	d plate					
Number	A	no.	-	-	-	-	-	-	2	2	2	2	2	2
	E	no.	2	2	2	2	2	2	2	2	2	2	2	2
Manifold connection (in/out)	A	Type	-	-		-				G.s.	G.s.	G.s.	G.s.	G.s.
mamora connection (m/out)	E	Туре						G	.S.					
Manifold diameter (in)	A	Ø	-	-	-	-	-	-	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"
mannoiu uidineter (III)	E	Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3″
														3″
Manifold diameter (out)	Α	Ø	-	-	-	-	-	-	2" 1/2	2"1/2	2"1/2	2" 1/2	2"1/2)

Manifold diameter (out)

E

Ø

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

2"1/2

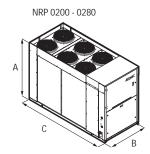
2"1/2

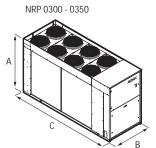
2"1/2

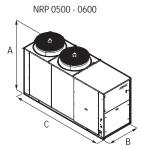
2"1/2

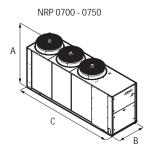
G.s. = Grooved joints

FANS DATA


Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Fan														
Tuna	Α	type	-	-	-	-	-	-	Axial	Axial	Axial	Axial	Axial	Axial
Туре	E	type	Axial											
Nomekan	А	no.	-	-	-	-	-	-	2	2	2	2	3	3
Number -	E	no.	6	6	6	8	8	8	2	2	2	2	3	3
A: A	А	m³/h	-	-	-	-	-	-	37000	37000	36500	36500	58000	48000
Air flow rate -	E	m³/h	20000	20000	20000	26000	26000	26000	20200	21100	21400	22400	31900	34600


SOUND DATA


Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Sound data calculated in cooling mode (1)													
Country would be a second of the second of t	Α	dB(A)	-	-	-	-	-	-	82,0	82,0	82,0	83,0	85,0	85,0
Sound power level	E	dB(A)	74,0	74,0	74,0	75,0	75,0	76,0	74,0	74,0	74,0	75,0	77,0	77,0
County = 100	Α	dB(A)	-	-	-	-	-	-	50,0	50,0	50,0	51,0	53,0	53,0
Sound pressure level (10 m)	Е	dB(A)	42,0	42,0	42,0	43,0	43,0	44,0	42,0	42,0	42,0	43,0	45,0	45,0


⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0200	0240	0280	0300	0330	0350	0500	0550	0600	0650	0700	0750
Dimensions and weights														
Λ.	Α	mm	-	-	-	-	-	-	1875	1875	1875	1875	1875	1975
A -	E	mm	1606	1606	1606	1606	1606	1606	1875	1875	1875	1875	1875	1975
В	Α	mm	-	-	-	-	-	-	1100	1100	1100	1100	1100	1500
В	E	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1500
(A	mm	-	-	-	-	-	-	3342	3342	3342	3342	4342	4350
	E	mm	2700	2700	2700	3200	3200	3200	3342	3342	3342	3342	4342	4350
Empty weight	Α	kg	-	-	-	-	-	-	1233	1237	1359	1378	1591	1939
Empty weight	E	kg	788	790	792	862	872	894	1233	1237	1359	1378	1591	1939

[■] The weights are for standard units with plate heat exchangers and no hydronic kit.

NRP 0804-3606

Air-water multipurpose

Cooling capacity 207 ÷ 963 kW Heating capacity 208 ÷ 988 kW

- Units designed for 2 or 4-pipe systems
- · High efficiency also at partial loads
- Simultaneous and independent production of hot and chilled water
- Also available with Shell and tube heat exchanger

DESCRIPTION

Multipurpose external units designed for 2 or 4-pipe systems. With just one unit simultaneous and independent requests for hot and chilled water can be accommodated all year round.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

A High efficiency

E Silenced high efficiency

FEATURES

Operating field

Working at full load up to -15 °C outside air temperature in winter, and up to 50 °C in summer. Hot water production up to 55 °C (for more details refer to the selection software and technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Exchangers

All the units have plate heat exchangers on service and recovery as standard but, upon request, they can be supplied with a shell & tube heat exchanger as well.

If the customer chooses a unit with tube core exchangers, it is not possible to add a hydronic kit.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Option integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

■ The flow switch is available as an accessory for both the system side and the recovery side, and is compulsory; if it is not installed, the warranty will be considered invalid.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

GP_: Anti-intrusion grid kit

BRC1: Condensate drip tray. Consider 1 for each V-block.

ACCESSORIES COMPATIBILITY

Model			Ver	0804	0904	1004	1104	1204	1414	1604	1805	2006	2206	2406	2606	2806	3006	3206	3406	3606
AER485P1			A,E		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP			A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET			A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
FL			A,E	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
MULTICHILLER_EVO			A,E	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
PGD1			A,E	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠
			30	04	090	4	100	14	110	14	120	04	14	14	16	04	18	05	20	06
	IDR IMP	IDR REC																		
	00	00	AV)	(882	AVX8	87	AVX8	87	AVX8	87	AVX	887	AVX	871	AVX	871	AVX	875	AVX	(875
A	PA-DJ	00	AV)	(886	AVX8	87	AVX8	87	AVX8	87	AVX	887	AVX	872	AVX	872	AVX	875	AVX	(884
	00	RA-SJ	AV)	(886	AVX8	87	AVX8	87	AVX8	87	AVX	883	AVX	873	AVX	873	AV)	876	AVX	(876
	PA-DJ	RA-SJ	AV)	(870	AVX8	83	AVX8	183	AVX8	183	AVX	883	AVX	874	AVX	874	AVX	876	AVX	(884
	00	00	ΔV	(886	AVX8	71	AVX8	71	AVX	.71	AVX	871	AVX	R75	AVX	877	ΔVX	878	ΔVX	(878
_	PA-DJ	00		(886	AVX8		AVX8		AVX		AVX		AVX		AVX			878		(865
E -	00	RA-SJ		(870	AVX8		AVX8		AVX			(865								
	PA-DJ	RA-SJ	AV)	(870	AVX8	74	AVX8	374	AVX8	374	AVX	874	AVX	876	AVX	877	AVX	879	AVX	(865
			22	.06	240	 б	260	16	280	16	300	06	320	16	34	06	36	06		
	IDRIMP	IDR REC		.00	210		200		200		300	-	32		31	-		•••		
_	00	00	AV	(877	AVX8	77	AVX8	65	AVXA	165	AVX	866	AVX	866	AVX	869	AVX	869		
Α	PA-DJ	00	AV)	(877	AVX8	85	AVX8	65	AVX8	65	AVX	866	AVX	866	AVX	868	AVX	868		
_	00	RA-SJ	AV	(885	AVX8	85	AVX8	65	AVX8	65	AVX	867	AVX	867	AVX	869	AVX	869		
	PA-DJ	RA-SJ	AV	(885	AVX8	85	AVX8	65	AVX	65	AVX	867	AVX	867	AVX	868	AVX	868		

Device for peak current reduction

Ε

00

PA-DJ

00 PA-DJ

Ver	0804	0904	1004	1104	1204	1414	1604	1805	2006
A,E	DRENRP0804	DRENRP0904	DRENRP1004	DRENRP1104	DRENRP1204 (1)	DRENRP1404 (2)	DRENRP1604 (1)	DRENRP1805	DRENRP2006

AVX869

AVX868

AVX869

AVX868

AVX880

AVX880

AVX880

AVX880

AVX880

AVX880

AVX880

AVX880

AVX881

AVX881

AVX888

AVX888

AVX881

AVX881

AVX888

AVX888

AVX869

AVX868

AVX869

AVX868

AVX866

AVX866

AVX867

AVX867

AVX866

AVX866

AVX867

AVX867

00

00

RA-SJ

RA-SJ

Ver	2206	2406	2606	2806	3006	3206	3406	3606
A,E	DRENRP2206	DRENRP2406	-	-	-	-	-	-

The accessory cannot be fitted on the configurations indicated with -

A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0804	0904	1004	1104	1204	1414	1604	1805	2006
A	RIFNRP0804A	RIFNRP0904A	RIFNRP1004A	RIFNRP1104A	RIFNRP1204A	RIFNRP1404	RIFNRP1604	RIFNRP1805	RIFNRP2006
E	RIFNRP0804E	RIFNRP0904E	RIFNRP1004E	RIFNRP1104E	RIFNRP1204E	RIFNRP1404	RIFNRP1604	RIFNRP1805	RIFNRP2006

A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2606	2806	3006	3206	3406	3606
A,E	RIFNRP2206	RIFNRP2406	RIFNRP2606	RIFNRP2806	RIFNRP3006	RIFNRP3206	RIFNRP3406	RIFNRP3606

A grey background indicates the accessory must be assembled in the factory

Anti-intrusion grid

Ver	0804	0904	1004	1104	1204	1414	1604	1805	2006
A	GP2VN	GP3VN	GP3VN	GP3VN	GP3VN	GP4VN	GP4VN	GP5VN	GP5G
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP7V	GP7V
E	GP3VN	GP4VN	GP4VN	GP4VN	GP4VN	GP5VN	GP6V	GP7V	GP7V

A grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2606	2806	3006	3206	3406	3606
A	GP6V	GP6V	GP7V	GP7V	GP8V	GP8V	GP9VN	GP9V
E	GP8V	GP8V	GP9V	GP9V	GP10V	GP10V	GP11V	GP11V
	A E	A GP6V	A GP6V GP6V	A GP6V GP6V GP7V	A GP6V GP6V GP7V GP7V	A GP6V GP6V GP7V GP7V GP8V	A GP6V GP6V GP7V GP7V GP8V GP8V	A GP6V GP6V GP7V GP7V GP8V GP8V GP9VN

A grey background indicates the accessory must be assembled in the factory

Ver	0804	0904	1004	1104	1204	1414	1604	1805	2006
A,E	BRC1 (1)								

⁽¹⁾ Condensate drip tray. Consider 1 for each V-block.

⁽¹⁾ Only for power supply 400V 3N ~ 50Hz e 400V 3 ~ 50Hz.
(2) Only for supplies of 400V 3N ~ 50Hz and 400V 3 ~ 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

À grey background indicates the accessory must be assembled in the factory

Ver	2206	2406	2606	2806	3006	3206	3406	3606
A,E	BRC1 (1)							

CONFIGURATOR

Fiel	ld	Description
1,2,	,3	NRP
4,5,	,6,7	Size 0804, 0904, 1004, 1104, 1204, 1414, 1604, 1805, 2006, 2206, 2406, 2606, 2806 3006, 3206, 3406, 3606
8		Version
	Α	High efficiency (1)
	Ε	Silenced high efficiency
9		System type
	2	2-pipe system
	4	4-pipe system
10		Coils
	0	Copper-aluminium
	R	Copper pipes-copper fins
	S	Copper pipes-Tinned copper fins
	٧	Copper pieps-Coated aluminium fins
11		Fans
	0	AC standard
	J	EC Inverter motors
12		Power supply
	0	400V ~ 3 50Hz with magnet circuit breakers
13,	14	Integrated hydronic kit user side
	00	Without hydronic kit
	DA	Pump A + stand-by pump
	DB	Pump B + stand-by pump
	DC	Pump C + stand-by pump
	DD	Pump D + stand-by pump
	DE	Pump E + stand-by pump
	DF	Pump F + stand-by pump
	DG	Pump G + stand-by pump
	DH	Pump H + stand-by pump
	DI	Pump I + stand-by pump
	DJ	Pump J + stand-by pump (2)
	PA	Pump A

Field	Description
PB	Pump B
PC	Pump C
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
PJ	Pump J (2)
15,16	Integrated hydronic kit, recovery side
00	Without hydronic kit
RA	Pump A
RB	Pump B
RC	Pump C
RD	Pump D
RE	Pump E
RF	Pump F
RG	Pump G
RH	Pump H
RI	Pump I
RJ	Pump J (2)
SA	Pump A + stand-by pump
SB	Pump B + stand-by pump
SC	Pump C + stand-by pump
SD	Pump D + stand-by pump
SE	Pump E + stand-by pump
SF	Pump F + stand-by pump
SG	Pump G + stand-by pump
SH	Pump H + stand-by pump
SI	Pump I + stand-by pump
SJ	Pump J + stand-by pump (2)

⁽¹⁾ Unit 804 version A cannot be configured with a twin pump on both the system side and the recovery side. (2) For all configurations including pump J please contact the factory.

⁽¹⁾ Condensate drip tray. Consider 1 for each V-block.
A grey background indicates the accessory must be assembled in the factory

PERFORMANCE SPECIFICATIONS

NRP - 2-pipe system version A

Size		0804	0904	1004	1104	1204	1414	1604	1805	2006
Cooling system side 2-pipe system (1)										
Cooling capacity	kW	206,7	230,6	259,2	299,6	332,2	386,3	426,2	490,5	544,3
Input power	kW	69,4	76,3	86,1	99,5	116,2	128,1	146,7	165,5	189,8
Cooling total input current	Α	124,0	138,0	155,0	172,0	195,0	218,0	247,0	280,0	319,0
EER	W/W	2,98	3,02	3,01	3,01	2,86	3,02	2,91	2,96	2,87
Water flow rate system side	l/h	35565	39671	44593	51536	57151	66430	73295	84370	93611
Pressure drop system side	kPa	24	33	34	42	43	36	36	49	54
Heating system side 2-pipe system (2)										
Heating capacity	kW	209,9	246,0	272,7	306,2	340,5	396,2	437,6	504,8	562,7
Input power	kW	66,8	79,6	85,5	95,7	107,8	125,7	136,8	159,6	180,8
Heating total input current	Α	120,0	143,0	154,0	166,0	183,0	214,0	233,0	272,0	306,0
COP	W/W	3,14	3,09	3,19	3,20	3,16	3,15	3,20	3,16	3,11
Water flow rate system side	l/h	36426	42701	47339	53155	59117	68781	75976	87653	97701
Pressure drop system side	kPa	25	34	39	50	41	52	35	47	51
Heating domestic hot water side 2-pipe system (3)										
Heating capacity	kW	209,9	246,0	272,7	306,2	340,6	396,2	437,6	504,9	562,7
Input power	kW	66,9	79,8	85,6	95,7	108,3	125,4	137,0	159,8	180,9
Heating total input current	Α	120,0	143,0	154,0	166,0	183,0	214,0	233,0	272,0	306,0
COP	W/W	3,14	3,08	3,19	3,20	3,15	3,16	3,19	3,16	3,11
Water flow rate domestic hot water side	l/h	36426	42701	47339	53155	59117	68781	75976	87653	97701
Pressure drop domestic hot water side	kPa	34	47	39	49	61	42	44	53	55
Simultaneous operation (heating + cooling), 2 pipes (4)										
Cooling capacity	kW	211,2	236,7	258,2	306,9	350,5	398,0	446,2	510,6	584,4
Recovered heating power	kW	270,3	304,4	331,0	392,1	448,5	510,5	570,1	653,9	749,6
Input power	kW	62,8	72,4	77,7	91,3	105,2	120,2	132,4	153,7	177,2
Water flow rate system side	l/h	35565	39671	44593	51536	57151	66430	73295	84370	93611
Pressure drop system side	kPa	24	33	34	42	43	36	36	49	54
Water flow rate domestic hot water side	l/h	36426	42701	47339	53155	59117	68781	75976	87653	97701
Pressure drop domestic hot water side	kPa	34	47	39	49	61	42	44	53	55

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side 40 °C/45 °C; (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 2-pipe system version A

Size		2206	2406	2606	2806	3006	3206	3406	3606
Cooling system side 2-pipe system (1)									
Cooling capacity	kW	598,2	638,8	699,7	743,3	810,1	853,8	919,4	963,0
Input power	kW	202,0	220,3	235,7	257,3	273,7	295,4	312,1	333,7
Cooling total input current	Α	341,0	371,0	403,0	441,0	474,0	511,0	544,0	582,0
EER	W/W	2,96	2,90	2,97	2,89	2,96	2,89	2,95	2,89
Water flow rate system side	l/h	102896	109845	120321	127822	139307	146824	158090	165596
Pressure drop system side	kPa	64	47	43	48	52	57	66	73
Heating system side 2-pipe system (2)									
Heating capacity	kW	618,6	660,8	723,7	772,5	829,5	888,9	940,2	988,2
Input power	kW	199,7	209,7	230,5	247,9	265,5	286,7	304,3	321,9
Heating total input current	A	337,0	356,0	395,0	427,0	462,0	489,0	533,0	565,0
COP	W/W	3,10	3,15	3,14	3,12	3,12	3,10	3,09	3,07
Water flow rate system side	I/h	107407	114743	125675	134158	144044	154357	163276	171605
Pressure drop system side	kPa	62	47	42	48	50	57	63	70
Heating domestic hot water side 2-pipe system (3)									
Heating capacity	kW	618,7	660,8	723,7	772,6	829,5	888,9	940,2	988,2
Input power	kW	199,9	209,9	230,6	248,2	265,8	287,3	304,0	321,6
Heating total input current	A	337,0	356,0	395,0	427,0	462,0	489,0	533,0	565,0
COP	W/W	3,10	3,15	3,14	3,11	3,12	3,09	3,09	3,07
Water flow rate domestic hot water side	I/h	107407	114743	125675	134158	144044	154357	163276	171605
Pressure drop domestic hot water side	kPa	66	50	44	53	56	67	57	66
Simultaneous operation (heating + cooling), 2 pipes (4)									
Cooling capacity	kW	630,2	680,0	736,5	788,3	857,7	909,8	966,0	1019,1
Recovered heating power	kW	810,9	871,0	945,6	1015,4	1098,5	1168,6	1242,9	1313,5
Input power	kW	194,7	204,6	223,6	243,4	258,4	278,4	297,9	317,4
Water flow rate system side	l/h	102896	109845	120321	127822	139307	146824	158090	165596
Pressure drop system side	kPa	64	47	43	48	52	57	66	73
Water flow rate domestic hot water side	l/h	107407	114743	125675	134158	144044	154357	163276	171605
Pressure drop domestic hot water side	kPa	66	50	44	53	56	67	57	66

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side 40 °C/45 °C;
(4) Water exchanger to the total recovery side * / 45 °C; Water to the system side heat exchanger * / 7 °C;

NRP - 2-pipe system version E

Size		0804	0904	1004	1104	1204	1414	1604	1805	2006
Cooling system side 2-pipe system (1)										
Cooling capacity	kW	200,7	225,7	255,3	296,9	332,7	382,2	427,0	487,6	549,9
Input power	kW	66,0	73,4	83,2	96,4	113,0	125,6	139,1	159,0	182,6
Cooling total input current	A	113,0	125,0	142,0	159,0	182,0	203,0	225,0	256,0	294,0
EER	W/W	3,04	3,07	3,07	3,08	2,94	3,04	3,07	3,07	3,01
Water flow rate system side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585
Pressure drop system side	kPa	25	33	34	43	44	37	38	49	54
Heating system side 2-pipe system (2)										
Heating capacity	kW	207,4	240,7	262,4	300,7	338,4	389,4	436,7	503,3	567,2
Input power	kW	63,8	74,6	80,5	92,8	104,9	121,1	134,3	155,5	181,7
Heating total input current	A	109,0	126,0	136,0	153,0	170,0	195,0	217,0	250,0	293,0
COP	W/W	3,25	3,22	3,26	3,24	3,23	3,22	3,25	3,24	3,12
Water flow rate system side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488
Pressure drop system side	kPa	25	33	37	48	40	50	35	46	52
Heating domestic hot water side 2-pipe system (3)										
Heating capacity	kW	207,3	240,7	262,4	300,7	338,5	389,4	436,8	503,3	567,3
Input power	kW	64,0	74,8	80,5	92,8	105,4	120,8	134,6	155,7	181,9
Heating total input current	A	109,0	126,0	136,0	153,0	170,0	195,0	217,0	250,0	293,0
COP	W/W	3,24	3,22	3,26	3,24	3,21	3,22	3,24	3,23	3,12
Water flow rate domestic hot water side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488
Pressure drop domestic hot water side	kPa	34	45	38	48	60	41	44	53	55
Simultaneous operation (heating + cooling), 2 pipes (4)										
Cooling capacity	kW	211,0	236,8	258,3	306,6	350,0	397,8	445,0	509,9	583,9
Recovered heating power	kW	270,0	304,5	331,0	391,9	448,2	510,5	569,2	653,4	749,1
Input power	kW	62,8	72,3	77,6	91,4	105,3	120,3	132,7	153,9	177,3
Water flow rate system side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585
Pressure drop system side	kPa	25	33	34	43	44	37	38	49	54
Water flow rate domestic hot water side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488
Pressure drop domestic hot water side	kPa	34	45	38	48	60	41	44	53	55

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side 40 °C/45 °C;
(4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 2-pipe system version E

Size		2206	2406	2606	2806	3006	3206	3406	3606
Cooling system side 2-pipe system (1)									
Cooling capacity	kW	598,5	639,4	695,8	739,2	801,8	844,7	906,4	948,9
Input power	kW	195,9	214,0	230,3	252,1	269,0	291,1	308,1	330,4
Cooling total input current	A	315,0	344,0	375,0	413,0	444,0	482,0	512,0	551,0
EER	W/W	3,05	2,99	3,02	2,93	2,98	2,90	2,94	2,87
Water flow rate system side	l/h	102947	109954	119646	127107	137868	145260	155858	163168
Pressure drop system side	kPa	64	48	43	48	51	57	65	71
Heating system side 2-pipe system (2)									
Heating capacity	kW	618,5	661,8	714,3	763,4	816,0	864,2	922,4	970,1
Input power	kW	199,3	209,7	223,0	240,3	256,1	273,3	293,1	310,5
Heating total input current	A	320,0	338,0	363,0	395,0	424,0	456,0	490,0	521,0
COP	W/W	3,10	3,16	3,20	3,18	3,19	3,16	3,15	3,12
Water flow rate system side	I/h	107379	114913	124046	132574	141707	150072	160181	168462
Pressure drop system side	kPa	62	47	41	47	48	54	61	67
Heating domestic hot water side 2-pipe system (3)									
Heating capacity	kW	618,5	661,8	714,3	763,5	816,0	864,2	922,4	970,1
Input power	kW	199,5	209,9	223,1	240,6	256,5	273,8	292,8	310,3
Heating total input current	A	320,0	338,0	363,0	395,0	424,0	456,0	490,0	521,0
COP	W/W	3,10	3,15	3,20	3,17	3,18	3,16	3,15	3,13
Water flow rate domestic hot water side	l/h	107379	114913	124046	132574	141707	150072	160181	168462
Pressure drop domestic hot water side	kPa	66	50	43	52	55	63	55	63
Simultaneous operation (heating + cooling), 2 pipes (4)									
Cooling capacity	kW	630,2	679,9	737,0	788,9	858,6	911,1	967,3	1018,8
Recovered heating power	kW	810,9	871,0	946,0	1015,9	1099,3	1169,6	1244,0	1313,7
Input power	kW	194,7	204,7	223,3	243,1	258,1	277,8	297,4	317,5
Water flow rate system side	l/h	102947	109954	119646	127107	137868	145260	155858	163168
Pressure drop system side	kPa	64	48	43	48	51	57	65	71
Water flow rate domestic hot water side	l/h	107379	114913	124046	132574	141707	150072	160181	168462
Pressure drop domestic hot water side	kPa	66	50	43	52	55	63	55	63

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C; All units are Eurovent certified (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side 40 °C/45 °C; Water to the system side heat exchanger */7 °C; (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 4-pipe system version A

Size		0804	0904	1004	1104	1204	1414	1604	1805	2006
Cooling system side 4-pipe system (1)										
Cooling capacity	kW	206,7	230,6	259,2	299,6	332,2	386,3	426,2	490,5	544,3
Input power	kW	69,4	76,3	86,1	99,5	116,2	128,1	146,7	165,5	189,8
Cooling total input current	Α	124,0	138,0	155,0	172,0	195,0	218,0	247,0	280,0	319,0
EER	W/W	2,98	3,02	3,01	3,01	2,86	3,02	2,91	2,96	2,87
Water flow rate system side	l/h	35565	39671	44593	51536	57151	66430	73295	84370	93611
Pressure drop system side	kPa	24	33	34	42	43	36	36	49	54
Heating system side 4-pipe system (2)										
Heating capacity	kW	209,9	246,0	272,7	306,2	340,6	396,2	437,6	504,9	562,7
Input power	kW	66,9	79,8	85,6	95,7	108,3	125,4	137,0	159,8	180,9
Heating total input current	Α	120,0	143,0	154,0	166,0	183,0	214,0	233,0	272,0	306,0
COP	W/W	3,14	3,08	3,19	3,20	3,15	3,16	3,19	3,16	3,11
Water flow rate system side	l/h	36426	42701	47339	53155	59117	68781	75976	87653	97701
Pressure drop system side	kPa	34	47	39	49	61	42	44	53	55
Simultaneous operation (heating + cooling), 4 pipes (3)										
Cooling capacity	kW	211,2	236,7	258,2	306,9	350,5	398,0	446,2	510,6	584,4
Recovered heating power	kW	270,3	304,4	331,0	392,1	448,5	510,5	570,1	653,9	749,6
Input power	kW	62,8	72,4	77,7	91,3	105,2	120,2	132,4	153,7	177,2
Water flow rate cold side	l/h	35565	39671	44593	51536	57151	66430	73295	84370	93611
Pressure drop cold side	kPa	24	33	34	42	43	36	36	49	54
Water flow rate hot side	l/h	36426	42701	47339	53155	59117	68781	75976	87653	97701
Pressure drop hot side	kPa	34	47	39	49	61	42	44	53	55

NRP - 4-pipe system version A

Mili - 4- pipe system version A									
Size		2206	2406	2606	2806	3006	3206	3406	3606
Cooling system side 4-pipe system (1)									
Cooling capacity	kW	598,2	638,8	699,7	743,3	810,1	853,8	919,4	963,0
Input power	kW	202,0	220,3	235,7	257,3	273,7	295,4	312,1	333,7
Cooling total input current	A	341,0	371,0	403,0	441,0	474,0	511,0	544,0	582,0
EER	W/W	2,96	2,90	2,97	2,89	2,96	2,89	2,95	2,89
Water flow rate system side	l/h	102896	109845	120321	127822	139307	146824	158090	165596
Pressure drop system side	kPa	64	47	43	48	52	57	66	73
Heating system side 4-pipe system (2)									
Heating capacity	kW	618,7	660,8	723,7	772,6	829,5	888,9	940,2	988,2
Input power	kW	199,9	209,9	230,6	248,2	265,8	287,3	304,0	321,6
Heating total input current	A	337,0	356,0	395,0	427,0	462,0	489,0	533,0	565,0
COP	W/W	3,10	3,15	3,14	3,11	3,12	3,09	3,09	3,07
Water flow rate system side	I/h	107407	114743	125675	134158	144044	154357	163276	171605
Pressure drop system side	kPa	66	50	44	53	56	67	57	66
Simultaneous operation (heating + cooling), 4 pipes (3)									
Cooling capacity	kW	630,2	680,0	736,5	788,3	857,7	909,8	966,0	1019,1
Recovered heating power	kW	810,9	871,0	945,6	1015,4	1098,5	1168,6	1242,9	1313,5
Input power	kW	194,7	204,6	223,6	243,4	258,4	278,4	297,9	317,4
Water flow rate cold side	l/h	102896	109845	120321	127822	139307	146824	158090	165596
Pressure drop cold side	kPa	64	47	43	48	52	57	66	73
Water flow rate hot side	l/h	107407	114743	125675	134158	144044	154357	163276	171605
Pressure drop hot side	kPa	66	50	44	53	56	67	57	66

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C / 7 °C; External air 35 °C (2) Data 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side * / 45 °C; Water to the system side heat exchanger * / 7 °C;

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C / 7 °C; External air 35 °C (2) Data 14511:2022; System side water heat exchanger 40 °C / 45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side * / 45 °C; Water to the system side heat exchanger * / 7 °C;

783

NRP - 4-pipe system version E

Size		0804	0904	1004	1104	1204	1414	1604	1805	2006
Cooling system side 4-pipe system (1)										
Cooling capacity	kW	200,7	225,7	255,3	296,9	332,7	382,2	427,0	487,6	549,9
Input power	kW	66,0	73,4	83,2	96,4	113,0	125,6	139,1	159,0	182,6
Cooling total input current	Α	113,0	125,0	142,0	159,0	182,0	203,0	225,0	256,0	294,0
EER	W/W	3,04	3,07	3,07	3,08	2,94	3,04	3,07	3,07	3,01
Water flow rate system side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585
Pressure drop system side	kPa	25	33	34	43	44	37	38	49	54
Heating system side 4-pipe system (2)										
Heating capacity	kW	207,3	240,7	262,4	300,7	338,5	389,4	436,8	503,3	567,3
Input power	kW	64,0	74,8	80,5	92,8	105,4	120,8	134,6	155,7	181,9
Heating total input current	Α	109,0	126,0	136,0	153,0	170,0	195,0	217,0	250,0	293,0
COP	W/W	3,24	3,22	3,26	3,24	3,21	3,22	3,24	3,23	3,12
Water flow rate system side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488
Pressure drop system side	kPa	34	45	38	48	60	41	44	53	55
Simultaneous operation (heating + cooling), 4 pipes (3)										
Cooling capacity	kW	211,0	236,8	258,3	306,6	350,0	397,8	445,0	509,9	583,9
Recovered heating power	kW	270,0	304,5	331,0	391,9	448,2	510,5	569,2	653,4	749,1
Input power	kW	62,8	72,3	77,6	91,4	105,3	120,3	132,7	153,9	177,3
Water flow rate cold side	l/h	34534	38826	43915	51070	57226	65736	73434	83856	94585
Pressure drop cold side	kPa	25	33	34	43	44	37	38	49	54
Water flow rate hot side	l/h	35981	41776	45554	52195	58753	67603	75830	87384	98488
Pressure drop hot side	kPa	34	45	38	48	60	41	44	53	55

(1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C (2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b. (3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NRP - 4-pipe system version E

Size		2206	2406	2606	2806	3006	3206	3406	3606
Cooling system side 4-pipe system (1)									
Cooling capacity	kW	598,5	639,4	695,8	739,2	801,8	844,7	906,4	948,9
Input power	kW	195,9	214,0	230,3	252,1	269,0	291,1	308,1	330,4
Cooling total input current	A	315,0	344,0	375,0	413,0	444,0	482,0	512,0	551,0
EER	W/W	3,05	2,99	3,02	2,93	2,98	2,90	2,94	2,87
Water flow rate system side	l/h	102947	109954	119646	127107	137868	145260	155858	163168
Pressure drop system side	kPa	64	48	43	48	51	57	65	71
Heating system side 4-pipe system (2)									
Heating capacity	kW	618,5	661,8	714,3	763,5	816,0	864,2	922,4	970,1
Input power	kW	199,5	209,9	223,1	240,6	256,5	273,8	292,8	310,3
Heating total input current	A	320,0	338,0	363,0	395,0	424,0	456,0	490,0	521,0
COP	W/W	3,10	3,15	3,20	3,17	3,18	3,16	3,15	3,13
Water flow rate system side	I/h	107379	114913	124046	132574	141707	150072	160181	168462
Pressure drop system side	kPa	66	50	43	52	55	63	55	63
Simultaneous operation (heating + cooling), 4 pipes (3)									
Cooling capacity	kW	630,2	679,9	737,0	788,9	858,6	911,1	967,3	1018,8
Recovered heating power	kW	810,9	871,0	946,0	1015,9	1099,3	1169,6	1244,0	1313,7
Input power	kW	194,7	204,7	223,3	243,1	258,1	277,8	297,4	317,5
Water flow rate cold side	l/h	102947	109954	119646	127107	137868	145260	155858	163168
Pressure drop cold side	kPa	64	48	43	48	51	57	65	71
Water flow rate hot side	l/h	107379	114913	124046	132574	141707	150072	160181	168462
Pressure drop hot side	kPa	66	50	43	52	55	63	55	63

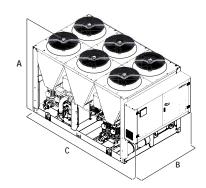
(1) Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

ENERGY DATA

C'			0004	2004	1004	1104	1204	1414	1604	1007	2007
Size Fans: °			0804	0904	1004	1104	1204	1414	1604	1805	2006
Cooling capacity with low leaving wa	ator town (IIE n° 2)	016/2291\									
cooling capacity with low leaving we	A A	W/W	3,94	4,04	4,00	3,89	4,03	4,14	4,21	4,23	4,24
SEER	E	W/W	4,22	4,30	4,21	4,08	4,12	4,25	4,24	4,28	4,27
	A	%	154,60	158,50	156,90	152,80	158,20	162,50	165,50	166,00	166,60
ηςς	E	%	166,00	169,00	165,40	160,10	161,70	167,00	166,80	168,20	167,80
UE 813/2013 performance in average					103/10	.00,.0	,.	107,00	100,00	100,20	107,00
	A	kW	188,98	221,78	246,64	276,68	309,44	358,27	395,99	-	-
Pdesignh	E	kW	184,95	215,78	235,92	269,81	305,13	350,22	391,37	-	-
CCOD	A	W/W	3,53	3,27	3,44	3,49	3,60	3,53	3,66	-	-
SCOP	E	W/W	3,71	3,59	3,69	3,70	3,82	3,70	3,75	-	-
l	A	%	138,30	127,70	134,50	136,70	140,90	138,40	143,60	-	-
ηsh	E	%	145,50	140,60	144,70	144,90	149,70	145,20	147,20	-	-
Fans: J											
Cooling capacity with low leaving wa	ater temp (UE n° 20	016/2281)									
SEER	A	W/W	4,25	4,36	4,32	4,21	4,35	4,47	4,55	4,56	4,58
JEEN	E	W/W	4,56	4,64	4,55	4,40	4,45	4,59	4,58	4,62	4,61
ηςς	A	%	167,20	171,40	169,70	165,20	171,10	175,80	179,00	179,50	180,10
прс	E	%	179,50	182,80	178,80	173,10	174,90	180,60	180,30	181,80	181,50
UE 813/2013 performance in average	e ambient conditio	ons (average) - 3	5 °C - Pdesignh ≤	≤ 400 kW (1)							
Pdesignh	A	kW	188,98	221,78	246,64	276,68	309,44	358,27	395,99	-	-
	E	kW	184,95	215,78	235,92	269,81	305,13	350,22	391,37	-	-
SCOP	A	W/W	3,53	3,27	3,44	3,49	3,60	3,53	3,66	-	-
	E	W/W	3,71	3,59	3,69	3,70	3,82	3,70	3,75	-	-
ηsh	A	%	138,30	127,70	134,50	136,70	140,90	138,40	143,60	-	-
	E	%	145,50	140,60	144,70	144,90	149,70	145,20	147,20	-	-
(1) Efficiencies for low temperature app	lications (35 °C)										
,e.c.acs to low temperature upp	incations (55°C)										
Size	incations (33°C)		2206	2406	2606	280	6	3006	3206	3406	3606
1 11	incutions (55° C)		2206	2406	2606	280	6	3006	3206	3406	3606
Size	. ,	016/2281)	2206	2406	2606	280	6	3006	3206	3406	3606
Size Fans: ° Cooling capacity with low leaving wa	. ,	W/W	2206 4,24	2406 4,25	2606 4,24	4,2		3006 4,24	3206 4,22	4,22	3606 4,23
Size Fans: °	ater temp (UE n° 20						2				
Size Fans: ° Cooling capacity with low leaving was SEER	ater temp (UE n° 20 A E A	W/W W/W %	4,24 4,28 166,60	4,25 4,28 166,80	4,24 4,27 166,80	4,2 4,2 165,	2 4 70	4,24 4,27 166,80	4,22 4,27 165,90	4,22 4,27 165,90	4,23 4,23 166,00
Size Fans: ° Cooling capacity with low leaving was SEER	ater temp (UE n° 20 A E	W/W W/W	4,24 4,28	4,25 4,28	4,24 4,27	4,2 4,2	2 4 70	4,24 4,27	4,22 4,27	4,22 4,27	4,23 4,23
Size Fans: ° Cooling capacity with low leaving was SEER psc Fans: J	ater temp (UE n° 20 A E A E	W/W W/W %	4,24 4,28 166,60	4,25 4,28 166,80	4,24 4,27 166,80	4,2 4,2 165,	2 4 70	4,24 4,27 166,80	4,22 4,27 165,90	4,22 4,27 165,90	4,23 4,23 166,00
Size Fans: ° Cooling capacity with low leaving was SEER	ater temp (UE n° 20 A E A E	W/W W/W % %	4,24 4,28 166,60 168,20	4,25 4,28 166,80 168,00	4,24 4,27 166,80 167,90	4,2 4,2 165, 166,	2 4 70 60	4,24 4,27 166,80 167,70	4,22 4,27 165,90 167,90	4,22 4,27 165,90 168,00	4,23 4,23 166,00 166,30
Size Fans: ° Cooling capacity with low leaving was SEER	A E A E A E A A E A A E A A E A A E A A E A A E A A E A A E A A E A	W/W W/W % % 016/2281) W/W	4,24 4,28 166,60 168,20	4,25 4,28 166,80 168,00	4,24 4,27 166,80 167,90	4,2 4,2 165, 166,	2 4 70 60	4,24 4,27 166,80 167,70	4,22 4,27 165,90 167,90	4,22 4,27 165,90 168,00	4,23 4,23 166,00 166,30
Size Fans: ° Cooling capacity with low leaving was SEER psc Fans: J	A E A E A E A E A E A E A E A E A E A E	W/W W/W % % 016/2281) W/W W/W	4,24 4,28 166,60 168,20 4,58 4,62	4,25 4,28 166,80 168,00 4,59 4,62	4,24 4,27 166,80 167,90 4,58 4,62	4,2 4,2 165, 166, 4,5 4,5	2 4 770 660	4,24 4,27 166,80 167,70 4,58 4,61	4,22 4,27 165,90 167,90 4,56 4,62	4,22 4,27 165,90 168,00 4,56 4,62	4,23 4,23 166,00 166,30 4,56 4,57
Size Fans: ° Cooling capacity with low leaving was SEER \$\$F\$ \$\$F\$ \$\$T\$ \$\$T\$ \$\$T\$ \$\$T\$ \$\$T\$ \$\$	Ater temp (UE n° 20 A E A E A E A E A E A E A A A A A A A	W/W W/W % % 016/2281) W/W W/W	4,24 4,28 166,60 168,20 4,58 4,62 180,20	4,25 4,28 166,80 168,00 4,59 4,62 180,40	4,24 4,27 166,80 167,90 4,58 4,62 180,40	4,2 4,2 165, 166, 4,5 4,5 179,	2 4 4 770 660 6 6 8 8	4,24 4,27 166,80 167,70 4,58 4,61 180,40	4,22 4,27 165,90 167,90 4,56 4,62 179,40	4,22 4,27 165,90 168,00 4,56 4,62 179,40	4,23 4,23 166,00 166,30 4,56 4,57 179,60
Size Fans: ° Cooling capacity with low leaving was SEER	A E A E A E A E A E A E A E A E A E A E	W/W W/W % % 016/2281) W/W W/W	4,24 4,28 166,60 168,20 4,58 4,62	4,25 4,28 166,80 168,00 4,59 4,62	4,24 4,27 166,80 167,90 4,58 4,62	4,2 4,2 165, 166, 4,5 4,5	2 4 4 770 660 6 6 8 8	4,24 4,27 166,80 167,70 4,58 4,61	4,22 4,27 165,90 167,90 4,56 4,62	4,22 4,27 165,90 168,00 4,56 4,62	4,23 4,23 166,00 166,30 4,56 4,57
Size Fans: ° Cooling capacity with low leaving was SEER	Ater temp (UE n° 20 A E A E A E A E A E A E A A A A A A A	W/W W/W % % 016/2281) W/W W/W	4,24 4,28 166,60 168,20 4,58 4,62 180,20	4,25 4,28 166,80 168,00 4,59 4,62 180,40	4,24 4,27 166,80 167,90 4,58 4,62 180,40	4,2 4,2 165, 166, 4,5 4,5 179,	2 4 4 770 660 6 6 8 8	4,24 4,27 166,80 167,70 4,58 4,61 180,40	4,22 4,27 165,90 167,90 4,56 4,62 179,40	4,22 4,27 165,90 168,00 4,56 4,62 179,40	4,23 4,23 166,00 166,30 4,56 4,57 179,60
Size Fans: ° Cooling capacity with low leaving was SEER \$\$F\$ \$\$F\$ \$\$T\$ \$\$T\$ \$\$T\$ \$\$T\$ \$\$T\$ \$\$	Ater temp (UE n° 20 A E A E A E A E A E A E A A A A A A A	W/W W/W % % 016/2281) W/W W/W	4,24 4,28 166,60 168,20 4,58 4,62 180,20	4,25 4,28 166,80 168,00 4,59 4,62 180,40	4,24 4,27 166,80 167,90 4,58 4,62 180,40	4,2 4,2 165, 166, 4,5 4,5 179,	2 4 4 770 660 6 6 8 8	4,24 4,27 166,80 167,70 4,58 4,61 180,40	4,22 4,27 165,90 167,90 4,56 4,62 179,40	4,22 4,27 165,90 168,00 4,56 4,62 179,40	4,23 4,23 166,00 166,30 4,56 4,57 179,60
Size Fans: ° Cooling capacity with low leaving was SEER	Ater temp (UE n° 20 A E A E A E A E A E A E A A A A A A A	W/W W/W % % 016/2281) W/W W/W	4,24 4,28 166,60 168,20 4,58 4,62 180,20	4,25 4,28 166,80 168,00 4,59 4,62 180,40	4,24 4,27 166,80 167,90 4,58 4,62 180,40	4,2 4,2 165, 166, 4,5 4,5 179,	2 4 4 770 660 6 6 8 8	4,24 4,27 166,80 167,70 4,58 4,61 180,40	4,22 4,27 165,90 167,90 4,56 4,62 179,40	4,22 4,27 165,90 168,00 4,56 4,62 179,40	4,23 4,23 166,00 166,30 4,56 4,57 179,60
Size Fans: ° Cooling capacity with low leaving was SEER psc Fans: J Cooling capacity with low leaving was SEER psc ELECTRIC DATA	Ater temp (UE n° 20 A E A E A E A E A E A E A A A A A A A	W/W W/W % % 016/2281) W/W W/W	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60	4,2 4,2 165, 166, 4,5 4,5 179, 180,	2 4 4 770 660 6 6 8 8 220	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80
Size Fans: ° Cooling capacity with low leaving was SEER \$\text{Fans: J} Cooling capacity with low leaving was SEER \$\text{\$\text{SEER}\$} \$\$ \$\$ \$\$ ELECTRIC DATA \$\$ Size Electric data	Ater temp (UE n° 20 A E A E A E A E A E A E A E A E A E A	W/W W/W % % 016/2281) W/W W/W % A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60	4,2 4,2 165, 166, 166, 4,5 4,5 179, 180,	2 4 4 770 660 660 6 8 8 220 220 1204 261,0	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80
Size Fans: ° Cooling capacity with low leaving was SEER	ater temp (UE n° 2) A E A E A E ater temp (UE n° 2) A E A E A E	W/W W/W % % 016/2281) W/W W/W % A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60	4,2 4,2 165, 166, 4,5 4,5 179, 180,	2 4 4 770 660 660 6 8 8 220 220 1204 261,0 269,0	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006
Size Fans: ° Cooling capacity with low leaving was SEER \$\text{Fans: J} Cooling capacity with low leaving was SEER \$\text{\$\text{SEER}\$} \$\$ \$\$ \$\$ ELECTRIC DATA \$\$ Size Electric data Maximum current (FLA)	ater temp (UE n° 2) A E A E A E A E A E A E A E A E A E A	W/W W/W % % 016/2281) W/W W/W % A A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90 0804	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60 1004	4,2 4,2 165, 166, 166, 4,5 4,5 179, 180, 1104	2 4 4 770 660 660 66 8 8 220 220 261,0 269,0 513,0	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30 1414 303,0 311,0 636,0	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60 1604	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006
Size Fans: ° Cooling capacity with low leaving was SEER \$\text{Fans: J} Cooling capacity with low leaving was SEER \$\text{\$\text{SEER}\$} \$\$ \$\$ \$\$ ELECTRIC DATA \$\$ Size Electric data	ater temp (UE n° 2) A E A E A E ater temp (UE n° 2) A E A E A E	W/W W/W % % 016/2281) W/W W/W % A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90 0804	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60	4,2 4,2 165, 166, 4,5 4,5 179, 180,	2 4 4 770 660 660 6 8 8 220 220 1204 261,0 269,0	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006
Size Fans: ° Cooling capacity with low leaving was SEER \$\text{Fans: J} Cooling capacity with low leaving was SEER \$\text{\$\text{SEER}\$} \$\$ \$\$ \$\$ ELECTRIC DATA \$\$ Size Electric data Maximum current (FLA)	ater temp (UE n° 2) A E A E A E A E A E A E A E A E A E A	W/W W/W % % 016/2281) W/W W/W % A A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90 0804	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60 1004	4,2 4,2 165, 166, 166, 4,5 4,5 179, 180, 1104	2 4 4 770 660 66 8 8 220 220 261,0 269,0 513,0 521,0	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30 1414 303,0 311,0 636,0	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60 1604	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006
Size Fans: ° Cooling capacity with low leaving was SEER psc Fans: J Cooling capacity with low leaving was SEER psc ELECTRIC DATA Size Electric data Maximum current (FLA) Peak current (LRA)	ater temp (UE n° 2) A E A E A E A E A E A E A E A E A E A	W/W W/W % % 016/2281) W/W W/W % A A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90 0804	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60 1004	4,2,2 4,2,2 165, 166,0 4,5,1 179, 180, 1104 233,0 241,0 485,0 493,0	2 4 4 770 660 66 8 8 220 220 261,0 269,0 513,0 521,0	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30 1414 303,0 311,0 636,0 644,0	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60 1604 337,0 352,0 670,0 685,0	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805 386,0 401,0 638,0 653,0	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006 427,0 442,0 679,0 694,0
Size Fans: ° Cooling capacity with low leaving was SEER \$\text{Fans: J} Cooling capacity with low leaving was SEER \$\text{SEER} \$\text{SEER} \$\text{SEER} \$\text{Pans: J} Cooling capacity with low leaving was SEER \$\text{SEER} \$\text{Size} \$\text{Electric data} \$\text{Maximum current (FLA)} \$\text{Peak current (LRA)} \$\text{Size} \$\text{Electric data}	ater temp (UE n° 2) A E A E A E A E A E A E A E A E A E A	W/W W/W % % 016/2281) W/W W/W % A A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90 0804	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60 1004	4,2,2 4,2,2 165, 166,0 4,5,1 179, 180, 1104 233,0 241,0 485,0 493,0	22 4 4 770 660 66 8 8 220 220 261,0 269,0 513,0 521,0 66	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30 1414 303,0 311,0 636,0 644,0	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60 1604 337,0 352,0 670,0 685,0	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805 386,0 401,0 638,0 653,0	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006 427,0 442,0 679,0 694,0
Size Fans: ° Cooling capacity with low leaving was SEER	A E A E A E A E A E A E A E E A E E A E E A E E A E E A E E A E E A E E A E E A E E A E E A E E A E E A E E A E E E A E E E E A E	W/W W/W % % 016/2281) W/W W/W % % A A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90 0804 163,0 170,0 368,0 376,0	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904 188,0 196,0 431,0 439,0	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60 1004 205,0 213,0 449,0 456,0	4,2 4,2 165, 166, 166, 4,5 179, 180, 1104 233,0 241,0 485,0 493,0	2 4 4 770 660 66 8 8 220 220 261,0 269,0 513,0 521,0 6 6	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30 1414 303,0 311,0 636,0 644,0	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60 1604 337,0 352,0 670,0 685,0	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805 386,0 401,0 638,0 653,0	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006 427,0 442,0 679,0 694,0 3606
Size Fans: ° Cooling capacity with low leaving was SEER \$\text{Fans: J} Cooling capacity with low leaving was SEER \$\text{SEER} \$\text{SEER} \$\text{SEER} \$\text{Pans: J} Cooling capacity with low leaving was SEER \$\text{SEER} \$\text{Size} \$\text{Electric data} \$\text{Maximum current (FLA)} \$\text{Peak current (LRA)} \$\text{Size} \$\text{Electric data}	A E A E A E A A E A A E A A E A A E A A E A A E A A E A A E A A E A A A E A A A E A A A E A	W/W W/W % % 016/2281) W/W W/W % A A A	4,24 4,28 166,60 168,20 4,58 4,62 180,20 181,90 0804 163,0 170,0 368,0 376,0 2206	4,25 4,28 166,80 168,00 4,59 4,62 180,40 181,70 0904 188,0 196,0 431,0 439,0 2406	4,24 4,27 166,80 167,90 4,58 4,62 180,40 181,60 1004 205,0 213,0 449,0 456,0 2606	4,2 4,2 165, 166, 166, 4,5 179, 180, 1104 233,0 241,0 485,0 493,0	2 4 4 770 660 66 8 8 220 220 1204 261,0 269,0 513,0 521,0 66 0.0 0	4,24 4,27 166,80 167,70 4,58 4,61 180,40 181,30 1414 303,0 311,0 636,0 644,0 3006	4,22 4,27 165,90 167,90 4,56 4,62 179,40 181,60 1604 337,0 352,0 670,0 685,0 3206	4,22 4,27 165,90 168,00 4,56 4,62 179,40 181,70 1805 386,0 401,0 638,0 653,0 3406	4,23 4,23 166,00 166,30 4,56 4,57 179,60 179,80 2006 427,0 442,0 679,0 694,0 3606

GENERAL TECHNICAL DATA

Size			0804	0904	1004	1104	1204	1414	1604	1805	2006
Compressor											
Туре	A,E	type					Scroll				
Number	A,E	no.	4	4	4	4	4	4	4	5	6
Circuits	A,E	no.	2	2	2	2	2	2	2	2	2
Refrigerant	A,E	type					R410A				
Potential global heating	A,E	GWP					2088kgCO₂eq				
Refrigerant charge (1)	A	kg	41,1	61,0	61,4	62,7	62,8	83,6	83,6	106,1	107,6
nemyerani charge (1)	E	kg	61,0	80,8	81,2	82,9	83,0	103,9	124,1	147,2	149,3
2-pipe system - System side heat ex	changer (hot/cold)										
Туре	A,E	type					Brazed plate				
Number	A,E	no.	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,E	Туре					Grooved joints				
Size (in)	A,E	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"
Size (out)	A,E	Ø	3″	3"	3"	3"	3"	4"	4"	4"	4"
2-pipe system - Recovery side heat o	exchanger (domesti	c hot water)									
Туре	A,E	type					Brazed plate				
Number	A,E	no.	2	2	2	2	2	2	2	2	2
Manifold connection (in/out)	A,E	Туре					G.s.				
Manifold diameter (in)	A,E	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"
Manifold diameter (out)	A,E	Ø	3"	3"	3"	3"	3″	4"	4"	4"	4"
4-pipe system - System side heat ex	changer (cold side)										
Туре	A,E	type					Brazed plate				
Number	A,E	no.	1	1	1	1	1	1	1	1	1
Connections (in/out)	A,E	Туре					Grooved joints				
Size (in)	A,E	Ø	3"	3"	3"	3"	3"	4"	4"	4"	4"
Size (out)	A,E	Ø	3"	3"	3"	3"	3″	4"	4"	4"	4"
4-pipe system - Recovery side heat e	exchanger (hot side))									
Туре	A,E	type					Brazed plate				
Number	A,E	no.	2	2	2	2	2	2	2	2	2
Manifold connection (in/out)	A,E	Туре					Grooved joints				
Manifold diameter (in)	A,E	Ø	3"	3"	3"	3"	3″	4"	4"	4"	4"
Manifold diameter (out)	A,E	Ø	3"	3"	3"	3"	3″	4"	4"	4"	4"
Fan											
Туре	A,E	type					Axial				
Fan motor	A,E	type					On-Off				
Number	A	no.	4	6	6	6	6	8	8	10	10
Number	E	no.	6	8	8	8	8	10	12	14	14
Air flau rata	A	m³/h	80000	120000	120000	120000	120000	160000	160000	200000	200000
Air flow rate	E	m³/h	80000	110000	110000	110000	110000	130000	160000	180000	180000
Sound data calculated in cooling mo	ode (2)										
Cannad a annau lanual	А	dB(A)	89,5	91,6	91,6	91,6	91,6	93,1	93,1	94,2	94,2
Sound power level	E	dB(A)	84,6	86,1	86,1	86,1	86,1	87,2	88,2	89,4	89,9


⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

Size			2206	2406	2606	2806	3006	3206	3406	3606
Compressor										
Туре	A,E	type				Sc	roll			
Number	A,E	no.	6	6	6	6	6	6	6	6
Circuits	A,E	no.	2	2	2	2	2	2	2	2
Refrigerant	A,E	type				R4	10A			
Potential global heating	A,E	GWP				2088k	gCO₂eq			
Defricement change (1)	A	kg	129,2	129,2	156,9	161,5	184,8	184,8	207,7	207,7
Refrigerant charge (1)	E	kg	170,9	170,9	199,9	205,8	229,0	229,0	252,0	252,0
2-pipe system - System side heat exc	hanger (hot/cold)									
Туре	A,E	type				Braze	d plate			
Number	A,E	no.	1	1	1	1	1	1	1	1
Connections (in/out)	A,E	Туре				Groove	d joints			
Size (in)	A,E	Ø	4"	5"	5"	5"	5"	5"	5"	5"
Size (out)	A,E	Ø	4"	5"	5"	5"	5"	5"	5"	5"
2-pipe system - Recovery side heat e	xchanger (domestic	hot water)								
Туре	A,E	type				Braze	d plate			
Number	A,E	no.	2	2	2	2	2	2	2	2
Manifold connection (in/out)	A,E	Туре				G	.S.			
Manifold diameter (in)	A,E	Ø	4"	5"	5"	5"	5"	5"	5"	5"
Manifold diameter (out)	A,E	Ø	4"	5"	5"	5"	5"	5"	5"	5"
4-pipe system - System side heat exc	hanger (cold side)									
Туре	A,E	type				Braze	d plate			
Number	A,E	no.	1	1	1	1	1	1	1	1
Connections (in/out)	A,E	Туре				Groove	d joints			
Size (in)	A,E	Ø	4"	5"	5"	5"	5"	5"	5"	5"
Size (out)	A,E	Ø	4"	5"	5"	5"	5″	5"	5"	5"
4-pipe system - Recovery side heat e	xchanger (hot side)									
Туре	A,E	type				Braze	d plate			
Number	A,E	no.	2	2	2	2	2	2	2	2
Manifold connection (in/out)	A,E	Туре				Groove	d joints			
Manifold diameter (in)	A,E	Ø	4"	5"	5"	5"	5"	5"	5"	5"
Manifold diameter (out)	A,E	Ø	4"	5"	5"	5"	5"	5"	5"	5"
Fan										
Туре	A,E	type				A	rial			
Fan motor	A,E	type				On-	-Off			
Mumbar	A	no.	12	12	14	14	16	16	18	18
Number	E	no.	16	16	18	18	20	20	22	22
A:	A	m³/h	240000	240000	280000	280000	320000	320000	350000	350000
Air flow rate	E	m³/h	210000	210000	230000	230000	260000	260000	280000	280000
Sound data calculated in cooling mo	de (2)									
-	A	dB(A)	95,1	95,1	95,9	95,9	96,6	96,6	97,2	97,2
Sound power level	E	dB(A)	91,1	91,6	92,2	92,2	92,7	92,7	93,2	93,2

G.s. = Grooved joints

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
(2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size			0804	0904	1004	1104	1204	1414	1604	1805	2006
Dimensions and weights											
A	A,E	mm	2450	2450	2450	2450	2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200	2200	2200	2200	2200	2200	2200
r	A	mm	2780	3970	3970	3970	3970	4760	4760	5950	6350
	E	mm	3970	4760	4760	4760	4760	5950	7140	8330	8330
Size			2206	2406	2606		2806	3006	3206	3406	3606
Dimensions and weights											
A	A,E	mm	2450	2450	2450		2450	2450	2450	2450	2450
В	A,E	mm	2200	2200	2200		2200	2200	2200	2200	2200
r	A	mm	7140	7140	8330		8330	9520	9520	10710	10710
	E	mm	9520	9520	10710		10710	11900	11900	13090	13090
Size			0804	0904	1004	1104	1204	1414	1604	1805	2006
System type: 2											
Weights											
Emptyweight	A	kg	2642	3152	3262	3452	3722	4409	4569	5419	5829
Empty weight	E	kg	3072	3712	3822	4012	4282	4879	5449	6359	6789
System type: 4											
Weights											
Empty weight	A	kg	2632	3132	3252	3442	3692	4379	4539	5389	5799
	E	kg	3052	3692	3812	4002	4252	4849	5419	6319	6759
Size			2206	2406	2606		2806	3006	3206	3406	3606
System type: 2											
Weights											
Emptyweight	A	kg	6479	6756	7436		7566	8356	8426	9076	9156
Empty weight	E	kg	7469	7736	8356		8486	9186	9256	9916	9996
System type: 4											
Weights											
Empty weight	A	kg	6449	6716	7376		7506	8296	8366	8976	9056
Linpty weight	E	kg	7429	7706	8296		8426	9116	9196	9816	9896

[■] The weights are for standard units with plate heat exchangers and no hydronic kit.

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577
www.aermec.com

CPS

Multifunction unit with multiple temperature level capability

Cooling capacity 164 ÷ 491 kW Heating capacity 176 ÷ 505 kW

- Multipurpose 6 pipes plug and play system
- Simultaneous and independent production of chilled water, medium temperature hot water and high temperature hot water (also suitable for domestic use)
- Uses heat recovery for simultaneous cooling and heating

DESCRIPTION

The multi-purpose 6-pipe units CPS are designed for residential buildings and accommodation facilities that require the simultaneous availability of heating and cooling for the rooms, along with high-temperature water (up to 73°C on the machine outlet) for heating needs and/ or DHW production.

Each single service (cooling, medium-temperature heating, high-temperature hot water) can be supplied independently of the request for the others.

The versatile functions, extended operating limits and simplified installation of these units mean that they can also be used in a variety of different industrial processes.

CPS the ideal solution for both new installations and upgrading existing systems.

FEATURES

Operating field

Possibility to produce water up to 73°C, using mainly free-heating for cooling requests.

2 dual circuit units

Created by combining and optimising, in a single system, an NRP series 4-pipe multifunction air-water unit (with scroll compressors and R410A refrigerant) for the production of chilled water and medium temperature hot water on the heating/cooling circuit side, and a WWB series water-water heat pump (with scroll compressors and R134a refrigerant) for the production of domestic hot water (DHW).

Constructional characteristics of unit

CPS units can be installed and operated even in locations with limit space, offering significant time savings in terms of both system planning and installation, while tried-and-tested, optimised management logic makes it possible to create plug-and-play systems with superior reliability and efficiency.

These units consist of:

4 cooling circuits

— 2 circuits (C1/C2) with R410A gas

— 2 circuits (C2/C3) with R134a gas

3 plate heat exchanger

- 1 Plate heat exchanger for chilled water
- 1 Plate heat exchanger for medium temperature hot water
- 1 Inspectable stainless steel plate heat exchanger for high temperature hot water production (DHW)

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

Condensation control temperature

Fitted as standard with a device for electronic condensation control so that the unit can work even with low temperatures, adapting the air flow rate to the actual system request in order to reduce consumption.

Option integrated hydronic kit

To create a solution which offers both cost savings and facilitated installation, these units may be configured with an integrated hydronic kit on the chilled water utility side. A hydronic kit must always be used, however, on the medium temperature water side.

These kits include all the main plumbing components necessary, and are available in a variety of configurations with either a single pump or with a backup pump to offer a choice of different total head values.

Flow switches must be installed on both the cold and medium temperature water utility circuits to protect the heat exchangers. Failure to do so will render the warranty null and void.

CONTROL PCO⁵

Microprocessor adjustment, with 7", touch screen keyboard, which allows to navigate intuitively among the various screens, allowing to modify the operating parameters and graphically view the progress of some variables in real time and the ad adjustment includes complete management of the alarms and their log.

- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

- Floating HP control: Allows, with continuous fan modulation, to optimize the operation of the unit in any operating point, ensuring an increase in the energy efficiency at partial load. **ESEER up to** +7% with inverter fans
- **Night Mode:** it is possible to set a silenced operation profile. Perfect for night operation since it guarantees greater acoustic comfort in the evenings, and a high efficiency in the time of greater load.

Field

Description Pump C

CONFIGURATOR

Idonation
Description
CPS
Size 0704, 1004, 1805
Coils
Copper-aluminium
Copper pipes-copper fins
Copper pipes-Tinned copper fins
Copper pieps-Coated aluminium fins
Fans
Asynchronous + DCPX
Inverter
Power supply
400V ~ 3 50Hz with magnet circuit breakers
400V ~ 3 50Hz with soft-start
Hydronic kit integrated on chilled water utility side
Without hydronic kit
Pump A + stand-by pump
Pump B + stand-by pump
Pump C + stand-by pump
Pump D + stand-by pump
Pump E + stand-by pump
Pump F + stand-by pump
Pump G + stand-by pump
Pump H + stand-by pump
Pump I + stand-by pump
Pump A
Pump B

	rumpe
PD	Pump D
PE	Pump E
PF	Pump F
PG	Pump G
PH	Pump H
PI	Pump I
13,14	Hydronic kit integrated on medium temperature water utility side
RA	Pump A
RB	Pump B
RC	Pump C
RD	Pump D
RE	Pump E
RF	Pump F
RG	Pump G
RH	Pump H
RI	Pump I
SA	Pump A + stand-by pump
SB	Pump B + stand-by pump
SC	Pump C + stand-by pump
SD	Pump D + stand-by pump
SE	Pump E + stand-by pump
SF	Pump F + stand-by pump
SG	Pump G + stand-by pump
SH	Pump H + stand-by pump
SI	Pump I + stand-by pump

COMPATIBILITY BETWEEN DIFFERENT HYDRONIC KITS

These kits include all the main plumbing components necessary, and are available in a variety of configurations with either a single pump or with a backup pump to offer a choice of different total head values.

The following table illustrates the compatibility between different unit sizes and the hydronic kits.

All units must be configured with the medium temperature water side hydronic kit.

	PA-DA PB-DB	PA-DA PB-DB		
	PB-DB	DD DD		
		אס-סק		
	PC-DC	PC-DC	PC-DC	
	PD-DD	PD-DD	PD-DD	
Pumps - COLD WATER side	PE-DE	PE-DE	PE-DE	PE-DE
COLD WILLIAM	PF-DF		PF-DF	PF-DF
	PG-DG			PG-DG
	PH-DH			PH-DH
	PI-DI			PI-DI

		CPS0704	CPS1004	CPS1805
Pumps - HOT WATER (AVERAGE TEMPERATURE) side	RA-SA	RA-SA		
	RB-SB	RB-SB		
	RC-SC	RC-SC	RC-SC	
	RD-SD	RD-SD	RD-SD	
	RE-SE		RE-SE	RE-SE
	RF-SF		RF-SF	RF-SF
	RG-SG			RG-SG
	RH-SH			RH-SH
	RI-SI			RI-SI

www.aermec.com

PERFORMANCE SPECIFICATIONS

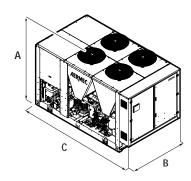
		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°00RE
Household system side cooling (1)				
Cooling capacity	kW	163,9	259,2	490,5
Input power	kW	53,2	86,3	165,7
Cooling total input current	A	97,0	128,0	239,0
EER	W/W	3,08	3,00	2,96
Water flow rate system side	I/h	28212	44593	84370
Pressure drop system side	kPa	32	34	49
Medium temperature system heating (2)	Ni u	32	31	
Heating capacity	kW	175,2	271,8	503,5
Input power	kW	55,8	86,5	161,7
Heating total input current	A	104,0	136,0	250,0
COP	W/W		3,14	3,11
	I/h	3,14		
Water flow rate system side		30521	47339	87653
Useful head system side	kPa (2)	99,0	120,0	113,0
High temperature system side heating (DHW) (00.7	477.4	254.0
Heating capacity (DHW)	kW	90,7	177,4	251,9
Input power	kW	48,4	85,3	144,3
Heating total input current	A	88,0	134,0	211,0
COP	W/W	1,87	2,08	1,75
Water flow rate domestic hot water side	I/h	7897	15442	21924
Pressure drop domestic hot water side	kPa	30	40	39
Simultaneous operation (cooling + medium te				
Cooling capacity	kW	163,3	258,3	466,2
Heating capacity	kW	207,8	330,2	600,6
Input power	kW	48,4	78,7	147,7
Total input current	A	92	136	253
TER	W/W	7,66	7,47	7,22
Water flow rate cold side	l/h	28212	45593	84370
Pressure drop cold side	kPa	32	34	49
Water flow rate hot side	l/h	30521	47339	87653
Useful head system side	kPa	99,0	120,0	113,0
Simultaneous operation (cooling + high temper	erature DHW production) (5)		
Cooling capacity	kW	160,0	250,0	463,5
Heating capacity (DHW)	kW	90,7	177,4	251,9
Input power	kW	70,7	124,1	217,0
Total input current	A	126	191	333
TER	W/W	3,54	3,45	3,30
Water flow rate cold side	l/h	27536	43003	79720
Pressure drop cold side	kPa	30	31	44
Water flow rate domestic hot water side	l/h	7899	15442	21924
Pressure drop domestic hot water side	kPa	30	40	39
Simultaneous operation (medium temperature				
Heating capacity	kW	101,4	129,5	304,2
Heating capacity (DHW)	kW	90,5	177,0	251,3
	kW	73,7	123,9	215,6
Input power Total input current	A KVV	137	196	341
TER	W/W	2,60	2,47	2,58
Water flow rate hot side	VV/VV I/h		22604	53038
	kPa			256,0
Useful head system side		158,0	189,0	
Water flow rate domestic hot water side	l/h	7897	15442	21924
Pressure drop domestic hot water side	Ln.	20		
Simultaneous operation (cooling + medium te	kPa	30	40	39
Cooling capacity	mperature heating + high	temperature DHW production) (7)		
	mperature heating + high kW	temperature DHW production) (7) 163,3	258,3	466,2
Heating capacity	mperature heating + high kW kW	temperature DHW production) (7) 163,3 134,0	258,3 187,9	466,2 401,4
Heating capacity Heating capacity (DHW)	mperature heating + high kW kW kW	temperature DHW production) (7) 163,3 134,0 90,5	258,3 187,9 177,0	466,2 401,4 251,3
Heating capacity Heating capacity (DHW) Total input power	mperature heating + high kW kW kW kW	temperature DHW production) (7) 163,3 134,0 90,5 66,7	258,3 187,9 177,0 116,6	466,2 401,4 251,3 204,1
Heating capacity Heating capacity (DHW) Total input power Total input current	mperature heating + high kW kW kW kW kW	temperature DHW production) (7) 163,3 134,0 90,5 66,7 125	258,3 187,9 177,0 116,6 199	466,2 401,4 251,3 204,1 347
Heating capacity Heating capacity (DHW) Total input power Total input current TER	emperature heating + high kW kW kW kW kW kW kW	temperature DHW production) (7) 163,3 134,0 90,5 66,7 125 5,81	258,3 187,9 177,0 116,6 199 5,35	466,2 401,4 251,3 204,1 347 5,48
Heating capacity Heating capacity (DHW) Total input power Total input current TER Water flow rate cold side	emperature heating + high kW kW kW kW kW kW A W/W	temperature DHW production) (7) 163,3 134,0 90,5 66,7 125 5,81 28212	258,3 187,9 177,0 116,6 199 5,35 44593	466,2 401,4 251,3 204,1 347 5,48 84370
Heating capacity Heating capacity (DHW) Total input power Total input current TER Water flow rate cold side Pressure drop cold side	kW kW kW kW kW kW A W/W I/h	temperature DHW production) (7) 163,3 134,0 90,5 66,7 125 5,81 28212 32	258,3 187,9 177,0 116,6 199 5,35 44593	466,2 401,4 251,3 204,1 347 5,48 84370 49
Heating capacity Heating capacity (DHW) Total input power Total input current TER Water flow rate cold side Pressure drop cold side Water flow rate hot side	emperature heating + high kW kW kW kW kW A W/W I/h kPa	temperature DHW production) (7) 163,3 134,0 90,5 66,7 125 5,81 28212 32 30521	258,3 187,9 177,0 116,6 199 5,35 44593 34	466,2 401,4 251,3 204,1 347 5,48 84370 49 87653
Heating capacity Heating capacity (DHW) Total input power Total input current TER Water flow rate cold side Pressure drop cold side Water flow rate hot side Useful head system side	kW kW kW kW kW kW kW kW A W/W I/h kPa I/h kPa	temperature DHW production) (7) 163,3 134,0 90,5 66,7 125 5,81 28212 32	258,3 187,9 177,0 116,6 199 5,35 44593	466,2 401,4 251,3 204,1 347 5,48 84370 49
Heating capacity Heating capacity (DHW) Total input power Total input current TER Water flow rate cold side Pressure drop cold side Water flow rate hot side	emperature heating + high kW kW kW kW kW A W/W I/h kPa	temperature DHW production) (7) 163,3 134,0 90,5 66,7 125 5,81 28212 32 30521	258,3 187,9 177,0 116,6 199 5,35 44593 34	466,2 401,4 251,3 204,1 347 5,48 84370 49 87653

⁽¹⁾ Data 14511:2022; System side water heat exchanger 12 °C/7 °C; External air 35 °C
(2) Data 14511:2022; System side water heat exchanger 40 °C/45 °C; Outside air 7 °C d.b. / 6 °C w.b.
(3) Data 14511:2022; Heat exchanger - services side (DHW at high temperature) 55 °C / 65 °C; Outside air 7 °C D.B. / 6 °C W.B.
(4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;
(5) Data 14511:2022; Heat exchanger water (services side) 12 °C/7 °C; Outside air 3 °C; Deta (15 °C) (15 °C)

ENERGY DATA

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°00RE
Cooling capacity with low leaving wa	ter temp (UE n° 2016/2281)			
SEER	W/W	-	-	4,56
ηςς	%	-	-	180%
UE 813/2013 performance in average	ambient conditions (average) - 55 °C	- Pdesignh ≤ 400 kW (1)		
Pdesignh	kW	150	241	-
SCOP	W/W	2,66	2,76	-
ηsh	%	103%	107%	-
UE 813/2013 performance in average	ambient conditions (average) - 35 °C	- Pdesignh ≤ 400 kW (2)		
Pdesignh	kW	158	246	-
SCOP	W/W	3,26	3,44	-
ηsh	%	128%	135%	-

⁽¹⁾ Efficiencies for average temperature applications (55 °C) (2) Efficiencies for low temperature applications (35 °C)


ELECTRIC DATA

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°00RE
Cooling only mode				
Maximum current (FLA)	A	153,0	220,0	420,0
Peak current (LRA)	A	293,0	459,0	746,0
Medium temperature heating mode op	eration only			
Maximum current (FLA)	A	153,0	220,0	420,0
Peak current (LRA)	A	293,0	459,0	746,0
High temperature DHW production ope	rating mode only)			
Maximum current (FLA)	A	121,0	203,0	320,0
Peak current (LRA)	A	261	442	645
Simultaneous operation (medium temp	erature heating + cooling)			
Maximum current (FLA)	A	138,0	197,0	381,0
Peak current (LRA)	A	278	436	707
Simultaneous operation (medium temp	erature heating + high tempera	ature DHW production)		
Maximum current (FLA)	A	197,0	308,0	549,0
Peak current (LRA)	A	337	547	874
Simultaneous operation (cooling + DHV	V production operating)			
Maximum current (FLA)	A	189,0	300,0	533,0
Peak current (LRA)	A	329	539	858
Simultaneous operation (cooling + med	lium temperature heating + hig	h temperature DHW production)		
Maximum current (FLA)	A	181,0	284,0	510,0
Peak current (LRA)	A	321	523	835

GENERAL TECHNICAL DATA

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°00RE
Compressor - Circuit (C1/C2)				
Туре	type		Scroll	
Number	no.	4	4	5
Circuits	no.	2	2	2
Refrigerant	type		R410A	
Refrigerant charge	kg	45,0	61,0	106,0
Thermostatic expansion valve	type		Meccanica	
Compressor - Circuit (C3/C4)				
ype	type		Scroll	
lumber	no.	2	2	2
ircuits	no.	2	2	2
Refrigerant	type		R134a	
Refrigerant charge	kg	7,0	15,0	20,0
hermostatic expansion valve	type		Elettronica	
Jtility side heat exchanger (cooling)				
Гуре	type		Brazed plate	
Number	no.	1	1	1
Connections (in/out)	Туре		Grooved joints	
Sizes (in/out)	Ø	2″1/2	3"	4"
Jtility side heat exchanger (medium tem	perature heating)			
ype	type		Brazed plate	
lumber	no.	2	2	2
Manifold connection (in/out)	Туре		Grooved joints	
Manifold diameter (in/out)	Ø	2″1/2	3"	4"
Itility side heat exchanger (high temper	ature heating)			
ype	type		Brazed plate	
lumber	no.	1	1	1
onnections (in/out)	Туре		Gas	
izes (in/out)	Ø		2" M	
an				
ype	type		Axial	
an motor	type		Asynchronous with phase cut	
Number	no.	4	6	10
Air flow rate	m³/h	88000	116500	194100

DIMENSIONS

		CPS0704°°°00RA	CPS1004°°°00RC	CPS1805°°°OORE
Dimensions and weights				
A	mm	2450	2450	2450
В	mm	2200	2200	2200
C	mm	3975	5760	8143

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

NXP 0500 - 1650

Water-water multipurpose

Cooling capacity 108 ÷ 502 kW Heating capacity 122 ÷ 549 kW

- Units designed for 2 or 4-pipe systems
- · High efficiency also at partial loads
- Simultaneous and independent production of hot and chilled water

DESCRIPTION

Multi-purpose indoor model designed for applications with 2 or 4-pipe systems. Just one unit is capable of satisfying the yearly hot and cold water demand simultaneously and independently.

The base, the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.

VERSIONS

° Standard

L Standard silenced

FEATURES

Operating field

Work at full load with chilled water production from 4 to 18°C at the evaporator and hot water at the condenser up to 55°C.

(for more information, refer to the technical documentation).

Dual-circuit unit

The units are dual-circuit, to ensure maximum efficiency both at full load and at partial load.

Exchangers

All standard units have user-side heat exchangers and plate recovery, optimised to take advantage of the excellent heat exchange characteristics of the R410A.

Option integrated hydronic kit

To obtain a solution that offers economic savings and easy installation, these units can be configured with an integrated hydronic kit on both the service side and the recovery side.

The kit contains the main hydraulic components, and is available in various configurations with a single pump or a standby pump too, so the customer can choose the right useful head.

The flow switch is available as an accessory for both the system side and the recovery side, and is compulsory; if it is not installed, the warranty will be considered invalid.

CONTROL PCO⁵

Microprocessor adjustment, with keyboard and LCD display, for easy access on the unit is a menu available in several languages.

- Possibility to control two units in a Master-Slave configuration
- The presence of a programmable timer allows functioning time periods and a possible second set-point to be set.
- The temperature control takes place with the integral proportional logic, based on the water output temperature.

ACCESSORIES

AER485P1: RS-485 interface for supervision systems with MODBUS protocol.

AERBACP: Ethernet communication Interface for protocols Bacnet/IP, Modbus TCP/IP, SNMP

AERNET: The device allows the control, the management and the remote monitoring of a Chiller with a PC, smartphone or tablet using Cloud connection. AERNET works as Master while every unit connected is configured as Slave (max. 6 unit); also, with a simple click is possible to save a log file with all the connected unit datas in the personal terminal for post analysis.

FL: Flow switch.

MULTICHILLER_EVO: Control, switch-on and switch-off system of the single chillers where multiple units are installed in parallel, always ensuring constant flow rate to the evaporators.

PGD1: Allows you to control the unit at a distance.

AVX: Spring anti-vibration supports.

FACTORY FITTED ACCESSORIES

DRE: Electronic device for peak current reduction.

RIF: Power factor correction. Connected in parallel to the motor allowing about 10% reduction of input current.

ACCESSORIES COMPATIBILITY

Model	Ver	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
AER485P1	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERBACP	°,L	•	•	•	•	•	•	•	•	•	•	•	•	•
AERNET	°,L			•				•		•	•	•		•
FL	°,L							•		•	•			•
MULTICHILLER_EVO	°,L	•		•				•		•	•	•		•
PGD1	°,L	•					•	•		•	•			•

Antivibration

Version	Integrated hydronic kit user side	Integrated hydronic kit, recovery side	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
•	٥	0	AVX350	AVX350	AVX351	AVX351	AVX351	AVX351	AVX352	AVX352	AVX353	AVX353	AVX353	AVX354	AVX354
۰	0	U,V	AVX357	AVX357	AVX358	AVX358	AVX358	AVX359	AVX360	AVX360	AVX361	AVX361	AVX361	AVX361	AVX361
	M,N	°,U,V,W,Z	AVX357	AVX357	AVX358	AVX358	AVX358	AVX359	AVX360	AVX360	AVX361	AVX361	AVX361	AVX361	AVX361
٥	0,P	U,V	AVX357	AVX357	AVX358	AVX358	AVX358	AVX359	AVX360	AVX360	AVX361	AVX361	AVX361	AVX361	AVX361
•	0	W,Z	AVX357	AVX357	AVX359	AVX359	AVX359	AVX359	AVX363	AVX363	AVX364	AVX364	AVX364	AVX364	AVX364
•	0,P	°,W,Z	AVX357	AVX357	AVX359	AVX359	AVX359	AVX359	AVX363	AVX363	AVX364	AVX364	AVX364	AVX364	AVX364
L	0	0	AVX351	AVX351	AVX359	AVX359	AVX359	AVX356	AVX353	AVX353	AVX353	AVX354	AVX354	AVX354	AVX354
L	0	U,V	AVX358	AVX358	AVX359	AVX359	AVX359	AVX360	AVX360	AVX360	AVX361	AVX361	AVX362	AVX362	AVX362
L	M,N	°,U,V	AVX358	AVX358	AVX359	AVX359	AVX359	AVX360	AVX360	AVX360	AVX361	AVX361	AVX362	AVX362	AVX362
L	°,M,N	W,Z	AVX359	AVX359	AVX359	AVX359	AVX359	AVX363	AVX363	AVX364	AVX364	AVX364	AVX364	AVX364	AVX364
L	0,P	°,U,V,W,Z	AVX359	AVX359	AVX359	AVX359	AVX359	AVX363	AVX363	AVX364	AVX364	AVX364	AVX364	AVX364	AVX364

Device for peak current reduction

Ver	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
°,L	DRE501 (1)	DRE551 (1)	DRE601 (1)	DRE651 (1)	DRE701 (1)	DRE751 (1)	DRE801 (1)	DRE901 (1)	DRE1001 (1)	DRE1251 (1)	DRE1401 (1)	DRE1401 (1)	DRE1401 (1)

⁽¹⁾ Only for supplies of 400V 3N \sim 50Hz and 400V 3 \sim 50Hz. x 2 or x 3 (if present) indicates the quantity to be ordered. A grey background indicates the accessory must be assembled in the factory

Power factor correction

Ver	0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
°,L	RIF98	RIF98	RIF95	RIF95	RIF95	RIF95	RIF95	RIF96	RIF97	RIF97	RIF97	RIF97	RIF97

A grey background indicates the accessory must be assembled in the factory $% \left(1\right) =\left(1\right) \left(1\right)$

CONFIGURATOR

Field	Description
1,2,3	NXP
4,5,6,7	Size 0500, 0550, 0600, 0650, 0700, 0750, 0800, 0900, 1000, 1250, 1400, 1500, 1650
8	Operating field
0	Standard mechanic thermostatic valve
9	System type
2	2-pipe system
4	4-pipe system
10	Version
0	Standard
L	Standard silenced
11	Power supply
0	400V ~ 3 50Hz with magnet circuit breakers
4	220V ~ 3 50Hz with magnet circuit breakers (1)
5	500V ~ 3 50Hz with magnet circuit breakers (2)
12	Integrated hydronic kit user side
0	Without hydronic kit
M	Single pump low head
N	Pump low head + stand-by pump
0	Single pump high head
Р	Pump high head + stand-by pump
13	Integrated hydronic kit, recovery side
0	Without hydronic kit
U	Single pump low head
V	Pump low head + stand-by pump
W	Single pump high head
Z	Pump high head + stand-by pump

⁽¹⁾ Only for sizes from 0500 to 0700 (2) Only for sizes from 0800 to 1000

PERFORMANCE SPECIFICATIONS

NXP - 2-pipe system versions °/L

- · · · · ·		0500	0550	0400	0450	0700		0000	0000	4000	4250	4400	4500	4450
Size		0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Cooling system side 2-pipe system (1)														
Cooling capacity	kW	108,9	117,0	141,5	157,5	192,7	218,5	252,2	281,0	305,8	345,2	392,3	447,2	502,4
Input power	kW	24,0	26,1	30,9	35,1	42,6	48,9	56,0	62,5	66,3	75,7	85,2	98,4	110,3
Cooling input current	Α	47,0	50,0	58,0	65,0	84,0	90,0	92,0	101,0	106,0	135,0	149,0	169,0	188,0
EER	W/W	4,54	4,48	4,58	4,49	4,52	4,47	4,51	4,50	4,61	4,56	4,60	4,55	4,55
Water flow rate source side	l/h	22711	24436	29455	32877	40143	45586	52705	58706	63673	71963	81633	93177	104621
Pressure drop source side	kPa	33	37	41	50	59	69	28	34	26	32	36	45	49
Water flow rate system side	l/h	18734	20124	24349	27108	33155	37599	43386	48338	52596	59364	67464	76904	86389
Pressure drop system side	kPa	19	21	21	25	27	29	20	25	19	23	26	32	34
Heating system side 2-pipe system (2)														
Heating capacity	kW	122,4	131,0	158,2	175,7	210,0	238,7	289,0	320,9	352,6	383,7	433,5	489,5	549,4
Input power	kW	29,6	32,0	38,5	43,3	51,7	59,6	70,9	79,3	84,0	91,7	103,4	118,6	132,1
Heating input current	Α	54,0	58,0	68,0	76,0	95,0	103,0	112,0	123,0	130,0	154,0	173,0	196,0	217,0
COP	W/W	4,13	4,09	4,11	4,05	4,06	4,00	4,08	4,05	4,20	4,18	4,19	4,13	4,16
Water flow rate source side	l/h	27209	29066	35169	38937	46642	52841	63935	70917	78660	85555	96778	108934	122632
Pressure drop source side	kPa	47	52	58	69	79	92	41	50	39	45	51	62	67
Water flow rate system side	l/h	21232	22726	27452	30476	36453	41427	50177	55720	61233	66632	75270	84987	95403
Pressure drop system side	kPa	25	27	27	32	32	36	27	33	25	29	32	39	42
Heating domestic hot water side 2-pipe system (3)														
Heating capacity	kW	124,5	133,2	161,0	178,8	213,6	242,8	293,3	325,1	354,8	390,1	439,8	496,5	558,6
Input power	kW	29,2	31,6	37,8	42,6	50,9	58,4	70,0	78,4	83,2	91,1	102,6	117,8	131,6
Heating total input current	Α	54,0	57,0	67,0	75,0	95,0	103,0	110,0	122,0	129,0	153,0	171,0	194,0	216,0
COP	W/W	4,26	4,21	4,26	4,20	4,19	4,16	4,19	4,15	4,26	4,28	4,29	4,21	4,24
Water flow rate source side	l/h	27905	29767	36085	39952	47734	54174	65416	72379	79441	87568	98845	111238	125462
Pressure drop source side	kPa	37	42	41	50	53	58	42	50	38	46	52	66	70
Water flow rate domestic hot water side	l/h	21604	23109	27936	31015	37062	42149	50928	56446	61601	67743	76363	86215	96994
Pressure drop domestic hot water side	kPa	23	26	25	30	33	36	26	32	23	28	33	40	43
Simultaneous operation (heating + cooling), 2 pipe	s (4)													
Cooling capacity	kW	96,2	102,5	124,8	138,9	165,4	190,6	225,7	250,3	282,6	308,1	340,2	392,0	444,9
Recovered heating power	kW	123,3	131,9	160,0	178,4	212,6	244,6	290,8	322,7	360,1	392,6	435,1	500,6	566,0
Input power	kW	28,2	30,5	36,5	40,9	49,0	56,2	67,8	75,5	80,9	88,2	99,2	113,9	126,6
Water flow rate system side	I/h	18734	20124	24349	27108	33155	37599	43386	48338	52596	59364	67464	76904	86389
Pressure drop system side	kPa	19	21	21	25	27	29	20	25	19	23	26	32	34
Water flow rate domestic hot water side	l/h	21604	23109	27936	31015	37062	42149	50928	56446	61601	67743	76363	86215	96994
Pressure drop domestic hot water side	kPa	23	26	25	30	33	36	26	32	23	28	33	40	43

- (1) Date 14511:2022; Water user side 12 °C/7 °C; Water source side 30 °C/35 °C; All the units are Eurovent certified (2) Date 14511:2022; Water user side 40 °C/45 °C; Water source side 10 °C/7 °C (3) Water exchanger to the total recovery side 40 °C/45 °C; Water source side 10 °C/7 °C (4) Water exchanger to the total recovery side */45 °C; Water to the system side heat exchanger */7 °C;

NXP - 4-pipe system versions °/L

Size		0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Cooling system side 4-pipe system (1)		0300	0330	0000	0050	0700	0730	0000	0,00	1000	1230	1400	1500	1050
Cooling capacity	kW	108.9	117.0	141.5	154,5	192.7	218,5	252,2	281,0	305,8	345,2	392,3	447,2	502,4
Input power	kW	24,0	26,1	30,9	35,1	42,6	48,9	56.0	62,5	66,3	75,7	85,2	98,4	110,3
Cooling input current	A	47,0	50,0	58,0	65,0	84,0	90,0	92,0	101,0	106,0	135,0	149,0	169,0	188,0
EER	W/W	4,54	4,48	4,58	4,49	4,52	4,47	4,51	4,50	4,61	4,56	4,60	4,55	4,55
Water flow rate source side	l/h	22711	24436	29455	32877	40143	45586	52705	58706	63673	71963	81633	93177	104621
Pressure drop source side	kPa	33	37	41	50	59	69	28	34	26	32	36	45	49
Water flow rate system side	l/h	18734	20124	24349	27108	33155	37599	43386	48338	52596	59364	67464	76904	86389
Pressure drop system side	kPa	19	21	21	25	27	29	20	25	29	23	26	32	34
Heating system side 4-pipe system (2)														
Heating capacity	kW	124,5	133,2	161,0	178,8	213,6	242,8	293,3	325,1	354,8	390,1	439,8	496,5	588,6
Input power	kW	29,2	31,6	37,8	42,6	50,9	58,4	70,0	78,4	83,2	91,1	102,6	117,8	131,6
Heating total input current	A	54,0	57,0	67,0	75,0	95,0	103,0	110,0	122,0	129,0	153,0	171,0	194,0	216,0
COP	W/W	4,26	4,21	4,26	4,20	4,19	4,16	4,19	4,15	4,26	4,28	4,29	4,21	4,24
Water flow rate source side	I/h	27905	29767	36085	39952	47734	54174	65416	72379	79441	87568	98845	111238	125462
Pressure drop source side	kPa	37	42	41	50	53	58	42	50	38	46	52	66	70
Water flow rate system side	I/h	21604	23109	27935	31015	37062	42149	50928	54446	61601	67743	76363	46215	96994
Pressure drop system side	kPa	23	26	25	30	33	36	26	32	23	28	33	40	43
Simultaneous operation (heating + cooling),	4 pipes (3)													
Cooling capacity	kW	96,2	102,5	124,8	138,9	165,4	190,6	225,7	250,3	282,6	308,1	340,2	392,0	444,9
Recovered heating power	kW	123,3	131,9	160,0	178,4	212,6	244,6	290,8	322,7	360,1	392,6	435,1	500,6	566,0
Input power	kW	28,2	30,5	36,5	40,9	49,0	56,2	67,8	75,5	80,9	88,2	99,2	113,4	126,6
Water flow rate cold side	l/h	18734	20124	24349	27108	33155	37599	43386	48338	52596	59364	67464	76904	86389
Pressure drop cold side	kPa	19	21	21	25	27	29	20	25	19	23	26	32	34
Water flow rate hot side	I/h	21604	23109	27936	31015	37062	42149	50928	56446	61601	67743	76363	86215	96944

- (1) Date 14511:2022; Water user side $12 \, ^{\circ}\text{C} / 7 \, ^{\circ}\text{C}$; Water source side $30 \, ^{\circ}\text{C} / 35 \, ^{\circ}\text{C}$; All the units are Eurovent certified (2) Date 14511:2022; Water user side $40 \, ^{\circ}\text{C} / 45 \, ^{\circ}\text{C}$; Water source side $10 \, ^{\circ}\text{C} / 7 \, ^{\circ}\text{C}$ (3) Water exchanger to the total recovery side * / 45 $\, ^{\circ}\text{C}$; Water to the system side heat exchanger * / 7 $\, ^{\circ}\text{C}$;

Size		0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Pressure drop hot side	kPa	23	26	25	30	33	36	26	32	23	28	33	40	43

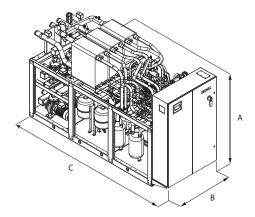
- (1) Date 14511:2022; Water user side 12 °C / 7 °C; Water source side 30 °C / 35 °C; All the units are Eurovent certified (2) Date 14511:2022; Water user side 40 °C / 45 °C; Water source side 10 °C / 7 °C (3) Water exchanger to the total recovery side * / 45 °C; Water to the system side heat exchanger * / 7 °C;

ENERGY INDICES (REG. 2016/2281 EU)

Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
SEER - 12/7 (EN14825: 2018) (1)															
SEER	°,L	W/W	5,25	5,44	5,52	5,43	5,52	5,39	5,61	5,82	6,09	6,00	6,05	6,43	6,45
Seasonal efficiency	°,L	%	207,0%	214,6%	217,8%	214,2%	217,8%	212,6%	221.4%	229,9%	240,5%	237,1%	239,1%	254,2%	254,9%
SEPR - (EN 14825: 2018) High temperatur	e (2)														
SEPR	°,L	W/W	-	-	-	-	-	-	-	7,08	7,30	7,21	7,23	-	-
UE 813/2013 performance in average am	bient conditi	ons (averag	e) - 55 °C - P	designh ≤	400 kW (3)										
Pdesignh	°,L	kW	163	173	212	234	280	318	385	-	-	-	-	-	-
SCOP	°,L	W/W	4,78	4,68	4,78	4,65	4,65	4,58	4,73	-	-	-	-	-	-
ηsh	°,L	%	183.0%	179.0%	183.0%	178.0%	178.0%	175.0%	181.0%	-	-	-	-	-	-
Energy index															
TER	°,L	W/W	7,77	7,68	7,80	7,75	7,71	7,75	7,62	7,59	7,94	7,94	7,82	7,87	7,99

- (1) Calculation performed with FIXED water flow rate and VARIABLE outlet temperature.
 (2) Calculation performed with FIXED water flow rate.
 (3) Efficiencies for average temperature applications (55 °C)

ELECTRIC DATA


Size			0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Electric data															
Maximum current (FLA)	°,L	Α	71,0	77,0	91,0	102,0	124,0	135,0	163,0	179,0	195,0	208,0	237,0	266,0	295,0
Peak current (LRA)	°,L	Α	214,0	220,0	206,0	216,0	267,0	323,0	332,0	340,0	356,0	459,0	488,0	600,0	629,0

GENERAL TECHNICAL DATA

L type L no. L no.													
L no.	-												
	-						Scroll						
l no	3	3	4	4	4	4	4	4	4	4	4	4	4
,L 110.	2	2	2	2	2	2	2	2	2	2	2	2	2
L type							R410A						
:/cold)													
L type							Brazed plate						
L no.	1	1	1	1	1	1	1	1	1	1	1	1	1
L Type						(irooved joint	S					
L Ø	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3"	3"	3"	3"	3"	3"	3"
omestic hot wat	er)												
L type							Brazed plate						
L no.	1	1	1	1	1	1	1	1	1	1	1	1	1
L Type						(rooved joint	S					
L Ø	2" 1/2	2"1/2	2"1/2	2"1/2	2"1/2	2"1/2	3″	3"	3″	3″	3"	3″	3"
d side)													
L type							Brazed plate						
	1	1	1	1	1	1	1	1	1	1	1	1	1
L Type						(rooved joint	S					
L Ø	2" 1/2	2" 1/2	2" 1/2	2" 1/2	2"1/2	2"1/2	3″	3″	3″	3″	3"	3"	3″
ot side)													
L type							Brazed plate						
L no.	1	1	1	1	1	1	1	1	1	1	1	1	1
L Type						(rooved joint	S					
L Ø	2"1/2	2"1/2	2"1/2	2" 1/2	2" 1/2	2" 1/2	3″	3″	3″	3″	3"	3"	3"
dB(A)	78,0	79,0	79,0	80,0	82,0	86,0	88,0	88,0	88,0	90,0	90,0	92,0	92,0
dB(A)	72,0	73,0	73,0	74,0	76,0	80,0	82,0	82,0	82,0	84,0	84,0	86,0	86,0
dB(A)	46,0	47,0	47,0	48,0	50,0	54,0	56,0	56,0	56,0	58,0	58,0	60,0	60,0
dB(A)	40,0	41,0	41,0	42,0	44,0	48,0	50,0	50,0	50,0	52,0	52,0	54,0	54,0
	Type Type	type	Type Type	Type				Type	Type	Type			

⁽¹⁾ Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS

Size						0500	0550	0600	0650	0700	0750	0800	0900	1000	1250	1400	1500	1650
Dimension	s and weigl	hts																
Α				0	mm	1976	1976	1976	1976	1976	1976	2021	2021	2021	2021	2021	2021	2021
Λ				L	mm	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120
В				°,L	mm	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
C				°,L	mm	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600	2600
Dimension	s and weigl	hts with pun	np/s															
Α				0	mm	1976	1976	1976	1976	1976	1976	2021	2021	2021	2021	2021	2021	2021
n				L	mm	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120	2120
В				°,L	mm	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250	1250
r				0	mm	3452	3452	3452	3452	3452	3452	3452	3452	3750	3750	3750	3750	3750
				L	mm	3452	3452	3452	3452	3452	3750	3750	3750	3750	3750	2600	2600	2600
	Version	Integrated hydronic kit user side	Integrated hydronic kit, recovery side		0500	0550	0600	0650	0700	07	750	0800	0900	1000	1250	1400	1500	1650
	•	0	0	kg	990	1000	1110	1130	1180	13	80	1680	1700	1890	1960	2060	2100	2270
	•	0	U/V	kg	1230	1240	1360	1380	1450	16	90	1960	2060	2310	2380	2500	2540	2720
		M/N	°/U/V	kg	1230	1240	1360	1380	1450	16	i90	1960	2060	2310	2380	2500	2540	2720
	•	°/M/N	W/Z	kg	1340	1350	1490	1500	1600	18	80	2110	2300	2560	2630	2770	2810	3010
Empty		0/P	°/U/V/W/Z	kg	1340	1350	1490	1500	1600	18	80	2110	2300	2560	2630	2770	2810	3010
weight	L	0	0	kg	1230	1230	1340	1360	1420	15	70	1910	1930	2120	2190	2270	2400	2500
	L	0	U/V	kg	1560	1570	1690	1710	1780	20	120	2290	2390	2660	2730	2850	2890	3070
	L	M/N	°/U/V	kg	1560	1570	1690	1710	1780	20	120	2290	2390	2660	2730	2850	2890	3070
	L	°/M/N	W/Z	kg	1670	1680	1820	1830	1930	22	10	2240	2630	2910	2980	3120	3160	3360
	1	0/P	°/U/V/W/Z	ka	1670	1680	1820	1830	1930	- 11	10	2240	2630	2910	2980	3120	3160	3360

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

PRECISION AIR CONDITIONERS

Aermec is well established in the data centre market, with a multiple year experience and prestigious projects aimed at reducing the overall cost of ownership of modern data centres.

This process is achieved by applying state of the art product solutions with a strong focus on integrated design and sophisticated analyses of individual data centre customer requirements, with the aim of achieving a personalised and optimised solution for each and every individual installation site.

PRECISION AIR CONDITIONING

P 10-932	Direct expansion (air or water cooled); chilled water
G 070-1342	Direct expansion (air or water cooled); chilled water
R 20-361	Direct expansion (air or water cooled); chilled water

Air flow (m³/h)	rate Cool. Ca (kW)	p. Heat. Cap. (kW)	Page
	7-160		800
	50-222		805
	10-37		809

P 10-932

Precision Air Conditioners

Cooling capacity 7 ÷ 160 kW

- Strict control of room temperature and humidity
- · High efficiency values
- Wide selection of configurations
- Reduced ground view clearance

Last generation control panel

DESCRIPTION

P series precision air conditioning units have design and operational features suitable for rooms where sensible nature heat loads are prevailing.

CONFIGURATIONS

PXO: upwards flow air conditioners with direct expansion with air or water condensation.

PWO: upwards flow air conditioners with chilled water.

PXU: downwards flow air conditioners with direct expansion with air or water condensation.

PWU: downwards airflow air conditioners with chilled water.

FEATURES

The **P** series precision air conditioning units are designed for precision air conditioning of technological rooms characterized by elevated thermal loads to be eliminated, such as computing centres and other applications where high performances and maximum reliability are required.

Precision Air Conditioning units can be customized as per necessities, in order to offer a complete control of temperature, of humidity and of air quality through accessories such as humidifier, after-heating and high efficiency filters.

In order to guarantee the maximum reliability and flexibility, there are available both solutions with double circuit and solution with different cooling mediums:

Two Sources

The Twin Sources system ensures cooling continuity in case of unavailability, for whatever reason, of the primary source: overhead, maintenance, night or seasonal stop or stop for any emergency.

This system includes the assembly inside the air conditioner of a second cooling source, complete with its regulation and completely independent from the primary one.

They only share the aluminium finned pack, allowing both a high thermal exchange efficiency.

Free Cooling

This system employs external air, a renewable energy source, for cooling the Free Cooling water circuit by an external dry cooler.

The Free Cooling circuit works in place of, or along, the mechanical cooling with direct expansion.

STRUCTURE

The structure consists of a steel frame painted with dark grey epoxy powders (RAL7024) guaranteeing a durable finish. Acoustic insulation self-extinguishing panels covered with anti-friction film.

FANS

Centrifugal fans with backward curved blades (plug fans) with EC motor directly coupled to the electronic control to minimize power consumption and noise emissions.

FILTERS

Corrugated baffle filters, not regenerable, self-extinguishing, G4 efficiency class (according to EN 779).

Differential pressure switch (STANDARD) for dirty filter alarm.

The control of filter dirt conditions via Modbus is available as an option.

ELECTRONIC CONTROLLER

The evolved electronic adjustment maximises energy saving and optimizes all operating modes of the units, both direct expansion and chilled water.

- The controller allows to supervise all main components of the unit, with more than 50 different variables that guarantee real time monitoring of all operating cycles.
- The units have a standard RS485 Modbus board, BACnet, LonWorks and SNMP are available as options, for a simple and quick interface with BMS (Building Management System) supervising systems.
- View of all operating parameters in 8 languages.

CHILLED WATER COILS

Only for W configurations

Large surface batteries, positioned in such a way as to optimise airflow and heat transfer, made of refrigerating quality copper tubes with aluminium louvers mechanically merged, fitted with motorised 3way valve (2way is also available in the selection process).

COMPRESSORS

Only for X configurations

High efficiency scroll compressor with low power consumption.

ACCESSORIES

Direct expansion

- DC brushless compressors with inverter control
- Electric power supply line for remote condenser
- Electric power supply line with speed adjustment for remote condenser
- Condenser adjustment with 0-10V signal for remote condenser with EC fans
- Water condenser
- Condensate adjustment pressure valve
- "LAC" (Low Ambient Control) valve has the function of bypassing the condenser, injecting warm gas in the liquid piping, to maintain the refrigerant pressure stable. Use is recommended in very cold climates, in case of inverter compressors and in case of oversized condensers with respect to the real necessities of the units.

Chilled water

- Two ways modulating valves
- Inlet and outlet water temperature probes
- "Power Valve" kit: automatic adjustment and balancing valve of the water circuit, which allows to guarantee a constant water flow rate and monitor the efficiency of the unit in real time.

Heating

- Low thermal inertia electric batteries with differentiated stages regulation
- Low thermal inertia electric batteries with modulating regulation
- Water heating batteries with 2 or 3 ways modulating valve (available on request on some models only)

Humidification

- Room humidity probe
- Flow humidity probe
- Submerged electrodes humidifier (also available with low conductivity cylinder)

Water presence detection

 Available as punctual probe or fabric belt (length 5 m) Allows to have an alarm in case water presence, even partial, is detected.

SMARTNET

The innovative **SMARTNET** system revolutionises the local area network concept.

This system, using the modulation capabilities of its components, allows dividing the workload across all units in the local area network. Compared to the Duty Stand-by $(n+1 \ o \ n+n)$ redundancy system, where the backup units were stopped waiting for a problem to arise,

These units in the direct expansion configurations work with R410A refrigerant, which does not damage the ozone layer.

In dual circuit configuration you can control the power output thanks

In dual circuit configuration you can control the power output thanks to electronic adjustment that automatically manages the compressors activation depending on the load request.

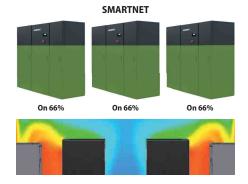
Electronic expansion valve standard on all sizes.

Mechanicals and structural

- Condensate discharge pump
- Condensation and humidifier drain pump
- Flow overpressure dampers
- Motorised damper on suction
- M5 (EU5) efficiency air filter on air supply
- Flow plenum with adjustable grills.
- Sub-base plenum with front grids.
- Plenum Free Cooling: available for direct expansion and downward flow versions, complete with motorised dampers and the external air temperature probe. Used to perform direct Free Cooling taking advantage of external air and will work in place of or supporting the direct expansion mechanical cooling.
- Height adjustable support for raised floor installation
- Grilled panels for front flow
- Closed panels for downwards air intake
- Panels with "sandwich" counter-panels (available on request on some models only)
- Panels with increased soundproof upholstery (available on request on some models only)

Electrical

- The unit has a standard power supply 400V ~ 3N 50Hz. The following voltages are available as an alternative: 400V ~ 3N 60Hz, 230V ~ 3 60Hz, 380V ~ 3N 60Hz
- Electric power supply line without neutral
- "Basic" version automatic transfer switch (ATS)
- Advanced" version automatic transfer switch (ATS)


Regulation

- Constant flow rate ventilation adjustment
- Constant pressure ventilation adjustment
- Local area network configuration and cable
- User terminal for remote installation
- For further details refer to the technical documentation or to the selection program.

the SMARTNET system allows to maintain the units connected on the network always active with various advantages:

- greater efficiency of the units with partial loads;
- optimal air distribution, eliminating the risk of environment hotspots;
- internal system redundancy,

DUTY / STAND-BY On 100% On 100% Stand by

TECHNICAL DATA

PXO: upwards airflow - direct expansion with air or water condensation

		PX0 071	PX0 141	PXO 211	PXO 251	PX0 321	PX0 322	PXO 361	PXO 422	PX0 461	PX0 512	PXO 662	PXO 852	PXO 932
Cooling performances (1)														
Total cooling capacity	kW	8,2	14,7	21,0	27,4	35,2	33,8	38,1	43,7	48,1	57,8	67,3	84,4	94,9
Sensible cooling capacity	kW	7,9	12,9	21,0	25,7	35,2	33,8	38,1	43,7	46,8	53,6	66,2	73,7	86,3
EER (2)	W/W	3,83	3,40	3,30	3,14	3,13	3,34	3,57	3,47	3,63	3,34	3,26	3,27	3,64
Fans														
Туре	type						Plu	g-fan EC inve	rter					
Air flow rate	m³/h	2200	3200	7000	7000	12000	12000	14000	14000	14000	14000	18000	18000	21000
Refrigerant circuit														
Number	no.	1	1	1	1	1	2	1	2	1	2	2	2	2
Sound data														
Sound pressure (3)	dB(A)	51	59	56	57	67	67	58	58	58	59	61	61	61
Possible configurations														
Free Cooling		-	-	-	-	Yes	-	-	-	Yes	-	Yes	Yes	-
Two Sources		-	-	Yes	-	Yes	-	-	-	Yes	Yes	Yes	Yes	Yes
Electric data														
Power supply							40	00V ~ 3N 50H	-lz					

⁽¹⁾ Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

PWO: upwards airflow - with chilled water

		PW0 10	PW0 20	PW0 30	PW0 50	PW0 60	PW0 70	PW0 80	PW0 110	PW0 160	PW0 220
Cooling performances (1)											
Total cooling capacity	kW	9,9	17,2	30,0	41,0	52,8	63,1	65,5	80,0	110,0	160,0
Sensible cooling capacity	kW	9,3	14,9	27,8	36,2	47,4	54,2	61,8	73,0	99,7	146,0
EER (2)	W/W	38,26	29,13	30,00	24,54	22,75	24,17	24,79	24,17	29,33	21,17
Fans											
Туре	type					Plug-fan	EC inverter				
Air flow rate	m³/h	2200	3200	7000	8000	12000	12000	16000	18000	24000	36000
Refrigerant circuit											
Number	no.	1	1	1	1	1	1	1	1	1	1
Sound data											
Sound pressure (3)	dB(A)	51	59	56	60	67	68	61	62	62	65
Possible configurations											
Free Cooling		-	-	-	-	-	-	-	-	-	-
Two Sources		-	-	-	Yes	-	-	-	Yes	Yes	-
Electric data											
Power supply		·				400V ~	3N 50Hz	·	·		

⁽¹⁾ Incoming air 24°C / 45 % r.h.; water 7°C / 12°C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

PXU: downwards airflow - direct expansion with air or water condensation

		PXU 071	PXU 141	PXU 211	PXU 251	PXU 321	PXU 322	PXU 361	PXU 422	PXU 461	PXU 512	PXU 662	PXU 852	PXU 932
Cooling performances (1)														
Total cooling capacity	kW	8,2	14,7	21,0	27,4	35,2	33,8	38,1	43,7	48,1	57,8	67,3	84,4	94,9
Sensible cooling capacity	kW	7,9	12,9	21,0	25,7	35,2	33,8	38,1	43,7	46,8	53,6	66,2	73,7	86,3
EER (2)	W/W	3,74	3,29	3,24	3,10	3,09	3,29	3,50	3,41	3,57	3,30	3,15	3,18	3,59
Fans														
Туре	type						Plu	g-fan EC inve	rter					
Air flow rate	m³/h	2200	3200	7000	7000	12000	12000	14000	14000	14000	14000	18000	18000	21000
Refrigerant circuit														
Number	no.	1	1	1	1	1	2	1	2	1	2	2	2	2
Sound data														
Sound pressure (3)	dB(A)	51	57	62	62	67	68	59	59	59	59	63	63	62
Possible configurations														
Free Cooling		-	-	-	-	Yes	-	-	-	Yes	-	Yes	Yes	-
Two Sources		-	-	Yes	-	Yes	-	-	-	Yes	Yes	Yes	Yes	Yes
Electric data														
Power supply							4	00V ~ 3N 50I	Hz	_				

⁽¹⁾ Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

PWU: downwards airflow - with chilled water

		PWU 10	PWU 20	PWU 30	PWU 50	PWU 60	PWU 70	PWU 80	PWU 110	PWU 160	PWU 220
Cooling performances (1)											
Total cooling capacity	kW	9,9	17,2	30,0	41,0	52,8	63,1	65,4	80,0	110,0	160,0
Sensible cooling capacity	kW	9,3	14,9	27,8	36,2	47,4	54,2	61,8	73,0	99,7	146,0
EER (2)	W/W	32,09	23,54	27,03	20,91	21,28	22,77	23,21	19,80	24,39	19,80
Fans											
Туре	type					Plug-fan l	EC inverter				
Air flow rate	m³/h	2200	3200	7400	8200	12000	12000	16000	18000	24000	36000
Refrigerant circuit											
Number	no.	1	1	1	1	1	1	1	1	1	1
Sound data											
Sound pressure (3)	dB(A)	51	60	57	62	68	68	62	63	63	66
Possible configurations											
Free Cooling		-	-	-	-	-	-	-	-	-	-
Two Sources		-	-	-	Yes	-	-	-	Yes	Yes	-
Electric data											
Power supply						400V ~	3N 50Hz				

- (1) Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

UPWARDS FLOW CONFIGURATIONS

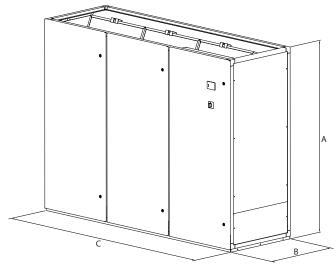
Standard version with frontal air intake and upwards flow.

Version with front air intake and frontal air flow with distribution plenum with grid.

Version with air intake from the bottom, stand for raised floor, blind front panel and upflow air supply.

DOWNWARDS FLOW CONFIGURATIONS

Standard version with upwards suction and downwards airflow, with sub-base for raised flooring.


Version with upwards suction with frontal air flow with grilled plenum distribution.

www.aermec.com

Version with upwards suction with frontal air flow with grilled front panel.

DIMENSIONS

		PX0 071	PXO 141	PX0 211	PXO 251	PX0 321	PX0 322	PXO 361	PX0 422	PXO 461	PX0 512	PXO 662	PX0 852	PXO 932
Dimensions and weights														
A	mm	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990
В	mm	600	600	880	880	850	850	880	880	880	880	880	880	880
C	mm	750	750	860	860	1410	1410	1750	1750	1750	1750	2300	2300	2640
Empty weight	kg	180	210	270	270	365	390	440	450	450	500	640	660	860
		PW0 10	PWO	20	PW0 30	PW0 50	PW0	60 P	W0 70	PW0 80	PW0 11	0 PW	0 160	PW0 220
Dimensions and weights														
A	mm	1990	19	90	1990	1990	1990)	1990	1990	1990	1	990	1990
В	mm	600	60	10	880	880	850		850	880	880	1	380	880
C	mm	750	75	0	860	860	1410)	1410	1750	1750	2	640	3495
Empty weight	kg	155	16	i0	220	240	240		260	340	360		540	700
		PXU 071	PXU 141	PXU 211	PXU 251	PXU 321	PXU 322	PXU 361	PXU 422	PXU 461	PXU 512	PXU 662	PXU 852	PXU 932
Dimensions and weights														
A	mm	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990	1990
В	mm	600	600	880	880	850	850	880	880	880	880	880	880	880
C	mm	750	750	860	860	1410	1410	1750	1750	1750	1750	2300	2300	2640
Empty weight	kg	180	210	270	270	365	390	440	450	450	500	640	660	860
		PWU 10	PWI	J 20	PWU 30	PWU 50	PWU	60 P	WU 70	PWU 80	PWU 11	0 PW	U 160	PWU 220
Dimensions and weights														
A	mm	1990	19	90	1990	1990	1990)	1990	1990	1990	1	990	1990
В	mm	600	60	10	880	880	850		850	880	880	1	380	880
C	mm	750	75	0	860	860	1410)	1410	1750	1750	2	640	3495
Empty weight	kg	155	16	0	220	240	240		260	340	360		540	700

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

G 070-1342

Precision Air Conditioners

Cooling capacity 50 ÷ 222 kW

- Separate ventilating section for installation under raised floor
- Reduced energy consumption of fans
- High ratio between supplied cooling capacity and footprint
- Optimised distribution of air in the raised floor

Last generation control panel

DESCRIPTION

Precision air conditioners of the series ${\bf G}$ their construction and operating features are suitable to meet the design criteria of last generation Data Centers.

CONFIGURATIONS

 $\mbox{\bf GXU}:$ downwards flow air conditioners with direct expansion with air or water condensation.

GWU: downwards flow air conditioners with chilled water.

For the configuration **W** there is also the version **XH** (**Extra Height**). By increasing the height, performance can be enhanced thanks to the larger coil.

FEATURES

Precision air conditioners of the series **G** they are designed for air-conditioning of utility rooms for high power density applications.

In these applications, the structures are characterised by technical floors as high as 1000 mm, creating ample space below to house the

The fans are supplied inside a sub-base supplied separately, without increasing the size of the unit, thus optimising the available space with considerable advantages:

- The enlarged coils with ample heat exchange surface enhance performance with less energy consumption.
- Greater filtering surface reducing pressure drops so that less maintenance is needed as they get less dirty.
- Horizontal flow of fans in sub-base with lower pressure drops.

STRUCTURE

The structure consists of a steel frame painted with dark grey epoxy powders (RAL7024) guaranteeing a durable finish. Acoustic insulation self-extinguishing panels covered with anti-friction film.

The ventilating sub-base is supplied separately and must be electrically connected at the worksite or on-site.

FAN9

Centrifugal fans with backward curved blades (plug fans) with EC motor directly coupled to the electronic control to minimize power consumption and noise emissions.

FILTERS

Corrugated baffle filters, not regenerable, self-extinguishing, G4 efficiency class (according to EN 779).

Differential pressure switch (STANDARD) for dirty filter alarm.

The control of filter dirt conditions via Modbus is available as an option.

ELECTRONIC CONTROLLER

The evolved electronic adjustment maximises energy saving and optimizes all operating modes of the units, both direct expansion and chilled water.

- The controller allows to supervise all main components of the unit, with more than 50 different variables that guarantee real time monitoring of all operating cycles.
- The units have a standard RS485 Modbus board, BACnet, LonWorks and SNMP are available as options, for a simple and quick interface with BMS (Building Management System) supervising systems.
- View of all operating parameters in 8 languages.

CHILLED WATER COILS

Only for W configurations

Large surface coils, positioned in such a way as to optimise airflow and heat transfer, made of copper tubes with aluminium louvers mechanically merged, fitted with 2-way modulating valve (3-way is also available in the selection process).

COMPRESSORS

Only for X configurations

High efficiency scroll compressor with low power consumption. These units in the direct expansion configurations work with R410A refrigerant, which does not damage the ozone layer. The dual circuit configuration controls the power output thanks to electronic adjustment that automatically manages the compressors activation depending on the load request.

ACCESSORIES

Direct expansion

- DC brushless compressors with inverter control
- Electric power supply line for remote condenser
- Electric power supply line with speed adjustment for remote condenser
- Condenser adjustment with 0-10V signal for remote condenser with EC fans
- Water condenser
- Condensate adjustment pressure valve
- "LAC" (Low Ambient Control) valve has the function of bypassing the condenser, injecting warm gas in the liquid piping, to maintain the refrigerant pressure stable. Use is recommended in very cold climates, in case of inverter compressors and in case of oversized condensers with respect to the real necessities of the units.

Chilled water

- Three-way modulating valves
- Inlet and outlet water temperature probes
- "Power Valve" kit: automatic adjustment and balancing valve of the water circuit, which allows to guarantee a constant water flow rate and monitor the efficiency of the unit in real time.

Heating

 Low thermal inertia electric batteries with differentiated stages regulation

Humidification

- Room humidity probe
- Flow humidity probe
- Submerged electrodes humidifier (also available with low conductivity cylinder)

SMARTNET

The innovative **SMARTNET** system revolutionises the local area network concept.

This system, using the modulation capabilities of its components, allows dividing the workload across all units in the local area network. Compared to the Duty Stand-by (n+1 o n+n) redundancy system, where the backup units were stopped waiting for a problem to arise,

Electronic expansion valve standard on all sizes.

Water presence detection

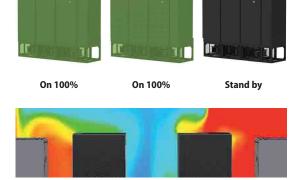
 Available as punctual probe or fabric belt (length 5 m) Allows to have an alarm in case water presence, even partial, is detected.

Mechanicals and structural

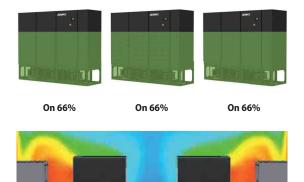
- Condensate discharge pump
- Condensation and humidifier drain pump
- Motorised damper on suction
- M5 (EU5) efficiency air filter on air supply
- Ventilated plenum with panelling for front or rear flow
- Ventilated plenum with panelling for downflow (installation above raised floor)
- Panels with "sandwich" counter-panels (available on request on some models only)
- Panels with increased soundproof upholstery (available on request on some models only)

Flectrical

- The unit has a standard power supply $400V \sim 3N$ 50Hz. The following voltages are available as an alternative: $400V \sim 3N$ 60Hz, $460V \sim 3$ 60Hz, $380V \sim 3N$ 60Hz
- Electric power supply line without neutral
- "Basic" version automatic transfer switch (ATS)
- Advanced" version automatic transfer switch (ATS)


Regulation

- Constant flow rate ventilation adjustment
- Constant pressure ventilation adjustment
- Local area network configuration and cable
- User terminal for remote installation
- For further details refer to the technical documentation or to the selection program.


the SMARTNET system allows to maintain the units connected on the network always active with various advantages:

- greater efficiency of the units with partial loads;
- optimal air distribution, eliminating the risk of environment hotspots;
- internal system redundancy,

DUTY / STAND-BY

SMARTNET

TECHNICAL DATA

GXU: downwards airflow - direct expansion with air or water condensation

		GXU 932	GXU 1342
Cooling performances (1)			
Total cooling capacity	kW	91,2	130,5
Sensible cooling capacity	kW	77,5	121,2
EER (2)	W/W	3,70	3,81
Fans			
Туре	type		Plug-fan EC inverter
Air flow rate	m³/h	18000	31500
Refrigerant circuit			
Number	no.	2	2
Sound data			
Sound pressure (3)	dB(A)	56	61
Electric data			
Power supply			400V ~ 3N 50Hz

⁽¹⁾ Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

GWU: downwards airflow - with chilled water

		GWU 070	GWU 150	GWU 230	GWU 300
Cooling performances (1)					
Total cooling capacity	kW	58,6	96,4	143,6	208,8
Sensible cooling capacity	kW	49,0	79,4	118,0	184,3
EER (2)	W/W	31,83	46,92	62,41	33,68
Fans					
Туре	type	Plug-fan EC inverter			
Air flow rate	m³/h	11000	17600	25800	45200
Refrigerant circuit					
Number	no.	2	2	2	2
Sound data					
Sound pressure (3)	dB(A)	58	55	56	62
Electric data	•				
Power supply			400V ~	3N 50Hz	-

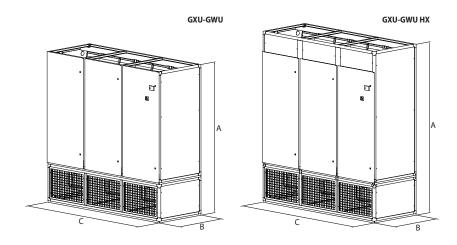
⁽¹⁾ Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system.
(2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers).
(3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

	GWU 150 XH	GWU 230 XH
kW	113,2	222,9
kW	93,1	178,2
W/W	55,78	79,32
type	Plu	ug-fan EC inverter
m³/h	20400	36000
no.	2	2
dB(A)	57	63
		400V ~ 3N 50Hz
	kW W/W type m³/h no.	kW 93,1 W/W 55,78 type PI m³/h 20400 no. 2 dB(A) 57

⁽¹⁾ Incoming air 24 °C / 45 % r.h.; water 7 °C / 12 °C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

DOWNWARDS FLOW CONFIGURATIONS

Standard execution for perimeter installation inside Data Centres: the height of the raised flooring must be minimum 550 mm.


Execution for perimeter installation inside Data Centre. In this case, the sub-base side closure panels must be installed above the flooring. It is in any case essential to make sure that the height of the ceiling allows good air intake.

Execution for installation outside Data Centre, without raised flooring and rear delivery. In this case, the sub-base side closure panels and rear delivery grilles. Installation of the plenum with the rear return system is optional, if there is no channelling system.

DIMENSIONS

Empty weight

			GXU 932			GXU 1342	
Dimensions and weights							
A	mm		1990			1990	
В	mm		921			921	
C	mm		2390			3290	
Empty weight	kg		870			1000	
		GWU 070	GWU 150	GWU 150 XH	GWU 230	GWU 230 XH	GWU 300
Dimensions and weights							
A	mm	1990	1990	2350	1990	2350	1990
В	mm	921	921	1050	921	1050	921
ſ	mm	1320	1840	1840	2740	2740	4020

640

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

610

930

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

950

1250

750

R 20-361

Precision Air Conditioners

Cooling capacity 10 ÷ 37 kW

- "In row" installation between the server lines
- Horizontal air flow to offer an effective localised cooling
- Rear and front accessibility for simplified maintenance
- Front and side air flow

Last generation control panel

DESCRIPTION

Precision air conditioners of the R **Series** have construction features and sizes so that they can be installed next to the servers of the Data Center.

CONFIGURATIONS

RXA: air conditioners with delivery downwards and direct expansion with air or water condensation.

RXU: air conditioners with air delivery horizontal with cooled water. Both configurations are available in compact version with reduced depth.

FEATURES

Precision air conditioners in the ${\bf R}$ series are designed and built to have the same dimensions as the racks, rear intake from the warm corridor and front delivery towards the cold corridor.

Two Sources

The Twin Sources system ensures cooling continuity in case of unavailability, for whatever reason, of the primary source: overhead, maintenance, night or seasonal stop or stop for any emergency.

This system includes the assembly inside the air conditioner of a second cooling source, complete with its regulation and completely independent from the primary one.

They only share the aluminium finned pack, allowing both a high thermal exchange efficiency.

Free Cooling

This system employs external air, a renewable energy source, for cooling the Free Cooling water circuit by an external dry cooler.

The Free Cooling circuit works in place of, or along, the mechanical cooling with direct expansion.

STRUCTURE

The structure consists of a steel frame painted with dark grey epoxy powders (RAL7024) guaranteeing a durable finish. Acoustic insulation self-extinguishing panels covered with anti-friction film.

FAN9

Centrifugal fans with backward curved blades (plug fans) with EC motor directly coupled to the electronic control to minimize power consumption and noise emissions.

FILTERS

Corrugated baffle filters, not regenerable, self-extinguishing, G4 efficiency class (according to EN 779).

Differential pressure switch (STANDARD) for dirty filter alarm.

The control of filter dirt conditions via Modbus is available as an option.

ELECTRONIC CONTROLLER

The evolved electronic adjustment maximises energy saving and optimizes all operating modes of the units, both direct expansion and chilled water.

- The controller allows to supervise all main components of the unit, with more than 50 different variables that guarantee real time monitoring of all operating cycles.
- The units have a standard RS485 Modbus board, BACnet, LonWorks and SNMP are available as options, for a simple and quick interface with BMS (Building Management System) supervising systems.
- View of all operating parameters in 8 languages.

CHILLED WATER COILS

Only for U configurations.

Large surface batteries, positioned in such a way as to optimise airflow and heat transfer, made of refrigerating quality copper tubes with aluminium louvers mechanically merged, fitted with motorised 3way valve (2way is also available in the selection process).

COMPRESSORS

Only for A configurations

Single circuit configurations with DC brushless compressor with inverter, which allows to optimise the provided power guaranteeing a low electrical absorption.

These units work with R410A refrigerant, which does not damage the ozone layer.

Electronic expansion valve standard on all sizes.

ACCESSORIES

Direct expansion

- Electric power supply line for remote condenser
- Electric power supply line with speed adjustment for remote condenser
- Condenser adjustment with 0-10V signal for remote condenser with EC fans
- Water condenser
- Condensate adjustment pressure valve
- "LAC" (Low Ambient Control) valve has the function of bypassing the condenser, injecting warm gas in the liquid piping, to maintain the refrigerant pressure stable. Use is recommended in very cold climates, in case of inverter compressors and in case of oversized condensers with respect to the real necessities of the units.

Chilled water

- Two ways modulating valves
- Inlet and outlet water temperature probes
- "Power Valve" kit: automatic adjustment and balancing valve of the water circuit, which allows to guarantee a constant water flow rate and monitor the efficiency of the unit in real time.

Heating

Single stage electric coils with low thermal inertia.

Humidification

- Room humidity probe
- Flow humidity probe

SMARTNET

The innovative **SMARTNET** system revolutionises the local area network concept.

This system, using the modulation capabilities of its components, allows dividing the workload across all units in the local area network. Compared to the Duty Stand-by (n+1 o n+n) redundancy system, where the backup units were stopped waiting for a problem to arise,

Submerged electrodes humidifier (also available with low conductivity cylinder)

Water presence detection

 Available as punctual probe or fabric belt (length 5 m) Allows to have an alarm in case water presence, even partial, is detected.

Mechanicals and structural

- Condensate discharge pump
- M5 (EU5) efficiency air filter on air supply
- Closed front panel for side flow
- Closed side panels for front flow
- Wheels for movement

Electrical

- The unit has a standard power supply 400V \sim 3N 50Hz. The following voltages are available as an alternative: 400V \sim 3N 60Hz, 230V \sim 3 60Hz, 380V \sim 3N 60Hz
- Electric power supply line without neutral
- "Basic" version automatic transfer switch (ATS)
- Advanced" version automatic transfer switch (ATS)

Regulation

- Constant flow rate ventilation adjustment
- Constant pressure ventilation adjustment
- Local area network configuration and cable
- User terminal for remote installation
- For further details refer to the technical documentation or to the selection program.

the SMARTNET system allows to maintain the units connected on the network always active with various advantages:

- greater efficiency of the units with partial loads;
- optimal air distribution, eliminating the risk of environment hotspots:
- internal system redundancy,

On 100% On 100% Stand by

TECHNICAL DATA

RXA: horizontal air delivery - direct expansion with air or water condensation

		RXA 121	RXA 201	RXA 231	RXA 361
Cooling performances (1)					
Total cooling capacity	kW	9,6	19,3	20,8	32,5
Sensible cooling capacity	kW	9,6	15,1	17,2	26,3
EER (2)	W/W	3,14	3,09	3,36	3,43
Fans					
Туре	type	Pluq-fan EC inverter			
Air flow rate	m³/h	3200	3600	6000	6600
Refrigerant circuit					
Number	no.	1	1	1	1
Sound data					
Sound pressure (3)	dB(A)	51	54	54	57
Possible configurations					
Free Cooling		-	-	Yes	-
Two Sources		-	-	Yes	-
Electric data					
Power supply			400V ~	3N 50Hz	

- (1) Condensation temperature 45 °C; incoming air 24 °C / 45 % u.r.; external static pressure: 30Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

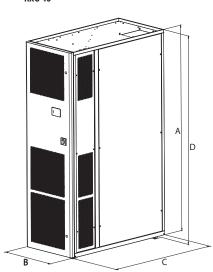
RXU: horizontal air delivery - cooled water

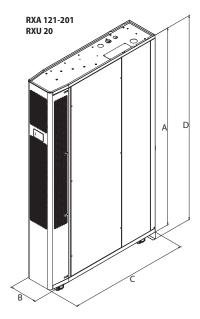
		RXU 20	RXU 40
Cooling performances (1)			
Total cooling capacity	kW	24,9	37,8
Sensible cooling capacity	kW	22,2	33,9
EER (2)	W/W	22,81	27,78
Fans			
Туре	type		Plug-fan EC inverter
Air flow rate	m³/h	5600	9000
Refrigerant circuit			
Number	no.	1	1
Sound data			
Sound pressure (3)	dB(A)	54	62
Possible configurations			
Free Cooling		-	-
Two Sources		-	Yes
Electric data			
Power supply			400V ~ 3N 50Hz

- (1) Incoming air 24°C / 45 % r.h.; water 7°C / 12°C; external static pressure: 30 Pa. Stated performances do not take into account the heat generated by the fans which must be added to the heat load of the system. (2) EER: Energy Efficiency Ratio; total cooling capacity / input power to the compressors + the power of fans (excluding air condensers). (3) Sound pressure: stated data 2m away, in free field according to UNI EN ISO 3744:2010

HORIZONTAL FLOW CONFIGURATIONS

Standard execution for "In-row" installation with front and side air delivery (RXA 121-201, RXU 20).


Execution for "In-row" installation with only front air delivery (RXA 231-361, RXU 40).



Execution for "In-row" installation with only side air delivery (RXA 231-361, RXU 40).

DIMENSIONS

RXA 231-361 RXU 40

		RXA 121	RXA 201	RXA 231	RXA 361
Dimensions and weights					
A	mm	1975	1975	1985	1985
В	mm	300	300	600	600
C	mm	1200	1200	1222	1222
D	mm	2045	2045	2015	2015
Empty weight	kg	200	215	215	215

		RXU 20	RXU 40
Dimensions and weights			
A	mm	1975	1985
В	mm	300	600
(mm	1200	1222
D	mm	2045	2015
Empty weight	kg	120	190

ROOM AIR CONDITIONERS

A complete range of units designed to meet all climate control requirements: Aermec the answer to air conditioning.

A vast choice not only in terms of models but also alternatives and possibilities: state-of-the-art technology such as the inverter that optimises performance at all times according to the set temperature to achieve maximum energy saving; versatile installation options to solve all problems of space.

Quality design and materials, cooling and heating power suited to cover all requirements both in the residential and commercial sector, exclusive elegant design complete the range features, ranking Aermec among the leaders on the market.

ROOM AIR CO	ONDITIONERS	(m³/h)	(kW)	(kW)	Page
Monobloc					
FK	Monobloc window		2,7-3,6		830
CMP (COMPACT)	Monobloc without outdoor unit		2,35	2,36	833
PSL	Portable air conditioner		2,6-3,4	2,3-2,7	836
Monosplit					
SPG	Monosplit		2,5-6,2	2,8-6,5	839
SGE	Monosplit		2,77-5,86	2,93-6,00	844
SCG	Monosplit		7,2-12,5	7,9-13,5	848
CKG	Monosplit		2,7-6,6	2,9-6,8	852
LPG	Monosplit		3,5-16,0	4,0-17,0	857
LCG	Monosplit		3,5-16,0	4,0-17,0	866
MVAS	Monosplit high head duct		22,4-28,0	24,0-30,0	876
Multisplit					
MLG	Multisplit		4,1-12,0	4,4-13,0	879
MPG	Multisplit		4,1-8,0	4,4-9,5	896
MGE	Multisplit		4,1-7,9	4,4-8,2	913
	Monobloc FK CMP (COMPACT) PSL Monosplit SPG SGE SCG CKG LPG LCG MVAS Multisplit MLG MPG	FK Monobloc window CMP (COMPACT) Monobloc without outdoor unit PSL Portable air conditioner Monosplit SPG Monosplit SCG Monosplit CKG Monosplit LPG Monosplit LCG Monosplit MVAS Monosplit MVAS Monosplit high head duct Multisplit MLG Multisplit MPG Multisplit	ROOM AIR CONDITIONERS(m³/h)MonoblocMonobloc window-FKMonobloc without outdoor unit-CMP (COMPACT)Monobloc without outdoor unit-PSLPortable air conditioner-SPGMonosplit-SGEMonosplit-SCGMonosplit-CKGMonosplit-LPGMonosplit-LCGMonosplit-LCGMonosplit high head duct-MVASMonosplit high head duct-MUItisplitMultisplit-MLGMultisplit-MPGMultisplit-	ROOM AIR CONDITIONERS (m³/h) (kW) Monobloc FK Monobloc window - 2,7-3,6 CMP (COMPACT) Monobloc without outdoor unit - 2,35 PSL Portable air conditioner - 2,6-3,4 Monosplit - 2,5-6,2 SGE Monosplit - 2,77-5,86 SCG Monosplit - 7,2-12,5 CKG Monosplit - 2,7-6,6 LPG Monosplit - 3,5-16,0 LCG Monosplit high head duct - 3,5-16,0 MVAS Monosplit high head duct - 2,24-28,0 Multisplit - 4,1-12,0 MLG Multisplit - 4,1-12,0 MPG Multisplit - 4,1-8,0	Monobloc FK Monobloc window - 2,7-3,6 - CMP (COMPACT) Monobloc without outdoor unit - 2,35 2,36 PSL Portable air conditioner - 2,6-3,4 2,3-2,7 Monosplit - 2,5-6,2 2,8-6,5 SGE Monosplit - 2,77-5,86 2,93-6,00 SCG Monosplit - 2,7-6,6 2,9-6,8 LPG Monosplit - 2,7-6,6 2,9-6,8 LPG Monosplit - 3,5-16,0 4,0-17,0 LCG Monosplit high head duct - 3,5-16,0 4,0-17,0 MVAS Monosplit high head duct - 2,2-4-28,0 24,0-30,0 Multisplit - 4,1-12,0 4,4-13,0 MPG Multisplit - 4,1-8,0 4,4-9,5

FK

Monobloc window

Cooling capacity 2,7 ÷ 3,6 kW

- New R32 ecological refrigerant gas.
- Flush-mounting installation on the window.
- Plug & Play.

DESCRIPTION

The packed air-conditioners of the FK range, for flush-mounting window installation, are ideal for use in commercial contexts such as shops, hotels, offices, laboratories and prefabricated garages.

FEATURES

Inner and outer side

- Remote control and holder standard supply with each unit.
- Fans with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Clean filter signal function.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- Inner side 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- **Sleep** night time function well-being program.
- DC inverter rotary compressor.

General features

- $-\!\!\!-$ New R32 ecological refrigerant gas with low GWP.
- Monobloc Plug & Play unit equipped with power supply with schuko plug.
- Operating mode: cooling, dehumidification and fan only.
- Condensate discharge tub included.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.

INSTALLATION TYPE

PERFORMANCE SPECIFICATIONS

		FK260	FK360
Nominal cooling performances			
Cooling capacity (1)	kW	2,70	3,65
Cooling input power (1)	kW	0,78	1,03
EER (2)	W/W	3,45	3,54
Moisture removed	l/h	1,0	1,6
Maximum cooling performances			
Cooling input current	A	3,5	4,6
Seasonal efficiency			
SEER	W/W	5,20	5,40
Efficiency energy class (3)		A	A
Pdesignc	kW	2,7	3,7
Annual power consumption	kWh/annum	182	240

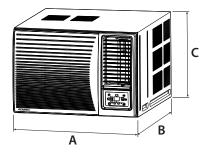
- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication. (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

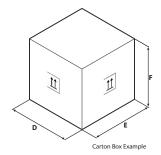
GENERAL DATA

		FK260	FK360
Electric data			
Rated power input (1)	kW	1,1	1,3
Rated current input (1)	A	5,5	6,5
Power supply			
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz

(1) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

INNER SIDE


		FK260	FK360
Inner side			
Type of fan	Туре	Inverter centrifugal	Inverter centrifugal
Inner side air flow rate			
Maximum	m³/h	400	480
Average	m³/h	360	430
Minimum	m³/h	320	380
Inner side sound pressure			
Maximum	dB(A)	50,0	50,0
Average	dB(A)	48,0	48,0
Minimum	dB(A)	46,0	46,0
Inner side sound power			
Maximum	dB(A)	59,0	59,0
Average	dB(A)	57,0	57,0
Minimum	dB(A)	55,0	55,0

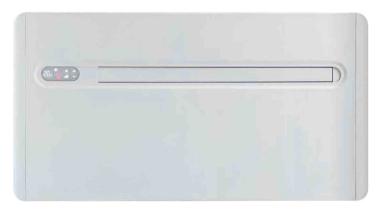

OUTER SIDE

		FK260	FK360
Outer side			
Type of fan	Туре	Inverter axial	Inverter axial
Outer side air flow rate			
Maximum	m³/h	800	1200
Outer side sound power			
Maximum	dB(A)	65,0	65,0
Average	dB(A)	63,0	63,0
Minimum	dB(A)	61,0	61,0
Outer side sound pressure			
Maximum	dB(A)	56,0	56,0
Average	dB(A)	54,0	54,0
Minimum	dB(A)	52,0	52,0
Compressor			
Туре	type	Inverter rotary	Inverter rotary
Compressor			
Refrigerant	type	R32	R32
Refrigerant charge (1)	kg	0,5	0,6
Compressor			
Potential global heating	GWP	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,34	0,43
Outer side	<u> </u>		
Protection rating		IPX4	IPX4

⁽¹⁾ The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

DIMENSIONS AND WEIGHTS

		FK260	FK360
Dimensions and weights			
A	mm	560	660
В	mm	710	700
(mm	375	428
D	mm	623	739
E	mm	806	793
F	mm	425	505
Net weight	kg	43,00	50,00
Weight for transport	kg	47,00	54,00


CMP

Monobloc without outdoor unit

Cooling capacity 2,35 kW Heating capacity 2,36 kW

- Two holes, no outdoor units.
- Modern design to blend with all furnishing styles.
- Extremely thin, with a depth of just 165 mm.

DESCRIPTION

The air-conditioners of the CMP range are of the single-block type and are ideal for heating, cooling, dehumidification or ventilation only, whether in the home or the office.

The absence of an outdoor unit permits installation in all those cases where architectural restraints prevent the positioning of a split air-conditioner.

The unit boasts a compressor and a fan with inverter technology.

FEATURES

Unit

Indoor unit designed for installation on internal walls.

- No need for an outdoor unit just make two 162 mm holes in the outer wall so the air-conditioner can exchange heat with the external environment.
- Folding grilles included.
- On-board control panel with display and soft-touch keys.
- Included remote control.

Cooling operation with outside temperatures up to 35 $^{\circ}$ C. Heating operation with outdoor temperatures down to 7 $^{\circ}$ C.

Folding grilles

With two folding grilles which, activated by the inlet and outlet air, open when the machine is working and close when the machine is switched off

In this way they guarantee enhanced indoor comfort, less dust, noise and pollution, reduced maintenance and are even less visible from the outside.

Control panel

The on-board control panel with display and soft-touch keys allows you to set the required temperature set-point easily and accurately.

The "heating" function is deactivated by a simple intervention on the control panel: the device then works in "cooling only" mode, without requiring the condensate discharge tube.

The air delivery fin is easily orientated by means of the relative key.

Remote control

Handy remote control that's not too bulky.

Fitted with a practical magnet so it can be fixed to the unit.

All the control panel functions are available via the remote control too.

GENERAL FEATURES

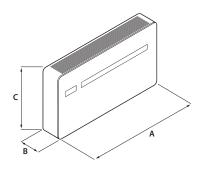
- Condensate drip tray constantly pre-heated in the winter during heat pump operation, without any risk of the water freezing.
- Operating mode: cooling, dehumidification and fan only.
- Particularly quiet operation.
- Microproccessor control.

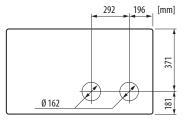
ACCESSORIES AS STANDARD

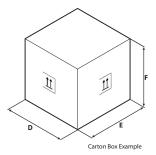
- Condensate drip.
- Two folding grilles.
- Remote control.

PERFORMANCE SPECIFICATIONS

		CMP23I	
Nominal cooling performances			
Cooling capacity (1)	kW	2,35	
Cooling input power (1)	kW	0,73	
EER (2)	W/W	3,22	
Maximum cooling performances			
Cooling capacity	kW	3,10	
Nominal cooling performances			
Moisture removed	l/h	1,1	
Seasonal efficiency			
Efficiency energy class (3)		A+	
Annual power consumption	kWh/annum	425	
Nominal heating performances			
Heating capacity (4)	kW	2,36	
Heating input power (4)	kW	0,72	
COP (2)	W/W	3,28	
Maximum heating performances			
Heating capacity	kW	3,05	
Seasonal efficiency (temperate climate)			
Efficiency energy class (3)		A	


- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.


GENERAL DATA


		CMP23I	
Fan			
Туре	type	Inverter centrifugal	
Number	no.	1	
Inner side air flow rate			
Maximum	m³/h	400	
Average	m³/h	320	
Minimum	m³/h	270	
Outer side air flow rate			
Maximum	m³/h	480	
Average	m³/h	390	
Minimum	m³/h	340	
Compressor			
Number	no.	1	
Refrigerant	type	R410A	
Refrigerant charge (1)	kg	0,6	
Potential global heating	GWP	2088kgCO₂eq	
Sound data calculated in cooling mode (2)			
Sound power level	dB(A)	58,0	
Sound pressure level (1,5 m)	dB(A)	46,0	

- (1) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.
 (2) Sound power calculated on the basis of measurements made in accordance with UNI EN ISO 9614-2, as required for Eurovent certification. Sound pressure (cold functioning) measured in free field, 10m away from the unit external surface (in compliance with UNI EN ISO 3744).

DIMENSIONS AND WEIGHTS

		CMP23I	
Dimensions and weights			
A	mm	1030	
В	mm	170	
C	mm	555	
D	mm	1100	
E	mm	260	
F	mm	660	
Net weight	kg	48,00	
Weight for transport	kg	49,00	

PSL

Portable air conditioner

Cooling capacity 2,6 ÷ 3,4 kW Heating capacity 2,3 ÷ 2,7 kW

- New R290 natural refrigerant gas.
- · Reversible heat pump.
- Compact, manoeuvrable and silent.
- Modern design to blend with all furnishing styles.
- Special coil with fin blue coating.

DESCRIPTION

PSL portable air conditioner, ideal for heating, cooling, dehumidification or ventilation only both at home and at the office.

Adapts to any kind of decor, thanks to its compact and elegant design; it is mounted on wheels and can be used in multiple rooms, and is easily transportable and installable.

Equipped with a specific tank to collect the moisture removed from the environment during cooling, heating or dehumidification.

The on-board control panel with display, allows to easily and precisely set the desired temperature set-points.

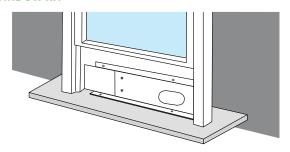
FEATURES

Operation

The cooled, heated and/or dehumidified air exits the front grille and directed vertically by movable louvers. The air to be treated is drawn through filters from the rear. The hot air is expelled through a hose that is attached by means of a special flange on the rear of the portable air conditioner unit. The air filters are easy to remove and wash.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.


GENERAL FEATURES

- Remote control standard supply with each indoor unit.
- New R290 natural refrigerant gas.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Regenerable air filter easy to remove and clean.
- Particularly quiet operation.
- $\boldsymbol{--}$ Timer for programming switch-off and switch-on.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- **iFeel** function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Auto-restart function.

ACCESSORIES AS STANDARD

- Hot air expulsion hose with special joints and collectors.
- Condensate discharge hose, discharge tap and relative fixing accessories.
- Window kit and protection mesh to connect the hot air expulsion hose.
- Cap for the wall and connection for the hot air expulsion hose.
- Remote control.

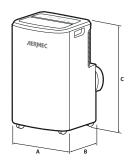
WINDOW KIT

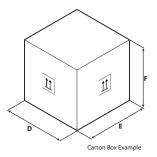
FLEXIBLE PIPE

		PSL250	PSL350
Flexible pipe			
Minimum length	mm	270	270
Maximum length	mm	1500	1500

PERFORMANCE SPECIFICATIONS

_		PSL250	PSL350
Nominal cooling performances			
Cooling capacity (1)	kW	2,60	3,40
EER (2)	W/W	3,10	2,60
Seasonal efficiency			
Efficiency energy class (3)		A	A
Nominal heating performances			
Heating capacity (4)	kW	2,30	2,70
COP (2)	W/W	3,10	2,80
Seasonal efficiency (temperate climate)		
Efficiency energy class (3)		A+	A+


- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication. (3) Data in accordance with Delegated Regulation (EU) No. 626/2011. (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.


GENERAL DATA

		PSL250	PSL350
Electric data			
Rated power input (1)	kW	1,0	1,5
Rated current input (1)	A	4,6	8,0
Fan			
Туре	type	Centrifugal on/off	Centrifugal on/off
Air flow rate			
Maximum	m³/h	390	390
Average	m³/h	360	360
Minimum	m³/h	330	330
Sound power			
Maximum	dB(A)	64,0	64,0
Average	dB(A)	63,5	63,5
Minimum	dB(A)	63,0	63,0
Sound pressure (2)			
Maximum	dB(A)	35,0	35,0
Average	dB(A)	33,0	33,0
Minimum	dB(A)	31,0	31,0
Compressor			
Туре	type	Rotary on/off	Rotary on/off
Number	no.	1	1
Refrigerant	type	R290	R290
Refrigerant charge (3)	kg	0,2	0,2
Power supply cable			
Type of power supply cable	Туре	3G1,0 mm²/L= 2,85 m/Schuko plug	3G1,0 mm2/L= 2,85 m/Schuko plug
Power supply			
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz
Indoor unit	<u> </u>		
Condensate discharge diameter	mm	13,5	13,5

- (1) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.
 (3) The load indicated in the table is an estimated and preliminary value. The final value of the refrigerant load is indicated on the unit's technical label. For further information contact the office.

DIMENSIONS AND WEIGHTS

		PSL250	PSL350
Dimensions and weights			
4	mm	476	476
3	mm	385	385
-	mm	710	710
)	mm	545	545
	mm	435	435
	mm	885	885
let weight	kg	33,00	34,00
Weight for transport	kg	38,00	39,00

SPG Monosplit

Cooling capacity 2,5 \div 6,2 kW Heating capacity 2,8 \div 6,5 kW

- New R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- Modern design to blend with all furnishing styles.
- Special coil with fin blue coating.
- Indoor units compatible with multisplit systems.

DESCRIPTION

The monosplit air conditioners of the SPG range are combined with SPG_W (Wall) indoor units for wall installation.

Universal indoor units: some indoor units can be combined with both multisplit outdoor units of the series MPG and monosplit outdoor units of the series SPG:

	Indoor units SPG_W					
	SPG200W SPG250W SPG350W SPG500W SPG700W					
Monosplit outdoor units SPG		•	•	•	•	
Multisplit utdoor units MPG	•	•	•	•	•	

The external unit boasts a compressor and a fan with inverter technology.

FEATURES

Indoor unit

Wall indoor unit designed to be installed on indoor walls.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- $\boldsymbol{--}$ Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.

- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- **iFeel** function for activating the ambient temperature probe inside the remote control, for improved comfort.

Outdoor unit

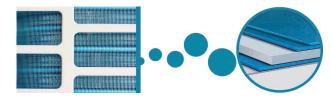
Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

— Compressor and fan with DC inverter technology.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.


Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRCA: Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with a maximum of 8 daily time bands.

* The CC2 centralised control can manage up to 36 SPG system.

IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

DCK: Remote Contact Kit. This accessory allows you to switch the system on and off using an external contact.

WIFIKIT: Plug & Play module to be installed in the indoor unit for Wi-Fi control. (Cable length 250 mm)

WIFIKITO1: Plug & Play module to be installed in the indoor unit for Wi-Fi control, equipped with Bluetooth® connection to ensure a better connection with smart devices. (Cable length 250 mm)

ACCESSORIES COMPATIBILITY

Accessory	SPG500W			SPG700W		
CC2 (1)	•			•		
WRCA (1)		•				
(1) Auto-restart function.						
Accessory		SPG500W				
IC-2P		•		•		
Accessory	SPG200W	SPG250W	SPG350W	SPG500W	SPG700W	
DCK				•	•	
WIFIKIT	•	•	•	•	•	
WIFIKIT01	•	•	•	•	•	

PERFORMANCE SPECIFICATIONS

Indoor unit		SPG250W	SPG350W	SPG500W	SPG700W
Outdoor unit		SPG250	SPG350	SPG500	SPG700
Nominal cooling performances					
Cooling capacity (1)	kW	2,50	3,20	4,60	6,20
Cooling input power (1)	kW	0,72	0,99	1,36	1,77
EER (2)	W/W	3,47	3,23	3,39	3,50
Moisture removed	l/h	0,6	1,4	1,8	1,8
Minimum cooling performances					
Cooling capacity	kW	0,50	0,90	1,00	1,60
Cooling input power	kW	0,15	0,22	0,42	0,45
Maximum cooling performances					
Cooling capacity	kW	3,25	3,60	5,30	6,90
Cooling input power	kW	1,30	1,30	1,80	2,20
Cooling input current	A	3,2	4,4	5,9	7,9
Seasonal efficiency					
Annual power consumption	kWh/annum	135	184	251	319
SEER	W/W	6,50	6,10	6,40	6,80
Efficiency energy class (3)		A++	A++	A++	A++
Nominal heating performances					
Heating capacity (4)	kW	2,80	3,40	5,20	6,50
Heating input power (4)	kW	0,75	0,91	1,34	1,65
COP (2)	W/W	3,73	3,71	3,88	3,95
Minimum heating performances					
Heating capacity	kW	0,50	0,90	1,00	1,30
Heating input power	kW	0,14	0,22	0,42	0,45
Maximum heating performances					
Heating capacity	kW	3,50	4,00	5,65	7,91
Heating input power	kW	1,50	1,50	1,90	2,20
Heating input current	A	3,2	4,0	5,8	7,3
Seasonal efficiency (temperate climate)					
Annual power consumption	kWh/annum	875	945	1295	1645
Efficiency energy class (3)		A+	A+	A+	A+
SCOP	W/W	4,00	4,00	4,00	4,00
	-	·		·	·

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

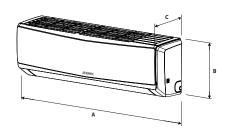
INDOOR UNIT DATA

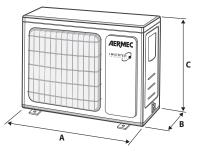
		SPG250W	SPG350W	SPG500W	SPG700W
Indoor unit					
Type of fan	Туре		Inverter o	entrifugal	
Air flow rate				-	
Turbo	m³/h	500	590	850	1100
Maximum	m³/h	470	520	800	950
Average	m³/h	390	400	700	750
Minimum	m³/h	270	320	600	650
Sound power (1)					
Turbo	dB(A)	55,0	56,0	54,0	61,0
Maximum	dB(A)	48,0	49,0	52,0	58,0
Average	dB(A)	44,0	45,0	48,0	52,0
Minimum	dB(A)	34,0	38,0	44,0	49,0
Sound pressure (1 m) (2)					
Turbo	dB(A)	38,0	41,0	44,0	47,0
Maximum	dB(A)	36,0	37,0	42,0	44,0
Average	dB(A)	32,0	33,0	38,0	38,0
Minimum	dB(A)	22,0	26,0	34,0	35,0
Indoor unit					
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0
Power supply					
Indoor unit power supply	220-240V ~ 50Hz				

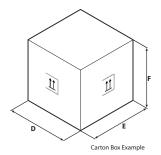
- (1) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

OUTDOOR UNIT DATA

		SPG250	SPG350	SPG500	SPG700	
Outdoor unit						
Type of fan	Туре		Invert	er axial		
Air flow rate						
Maximum	m³/h	1950	1950	1950	2800	
Sound power (1)						
Maximum	dB(A)	62,0	64,0	63,0	67,0	
Sound pressure (1 m) (2)						
Maximum	dB(A)	51,0	51,0	55,0	58,0	
Compressor						
Туре	type	Inverter rotary				
Refrigerant	type		R	32		
Refrigerant charge	kg	0,50	0,55	0,75	1,30	
Potential global heating	GWP		675kg	gCO₂eq		
Equivalent CO ₂	t	0,34	0,37	0,51	0,88	
Outdoor unit						
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0	


GENERAL DATA


Indoor unit		SPG250W	SPG350W	SPG500W	SPG700W
Outdoor unit		SPG250	SPG350	SPG500	SPG700
Electric data					
Rated power input (1)	kW	1,5	1,5	1,9	2,2
Rated current input (1)	A	7,5	7,5	9,0	10,0
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")
Refrigerant to be added	g/m	16	16	16	16
Maximum refrigerant tube length	m	15	15	25	25
Maximum refrigerant line level difference	m	10,0	10,0	10,0	10,0
Power supply					
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz


⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

DIMENSIONS AND WEIGHTS

		SPG250W	SPG350W	SPG500W	SPG700W
Indoor unit					
A	mm	696	770	972	1081
В	mm	251	251	300	325
C	mm	190	190	225	248
D	mm	747	822	1022	1137
E	mm	324	324	374	407
F	mm	262	262	299	334
Net weight	kg	7,50	8,50	13,50	16,50
Weight for transport	kg	9,00	10,00	16,00	19,50
		SPG250	SPG350	SPG500	SPG700
Outdoor unit					
A	mm	732	732	732	873
В	mm	330	330	330	376
C	mm	550	550	555	555
D	mm	792	792	794	951
E	mm	393	393	376	431
F	mm	615	615	615	620
·				27.00	27.00
Net weight	kg	25,00	25,00	27,00	37,00

SGE

Monosplit

Cooling capacity 2,8 ÷ 5,9 kW Heating capacity 2,9 ÷ 6,0 kW

- New R32 ecological refrigerant gas.
- · Air Purifiers (Cold Plasma).
- Possibility of Wi-Fi control.
- Innovative design sleek curved lines.
- Special coil with fin golden coating.

DESCRIPTION

The monosplit air conditioners of the SGE range are combined with SGE_W (Wall) indoor units for wall installation.

The external unit boasts a compressor with inverter technology.

FEATURES

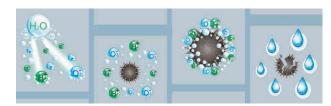
Innovative design

SGE has an elegant and essential design. Its curved lines emphasize a kind of structure with innovative and functional style. The display with working parameters is elegantly integrated in the satin-finish cover and visible only when the unit is on.

Indoor unit

Wall indoor unit designed to be installed on indoor walls.

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.


Outdoor unit

Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology. Compressor and fan with DC inverter technology.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Nethome Plus app

Using the specific accessory, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES

WIFIKEY: Plug & Play module to be installed in the indoor unit for Wi-Fi control.

Accessories compatibility

	-7			
Accessory	SGE250W	SGE350W	SGE500W	SGE700W
WIEIKEA			_	

PERFORMANCE SPECIFICATIONS

Indoor unit		SGE250W	SGE350W	SGE500W	SGE700W
Outdoor unit		SGE250	SGE350	SGE500	SGE700
Nominal cooling performances					
Cooling capacity (1)	kW	2,77	3,46	5,27	5,86
Cooling input power (1)	kW	0,77	1,06	1,55	1,81
EER (2)	W/W	3,60	3,25	3,40	3,24
Moisture removed	l/h	1,0	1,2	1,8	2,7
Minimum cooling performances					
Cooling capacity	kW	0,91	1,11	3,39	2,08
Cooling input power	kW	0,10	0,13	0,56	0,42
Maximum cooling performances					
Cooling capacity	kW	3,39	4,16	5,83	7,91
Cooling input power	kW	1,24	1,58	2,05	3,15
Cooling input current	A	3,3	4,6	6,7	7,9
Seasonal efficiency					
SEER	W/W	6,30	6,40	7,40	6,80
Efficiency energy class (3)		A++	A++	A++	A++
Annual power consumption	kWh/annum	156	190	247	300
Nominal heating performances					
Heating capacity (4)	kW	2,93	3,57	4,97	6,00
Heating input power (4)	kW	0,73	0,96	1,29	1,61
COP (2)	W/W	4,00	3,71	3,83	3,73
Minimum heating performances					
Heating capacity	kW	0,82	1,08	3,10	1,61
Heating input power	kW	0,12	0,10	0,78	0,30
Maximum heating performances					
Heating capacity	kW	3,37	4,22	5,85	7,91
Heating input power	kW	1,20	1,68	2,00	2,75
Heating input current	A	3,2	4,2	5,6	7,0
Seasonal efficiency (temperate climate)					
SCOP	W/W	4,00	4,00	4,00	4,00
Efficiency energy class (3)		A+	A+	A+	A+
Annual power consumption	kWh/annum	910	945	1435	1818
Seasonal efficiency (hot climate)					
SCOP	W/W	5,10	5,10	5,10	5,00
Efficiency energy class (3)		A+++	A+++	A+++	A++
Annual power consumption	kWh/annum	714	686	1260	1705

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication. (3) Data in accordance with Delegated Regulation (EU) No. 626/2011. (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

INDOOR UNIT

		SGE250W	SGE350W	SGE500W	SGE700W
Indoor unit					
Type of fan	Туре		Tang	ential	
Air flow rate					
Maximum	m³/h	466	540	840	980
Average	m³/h	360	430	680	817
Minimum	m³/h	325	314	540	662
Sound power (1)					
Maximum	dB(A)	54,0	55,0	56,0	59,0
Sound pressure (1 m) (2)					
Maximum	dB(A)	38,5	40,5	42,5	45,0
Average	dB(A)	32,0	34,5	36,0	40,5
Minimum	dB(A)	25,0	25,0	26,0	36,0

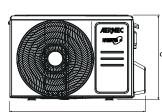
OUTDOOR UNIT

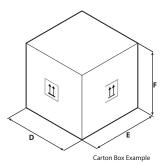
		SGE250	SGE350	SGE500	SGE700
Outdoor unit		342234	502550	502500	302700
Type of fan	Туре	Axial	Axial	Axial	Axial
Air flow rate	//				
Maximum	m³/h	1750	1800	2100	3500
Sound power (1)					
Maximum	dB(A)	62,0	63,0	63,0	67,0
Sound pressure (1 m) (2)					
Maximum	dB(A)	55,5	56,0	56,0	59,0
Compressor					
Туре	type	Inverter rotary	Inverter rotary	Inverter rotary	Inverter rotary
Refrigerant	type	R32	R32	R32	R32
Refrigerant charge	kg	0,55	0,55	1,08	1,42
Potential global heating	GWP	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,37	0,37	0,73	0,96

GENERAL DATA


Indoor unit		SGE250W	SGE350W	SGE500W	SGE700W
Outdoor unit		SGE250	SGE350	SGE500	SGE700
Electric data					
Rated power input (1)	kW	2,2	2,2	2,5	3,5
Rated current input (1)	A	10,0	10,0	13,0	15,5
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")
Maximum refrigerant tube length	m	25	25	30	50
Maximum refrigerant line level difference	m	10,0	10,0	20,0	25,0
Refrigerant to be added	g/m	12	12	12	24
Power supply					
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

DIMENSIONS AND WEIGHTS

		CCTATALL	CCF2 FAW	CCFFOON	CCFTOOU
		SGE250W	SGE350W	SGE500W	SGE700W
Indoor unit					
A	mm	805	805	957	1040
3	mm	285	285	302	327
	mm	194	194	213	220
)	mm	870	870	1035	1120
E	mm	270	270	295	405
F	mm	365	365	385	315
Net weight	kg	7,60	7,60	10,00	12,30
Weight for transport	kg	9,70	9,80	13,00	15,80
		SGE250	SGE350	SGE500	SGE700
Outdoor unit					
A	mm	720	720	805	890
В	mm	270	270	330	342
(mm	495	495	554	673
D	mm	835	835	915	995
E	mm	300	300	370	398
-	mm	540	540	615	740
Net weight	kg	23,20	23,20	32,70	42,90
itel weight	ny -	23,20	23/20		

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

SCG

Monosplit

Cooling capacity 7,2 kW ÷ 12,5 kW Heating capacity 7,9 kW ÷ 13,5 kW

- New R32 ecological refrigerant gas.
- Standard Wi-Fi module.
- Modern design to blend with all furnishing styles.
- Easy installation and maintenance.
- Ideal for installations in the service sector: hotels, restaurants, offices.

DESCRIPTION

The monosplit air conditioners of the SCG range are combined with SCG_V (column) indoor units for floor installation.

Thanks to their compact size, ease of installation and modern design, they are suitable for environments such as shops, restaurants, shopping centers, doctor's offices, etc.

The outdoor unit features a compressor with inverter technology, an electronic valve and electric heater to ensure proper winter operation and prevent ice formation on the coil.

FEATURES

Indoorunit

Indoor unit ${\bf column}$ designed to be installed for indoor floor installation.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- **Auto** function for a continuous speed variation.

Outdoor unit

Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

This system is fitted **standard** with a wi-fi module that can be used, along with the app for iOS and Android devices (available free on Apple Store and Google Play), to control the system remotely on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

PERFORMANCE SPECIFICATIONS

Indoor unit		SCG700V	SCG1200V	SCG1200VT
Outdoor unit		SCG700	SCG1200	SCG1200T
Nominal cooling performances				
Cooling capacity (1)	kW	7,20	12,50	12,50
Cooling input power (1)	kW	2,05	4,20	3,44
EER (2)	W/W	3,51	2,98	3,63
Moisture removed	l/h	2,0	5,0	5,0
Minimum cooling performances				
Cooling capacity	kW	1,00	3,60	3,60
Cooling input power	kW	0,37	0,36	0,40
Maximum cooling performances				
Cooling capacity	kW	9,00	13,50	13,50
Cooling input power	kW	3,70	5,40	6,60
Cooling input current	A	10,0	19,0	5,4
Seasonal efficiency				
SEER	W/W	6,10	5,60	6,10
Efficiency energy class (3)		A++	-	-
Annual power consumption	kWh/annum	413	-	-
ηςς	%	-	221,00	246,00
Nominal heating performances				
Heating capacity (4)	kW	7,90	13,50	13,50
Heating input power (4)	kW	2,33	4,20	3,30
COP (2)	W/W	3,39	3,21	4,09
Minimum heating performances				
Heating capacity	kW	1,60	2,80	2,80
Heating input power	kW	0,32	0,36	0,50
Maximum heating performances				
Heating capacity	kW	8,80	14,00	14,00
Heating input power	kW	3,90	5,40	6,60
Heating input current	A	11,0	19,0	5,2
Seasonal efficiency (temperate climate)				
SCOP	W/W	4,00	3,70	4,00
Efficiency energy class (3)		A+	-	-
Annual power consumption	kWh/annum	2135	-	-
ηsh	%	-	145,00	159,00

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication. (3) Data in accordance with Delegated Regulation (EU) No. 626/2011. (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

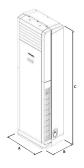
INDOOR UNIT

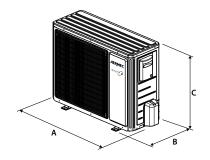
		SCG700V	SCG1200VT	SCG1200V
Indoor unit				
Type of fan	Туре		Centrifugal	
Air flow rate				
Turbo	m³/h	1250	2400	2000
Maximum	m³/h	950	2200	1850
Average	m³/h	850	2000	1700
Minimum	m³/h	750	1800	1580
Sound power (1)				
Turbo	dB(A)	60,0	68,0	66,0
Maximum	dB(A)	51,0	65,0	64,0
Average	dB(A)	48,0	63,0	62,0
Minimum	dB(A)	45,0	61,0	61,0
Sound pressure (2)				
Turbo	dB(A)	45,0	57,0	53,0
Maximum	dB(A)	41,0	55,0	51,0
Average	dB(A)	38,0	53,0	50,0
Minimum	dB(A)	35,0	51,0	48,0
Power supply				
Indoor unit power supply		220-240V ~ 50Hz	380-415V ~ 3N 50Hz	220-240V ~ 50Hz

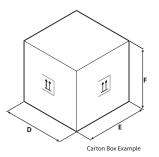
OUTDOOR UNIT

		SCG700	SCG1200T	SCG1200
Outdoor unit				
Type of fan	Туре		Axial	
Air flow rate				
Maximum	m³/h	3200	6000	6000
Sound power (1)				
Maximum	dB(A)	70,0	75,0	74,0
Sound pressure (2)				
Maximum	dB(A)	61,0	69,0	64,0
Compressor				
Туре	type		Inverter rotary	
Refrigerant	type		R32	
Refrigerant charge	kg	1,60	2,60	2,60
Potential global heating	GWP		675kgCO₂eq	
Equivalent CO ₂	t	1,08	1,76	1,76
Power supply		·		
Outdoor unit power supply		220-240V ~ 50Hz	380-415V 3N ~ 50Hz	220-240V ~ 50Hz

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.


GENERAL DATA


Indoor unit		SCG700V	SCG1200V	SCG1200VT
Outdoor unit		SCG700	SCG1200	SCG1200T
Electric data				
Rated power input (1)	kW	3,9	5,4	6,6
Rated current input (1)	Α	18,0	22,0	10,0
Refrigeration pipework				
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Maximum refrigerant tube length	m	25	30	30
Maximum refrigerant line level difference	m	10,0	20,0	20,0
Refrigerant to be added	g/m	40	40	40

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40. NB: the quantity of refrigerant gas to be added refers to a line length greater than 5 m.

DIMENSIONS AND WEIGHTS

		SCG700V	SCG1200VT	SCG1200V
Indoor unit				
A	mm	507	587	587
В	mm	320	394	394
(mm	1770	1882	1882
D	mm	608	718	718
E	mm	410	485	485
F	mm	1983	2128	2128
Net weight	kg	38,00	57,00	55,00
Weight for transport	kg	47,00	69,00	67,00
		SCG700	SCG1200T	SCG1200
Outdoor unit				
A	mm	965	1028	1028
В	mm	396	530	530
C	mm	700	822	822
D	mm	1029	1083	1083
E	mm	458	573	573
F	mm	750	973	973
Net weight	l.e.	E2 E0	94,00	89,00
net weight	kg	53,50	7 1 ,00	07,00

www.aermec.com

CKG

Universal

Cooling capacity 2,7 ÷ 6,6 kW Heating capacity 2,9 ÷ 6,8 kW

- · Standard Wi-Fi module.
- New R32 ecological refrigerant gas.
- Air Purifiers (Cold Plasma).
- Low cooling function: cooling operation with outdoor temperatures down to -15 °C.
- Low heating function: heating operation with outdoor temperatures down to -22 °C.

DESCRIPTION

The monosplit air conditioners of the CKG range are combined with CKG_FS (Console) indoor units with an inverter fan unit, offering twin delivery for optimum air flow control and enhanced environmental comfort.

Universal indoor units:

all indoor units can be combined with both multisplit outdoor units of the series MPG and MLG and monosplit outdoor units of the series CKG.

CKG_FS	CKG260FS	CKG360FS	CKG500FS
Universal indoor units compatible with MPG multisplit system	•	•	•
Universal indoor units compatible with MLG multisplit			

The outdoor unit features a compressor with inverter technology, an electronic valve and electric heater to ensure proper winter operation and prevent ice formation on the coil.

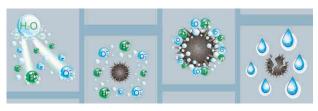
FEATURES

Indoor unit

Console indoor unit designed to be installed on indoor floors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Indoor unit front panel with LED display and indicator lights.
- 5-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- **iFeel** function for activating the ambient temperature probe inside the remote control, for improved comfort.

Outdoor unit


Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

This system is fitted **standard** with a wi-fi module that can be used, along with the app for iOS and Android devices (available free on Apple Store and Google Play), to control the system remotely on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRCA: Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with a maximum of 8 daily time bands.

* The CC2 centralised control can manage up to 36 CKG systems.

Single air delivery

Dual air delivery (default)

Intake

ACCESSORIES COMPATIBILITY

Accessory	CKG260FS	CKG360FS	CKG500FS
CC2	•	•	•
WRCA	•	•	•

The accessory CC2 version 01 is compatible with the indoor units of the CKG_FS series, from version 01.

PERFORMANCE SPECIFICATIONS

Indoor unit		CKG260FS	CKG360FS	CKG500FS
Outdoor unit		CKG260	CKG360	CKG500
Nominal cooling performances				
Cooling capacity (1)	kW	2,70	3,52	5,20
Cooling input power (1)	kW	0,72	1,00	1,55
EER (2)	W/W	3,75	3,52	3,35
Moisture removed	l/h	0,8	1,2	1,8
Minimum cooling performances				
Cooling capacity	kW	0,70	0,80	1,26
Cooling input power	kW	0,17	0,16	0,38
Maximum cooling performances				
Cooling capacity	kW	3,40	4,40	6,60
Cooling input power	kW	1,30	1,50	2,45
Cooling input current	A	3,5	4,5	7,1
Seasonal efficiency				
SEER	W/W	7,20	7,00	6,60
Efficiency energy class (3)		A++	A++	A++
Annual power consumption	kWh/annum	131	175	276
Nominal heating performances				
Heating capacity (4)	kW	2,90	3,80	5,33
Heating input power (4)	kW	0,73	0,96	1,50
COP (2)	W/W	3,97	3,96	3,55
Minimum heating performances				
Heating capacity	kW	0,60	1,10	1,12
Heating input power	kW	0,13	0,17	0,35
Maximum heating performances				
Heating capacity	kW	3,50	4,40	6,80
Heating input power	kW	1,35	1,50	2,50
Heating input current	A	3,6	4,3	6,7
Seasonal efficiency (temperate climate)				
SCOP	W/W	4,00	4,10	4,10
Efficiency energy class (3)		A+	A+	A+
Annual power consumption	kWh/annum	910	1093	1750

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

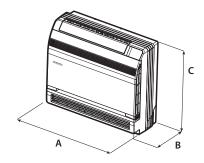
INDOOR UNIT

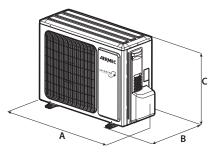
		CKG260FS	CKG360FS	CKG500FS
Indoor unit				
Input power	W	35	40	50
Type of fan	Туре		Inverter centrifugal	
Air flow rate				
Turbo	m³/h	500	600	700
Maximum	m³/h	430	520	650
Average	m³/h	370	440	520
Minimum	m³/h	280	360	410
Sound power (1)				
Turbo	dB(A)	50,0	54,0	57,0
Maximum	dB(A)	48,0	50,0	55,0
Average	dB(A)	44,0	46,0	51,0
Minimum	dB(A)	38,0	39,0	47,0
Sound pressure (2)				
Turbo	dB(A)	39,0	44,0	47,0
Maximum	dB(A)	36,0	40,0	45,0
Average	dB(A)	31,0	36,0	41,0
Minimum	dB(A)	26,0	29,0	37,0
Indoor unit				
Condensate discharge diameter	mm	17,0	17,0	17,0

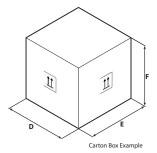
- (1) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

OUTDOOR UNIT

		CKG260	CKG360	CKG500
Outdoor unit				
Type of fan	Туре		Inverter axial	
Air flow rate				
Maximum	m³/h	1600	2200	3200
Sound power (1)				
Maximum	dB(A)	60,0	62,0	65,0
Sound pressure (2)				
Maximum	dB(A)	49,0	52,0	57,0
Compressor				
Туре	type		Inverter rotary	
Refrigerant	type		R32	
Refrigerant charge	kg	0,55	0,75	0,95
Potential global heating	GWP		675kgCO₂eq	
Equivalent CO ₂	t	0,37	0,51	0,64
Outdoor unit				
Condensate discharge diameter	mm	15,8	15,8	15,8


GENERAL DATA


Indoor unit		CKG260FS	CKG360FS	CKG500FS
Outdoor unit		CKG260	CKG360	CKG500
Electric data				
Rated power input (1)	kW	1,4	1,5	2,5
Rated current input (1)	A	6,0	6,7	11,1
Refrigeration pipework				
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")
Maximum refrigerant tube length	m	15	20	25
Maximum refrigerant line level difference	m	10,0	10,0	10,0
Refrigerant to be added	g/m	16	16	16
Power supply				
Power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz


⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

DIMENSIONS AND WEIGHTS

		CKG260FS	CKG360FS	CKG500FS
		CNUZOUFS	CROSOUFS	Crasones
Indoor unit				
A	mm	700	700	700
3	mm	215	215	215
-	mm	600	600	600
)	mm	788	788	788
	mm	283	283	283
:	mm	697	697	697
Net weight	kg	15,50	15,50	15,50
Weight for transport	kg	18,50	18,50	18,50
		CKG260	CKG360	CKG500
Outdoor unit				
A	mm	782	848	965
	111111	702	0.10	
3	mm	320	320	396
3				
3	mm	320	320	396
3	mm mm	320 540	320 596	396 700
3 : : :	mm mm mm	320 540 823	320 596 881	396 700 1029
let weight	mm mm mm mm	320 540 823 358	320 596 881 363	396 700 1029 458

CKG_Y_UN50_05

LPG

Monosplit

Cooling capacity 3,5 ÷ 16,0 kW Heating capacity 4,0 ÷ 17,0 kW

• SEER up to 7.2.

DESCRIPTION

The monosplit air conditioners of the LPG range are combined with:

- LPG_D (Duct) for duct type horizontal installation.
- LPG_C / CS (Cassette) for false ceiling installation.
- LPG_F (Floor ceiling) wall and/or ceiling installation.

TYPE OF INDOOR UNIT

Indoor unit LPG_D

Duct indoor unit, designed for indoor duct type horizontal installation.


- Every indoor unit comes with a remote control and a remote control holder
- WRC50 wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- $\boldsymbol{--}$ Timer for programming switch-off and switch-on.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

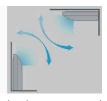
Indoor unit LPG CS

Indoor unit **Cassette** of dimensions (570x570 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

Indoor unit LPG_C

Indoor unit **Cassette** of dimensions (840x840 mm) designed to be installed on suspended ceiling indoors.


- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- Auto function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

Indoor unit LPG F

Indoor unit **Floor ceiling** designed to be installed on the wall or ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- Auto function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

Low cooling function

cooling operation with outdoor temperatures down to -20 °C.

Low heating function

heating with external temperatures up to -20 °C.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

TYPE OF OUTDOOR UNIT

Outdoor unit

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRC50: Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with daily time bands.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

GLG 40: Air supply and flow grid with dimensions (950x950 mm) for cassette internal unit.

GLG 40S: Air supply and flow grid with dimensions (620x620 mm) for cassette internal unit

MINIMODBUS20: Thanks to its compact size, this accessory can be easily installed inside the indoor unit. It allows the units to communicate with each other by providing a ModBus RTU serial on RS485 for supervision with external BMS.

* The CC2 centralised control can manage up to 36 LPG systems.

Accessories compatibility

LPG_D

Accessory	LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1200D	LPG1400D	LPG1600D
CC2 (1)	•	•	•	•	•	•	•	•
(1) Auto-restart function. The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.								
Wired panel WRCSO standard supply.								

Accessory	LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1200D	LPG1400D	LPG1600D
MINIMODBUS20 (1)	•	•	•	•	•	•	•	•

(1) The units can only be routed using the wired control panel (accessory WRC20, WRC50 or WRC40). For more information about the procedure refer to the user manual.

LPG_C/CS

Accessory	LPG350CS	LPG500C5	LPG/UUC	LPG85UC	LPG1000C	LPG1200C	LPG 1400C	LPG 1600C
CC2 (1)	•	•	•	•	•	•	•	•
WRC50	•	•	•	•		•	•	•
(1) Auto-restart function								

(1) Auto-restart function. The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Accessory	LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
MINIMODBUS20 (1)	•	•	•	•	•	•	•	•

(1) The units can only be routed using the wired control panel (accessory WRC20, WRC50 or WRC40). For more information about the procedure refer to the user manual. Accessory LPG350CS LPG500CS LPG700C LPG850C LPG1000C LPG12000 LPG1400C LPG16000 GLG40 (1) GLG40S (1)

(1) Mandatory accessory.

LPG_F

Accessory	LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
CC2 (1)	•	•	•	•	•	•	•	•
WRC50	•	•	•		•	•	•	

(1) Auto-restart function.

The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Accessory	LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
MINIMODBUS20 (1)	•	•	•	•	•	•	•	•

⁽¹⁾ The units can only be routed using the wired control panel (accessory WRC20, WRC50 or WRC40). For more information about the procedure refer to the user manual.

OUTDOOR UNIT PERFORMANCE DATA

		LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Outdoor unit												
Type of fan	Туре	Inverter axial										
Air flow rate												
Maximum	m³/h	1800	2200	3600	3600	4800	4800	5200	5200	5200	5200	5500
Sound power (1)												
Maximum	dB(A)	56,0	65,0	69,0	70,0	70,0	70,0	73,0	73,0	73,0	75,0	75,0
Sound pressure (2)												
Maximum	dB(A)	48,0	52,0	55,0	57,0	57,0	57,0	58,0	58,0	59,0	59,0	60,0
Compressor												
Tuna	tuno	Inverter										
Туре	type	rotary										
Refrigerant	type	R32										
Refrigerant charge	kg	0,57	0,85	1,50	1,50	2,10	2,10	2,25	2,25	2,80	2,80	3,50
Potential global heating	GWP	675kgCO₂eq										
Equivalent CO ₂	t	0,38	0,57	1,01	1,01	1,42	1,42	1,52	1,52	1,89	1,89	2,36
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Maximum refrigerant tube length	m	30	30	30	30	75	75	75	75	75	75	75
Maximum refrigerant line level difference	m	15,0	20,0	20,0	25,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0
Refrigerant to be added	g/m	16	16	20	20	20	20	20	20	35	35	35
Power supply												
Outdoor unit nower cumby		220-240V ~	380-415V ~	220-240V ~	380-415V ~	220-240V ~	380-415V ~	380-415V ~				
Outdoor unit power supply		50Hz	50Hz	50Hz	50Hz	50Hz	3N ~ 50Hz	50Hz	3N ~ 50Hz	50Hz	3N ~ 50Hz	3N ~ 50Hz

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

INDOOR UNIT PERFORMANCE DATA

LPG D

Indoor unit		LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1000D	LPG1200D	LPG1200D	LPG1400D	LPG1400D	LPG1600D
Outdoor unit		LPG3500	LPG500D	LCG700	LPG850	LPG1000	LPG1000D	LPG12000	LPG1200T	LPG1400	LPG1400T	LPG1600T
Nominal cooling performances		LFUJJU	LF4300	LCG/UU	LFUOJU	LPUIUUU	LFUIUUUI	LFUIZUU	LFUIZUUI	LF 0 1400	LFU14001	LFUIOUUI
Cooling capacity (1)	kW	3,50	5,30	7,10	8,50	10,50	10,50	12,10	12,10	13,40	13,40	16,00
Cooling input power (1)	kW	1,03	1,51	1,92	2,50	3,00	3,00	3,58	3,58	4,50	4,50	5,40
EER (2)	W/W	3,40	3,51	3,70	3,40	3,50	3,50	3,38	3,38	2,98	2,98	2,96
Moisture removed	I/h	1,0	1,7	2,4	2,8	3,30	3,3	3,7	3,7	3,9	3,9	4,6
Minimum cooling performances	1/11	1,0	1,/	2,4	2,0	3,3	3,3	3,/	3,1	3,7	3,7	4,0
Cooling capacity	kW	0,90	1,60	2,40	2,90	3,20	3,20	3,60	3,60	4,00	4.00	4,80
Cooling input power	kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum cooling performances	KVV	0,20	0,30	0,30	0,/3	0,90	0,70	1,10	1,10	1,33	ردرا	טכיו
Cooling capacity	kW	4,00	5,80	7,60	9,00	11,00	11,00	13,10	13,10	14,20	14,20	17,00
Cooling input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency	KVV	1,30	1,00	2,00	3,30	4,00	4,00	3,30	3,30	3,00	3,00	0,00
SEER	W/W	6,50	6,30	6,60	6,40	6,40	6,40	6,10	6,10	6,10	6,10	6,10
Efficiency energy class (3)	VV/VV								- 0,10	- 0,10	- 0,10	0,10
Pdesignc	kW	A++	A++ 5,3	A++	A++ 8,5	A++	A++ 10,5	-				
Annual power consumption	kWh/annum	3,5 189	294	7,1 377	465	10,5 574	574				-	-
	KWN/annum	189	294	3//	400	5/4	5/4		-	-	-	-
Nominal heating performances Heating capacity (4)	kW	4.00	E 60	9.00	0.00	11 50	11 [0	12 50	12.50	15 50	15 50	17.00
3 1 / 1 /		4,00	5,60	8,00	8,80	11,50	11,50	13,50	13,50	15,50	15,50	17,00
Heating input power (4)	kW	1,00	1,42	2,00	2,25	2,80	2,80	3,70	3,70	4,50	4,50	4,70
COP (2)	W/W	4,00	3,94	4,00	3,91	4,11	4,11	3,65	3,65	3,44	3,44	3,62
Minimum heating performances	1111	0.00	4.60	2.20	2.50	3.00	2.00	2.60	2.00	2.00	3.00	4.50
Heating capacity	kW	0,90	1,60	2,20	2,50	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power	kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum heating performances												
Heating capacity	kW	4,50	6,10	8,60	9,50	12,50	12,50	14,50	14,50	16,00	16,00	18,00
Heating input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency (temperate climate)	14/04/											
SCOP	W/W	4,00	4,00	4,10	4,10	4,20	4,20	4,10	4,10	4,00	4,00	4,00
Efficiency energy class (3)	1111	A+	A+	A+	A+	A+	A+		-	-	-	-
Pdesignh	kW	3,00	3,90	4,70	6,00	7,00	7,00	-	-	-	-	-
Annual power consumption	kWh/annum	1050	1365	1605	2049	2333	2333	-	-	-	-	-
Electric data												
Rated power input (5)	kW	1,3	1,9	2,8	3,3	4,7	4,4	5,3	5,3	5,6	5,6	6,8
Rated current input (5)	A	6,0	9,5	14,0	15,0	21,0	7,0	23,0	9,0	25,0	11,0	12,0
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6.35 (1/4")	6.35 (1/4")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")
Diameter of refrigerant gas connections	mm (inch)	9.52 (3/8")	12.7 (1/2")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")
Nominal length of refrigerant lines	m	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	7,5	7,5	7,5
Power supply Power supply												
Power supply		220-240V ~		220-240V ~			380-415V	220-240V ~	380-415V	220-240V ~	380-415V	380-415V
		50Hz	50Hz	50Hz	50Hz	50Hz	3N~ 50/60Hz	50Hz	3N~ 50/60Hz	50Hz	3N~ 50/60Hz	3N~ 50/60Hz

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

LPG.	350D LPG	500D LPG	i700D LP	G850D LP	G1000D LP	G1200D LP	G1400D LP(G1600D
Inve	erter Inve	erter Inv	verter In	verter Ir	overter l	nverter li	nverter Ir	nverter
rpe centr	ifugal centr	ifugal cent	rifugal cen	ıtrifugal cer	ntrifugal ce	ntrifugal cei	ntrifugal cer	ntrifugal
³ /h 6	00 9	00 1	100	1400	1700	2000	2300	2600
³ /h 5.	50 8	00 1	000	1300	1600	1800	2100	2300
³ /h 5	00 7	00 9	900	1100	1400	1600	1800	2000
³ /h 4	00 6	3 00	300	1000	1200	1400	1500	1700
Pa 2	25 2	25	25	37	50	50	50	50
Pa 8	30 8	30 1	160	160	155	155	200	200
B(A) 35	5,0 36	5,0 3	7,0	43,0	39,0	43,0	43,0	46,0
B(A) 33	3,0 35	5,0 3	5,0	41,0	38,0	42,0	42,0	44,0
B(A) 32	2,0 33	3,0 3	3,0	39,0	37,0	41,0	40,0	42,0
B(A) 30	0,0 3	1,0 3	1,0	37,0	36,0	40,0	38,0	40,0
nm 26	5,0 26	5,0 2	6,0	26,0	26,0	26,0	26,0	26,0
	ype centr centr 3 ³ /h 6 3 ³ /h 5 3 ³ /h 5 3 ³ /h 4 Pa 2 Pa 8 8 8(A) 3: 8(A) 3: 8(A) 3:	Inverter centrifugal centrif	Inverter Inverter	Inverter Inverter	Inverter centrifugal Inverter centrifugal Centrifuga	Inverter Inverter	Inverter centrifugal Centr	Inverter centrifugal Centr

Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source (1,5m for type Duct and Cassette)

LPG CS/C

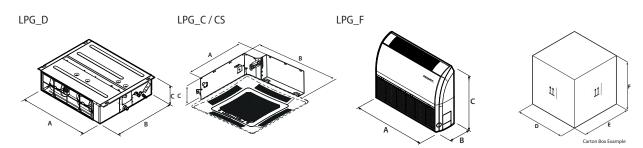
	1040044	104-044	104504	104004	1044444	1044444	1044044	1044044	1044444	1544444	1544444
Indoor unit	LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1000C	LPG1200C	LPG1200C	LPG1400C	LPG1400C	LPG1600C
Outdoor unit	LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Nominal cooling performances											
Cooling capacity (1) kW	3,50	5,00	7,10	8,50	10,50	10,50	12,10	12,10	13,40	13,40	14,50
Cooling input power (1) kW	0,92	1,47	2,03	2,50	3,10	3,10	3,90	3,90	4,60	4,60	1,50
EER (2) W/W	3,80	3,40	3,50	3,40	3,40	3,40	3,10	3,10	2,91	2,91	2,74
Moisture removed I/h	1,0	1,7	2,4	2,8	3,3	3,3	3,7	3,7	3,9	3,9	4,8
Minimum cooling performances											
Cooling capacity kW	0,90	1,60	2,40	2,90	3,20	3,20	3,60	3,60	4,00	4,00	4,80
Cooling input power kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum cooling performances											
Cooling capacity kW	4,00	5,20	7,60	9,00	11,00	11,00	13,10	13,10	14,20	14,20	15,00
Cooling input power kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency											
SEER W/W	7,10	6,60	6,70	6,90	6,60	6,60	6,10	6,10	6,30	6,30	6,10
Efficiency energy class (3)	A++	A++	A++	A++	A++	A++	-	-	-	-	-
Pdesignc kW	3,5	5,0	7,1	8,5	10,5	10,5	-	-	-	-	-
Annual power consumption kWh/ann	um 173	266	371	432	557	557	-	-	-	-	-
Nominal heating performances											
Heating capacity (4) kW	4,00	5,60	7,80	8,80	11,50	11,50	13,50	13,50	15,50	15,50	17,00
Heating input power (4) kW	1,00	1,60	2,00	2,25	2,95	2,95	3,97	3,97	4,70	4,70	5,70
COP (2) W/W	4,00	3,50	3,90	3,90	3,90	3,90	3,40	3,40	3,30	3,30	2,98
Minimum heating performances											
Heating capacity kW	0,90	1,60	2,20	2,50	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum heating performances											
Heating capacity kW	4,50	6,10	8,60	9,50	12,50	12,50	14,50	14,50	16,00	16,00	17,50
Heating input power kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency (temperate climate)											
SCOP W/W	4,20	4,00	4,30	4,30	4,40	4,40	4,10	4,10	4,00	4,00	4,00
Efficiency energy class (3)	A+	A+	A+	A+	A+	A+	-	-	-	-	-
Pdesignh kW	3,10	3,90	5,00	6,00	7,00	7,00	-	-	-	-	-
Annual power consumption kWh/ann		1365	1628	1954	2227	2227	-	-	-	-	-
Electric data			-								
Rated power input (5) kW	1,3	1,9	2,8	3,3	4,7	4,4	5,3	5,3	5,6	5,6	6,8
Rated current input (5)	6,0	9,5	14,0	15,0	21,0	7,0	23,0	9,0	25,0	11,0	12,0
Refrigeration pipework	-,-	- ,-	,-	,-	,-				,-		
Diameter of liquid refrigerant connections mm (inc	h) 6.35 (1/4")	6.35 (1/4")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")
Diameter of refrigerant gas connections mm (inc		12.7 (1/2")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")
Nominal length of refrigerant lines m	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	7,5	7,5	7,5
Power supply	-,-	-,-	-,-	-,-	-,-	-,-	-,-	-,-	- ,-	- ,-	- ,-
	220-240V ~	220-240V ~	220-240V ~	220-240V ~	220-240V ~	380-415V	220-240V ~	380-415V	220-240V ~	380-415V	380-415V
Power supply	50Hz	50Hz	50Hz	50Hz	50Hz	3N~ 50Hz	50Hz	3N~ 50Hz	50Hz	3N~ 50Hz	3N~ 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

		LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
Indoor unit									
Tune of fan	Tuna	Inverter							
Type of fan	Туре	centrifugal							
Air flow rate									
Turbo	m³/h	600	720	1100	1400	1500	1700	2000	2300
Maximum	m³/h	550	650	1000	1300	1400	1500	1800	2100
Average	m³/h	500	600	900	1100	1200	1300	1600	1900
Minimum	m³/h	400	500	800	1000	1000	1100	1400	1600
Sound pressure									
Turbo	dB(A)	36,0	43,0	39,0	47,0	43,0	48,0	50,0	52,0
Maximum	dB(A)	35,0	41,0	38,0	46,0	41,0	46,0	48,0	50,0
Average	dB(A)	33,0	39,0	36,0	42,0	39,0	43,0	45,0	48,0
Minimum	dB(A)	29,0	35,0	34,0	38,0	38,0	39,0	41,0	44,0
Indoor unit									
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0

Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source (1,5m for type Duct and Cassette)

LPG F


LPG_F												
Indoor unit		LPG350F	LCG500F	LPG700F	LPG850F	LPG1000F	LPG1000F	LPG1200F	LPG1200F	LPG1400F	LPG1400F	LPG1600F
Outdoor unit		LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Nominal cooling performances												
Cooling capacity (1)	kW	3,50	5,30	7,10	8,50	10,00	10,00	12,10	12,10	13,40	13,40	16,00
Cooling input power (1)	kW	0,92	1,56	2,03	2,50	2,94	2,94	3,67	3,67	4,30	4,30	5,30
EER (2)	W/W	3,80	3,40	3,50	3,40	3,40	3,40	3,30	3,30	3,12	3,12	3,02
Moisture removed	l/h	1,1	1,7	2,4	2,8	3,3	3,3	3,7	3,7	3,9	3,9	4,7
Minimum cooling performances												
Cooling capacity	kW	0,90	1,60	2,40	2,90	3,20	3,20	3,60	3,60	4,00	4,00	4,80
Cooling input power	kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum cooling performances												
Cooling capacity	kW	4,00	5,50	7,60	9,00	10,50	10,50	13,10	13,10	14,20	14,20	17,00
Cooling input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency												
SEER	W/W	7,20	6,50	7,20	6,80	6,30	6,30	6,30	6,30	6,30	6,30	6,10
Efficiency energy class (3)		A++	A++	A++	A++	A++	A++	-	-	-	-	-
Pdesignc	kW	3,5	5,3	7,1	8,5	10,0	10,0	-	-	-	-	-
Annual power consumption	kWh/annum	170	285	345	438	556	556	-	-	-	-	-
Nominal heating performances												
Heating capacity (4)	kW	4,00	5,60	7,70	8,80	11,50	11,50	13,50	13,50	15,50	15,50	17,00
Heating input power (4)	kW	0,93	1,44	1,95	2,25	2,95	2,95	3,75	3,75	4,20	4,20	4,80
COP (2)	W/W	4,30	3,90	3,95	3,90	3,90	3,90	3,60	3,60	3,69	3,69	3,54
Minimum heating performances												
Heating capacity	kW	0,90	1,60	2,20	2,50	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power	kW	0,20	0,30	0,50	0,75	0,90	0,90	1,10	1,10	1,35	1,35	1,50
Maximum heating performances												
Heating capacity	kW	4,50	6,10	8,40	9,50	12,00	12,00	14,50	14,50	16,00	16,00	18,00
Heating input power	kW	1,30	1,80	2,60	3,30	4,00	4,00	5,30	5,30	5,60	5,60	6,80
Seasonal efficiency (temperate climate)												
SCOP	W/W	4,10	4,20	4,30	4,50	4,20	4,20	4,00	4,00	4,00	4,00	4,00
Efficiency energy class (3)		A+	A+	A+	A+	A+	A+	-	-	-	-	-
Pdesignh	kW	3,10	3,90	4,70	6,00	7,00	7,00	-	-	-	-	-
Annual power consumption	kWh/annum	1059	1300	1530	1867	2333	2333	-	-	-	-	-
Electric data												
Rated power input (5)	kW	1,3	1,9	2,8	3,3	4,7	4,4	5,3	5,3	5,6	5,6	6,8
Rated current input (5)	A	6,0	9,5	14,0	15,0	21,0	7,0	23,0	9,0	25,0	11,0	12,0
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6.35 (1/4")	6.35 (1/4")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")	15.9 (5/8")
Diameter of refrigerant gas connections	mm (inch)	9.52 (3/8")	12.7 (1/2")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")	9.52 (3/8")
Nominal length of refrigerant lines	m	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	7,5	7,5	7,5
Power supply		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	,		· · · · · · · · · · · · · · · · · · ·	·					
•••		220-240V ~	220-240V ~	220-240V ~	220-240V ~	220-240V ~	380-415V	220-240V ~	380-415V	220-240V ~	380-415V	380-415V
Power supply		50Hz	50Hz	50Hz	50Hz	50Hz	3N∼ 50Hz	50Hz	3N∼ 50Hz	50Hz	3N∼ 50Hz	3N∼ 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

	LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
Туре				Inverter	centrifugal			
m³/h	650	900	1250	1400	1600	1900	2300	2400
m³/h	600	800	1100	1300	1500	1800	2100	2200
m³/h	500	700	1000	1200	1400	1600	1800	1900
m³/h	400	600	900	1000	1200	1400	1500	1600
dB(A)	35,0	41,0	41,0	46,0	48,0	45,0	51,0	53,0
dB(A)	34,0	40,0	39,0	45,0	46,0	43,0	48,0	51,0
dB(A)	31,0	38,0	37,0	43,0	45,0	40,0	45,0	48,0
dB(A)	28,0	36,0	35,0	39,0	43,0	38,0	43,0	44,0
mm	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0
	m ³ /h m ³ /h m ³ /h m ³ /h dB(A) dB(A) dB(A) dB(A)	Type m³/h 650 m³/h 600 m³/h 500 m³/h 400 dB(A) 35,0 dB(A) 34,0 dB(A) 31,0 dB(A) 28,0	Type m³/h 650 900 m³/h 600 800 m³/h 500 700 m³/h 400 600 dB(A) 35,0 41,0 dB(A) 34,0 40,0 dB(A) 31,0 38,0 dB(A) 28,0 36,0	Type m³/h 650 900 1250 m³/h 600 800 1100 m³/h 500 700 1000 m³/h 400 600 900 dB(A) 35,0 41,0 41,0 dB(A) 34,0 40,0 39,0 dB(A) 31,0 38,0 37,0 dB(A) 28,0 36,0 35,0	m³/h 650 900 1250 1400 m³/h 600 800 1100 1300 m³/h 500 700 1000 1200 m³/h 400 600 900 1000 dB(A) 35,0 41,0 41,0 46,0 dB(A) 34,0 40,0 39,0 45,0 dB(A) 31,0 38,0 37,0 43,0 dB(A) 28,0 36,0 35,0 39,0	Type Inverter centrifugal m³/h 650 900 1250 1400 1600 m³/h 600 800 1100 1300 1500 m³/h 500 700 1000 1200 1400 m³/h 400 600 900 1000 1200 dB(A) 35,0 41,0 41,0 46,0 48,0 dB(A) 34,0 40,0 39,0 45,0 46,0 dB(A) 31,0 38,0 37,0 43,0 45,0 dB(A) 28,0 36,0 35,0 39,0 43,0	Type Inverter centrifugal m³/h 650 900 1250 1400 1600 1900 m³/h 600 800 1100 1300 1500 1800 m³/h 500 700 1000 1200 1400 1600 m³/h 400 600 900 1000 1200 1400 1600 dB(A) 35,0 41,0 41,0 46,0 48,0 45,0 dB(A) 34,0 40,0 39,0 45,0 46,0 43,0 dB(A) 31,0 38,0 37,0 43,0 45,0 40,0 dB(A) 28,0 36,0 35,0 39,0 43,0 38,0	Type

Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source (1,5m for type Duct and Cassette)

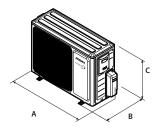
INDOOR UNIT WEIGHTS AND DIMENSIONS

		LPG350D	LPG500D	LPG700D	LPG850D	LPG1000D	LPG1200D	LPG1400D	LPG1600D
Indoor unit									
A	mm	710	1000	900	900	1340	1340	1400	1400
В	mm	450	450	655	655	655	655	700	700
C	mm	200	200	260	260	260	260	300	300
Net weight	kg	18,00	24,00	29,50	29,50	43,00	43,00	52,00	55,00
Dimensions and weights for transport									
D	mm	1008	1308	1115	1115	1568	1568	1601	1601
E	mm	568	568	772	772	770	770	813	813
F	mm	275	275	320	320	323	323	365	365
Weight for transport	kg	22,00	29,00	33,50	33,50	49,00	49,00	58,00	62,00

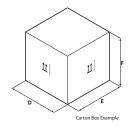
LPG_C/CS

		LPG350CS	LPG500CS	LPG700C	LPG850C	LPG1000C	LPG1200C	LPG1400C	LPG1600C
Indoor unit									
A	mm	570	570	840	840	840	840	840	840
В	mm	570	570	840	840	840	840	840	840
C	mm	260	260	200	200	240	240	290	290
Net weight	kg	17,00	17,00	21,00	21,00	23,00	23,00	25,00	26,00
Dimensions and weights for transport									
D	mm	698	698	943	943	933	933	933	933
E	mm	653	653	923	923	903	903	903	903
F	mm	295	295	245	245	272	272	335	335
Weight for transport	kg	21,00	21,00	27,00	27,00	29,00	29,00	32,00	33,00

LPG_F


		LPG350F	LPG500F	LPG700F	LPG850F	LPG1000F	LPG1200F	LPG1400F	LPG1600F
Indoor unit									
A	mm	870	870	1200	1200	1200	1570	1570	1570
В	mm	235	235	235	235	235	235	235	235
C	mm	665	665	665	665	665	665	665	665
Net weight	kg	24,00	25,00	31,00	32,00	32,00	40,00	42,00	42,00
Dimensions and weights for transport									_
D	mm	973	973	1303	1303	1303	1669	1669	1669
E	mm	770	770	770	770	770	770	770	770
F	mm	300	300	300	300	300	300	300	300
Weight for transport	kg	28,00	29,00	36,00	37,00	37,00	47,00	49,00	49,00

Grid dimensions and weights GLG40 - GLG40S


		GLG40S	GLG40
Indoor unit			
A	mm	620	950
В	mm	620	950
C	mm	48	52
D	mm	701	1033
E	mm	701	1038
F	mm	125	112
Net weight	kg	3,00	6,00
Weight for transport	kg	5,00	10,00

Mandatory accessory to be provided when ordering.

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

LPG350 - LCGP500 - LPG700 - LPG850 LPG1000 - LPG1000T - LPG1200 LPG1200T LPG1400 - LPG1400T - LP-G1600T

		LPG350	LPG500	LPG700	LPG850	LPG1000	LPG1000T	LPG1200	LPG1200T	LPG1400	LPG1400T	LPG1600T
Outdoor unit		1, 4550	1. 4500	11 07 00	11 4030	21 01000	21 010001		11 012001	21 01 100	21 01 1001	21 010001
A	mm	732	802	958	958	1020	1020	1020	1020	1020	1020	1070
В	mm	330	350	402	402	427	427	427	427	427	427	427
C	mm	553	555	660	660	820	820	820	820	820	820	960
Net weight	kg	24,50	30,50	41,50	46,00	65,00	75,00	66,00	76,00	73,00	81,00	94,00
Dimensions and weights for transport	-											
D	mm	794	872	1032	1032	1095	1095	1095	1095	1095	1095	1150
E	mm	376	398	456	456	500	500	500	500	500	500	475
F	mm	605	609	730	730	955	955	955	955	955	955	1095
Weight for transport	kg	27,00	33,00	45,00	50,00	72,00	88,00	73,00	89,00	86,00	94,00	103,00

LCG

Monosplit

Cooling capacity 3,5 ÷ 16,0 kW Heating capacity 4,0 ÷ 17,0 kW

- New R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- 30% reduction of refrigerant gas compared with the previous range.
- 1 W of absorption in standby.
- SEER up to 7.2.

DESCRIPTION

The monosplit air conditioners of the LCG range are combined with:

- LCG_D for duct type horizontal installation.
- LCG_CS e LCG_C (Cassette) for false ceiling installation.
- LCG_F (Floor ceiling) wall and/or ceiling installation.

The outdoor unit features a compressor with inverter technology, an electronic valve and electric heater to ensure proper winter operation and prevent ice formation on the coil.

TYPE OF INDOOR UNIT

LCG_D indoor unit

Duct indoor unit, designed for indoor duct type horizontal installation.

- Every indoor unit comes with a remote control and a remote control holder.
- WRC20 wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- 3-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- **Turbo** function to attain the desired temperature as quickly as possible
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

— Equipped with condensate drain pump.

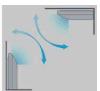
LCG CS indoor unit

Indoor unit Cassette of dimensions (570x570 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

LCG_C indoor unit

Indoor unit Cassette of dimensions (840x840 mm) designed to be installed on suspended ceiling indoors.


- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

LCG F indoor unit

Indoor unit **Floor ceiling** designed to be installed on the wall or ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

Low cooling function

cooling operation with outdoor temperatures down to -20 °C.

Low heating function

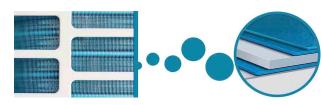
heating with external temperatures up to -20 °C.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.



Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

TYPE OF OUTDOOR UNIT

Outdoor unit

Multisplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRC20: Wired panel with liquid crystal display and soft-touch buttons. **WRC40:** Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with a maximum of 8 daily time bands.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

DCG: This accessory makes it possible to remotely control the main functions of the unit via the relay externally with third-party loads that are suitably powered and sized.

ECD: This accessory makes it possible to manage the switching on/off of the indoor units via the ON-OFF device, using the RS485 communication network.

MINIMODBUS20: Thanks to its compact size, this accessory can be easily installed inside the indoor unit. It allows the units to communicate with each other by providing a ModBus RTU serial on RS485 for supervision with external BMS.

WIFIKIT20: Plug & Play module to be installed in the indoor unit for Wi-Fi control.

WIFIKIT30: Plug & Play module to be installed in the indoor unit for Wi-Fi control.

GLG40S: Air supply and flow grid with dimensions (620x620 mm) for cassette internal unit.

GLG40: Air supply and flow grid with dimensions (950x950 mm) for cassette internal unit.

* The CC2 centralised control can manage up to 36 LCG systems.

Accessories compatibility

LCG D

Accessory	LCG350D	LCG500D	LCG700D	LCG850D	LCG1000D	LCG1200D	LCG1400D	LCG1600D
CC2 (1)	•	•	•	•	•	•	•	•
WRC20 (1)	•	•	•	•	•	•	•	•
WRC40 (1)	•	•		•				

 $(1) \ Auto-restart \ function.$ The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Wired panel WRC20 standard supply.

Accessory	LCG350D	LCG500D	LCG700D	LCG850D	LCG1000D	LCG1200D	LCG1400D	LCG1600D
DCG	•	•	•	•	•	•	•	•
ECD	•	•	•	•	•	•	•	•
MINIMODBUS20 (1)	•	•	•	•	•	•	•	•
WIFIKIT20	•		•	•	•	•	•	
WIFIKIT30	•	•	•	•	•	•	•	•

⁽¹⁾ The units can only be routed using the wired control panel (accessory WRC20, WRC50 or WRC40). For more information about the procedure refer to the user manual.

LCG CS

ECO_C3		
Accessory	LCG350CS	LCG500CS
CC2 (1)	•	
WRC20 (1)	•	•
WRC40 (1)	•	•

(1) Auto-restart function.
The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Accessory	LCG350CS	LCG500CS
DCG	•	•
ECD	•	•
MINIMODBUS20 (1)	•	•
WIFIKIT20	•	•
WIFIKIT30	•	•

(1) The units can only be routed using the wired control panel (accessory WRC20, WRC40). For more information about the procedure refer to the user manual

(1) The dates can only be routed using the mice control panel (accessor) Three of the control more information about the procedure refer to the date mandain							
Accessory	LCG350CS	LCG500CS					
GLG40S (1)	•	•					

(1) Mandatory accessory.

LCG C

Accessory	LCG700C	LCG850C	LCG1000C	LCG1200C	LCG1400C	LCG1600C
CC2 (1)	•	•	•	•	•	•
WRC20 (1)	•	•	•	•	•	•
WRC40 (1)	•	•	•	•	•	•

(1) Auto-restart function.
The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Accessory	LCG700C	LCG850C	LCG1000C	LCG1200C	LCG1400C	LCG1600C
DCG	•	•	•	•	•	•
ECD	•	•	•	•	•	•
MINIMODBUS20 (1)	•	•	•	•	•	•
WIFIKIT20	•	•	•	•	•	•
WIFIKIT30	•					•

(1) The units can only be routed using the wired control panel (accessory WRC20, WRC30 or WRC40). For more information about the procedure refer to the user manual.

Accessory	LCG700C	LCG850C	LCG1000C	LCG1200C	LCG1400C	LCG1600C
GLG40 (1)	•	•	•	•	•	•

(1) Mandatory accessory.

LCG_F

Accessory	LCG350F	LCG500F	LCG700F	LCG850F	LCG1000F	LCG1200F	LCG1400F	LCG1600F
CC2 (1)	•	•	•	•	•	•	•	•
WRC20 (1)	•	•	•	•	•	•	•	•
WRC40 (1)	•					•		•

(1) Auto-restart function.
The use of the CC2 centralised control requires the installation of 1 MINIMODBUS20 for each indoor unit installed.

Accessory	LCG350F	LCG500F	LCG700F	LCG850F	LCG1000F	LCG1200F	LCG1400F	LCG1600F
DCG	•	•	•	•	•	•	•	•
ECD	•	•	•	•	•	•	•	•
MINIMODBUS20 (1)	•	•	•	•	•	•	•	•
WIFIKIT20	•	•	•	•	•	•	•	•
WIFIKIT30	•	•	•	•	•	•	•	•

⁽¹⁾ The units can only be routed using the wired control panel (accessory WRC20, WRC50 or WRC40). For more information about the procedure refer to the user manual.

OUTDOOR UNIT PERFORMANCE DATA

		LCG350	LCG500	LCG700	LCG850	LCG1000	LCG1000T	LCG1200	LCG1200T	LCG1400	LCG1400T	LCG1600T
Outdoor unit												
Type of fan	Туре	Inverter axial										
Air flow rate												
Maximum	m³/h	3000	3000	3600	4000	5900	5900	5900	5900	5900	5900	6600
Sound power (1)												
Maximum	dB(A)	64,0	65,0	67,0	69,0	70,0	70,0	71,0	71,0	71,0	72,0	72,0
Sound pressure (2)												
Maximum	dB(A)	50,0	50,0	52,0	53,0	55,0	55,0	55,0	56,0	56,0	57,0	57,0
Compressor												
Tuno	tuno	Inverter										
Туре	type	rotary										
Refrigerant	type	R32										
Refrigerant charge	kg	0,80	1,00	1,60	1,80	2,50	2,50	2,70	2,70	2,80	2,80	3,60
Potential global heating	GWP	675kgCO₂eq										
Equivalent CO ₂	t	0,53	0,68	1,08	1,22	1,69	1,69	1,79	1,79	1,89	1,89	2,43
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Maximum refrigerant tube length	m	30	35	50	50	65	65	75	75	75	75	75
Maximum refrigerant line level difference	m	15,0	20,0	25,0	25,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0
Refrigerant to be added	g/m	16	16	40	40	40	40	40	40	40	40	40
Power supply												
Outdoor unit nower cumby		220-240V ~	380-415V ~	220-240V ~	380-415V ~	220-240V ~	380-415V ~	380-415V ~				
Outdoor unit power supply		50Hz	50Hz	50Hz	50Hz	50Hz	3N ~ 50Hz	50Hz	3N ~ 50Hz	50Hz	3N ~ 50Hz	3N ~ 50Hz

⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744. (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

INDOOR UNIT PERFORMANCE DATA

LCG D

Indoor unit		LCG350D	LCG500D	LCG700D	LCG850D	LCG1000D	LCG1000D	LCG1200D	LCG1200D	LCG1400D	LCG1400D	LCG1600D
Outdoor unit		LCG350	LCG500	LCG700	LCG850	LCG1000	LCG1000T	LCG1200	LCG1200T	LCG1400	LCG1400T	LCG1600T
Nominal cooling performances												
Cooling capacity (1)	kW	3,50	5,00	7,00	8,50	10,00	10,00	12,10	12,10	13,40	13,40	16,00
Cooling input power (1)	kW	0,95	1,55	2,10	2,70	3,20	3,15	4,10	3,80	4,45	4,70	5,45
EER (2)	W/W	3,68	3,23	3,33	3,15	3,12	3,17	2,95	3,18	3,01	2,85	2,94
Moisture removed	l/h	0,9	1,6	2,4	3,2	2,8	2,8	1,7	2,0	3,3	3,6	4,3
Minimum cooling performances												
Cooling capacity	kW	0,90	1,60	2,40	2,40	3,20	3,20	3,60	3,60	6,00	6,00	6,80
Cooling input power	kW	0,20	0,30	0,40	0,50	0,60	0,60	0,70	0,60	0,80	0,80	0,85
Maximum cooling performances												
Cooling capacity	kW	4,00	5,50	8,00	9,00	11,00	11,00	12,80	12,80	14,20	14,20	16,80
Cooling input power	kW	1,35	1,75	3,50	3,95	4,05	4,05	4,85	5,30	5,50	5,95	5,95
Cooling input current	A	4,2	6,3	8,7	12,1	13,9	4,8	17,9	5,3	19,9	7,2	7,7
Seasonal efficiency												
SEER	W/W	6,10	6,10	6,80	6,10	6,10	6,10	5,80	5,80	6,10	5,60	6,10
Efficiency energy class (3)		A++	A++	A++	A++	A++	A++	-	-	-	-	-
Pdesignc	kW	3,5	5,0	7,0	8,5	10,0	10,0	-	-	-	-	-
Annual power consumption	kWh/annum	200	277	357	480	571	577	-	-	-	-	-
Nominal heating performances												
Heating capacity (4)	kW	4,00	5,50	8,00	8,80	12,00	12,00	13,50	13,50	15,50	15,50	17,00
Heating input power (4)	kW	1,05	1,45	2,25	2,55	3,40	3,50	4,10	3,90	4,60	4,45	5,00
COP (2)	W/W	3,81	3,79	3,56	3,45	3,53	3,43	3,29	3,46	3,37	3,48	3,40
Minimum heating performances												
Heating capacity	kW	0,90	1,50	2,20	2,40	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power	kW	0,20	0,30	0,45	0,50	0,60	0,60	0,70	0,60	0,80	0,80	0,85
Maximum heating performances												
Heating capacity	kW	4,50	6,00	9,00	9,50	13,50	13,50	14,50	14,50	16,00	16,00	17,50
Heating input power	kW	1,35	1,75	3,50	3,95	4,05	4,05	4,85	5,30	5,50	5,95	5,95
Heating input current	A	4,7	6,0	9,5	11,1	15,2	5,6	17,0	5,5	20,4	6,2	7,3
Seasonal efficiency (temperate climate)												
SCOP	W/W	4,00	4,00	4,00	4,00	4,00	4,00	-	-	-	-	-
Efficiency energy class (3)		A+	A+	A+	A+	A+	A+	-	-	-	-	-
Pdesignh	kW	3,10	4,20	6,40	7,20	9,00	9,00	-	-	-	-	-
Annual power consumption	kWh/annum	1110	1469	2238	2576	3147	3218	-	-	-	-	-
Electric data									_			
Rated power input (5)	kW	1,4	1,8	3,5	4,0	4,1	4,7	4,9	5,3	5,5	6,0	6,0
Rated current input (5)	A	6,0	8,0	16,0	18,0	18,5	7,0	22,0	8,0	25,0	9,0	9,0
Refrigeration pipework												
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.
(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

		LCG350D	LCG500D	LCG700D	LCG850D	LCG1000D	LCG1200D	LCG1400D	LCG1600D
Indoor unit									
Type of fan	Type				Inverter	centrifugal			
Air flow rate									
Turbo	m³/h	650	950	1200	1500	1800	2000	2200	2400
Maximum	m³/h	600	880	1160	1350	1520	1730	2000	1960
Average	m³/h	510	820	1090	1130	1380	1570	1730	1670
Minimum	m³/h	450	700	940	950	1270	1400	1490	1380
High static pressure									
Nominal	Pa	25	25	25	37	37	50	50	50
Minimum	Pa	0	0	0	0	0	0	0	0
Maximum	Pa	50	50	75	75	150	150	150	200
Sound pressure (1)									
Turbo	dB(A)	41,0	43,0	40,0	42,0	46,0	42,0	43,0	44,0
Maximum	dB(A)	38,0	42,0	39,0	40,0	44,0	40,0	41,0	41,0
Average	dB(A)	36,0	39,0	37,0	37,0	42,0	39,0	40,0	39,0
Minimum	dB(A)	34,0	36,0	32,0	35,0	40,0	37,0	38,0	38,0
Indoor unit									
Condensate discharge diameter	mm	26,0	26,0	26,0	26,0	26,0	26,0	26,0	26,0
Power supply									
Indoor unit nouver cumply					220 2401/ 5011-				380-415V 3N ~
Indoor unit power supply					220-240V ~ 50Hz				50Hz

⁽¹⁾ Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

LCG_CS

Indoor unit		LCG350CS	LCG500CS
Outdoor unit		LCG350	LCG500
Nominal cooling performances			
Cooling capacity (1)	kW	3,50	5,00
Cooling input power (1)	kW	0,95	1,56
EER (2)	W/W	3,50	3,21
Moisture removed	l/h	1,0	1,8
Minimum cooling performances			
Cooling capacity	kW	0,90	1,60
Cooling input power	kW	0,20	0,30
Maximum cooling performances			
Cooling capacity	kW	4,00	5,50
Cooling input power	kW	1,35	1,75
Cooling input current	A	4,5	6,8
Seasonal efficiency			
SEER	W/W	5,90	5,90
Efficiency energy class (3)		A+	A+
Pdesignc	kW	3,5	5,0
Annual power consumption	kWh/annum	213	296
Nominal heating performances			
Heating capacity (4)	kW	4,00	5,50
Heating input power (4)	kW	1,05	1,65
COP (2)	W/W	3,81	3,33
Minimum heating performances			
Heating capacity	kW	0,90	1,50
Heating input power	kW	0,20	0,30
Maximum heating performances			
Heating capacity	kW	4,50	6,00
Heating input power	kW	1,35	1,75
Heating input current	A	4,7	7,2
Seasonal efficiency (temperate climate)			
SCOP	W/W	4,00	4,00
Efficiency energy class (3)		A+	A+
Pdesignh	kW	3,10	4,00
Annual power consumption	kWh/annum	1069	1405
Electric data			
Rated power input (5)	kW	1,4	1,8
Rated current input (5)	A	6,0	8,0
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

and the second s
verter centrifugal
700
580
480
400
44,0
39,0
36,0
33,0
31,0
20-240V ~ 50Hz

⁽¹⁾ Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

LCG C

Indoor unit		LCG700C	LCG850C	LCG1000C	LCG1000C	LCG1200C	LCG1200C	LCG1400C	LCG1400C	LCG1600C
Outdoor unit		LCG700	LCG850	LCG1000	LCG1000T	LCG1200	LCG1200T	LCG1400	LCG1400T	LCG1600T
Nominal cooling performances										
Cooling capacity (1)	kW	7,00	8,50	10,00	10,00	12,10	12,10	13,40	13,40	14,50
Cooling input power (1)	kW	2,05	2,80	3,15	3,00	4,10	4,05	4,65	4,70	5,20
EER (2)	W/W	3,41	3,04	3,17	3,33	2,95	2,99	2,88	2,85	2,79
Moisture removed	I/h	2,4	2,9	3,5	4,0	4,1	4,0	4,7	4,3	5,3
Minimum cooling performances										
Cooling capacity	kW	2,40	2,40	3,20	3,20	3,60	3,60	6,00	6,00	6,50
Cooling input power	kW	0,40	0,50	0,60	0,60	0,70	0,60	0,80	0,80	0,85
Maximum cooling performances										
Cooling capacity	kW	8,00	9,00	11,00	11,00	12,80	12,80	14,20	14,20	15,00
Cooling input power	kW	3,50	3,95	4,05	4,05	4,85	5,30	5,50	5,95	5,95
Cooling input current	A	8,8	12,7	13,8	5,0	17,5	5,9	20,8	7,2	7,6
Seasonal efficiency										
SEER	W/W	7,20	6,10	6,10	6,10	6,10	6,10	6,10	6,10	6,10
Efficiency energy class (3)		A++	A++	A++	A++	-	-	-	-	-
Pdesignc	kW	7,0	8,5	10,0	10,0	-	-	-	-	-
Annual power consumption	kWh/annum	340	472	566	553	-	-	-	-	-
Nominal heating performances										
Heating capacity (4)	kW	8,00	8,80	12,00	12,00	13,50	13,50	15,50	15,50	17,00
Heating input power (4)	kW	2,20	2,65	3,55	3,40	4,20	4,15	4,35	4,45	4,80
COP (2)	W/W	3,64	3,32	3,38	3,53	3,21	3,25	3,56	3,48	3,54
Minimum heating performances										
Heating capacity	kW	2,20	2,40	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power	kW	0,45	0,50	0,60	0,60	0,70	0,60	0,80	0,80	0,85
Maximum heating performances										
Heating capacity	kW	9,00	9,50	13,50	13,50	14,50	14,50	16,00	16,00	17,50
Heating input power	kW	3,50	3,95	4,05	4,05	4,85	5,30	5,50	5,95	5,95
Heating input current	A	9,5	11,7	15,7	5,3	18,0	6,1	19,5	6,2	7,2
Seasonal efficiency (temperate climate)										
SCOP	W/W	3,90	4,00	4,00	4,00	3,80	3,80	3,60	4,00	3,80
Efficiency energy class (3)		A	A+	A+	A+	-	-	-	-	-
Pdesignh	kW	6,40	7,20	9,00	9,00	-	-	-	-	-
Annual power consumption	kWh/annum	2297	2616	3139	3168	-	-	-	-	-
Electric data										
Rated power input (5)	kW	3,5	4,0	4,1	4,7	4,9	5,3	5,5	6,0	6,0
Rated current input (5)	A	16,0	18,0	18,5	7,0	22,0	8,0	25,0	9,0	9,0
Refrigeration pipework										
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

		LCG700C	LCG850C	LCG1000C	LCG1200C	LCG1400C	LCG1600C
Indoor unit							
Type of fan	Туре			Inverter o	entrifugal		
Air flow rate							
Turbo	m³/h	1100	1400	1500	1800	1900	2000
Maximum	m³/h	1050	1310	1470	1690	1690	1880
Average	m³/h	960	1180	1380	1470	1480	1620
Minimum	m³/h	870	1040	1220	1260	1140	1430
Sound pressure (1)							
Turbo	dB(A)	43,0	49,0	50,0	51,0	52,0	54,0
Maximum	dB(A)	42,0	47,0	48,0	49,0	51,0	52,0
Average	dB(A)	40,0	44,0	46,0	46,0	48,0	50,0
Minimum	dB(A)	39,0	41,0	42,0	42,0	45,0	48,0
Indoor unit							
Condensate discharge diameter	mm	30,0	30,0	30,0	30,0	30,0	30,0
Power supply							
Indoor unit power supply				220-240V ~ 50Hz			380-415V 3N ~ 50Hz

⁽¹⁾ Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

LCG F

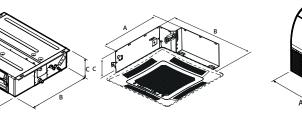
LCG_F												
Indoor unit		LCG350F	LCG500F	LCG700F	LCG850F	LCG1000F	LCG1000F	LCG1200F	LCG1200F	LCG1400F	LCG1400F	LCG1600F
Outdoor unit		LCG350	LCG500	LCG700	LCG850	LCG1000	LCG1000T	LCG1200	LCG1200T	LCG1400	LCG1400T	LCG1600T
Nominal cooling performances												
Cooling capacity (1)	kW	3,50	5,00	7,00	8,50	10,00	10,00	12,10	12,10	13,40	13,40	16,00
Cooling input power (1)	kW	0,95	1,55	1,90	2,80	3,30	3,30	3,90	4,05	4,40	4,30	5,40
EER (2)	W/W	3,89	3,23	3,68	3,04	3,03	3,03	3,10	2,99	3,05	3,12	2,96
Moisture removed	I/h	0,5	1,6	1,4	2,6	3,1	3,5	3,3	3,5	3,3	3,4	5,9
Minimum cooling performances												
Cooling capacity	kW	0,90	1,60	2,40	2,40	3,20	3,20	3,60	3,60	6,00	6,00	6,35
Cooling input power	kW	0,20	0,30	0,40	0,50	0,60	0,60	0,70	0,60	0,80	0,80	0,85
Maximum cooling performances												
Cooling capacity	kW	4,00	5,50	8,00	9,00	11,00	11,00	12,80	12,80	14,20	14,20	16,50
Cooling input power	kW	1,35	1,75	3,50	3,95	4,05	4,05	4,85	5,30	5,50	5,95	5,95
Cooling input current	A	4,0	6,5	8,6	12,7	14,5	5,1	15,7	5,9	19,5	6,6	7,7
Seasonal efficiency												
SEER	W/W	6,70	6,10	6,80	6,10	6,10	6,10	6,10	6,10	6,30	6,10	6,10
Efficiency energy class (3)		A++	A++	A++	A++	A++	A++	-	-	-	-	-
Pdesignc	kW	3,5	5,0	7,0	8,5	10,0	10,0	-	-	-	-	-
Annual power consumption	kWh/annum	177	284	359	477	573	561	-	-	-	-	-
Nominal heating performances												
Heating capacity (4)	kW	4,00	5,50	8,00	8,80	12,00	12,00	13,50	13,50	15,50	15,50	17,00
Heating input power (4)	kW	1,05	1,60	2,45	2,65	3,60	3,50	3,95	4,00	4,35	4,40	5,40
COP (2)	W/W	4,21	3,44	3,27	3,32	3,33	3,43	3,42	3,38	3,56	3,52	3,15
Minimum heating performances												
Heating capacity	kW	0,90	1,50	2,20	2,40	3,00	3,00	3,60	3,60	3,90	3,90	4,50
Heating input power	kW	0,20	0,30	0,45	0,50	0,60	0,60	0,70	0,60	0,80	0,80	0,85
Maximum heating performances												
Heating capacity	kW	4,50	6,00	9,00	9,50	13,50	13,50	14,50	14,50	16,00	16,00	17,50
Heating input power	kW	1,35	1,75	3,50	3,95	4,05	4,05	4,85	5,30	5,50	5,95	5,95
Heating input current	A	4,2	6,9	10,5	11,7	15,9	5,6	16,8	6,1	19,4	6,7	7,6
Seasonal efficiency (temperate climate)												
SCOP	W/W	4,00	4,00	3,90	4,00	4,00	4,00	3,80	3,80	3,70	4,00	4,00
Efficiency energy class (3)		A+	A+	A+	A+	A+	A+	-	-	-	-	-
Pdesignh	kW	3,10	4,00	6,40	7,20	9,00	9,00	-	-	-	-	-
Annual power consumption	kWh/annum	1040	1394	2295	2577	3149	3146	-	-	-	-	-
Electric data												
Rated power input (5)	kW	1,4	1,8	3,5	4,0	4,1	4,7	4,9	5,3	5,5	6,0	6,0
Rated current input (5)	A	6,0	8,0	16,0	18,0	18,5	7,0	22,0	8,0	25,0	9,0	9,0
Refrigeration pipework										*		
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
				,								

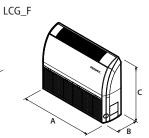
- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

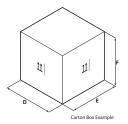
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

 (3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

 (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.


 (5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.


		LCG350F	LCG500F	LCG700F	LCG850F	LCG1000F	LCG1200F	LCG1400F	LCG1600F
Indoor unit									
Type of fan	Туре				Inverter	centrifugal			
Air flow rate									
Turbo	m³/h	650	850	1300	1500	1600	1800	2100	2300
Maximum	m³/h	610	800	1220	1380	1500	1700	2000	2200
Average	m³/h	530	700	1090	1200	1350	1540	1800	1870
Minimum	m³/h	460	600	940	1020	1260	1400	1480	1590
Sound pressure (1)									
Turbo	dB(A)	39,0	44,0	45,0	49,0	49,0	49,0	52,0	54,0
Maximum	dB(A)	36,0	42,0	44,0	47,0	47,0	47,0	50,0	53,0
Average	dB(A)	32,0	39,0	41,0	43,0	45,0	44,0	48,0	49,0
Minimum	dB(A)	28,0	36,0	38,0	39,0	43,0	42,0	44,0	45,0
Indoor unit									
Condensate discharge diameter	mm	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0
Power supply	·								
Indoor unit power supply		220-240V ~ 50Hz							380-415V 3N ~ 50Hz


⁽¹⁾ Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

INDOOR UNIT WEIGHTS AND DIMENSIONS

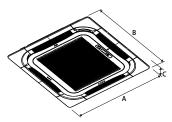
LCG_D

		LCG350D	LCG500D	LCG700D	LCG850D	LCG1000D	LCG1200D	LCG1400D	LCG1600D
Indoor unit									
A	mm	700	1000	1300	1300	1000	1400	1400	1400
В	mm	450	450	450	450	700	700	700	700
C	mm	200	200	220	220	300	300	300	300
D	mm	1008	1308	1628	1628	1205	1601	1601	1678
E	mm	568	568	578	578	813	813	813	808
F	mm	275	275	300	300	360	365	365	365
Net weight	kg	20,00	26,00	31,00	31,00	41,00	50,00	50,00	57,00
Weight for transport	kg	24,00	31,00	36,00	36,00	47,00	56,00	56,00	64,00

LCG_CS

		LCG350CS	LCG500CS
Indoor unit			
A	mm	570	570
В	mm	570	570
C	mm	265	265
D	mm	698	698
E	mm	653	653
F	mm	300	300
Net weight	kg	17,00	17,00
Weight for transport	kg	22,00	22,00

LCG_C

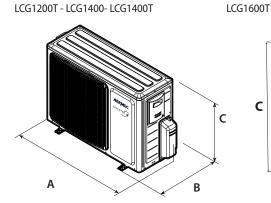

		LCG700C	LCG850C	LCG1000C	LCG1200C	LCG1400C	LCG1600C
Indoor unit							
A	mm	840	840	840	840	840	840
В	mm	840	840	840	840	840	840
С	mm	240	240	240	290	290	290
D	mm	963	963	963	963	963	963
E	mm	963	963	963	963	963	963
F	mm	325	325	325	379	379	379
Net weight	kg	29,00	29,00	31,00	33,00	36,00	36,00
Weight for transport	kg	36,00	36,00	38,00	41,00	44,00	44,00

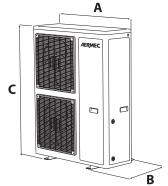
LCG_F

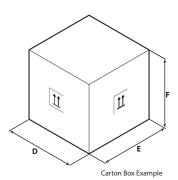
ECO_1									
		LCG350F	LCG500F	LCG700F	LCG850F	LCG1000F	LCG1200F	LCG1400F	LCG1600F
Indoor unit	'								
A	mm	870	870	1200	1200	1200	1570	1570	1570
В	mm	235	235	235	235	235	235	235	235
C	mm	665	665	665	665	665	665	665	665
D	mm	1033	1033	1033	1033	1363	1729	1729	1729
E	mm	300	300	300	300	300	300	300	300
F	mm	770	770	770	770	770	770	770	770
Net weight	kg	25,00	26,00	31,00	31,00	32,00	40,00	42,00	42,00
Weight for transport	kg	30,00	31,00	37,00	37,00	38,00	47,00	49,00	49,00

Grid dimensions and weights

GLG40S / GLG40


GLG40 - GLG40S


		GLG40S	GLG40
Indoor unit			
A	mm	620	950
В	mm	620	950
C	mm	48	52
D	mm	701	1033
E	mm	701	1038
F	mm	125	112
Net weight	kg	3,00	6,00
Weight for transport	kg	5,00	10,00


Mandatory accessory to be provided when ordering.

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

LCG350 - LCG500 - LCG700 - LCG850 LCG1000 - LCG1000T - LCG1200

		LCG350	LCG500	LCG700	LCG850	LCG1000	LCG1000T	LCG1200	LCG1200T	LCG1400	LCG1400T	LCG1600T
Outdoor unit												
A	mm	818	818	892	920	940	940	940	940	940	940	900
В	mm	302	302	340	370	460	460	460	460	460	460	340
C	mm	596	596	698	790	820	820	820	820	820	820	1345
D	mm	948	948	1029	1083	1073	1073	1073	1073	1073	1073	1033
E	mm	420	420	458	488	563	563	563	563	563	563	443
F	mm	645	645	750	855	835	835	835	835	835	835	1395
Net weight	kg	37,00	39,00	53,00	60,00	83,00	89,00	91,00	95,00	95,00	99,00	112,00
Weight for transport	kg	40,00	42,00	57,00	65,00	95,00	101,00	103,00	107,00	107,00	111,00	122,00

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MVAS

Monosplit high head duct

Cooling capacity 22,4 ÷ 28,0 kW Heating capacity 24,0 ÷ 30,0 kW

- Suitable for long-distance channels.
- Effective static pressure that can reach 150 Pa.
- Special coil with fin golden coating.

DESCRIPTION

The monosplit air conditioners of the MVAS range are combined with MVA_DH monosplit (high head duct) indoor units for duct type horizontal installation.

The outdoor unit features a compressor with inverter technology, an electronic valve and electric heater to ensure proper winter operation and prevent ice formation on the coil.

FEATURES

Indoor unit

High head duct indoor unit, designed for indoor duct type horizontal installation.

- Every indoor unit comes with a remote control and a remote control holder.
- WRC wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- 5-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

Outdoor unit

Monosplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Easy installation and maintenance.

ACCESSORIES

MVAGW: This accessory allows you to manage up to 16 MV systems (with a maximum of 255 total indoor units), making available a serial in

ModBus RTU protocol on RS485, ModBus TCP or BACnet / IP for supervision with an external BMS.

USBDC: The kit includes a converter (from CanBus to ModBus) and the VRF debugger software. IT is designed to meet the requirements of after sales services and qualified technicians who need to carry out control and debugging procedures on the MV_ranges.

WRC: Wired panel with liquid crystal display and soft-touch buttons.

WRC1: Simplified wired panel with liquid crystal display and soft-touch buttons with built-in external contact. This panel is particularly suitable for hotel applications.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

PERFORMANCE SPECIFICATIONS

Indoor unit		MVA2240DH	MVA2800DH
Outdoor unit		MVAS2242T	MVAS2802T
Nominal cooling performances			
Cooling capacity (1)	kW	22,40	28,00
Cooling input power (1)	kW	6,12	7,78
Cooling input current	A	10,9	13,9
EER (2)	W/W	3,66	3,60
Nominal heating performances			
Heating capacity (3)	kW	24,00	30,00
Heating input power (3)	kW	4,90	6,12
Heating input current	A	8,8	10,9
COP (2)	W/W	4,90	4,90

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.
 (3) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

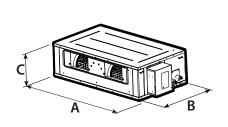
INDOOR UNIT

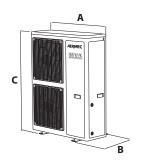
		MVA2240DH	MVA2800DH
Indoor unit			
Type of fan	Туре	Inverter centrifugal	Inverter centrifugal
Air flow rate			
Maximum	m³/h	4000	4400
High static pressure			
Nominal	Pa	150	150
Sound power (1)			
Maximum	dB(A)	64,0	65,0
Average	dB(A)	62,0	62,0
Minimum	dB(A)	59,0	60,0
Sound pressure (2)			
Maximum	dB(A)	54,0	55,0
Average	dB(A)	52,0	52,0
Minimum	dB(A)	49,0	50,0
Indoor unit			
Condensate discharge diameter	mm	30,0	30,0

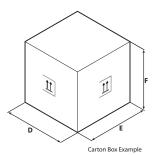
- (1) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
- (2) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

OUTDOOR UNIT

		MVAS2242T	MVAS2802T
Outdoor unit			
Type of fan	Туре	Inverter axial	Inverter axial
Sound power (1)			
Maximum	dB(A)	74,0	74,0
Compressor			
Туре	type	Inverter rotary	Inverter rotary
Refrigerant	type	R410A	R410A
Potential global heating	GWP	2088kgCO₂eq	2088kgCO₂eq


⁽¹⁾ Sound power calculated in free field, in accordance with UNI EN ISO 3744.


GENERAL DATA


Indoor unit		MVA2240DH	MVA2800DH
Outdoor unit		MVAS2242T	MVAS2802T
Electric data			
Rated power input (1)	kW	9,6	12,5
Refrigeration pipework			
Type refrigerant connections	Туре	To be soldered	To be soldered
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	19,05 (3/4")	22,2 (7/8")
Power supply			
Power supply		380-415V ~ 3N ~ 50Hz	380-415V ~ 3N ~ 50Hz

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40. NB: the quantity of refrigerant gas to be added refers to a line length greater than 5 m.

DIMENSIONS AND WEIGHTS

		MVA2240DH	MVA2800DH
Indoor unit			
A	mm	1483	1686
В	mm	791	870
C	mm	385	450
D	mm	1758	1788
E	mm	883	988
F	mm	470	580
Net weight	kg	82,00	105,00
Weight for transport	kg	104,00	140,00
		MVAS2242T	MVAS2802T
Outdoor unit			
A	mm	940	940
В	mm	1430	1615
(mm	320	460
D	mm	1038	1038
E	mm	1580	1765
F	mm	438	578
Net weight	kg	133,00	166,00
Weight for transport	kg	144,00	183,00

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

MLG

Multisplit

Cooling capacity 4,1 \div 12,0 kW Heating capacity 4,4 \div 13,0 kW

- New R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- Modern design to blend with all furnishing styles.
- Special coil with fin blue coating.

DESCRIPTION

The multisplit air conditioners of the MLG range are combined with:

- SMG_W (Wall) for wall installation.
- SLG_W (Wall) for wall installation.
- CKG_FS (Console) for wall installation.
- MLG_D to be installed horizontally indoors.
- MLG_CS e MLG_C (Cassette) for false ceiling installation.
- MLG_F (Floor ceiling) wall and/or ceiling installation.
- MLG_FS (Console) for wall installation.

The outdoor unit features a compressor with inverter technology, an electronic valve and electric heater to ensure proper winter operation and prevent ice formation on the coil.

TYPE OF INDOOR UNIT

SMG_W indoor unit

Wall indoor unit designed to be installed on indoor walls. Universal indoor units: all indoor units can be combined with both multisplit outdoor units of the series MLG and monosplit outdoor units of the series SMG.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
 3-speed fan, to meet every possible need.

- Auto function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Air Purifiers (Cold Plasma) is able to reduce pollutants.
- Standard Wi-Fi module.

Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

SLG Windoor unit

Wall indoor unit designed to be installed on indoor walls.

Universal indoor units: some indoor units can be combined with both multisplit outdoor units of the series MLG and monosplit outdoor units of the series SLG:

SLG	SLG200W	SLG250W	SLG350W	SLG500W	SLG700W
Universal indoor units compatible with MLG multisplit system			•	•	
Multisplit indoor units	•				

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Possibility of Wi-Fi control.

Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

CKG FS indoor unit

Console indoor unit designed to be installed on indoor floors.

Universal indoor units: some indoor units can be combined with both multisplit outdoor units of the series MLG and monosplit outdoor units of the series CKG:

CKG_FS	CKG260FS	CKG360FS	CKG500FS
Universal indoor units compatible with MLG	_		
multisplit system	•	•	

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.

866

- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Indoor unit front panel with LED display and indicator lights.
- 5-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.

- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Air Purifiers (Cold Plasma) is able to reduce pollutants.
- Standard Wi-Fi module.

Single air delivery

Dual air delivery (default)

Intake

Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

MLG D indoor unit

Indoor unit designed to be fitted horizontally on indoor walls.

- Every indoor unit comes with a remote control and a remote control holder.
- WRCA wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- 3-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MLG_CS indoor unit

Indoor unit **Cassette** of dimensions (600x600 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MLG Cindoor unit

Indoor unit **Cassette** of dimensions (840x840 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MLG_F indoor unit

Indoor unit **Floor ceiling** designed to be installed on the wall or ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

MLG FS indoor unit

A **Console** indoor unit designed to be installed on indoor floors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 5-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Air Purifiers (Cold Plasma) is able to reduce pollutants.
- Standard Wi-Fi module.

Single air delivery

Dual air delivery (default)

Intake

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Systems with multi-line refrigerant connections, where every indoor unit is connected directly to the outdoor unit via dedicated refrigerant lines.
- Easy installation and maintenance.

Low cooling function

cooling operation with outdoor temperatures down to -15 °C.

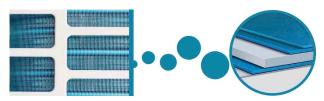
Low heating function

heating with external temperatures up to:

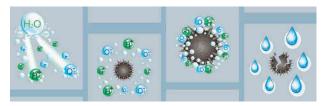
Models	Temperature up to -20 °C	Temperature up to -22 °C
MLG420		•
MLG520		•
MLG630		•
MLG730		•
MLG840		•
MLG1040	•	
MLG1250	•	

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.


Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.


Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

SUPPLIED COMPONENTS FOR INDOOR UNITS

Models	SMG_W	SLG_W	CKG_FS	MLG_D	MLG_CS	MLG_C	MLG_F	MLG_FS
Remote control	•	•	•	•	•	•	•	•
Remote control holder	•	•	•	•	•	•	•	•
WRCA wired panel				•				
Air Purifiers (Cold Plasma)	•		•					•
Condensate discharge pump				•	•	•		
Wi-Fi module	•		•					•

TYPE OF OUTDOOR UNIT

Outdoor unit

Multisplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

Types:

- Dualsplit: outdoor units MLG420 and MLG520 can be combined with 1 or 2 indoor units.
- Trialsplit: outdoor units MLG630 and MLG730 can be combined with 2 or 3 indoor units.
- Quadrisplit: outdoor units MLG840 and MLG1040 can be combined with 2, 3 or 4 indoor units.
- Pentasplit: outdoor unit MLG1250 can be combined with 2, 3, 4 or 5 indoor units.

Main features:

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRCA: Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with a maximum of 8 daily time bands.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

DCK: Remote Contact Kit. This accessory allows you to switch the system on and off using an external contact.

WIFIKIT: Plug & Play module to be installed in the indoor unit for Wi-Fi control.

WIFIKIT10: Plug & Play module to be installed in the indoor unit for Wi-Fi control.

The accessories WRCA and WIFIKIT / WIFIKIT10 are compatible with one another and can therefore be connected to the same indoor unit simultaneously.

GL405: Air supply and flow grid with dimensions (600x600 mm) for cassette internal unit.

GL40: Air supply and flow grid with dimensions (840x840 mm) for cassette internal unit.

* The CC2 centralised control can manage up to 36 MLG systems.

CC2

ACCESSORIES COMPATIBILITY

SLG_W

Accessory	SLG200W	SLG250W	SLG350W	SLG500W	SLG700W
CC2 (1)	•	•	•	•	•
WRCA (1)	•	•	•	•	•
(1) Auto-restart function.					
Accessory	SLG200W	SLG250W	SLG350W	SLG500W	SLG700W
DCK	•	•	•	•	•
WIFIKIT				•	•
WIFIKIT10	•	•			

CKG_FS

Accessory	CKG260FS	CKG360FS
CC2 (1)	•	•
WRCA (1)	•	•

(1) Auto-restart function.

MLG_FS

Accessory	MLG500FS	
CC2 (1)	•	
WRCA (1)	•	

(1) Auto-restart function.

MLG_D

						-
Accessory	MLG250D	MLG350D	MLG500D	MLG600D	MLG700D	
((2 (1)	•	•	•	•	•	Ī

(1) Auto-restart function.
The WRCA accessory is supplied with the MLG_D indoor units.

MLG_CS

Accessory	MLG350CS	MLG500CS
CC2 (1)	•	•
WRCA (1)	•	•
(1) Auto-restart function.		

Accessory	MLG350CS	MLG500CS
DCK	•	•
Accessory	MLG350CS	MLG500CS
GL40S (1)	•	

⁽¹⁾ Mandatory accessory.

MLG_C

Accessory	MLG700C
CC2 (1)	•
WRCA (1)	•
(1) Auto-restart function.	

Accessory	MLG700C
DCK	•
Accessory	MLG700C
GL40 (1)	•

⁽¹⁾ Mandatory accessory.

MLG_F

Accessory	MLG250F	MLG350F	MLG500F	MLG700F
CC2 (1)	•	•	•	•
WRCA (1)	•	•	•	•

⁽¹⁾ Auto-restart function.

INDOOR UNIT VERSIONS AVAILABLE

Nominal cooling capacity in kBTU/h				Indoo	r units			
7		SLG200W						
9	SMG270W	SLG250W	CKG260FS	MLG250D			MLG250F	
12	SMG350W	SLG350W	CKG360FS	MLG350D	MLG350CS		MLG350F	
18		SLG500W		MLG500D	MLG500CS		MLG500F	MLG500FS
21				MLG600D				
24		SLG700W		MLG700D		MLG700C	MLG700F	

ALLOWED COMBINATIONS OF INDOOR UNITS

Trialsplit, quadrisplit, pentasplit: it is mandatory to install at least 2 indoor units for correct functioning of the system.

For further information, please refer to the technical documentation on the website www.aermec.com

	6420 BTU/h)		5520 BTU/h)		G630 BTU/h)		G730 BTU/h)		MLG84	/h)		MLG104 (36kBTU)		MLG1250 (42kBTU/h)			
	_	_	_	_		_	-		N° Indoo		_						
1	2	1	2	2	3	2	3	2	3	4	2	3	4	2	3	4	5
7	7+7	9	7+7	7+7	7+7+7	7+7	7+7+7	7+7	7+7+7	7+7+7+7	7+12	7+7+7	7+7+7+7	7+18	7+7+7	7+7+7+7	7+7+7+7
9	7+9	12	7+9	7+9	7+7+9	7+9	7+7+9	7+9	7+7+9	7+7+7+9	7+18	7+7+9	7+7+7+9	7+21	7+7+9	7+7+7+9	7+7+7+7+9
12	7+12 9+9		7+12	7+12	7+7+12	7+12	7+7+12	7+12 7+18	7+7+12	7+7+7+12	7+21	7+7+12	7+7+7+12	7+24	7+7+12	7+7+7+12	7+7+7+7+12
			9+9	7+18 9+9	7+9+9	7+18	7+7+18 7+9+9	9+9	7+7+18 7+9+9	7+7+7+18 7+7+9+9	7+24	7+7+18	7+7+7+18	9+12 9+18	7+7+18	7+7+7+18 7+7+7+21	7+7+7+7+18 7+7+7+7+21
	9+12		9+12 12+12	9+9	7+9+12 7+12+12	9+9 9+12	7+9+12	9+12	7+9+9	7+7+9+9	9+9 9+12	7+7+21 7+7+24	7+7+7+21 7+7+7+24	9+10	7+7+21 7+7+24	7+7+7+21	7+7+7+7+21
			12+12	9+12	9+9+9	9+12	7+9+12	9+12	7+9+12	7+7+9+12	9+12	7+7+24	7+7+7+24	9+21	7+7+24	7+7+7+24	7+7+7+24
				12+12	9+9+12	12+12	7+12+12	12+12	7+12+12	7+7+12+12	9+21	7+9+12	7+7+9+12	12+12	7+9+12	7+7+9+12	7+7+7+9+12
				12+18	212112	12+18	9+9+9	12+18	7+12+18	7+9+9+9	9+24	7+9+18	7+7+9+18	12+18	7+9+18	7+7+9+18	7+7+7+9+18
				12110		18+18	9+9+12	18+18	9+9+9	7+9+9+12	12+12	7+9+21	7+7+9+21	12+21	7+9+21	7+7+9+21	7+7+7+9+21
						10110	9+9+18	10110	9+9+12	7+9+12+12	12+18	7+9+24	7+7+9+24	12+24	7+9+24	7+7+9+24	7+7+7+9+24
							9+12+12		9+9+18	9+9+9+9	12+21	7+12+12	7+7+12+12	18+18	7+12+12	7+7+12+12	7+7+7+12+12
							12+12+12		9+12+12	9+9+9+12	12+24	7+12+18	7+7+12+18	18+21	7+12+18	7+7+12+18	7+7+7+12+18
									9+12+18	9+9+12+12	18+18	7+12+21	7+7+12+21	18+24	7+12+21	7+7+12+21	7+7+7+12+21
									12+12+12		18+21	7+12+24	7+7+12+24	21+21	7+12+24	7+7+12+24	7+7+7+12+24
									12+12+18		18+24	7+18+18	7+7+18+18	21+24	7+18+18	7+7+18+18	7+7+7+18+18
											21+21	7+18+21	7+7+18+21	24+24	7+18+21	7+7+18+21	7+7+7+18+21
											21+24	7+18+24	7+9+9+9		7+18+24	7+7+18+24	7+7+7+18+24
											24+24	7+21+21	7+9+9+12		7+21+21	7+7+21+21	7+7+7+21+21
												7+21+24	7+9+9+18		7+21+24	7+7+21+24	7+7+9+9+9
												9+9+9	7+9+9+21		7+24+24	7+7+24+24	7+7+9+9+12
												9+9+12	7+9+9+24		9+9+9	7+9+9+9	7+7+9+9+18
												9+9+18	7+9+12+12		9+9+12	7+9+9+12	7+7+9+9+21
												9+9+21	7+9+12+18		9+9+18	7+9+9+18	7+7+9+9+24
												9+9+24	7+9+12+21		9+9+21	7+9+9+21	7+7+9+12+12
												9+12+12	7+9+12+24		9+9+24	7+9+9+24	7+7+9+12+18
												9+12+18	7+9+18+18		9+12+12	7+9+12+12	7+7+9+12+21
												9+12+21	7+12+12+12		9+12+18	7+9+12+18	7+7+9+12+24
												9+12+24	7+12+12+18		9+12+21	7+9+12+21	7+7+9+18+18
												9+18+18	7+12+12+21		9+12+24	7+9+12+24	7+7+9+18+21
												9+18+21	9+9+9+9		9+18+18	7+9+18+18	7+7+12+12+12
												9+18+24	9+9+9+12		9+18+21	7+9+18+21	7+7+12+12+18
												9+21+21	9+9+9+18		9+18+24	7+9+18+24	7+7+12+12+21
												9+21+24	9+9+9+21		9+21+21	7+9+21+21	7+7+12+12+24
												12+12+12 12+12+18	9+9+9+24 9+9+12+12		9+21+24 9+24+24	7+9+21+24 7+12+12+12	7+7+12+18+18 7+9+9+9
												12+12+18	9+9+12+12		12+12+12	7+12+12+12	7+9+9+9+12
												12+12+24	9+9+12+10		12+12+18	7+12+12+10	7+9+9+9+18
												12+18+18	9+9+12+24		12+12+10	7+12+12+24	7+9+9+9+21
												12+18+21	9+9+18+18		12+12+24	7+12+18+18	7+9+9+9+24
												12+18+24	9+12+12+12		12+18+18	7+12+18+21	7+9+9+12+12
												12+21+21	9+12+12+18		12+18+21	7+12+18+24	7+9+9+12+18
												18+18+18	9+12+12+21		12+18+24	7+12+21+21	7+9+9+12+21
													12+12+12+12		12+21+21	7+18+18+18	7+9+9+12+24
													12+12+12+18		12+21+24	9+9+9+9	7+9+9+18+18
															12+24+24	9+9+9+12	7+9+12+12+12
															18+18+18	9+9+9+18	7+9+12+12+18
															18+18+21	9+9+9+21	7+9+12+12+21
															18+18+24	9+9+9+24	7+12+12+12+12
															18+21+21	9+9+12+12	7+12+12+12+18
															18+21+24	9+9+12+18	9+9+9+9+9
															21+21+21	9+9+12+21	9+9+9+9+12
																9+9+12+24	9+9+9+9+18
																9+9+18+18	9+9+9+9+21
																9+9+18+21	9+9+9+9+24
																9+9+18+24	9+9+9+12+12
																9+9+21+21	9+9+9+12+18
				_		-					-					9+9+21+24	9+9+9+12+21 9+9+9+12+24
				_							-					9+12+12+12	
				_							-					9+12+12+18	9+9+9+18+18
																9+12+12+21	9+9+12+12+12
				_												9+12+12+24	9+9+12+12+18 9+9+12+12+21
																9+12+18+18 9+12+18+21	9+9+12+12+21
											 					9+12+18+21	9+12+12+12+12
											 					9+12+18+24	12+12+12+12+18
											 					9+12+21+21	12712712712712
																12+12+12+12	
																12+12+12+12	
																12+12+12+10	
																12+12+12+24	
																12+12+18+18	1
																12+12+18+21	
										L		L	L			.22110121	

OUTDOOR UNIT PERFORMANCE DATA

OUTDOOK ONIT PERFORMAN		MLG420	MLG520	MLG630	MLG730	MLG840	MLG1040	MLG1250
Nominal cooling performances								
Cooling capacity (1)	kW	4,10	5,20	6,10	7,10	8,00	10,50	12,00
Cooling input power (1)	kW	1,20	1,45	1,74	1,95	2,30	3,10	3,45
EER (2)	W/W	3,42	3,59	3,51	3,64	3,48	3,39	3,48
Minimum cooling performances								
Cooling capacity	kW	2,05	2,14	2,20	2,29	2,29	2,60	2,60
Cooling input power	kW	0,55	0,55	0,95	1,10	1,20	1,60	2,40
Maximum cooling performances		•	,	,	,	,	,	,
Cooling capacity	kW	4,40	5,80	7,33	8,50	10,26	12,00	13,00
Cooling input power	kW	1,40	1,56	2,39	2,87	3,58	4,00	4,00
Cooling input current	A	5,3	6,4	7,7	8,7	10,2	14,0	16,0
Seasonal efficiency		5,5	٥,٠	.,.	37.	10,2	1.1,0	10/0
SEER	W/W	6,10	6,10	6,10	6,10	6,10	6,10	6,10
Efficiency energy class (3)	,	0,10	0,10	0,10	A++	0,10	0,10	0,10
Pdesignc	kW	4,1	5,2	6,1	7,1	8,0	10,5	12,0
Annual power consumption	kWh/annum	235	298	350	407	459	602	689
Nominal heating performances	KVVII/ dIIIIUIII	233	270	330	407	407	002	007
Heating capacity (4)	kW	4,40	5,40	6,50	8,50	9,50	12,00	12.00
3 1 7 1	kW							13,00
Heating input power (4)		1,02	1,30	1,60	2,20	2,65	3,20	3,50
COP (2)	W/W	4,31	4,15	4,06	3,86	3,58	3,75	3,71
Minimum heating performances	1347	2.40	2.50	2.44	3.77	2.00	2.00	3.00
Heating capacity	kW	2,49	2,58	3,61	3,66	3,66	2,60	2,60
Heating input power	kW	0,60	0,78	0,78	0,98	1,00	1,71	2,24
Maximum heating performances								
Heating capacity	kW	5,42	5,92	8,50	8,79	10,26	13,50	14,50
Heating input power	kW	1,78	1,78	2,87	2,87	2,87	4,00	4,00
Heating input current	A	4,5	5,8	7,1	9,8	11,8	13,0	15,0
Seasonal efficiency (temperate climate)								
SCOP		4,00	4,00	4,00	4,00	4,00	4,00	4,00
Efficiency energy class (3)					A+			
Pdesignh	kW	3,8	3,8	6,1	6,1	7,2	10,5	11,8
Annual power consumption	kWh/annum	1330	1330	2135	2135	2520	3675	4130
Outdoor unit								
Type of fan	Type				Inverter axial			
Air flow rate								
Maximum	m³/h	2600	2600	3200	4000	4000	7200	7200
Sound power								
Maximum	dB(A)	65,0	65,0	68,0	68,0	68,0	70,0	70,0
Sound pressure (5)	,	,	,	,.	,	2. 2. 7 2.		.,,,,
Maximum	dB(A)	55,0	55,0	58,0	58,0	58,0	60,0	60,0
Compressor	45(1)	33,0	33,0	30,0	30,0	30,0		
Туре	type				Rotatativo inverter			
Compressor	i) Pc				otatativo inverter			
Refrigerant	tyna				R32			
Compressor	type				IIJZ			
Refrigerant charge	kg	1,1	1,1	1,6	1,8	2,0	2,8	2,8
	GWP	1,1	1,1	1,0		2,0	Z,0	Z,0
Potential global heating Equivalent CO ₂		0.71	0.71	1.00	675kgCO₂eq	1.25	100	1.00
	t	0,71	0,71	1,08	1,22	1,35	1,86	1,86
Electric data	1,141	1.0	1.0	2.0	2.0	2.6	4.0	4.0
Rated power input (6)	kW	1,8	1,9	2,9	2,9	3,6	4,0	4,0
Rated current input (6)	A	7,9	8,3	12,7	12,7	15,9	20,0	20,0
Refrigeration pipework								
Maximum refrigerant tube length	m	20	20	60	60	70	75	75
Maximum single cooling line length	m	10	10	20	20	20	25	25
Maximum unit (indoor/external) cooling line level difference in height	m	5,0	5,0	10,0	10,0	10,0	7,5	7,5
Maximum (indoor/outdoor) cooling line level difference	e m	5,0	5,0	10,0	10,0	10,0	15,0	15,0
Power supply								
Outdoor unit power supply					220-240V ~ 50Hz			

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

(6) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

All technical data refer to the respective allowed combinations of indoor units.

INDOOR UNIT PERFORMANCE DATA

SMG_W

		SMG270W	SMG350W
Nominal cooling performances			
Cooling capacity (1)	kW	2,70	3,53
Moisture removed	I/h	0,8	0,8
Nominal heating performances			
Heating capacity (2)	kW	3,20	4,00
Indoor unit			
Type of fan	Туре	In	verter tangential
Air flow rate			
Minimum	m³/h	250	250
Maximum	m³/h	450	500
Sound power			
Minimum	dB(A)	37,0	37,0
Maximum	dB(A)	50,0	51,0
Sound pressure (3)			
Minimum	dB(A)	23,0	23,0
Maximum	dB(A)	36,0	37,0
Power supply			
Indoor unit power supply		22	20-240V ~ 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m. (3) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

SLG_W

		SLG200W	SLG250W	SLG350W	SLG500W	SLG700W
Nominal heating performances						
Heating capacity (1)	kW	2,60	2,80	3,50	5,20	6,45
Nominal cooling performances						
Cooling capacity (2)	kW	2,10	2,70	3,20	4,60	6,16
Moisture removed	I/h	0,6	0,8	1,4	1,8	1,8
Indoor unit						
Type of fan	Туре			Inverter tangential		
Air flow rate						
Minimum	m³/h	330	290	290	520	520
Maximum	m³/h	490	460	480	720	720
Sound power						
Minimum	dB(A)	38,0	35,0	38,0	44,0	44,0
Maximum	dB(A)	46,0	46,0	47,0	54,0	54,0
Sound pressure (3)						
Minimum	dB(A)	28,0	24,0	28,0	34,0	34,0
Maximum	dB(A)	36,0	35,0	37,0	45,0	44,0
Indoor unit						
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0	16,0
Power supply						
Indoor unit power supply				220-240V ~ 50Hz		

- (1) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m. (2) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (3) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

CKG FS

		CKG260FS	CKG360FS
Nominal cooling performances			
Cooling capacity (1)	kW	2,70	3,50
Moisture removed	l/h	0,8	1,2
Nominal heating performances			
Heating capacity (2)	kW	2,90	3,80
Indoor unit			
Type of fan	Туре	Inve	rter centrifugal
Air flow rate			
Minimum	m³/h	280	360
Maximum	m³/h	430	520
Sound power			
Minimum	dB(A)	38,0	39,0
Maximum	dB(A)	48,0	50,0
Sound pressure (3)			
Minimum	dB(A)	26,0	29,0
Maximum	dB(A)	36,0	40,0
Indoor unit			
Condensate discharge diameter	mm	17,0	17,0
Power supply			
Indoor unit power supply		220	0-240V ~ 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m. (3) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MLG_FS

mEd_13			
		MLG500FS	
Nominal cooling performances			
Cooling capacity (1)	kW	5,20	
Moisture removed	l/h	3,8	
Nominal heating performances			
Heating capacity (2)	kW	5,33	
Electric data			
Rated power input (3)	W	50	
Indoor unit			
Type of fan	Туре	Inverter centrifugal	
Air flow rate			
Minimum	m³/h	320	
Maximum	m³/h	650	
Sound power			
Minimum	dB(A)	45,0	
Maximum	dB(A)	55,0	
Sound pressure (4)			
Minimum	dB(A)	35,0	
Maximum	dB(A)	45,0	
Indoor unit			
Condensate discharge diameter	mm	28,0	
Power supply			
Indoor unit power supply		220-240V ~ 50Hz	

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MLG D

		MLG250D	MLG350D	MLG500D	MLG600D	MLG700D
Nominal cooling performances						
Cooling capacity (1)	kW	2,50	3,50	5,00	6,00	7,10
Moisture removed	l/h	0,8	1,4	1,8	2,0	2,5
Nominal heating performances						
Heating capacity (2)	kW	2,80	3,85	5,50	6,60	8,00
Electric data						
Rated power input (3)	W	75	85	110	110	110
Indoor unit						
Type of fan	Туре			Inverter centrifugal		
Air flow rate						
Minimum	m³/h	280	300	500	550	550
Maximum	m³/h	450	550	700	1000	1000
Sound power						
Minimum	dB(A)	41,0	42,0	43,0	44,0	44,0
Maximum	dB(A)	47,0	49,0	51,0	52,0	52,0
Sound pressure (4)						
Minimum	dB(A)	31,0	32,0	33,0	34,0	34,0
Maximum	dB(A)	37,0	39,0	41,0	42,0	42,0
Indoor unit	·	·	·			·
Condensate discharge diameter	mm	26,0	26,0	26,0	26,0	26,0
Power supply						
Indoor unit power supply				220-240V ~ 50Hz		

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MLG CS

MEG_C3			
		MLG350CS	MLG500CS
Nominal cooling performances			
Cooling capacity (1)	kW	3,50	4,50
Moisture removed	l/h	1,4	1,8
Nominal heating performances			
Heating capacity (2)	kW	4,00	5,00
Electric data			
Rated power input (3)	W	30	40
Indoor unit			
Type of fan	Туре	Inve	rter centrifugal
Air flow rate			
Minimum	m³/h	450	450
Maximum	m³/h	560	670
Sound power			
Minimum	dB(A)	45,0	46,0
Maximum	dB(A)	52,0	56,0
Sound pressure (4)			
Minimum	dB(A)	34,0	35,0
Maximum	dB(A)	41,0	45,0
Indoor unit			
Condensate discharge diameter	mm	25,0	25,0
Power supply			
Indoor unit power supply		220	-240V ~ 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MLG C

		MLG700C	
Nominal cooling performances			
Cooling capacity (1)	kW	7,10	
Moisture removed	l/h	2,5	
Nominal heating performances			
Heating capacity (2)	kW	8,00	
Electric data			
Rated power input (3)	W	60	
Indoor unit			
Type of fan	Туре	Inverter centrifugal	
Air flow rate			
Minimum	m³/h	880	
Maximum	m³/h	1220	
Sound power			
Minimum	dB(A)	47,0	
Maximum	dB(A)	56,0	
Sound pressure (4)			
Minimum	dB(A)	36,0	
Maximum	dB(A)	45,0	
Indoor unit			
Condensate discharge diameter	mm	25,0	
Power supply			
Indoor unit power supply		220-240V ~ 50Hz	

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Nominal cooling performances					
Cooling capacity (1)	kW	2,60	3,50	4,50	7,10
Moisture removed	l/h	0,8	1,4	1,8	2,5
Nominal heating performances					
Heating capacity (2)	kW	2,70	4,00	5,00	8,00
Electric data					
Rated power input (3)	W	38	38	38	60
Indoor unit					
Type of fan	Туре		Inverter o	entrifugal	
Air flow rate					
Minimum	m³/h	420	420	410	720
Maximum	m³/h	610	610	590	870
Sound power					
Minimum	dB(A)	40,0	40,0	40,0	41,0
Maximum	dB(A)	49,0	49,0	49,0	52,0
Sound pressure (4)					
Minimum	dB(A)	26,0	26,0	26,0	27,0
Maximum	dB(A)	35,0	35,0	35,0	35,0
Indoor unit					
Condensate discharge diameter	mm	17,0	17,0	17,0	17,0
Power supply					
Indoor unit power supply	·		220-240	V ~ 50Hz	·

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

ADAPTERS SUPPLIED WITH THE OUTDOOR UNIT

Models	MLG420	MICEON	MICANO MICENO MICAN	MLG520 MLG630 MLG730 MLG840 MLG1040 MLG1250) MLG630	MIC720 MICO40	MI C720	ALG730 MLG840 MLG1040	730 MICO40 MIC1040 MIC	Connections mm (in	ch)	
wodels	WLG420	MLG520	MILGOSO	WLG/30	WLG040	WILGO40	MLG1040	MLG1040	MLG1230	LG 1040 MLG 1230	Outdoor unit	Indoor unit
	1	1	2	2	2			9,52mm (3/8")	12,7mm (1/2")			
Ouantitu						2	2	6,35mm (1/4")	9,52mm (3/8")			
Quantity						2	3	12,7mm (1/2")	15,9mm (5/8")			
						4	4	9,52mm (3/8")	12,7mm (1/2")			

For further information, please refer to the technical documentation on the website www.aermec.com

INDOOR UNIT COOLING FITTINGS

SMG_W

		SMG270W	SMG350W
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")

SLG_W

		SLG200W	SLG250W	SLG350W	SLG500W	SLG700W	
Refrigeration pipework							
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	15,9 (5/8")	

CKG_FS

		CKG260FS	CKG360FS
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")

MLG_FS

		MLG500FS
Refrigeration pipework		
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	12.7 (1/2")

$\mathbf{MLG}_\mathbf{D}$

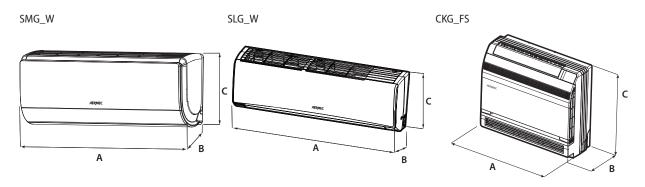
		MLG250D	MLG350D	MLG500D	MLG600D	MLG700D
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")

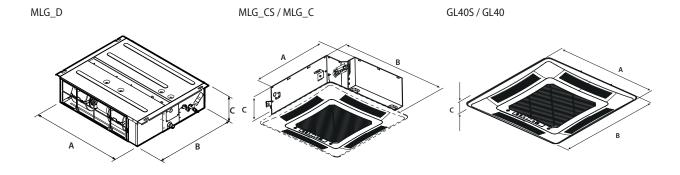
MLG_CS

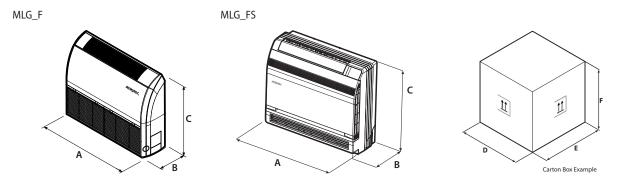
		MLG350CS	MLG500CS
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")

MLG_C

		MLG700C
Refrigeration pipework		
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")


MLG_F


		MLG250F	MLG350F	MLG500F	MLG700F
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4)	6,35 (1/4)	6,35 (1/4)	9,52 (3/8)
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8)	12,7 (1/2)	12,7 (1/2)	15,9 (5/8)


OUTDOOR UNIT COOLING FITTINGS

Madala			MLG420	MLG520	MLG630	MLG730	MLG840	MLG1040	MLG1250
Models			14kBtu/h	18kBtu/h	21kBtu/h	24kBtu/h	28kBtu/h	36kBtu/h	42kBtu/h
	Α	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	В	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Liquid connections	(mm (inch)			6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	D	mm (inch)					6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	E	mm (inch)							6,35 (1/4")
	Α	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	В	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Gas connections	(mm (inch)			9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	D	mm (inch)					9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	E	mm (inch)							9,52 (3/8")

INDOOR UNIT WEIGHTS AND DIMENSIONS

SMG W

3111G_11			
		SMG270W	SMG350W
Indoor unit			
A	mm	860	860
В	mm	170	170
C	mm	305	305
D	mm	935	935
E	mm	388	388
F	mm	295	295
Net weight	kg	11,50	11,50
Weight for transport	ka	14.00	14.00

SLG_W

		SLG200W	SLG250W	SLG350W	SLG500W	SLG700W
Indoor unit						
A	mm	790	790	790	970	970
В	mm	200	200	200	224	224
C	mm	275	275	275	300	300
D	mm	866	866	866	1041	1041
E	mm	271	271	271	320	320
F	mm	367	367	367	383	383
Net weight	kg	9,00	9,00	9,00	14,00	14,00
Weight for transport	kg	11,00	11,00	11,00	17,00	17,00

CKG_FS

		CKG260FS	CKG360FS
Indoor unit			
A	mm	700	700
В	mm	215	215
C	mm	600	600
D	mm	788	788
E	mm	283	283
F	mm	697	697
Net weight	kg	15,50	15,50
Weight for transport	ka	18,50	18.50

MLG_FS

		MLG500FS
Indoor unit		
A	mm	700
В	mm	215
C	mm	600
D	mm	788
E	mm	283
F	mm	697
Net weight	kg	16,00
Weight for transport	kg	19,00

MLG_D

		MLG250D	MLG350D	MLG500D	MLG600D	MLG700D
Indoor unit						
A	mm	700	700	900	1100	1100
В	mm	615	615	615	615	615
C	mm	200	200	200	200	200
D	mm	893	893	1123	1323	1323
E	mm	743	743	743	743	743
F	mm	305	305	305	305	305
Net weight	kg	21,00	22,00	26,00	30,00	30,00
Weight for transport	kg	26,00	28,00	32,00	40,00	40,00

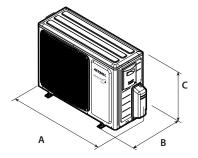
MLG_CS

		MLG350CS	MLG500CS
Indoor unit			
A	mm	666	666
В	mm	596	596
C	mm	240	240
D	mm	778	778
E	mm	738	738
F	mm	300	300
Net weight	kg	20,00	20,00
Weight for transport	kg	24,00	24,00

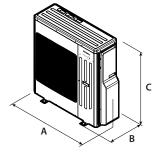
MLG_C

		MLG700C	
Indoor unit			
A	mm	840	
В	mm	840	
(mm	240	
D	mm	963	
E	mm	963	
F	mm	325	
Net weight	kg	26,00	
Weight for transport	kg	32,00	

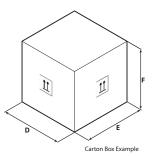
GL40S / GL40


		GL40	GL40S
Indoor unit			
A	mm	950	670
В	mm	950	670
C	mm	60	50
D	mm	1038	763
E	mm	1033	763
F	mm	133	105
Net weight	kg	7,00	4,00
Weight for transport	kg	11,00	5,00

Mandatory accessory to be provided when ordering.


MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Indoor unit					
A	mm	870	870	870	1200
В	mm	235	235	235	235
C	mm	665	665	665	665
D	mm	1033	1033	1033	1363
E	mm	300	300	300	300
F	mm	770	770	770	770
Net weight	kg	25,00	25,00	26,00	33,00
Weight for transport	kg	30,00	30,00	31,00	40,00


OUTDOOR UNIT WEIGHTS AND DIMENSIONS

MLG420 - MLG520 - MLG630 MLG730 - MLG840

MLG1040 - MLG1250

MLG

		MLG420	MLG520	MLG630	MLG730	MLG840	MLG1040	MLG1250
Outdoor unit								
A	mm	899	899	963	1001	1001	1098	1098
В	mm	378	378	396	427	427	440	440
C	mm	596	596	700	790	790	1106	1106
D	mm	948	948	1029	1083	1083	1158	1158
E	mm	420	420	458	488	488	483	483
F	mm	645	645	750	855	855	1235	1235
Net weight	kg	43,00	43,00	55,00	68,00	69,00	90,00	90,00
Weight for transport	kg	46,00	46,00	60,00	73,00	74,00	98,00	98,00

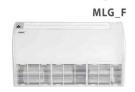
Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

SPG_W

MPG

Multisplit

Cooling capacity 4,1 ÷ 12,1 kW Heating capacity 4,4 ÷ 13,0 kW



- New R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- Modern design to blend with all furnishing styles.
- · Wide choice of indoor units available.
- Special coil with fin blue coating.

DESCRIPTION

The multisplit air conditioners of the MPG range are combined with:

- SPG_W Wall, for wall installation.
- **CKG_FS Console**, for wall installation.
- **MLG_F Floor ceiling**, for wall and/or ceiling installation.
- MPG_CS and MPG_C Cassette, for false ceiling installation.
- MPG_D and MPG_DH Duct, for duct type horizontal installation.Outdoor units equipped with base electric resistance to avoid the possible formation of ice and facilitate the disposal of condensate during heating operation, compressor and fan with DC inverter technology and electronic expansion valve.

TYPE OF INDOOR UNIT

SPG W indoor unit

Wall indoor unit designed to be installed on indoor walls.

Universal indoor units: some indoor units can be combined with both multisplit outdoor units of the series MPG and monosplit outdoor units of the series SPG:

	Indoor units SPG_W							
	SPG200W	SPG250W	SPG350W	SPG500W	SPG700W			
Monosplit outdoor units SPG		•	•	•	•			
Multisplit utdoor units MPG			•					

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.

- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play), the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

CKG FS indoor unit

Console indoor unit designed to be installed on indoor floors.

Universal indoor units: all indoor units can be combined with both multisplit outdoor units of the series MPG and monosplit outdoor units of the series CKG.

- Every indoor unit comes with a remote control and a remote control holder
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Indoor unit front panel with LED display and indicator lights.
- 5-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Air Purifiers (Cold Plasma) is able to reduce pollutants.
- Standard Wi-Fi module.

Single air delivery

Dual air delivery (default)

Intake

Smart APP Ewpe

The system is equipped standard with the Wi-Fi module; using this module and the app for iOS and Android devices (available free on Apple Store and Google Play, the system can be directly controlled from a distance on your smartphone or tablet. Remote control is possible via Cloud, using a wireless router connected to the Internet.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

MLG Findoor unit

Indoor unit **floor ceiling** designed to be installed on the wall or ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.

MPG CS indoor unit

Indoor unit **cassette** of dimensions (570x570 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 7-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MPG Cindoor unit

Indoor unit **cassette** of dimensions (840x840 mm) designed to be installed on suspended ceiling indoors.

- Every indoor unit comes with a remote control and a remote control holder.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 7-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MPG D indoor unit

Duct indoor unit designed for indoor duct type installation.

- Every indoor unit comes with a remote control and a remote control holder.
- WRCB wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- 7-speed fan, to meet every possible need.
- Auto function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- Sleep night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

MPG DH indoor unit

Duct indoor unit designed for indoor duct type installation.

- Every indoor unit comes with a remote control and a remote control holder.
- **WRCB** wired panel standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- 7-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- X-fan prolonged ventilation function, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- iFeel function for activating the ambient temperature probe inside the remote control, for improved comfort.
- Equipped with condensate drain pump.

General features

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Systems with multi-line refrigerant connections, where every indoor unit is connected directly to the outdoor unit via dedicated refrigerant lines.
- Easy installation and maintenance.

X-fan function

This self-cleaning system foresees that the fan of the indoor unit continues its operation for a few minutes after the unit is turned off, in order to perfectly dry the coil and avoid the formation and proliferation of pathogens.

Smart APP Ewpe

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Supplied components for indoor units

Models	SPG_W	CKG_FS	MLG_F	MPG_CS	MPG_C	MPG_D	MPG_DH
Remote control	•	•	•	•	•	•	•
Remote control holder	•	•	•	•	•	•	•
WRCB wired panel WRCB with integrated Wi-Fi module						•	•
Air Purifiers (Cold Plasma)		•					
Wi-Fi module		•					
Condensate discharge pump				•	•	•	•

www.aermec.com

TYPE OF OUTDOOR UNIT

MPG outdoor unit

Multisplit reversible air/air heat pump with DC inverter technology.

Types:

- Dualsplit: outdoor units MPG420 and MPG520 can be combined with 1 or 2 indoor units.
- Trialsplit: outdoor units MPG630 and MPG730 can be combined with 2 or 3 indoor units.
- Quadrisplit: outdoor unit MPG840 and MPG1040 can be combined with 2, 3 or 4 indoor units.
- Pentasplit: outdoor unit MPG1250 can be combined with 2, 3, 4 or indoor units.

Main features:

- Fitted with a electrical anti-freeze heater (in unit base) to avoid the formation of ice and encourage the drainage of condensate during heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

WRCA: Wired panel with liquid crystal display and soft-touch buttons. This accessory can be used to control not only the traditional system functions but also a weekly timer with a maximum of 8 daily time bands.

WRCB: Wired panel with liquid crystal display and soft-touch buttons, equipped with an integrated wi-fi module for remote control of the unit (via the dedicated EWPE Smart App).

* The CC2 centralised control can manage up to 36 MPG systems.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

IC-2P: Connector for communication via Mod Bus or VMF -485LINK. Accessory compulsory if combined with VMF-485LINK, or for third party supervision systems.

DCK: Remote Contact Kit. This accessory allows you to switch the system on and off using an external contact.

WIFIKIT: Plug & Play module to be installed in the indoor unit for Wi-Fi control. (Cable length 250 mm)

WIFIKITO1: Plug & Play module to be installed in the indoor unit for Wi-Fi control, equipped with Bluetooth® connection to ensure a better connection with smart devices. (Cable length 250 mm)

The accessories WRCA and WIFIKIT are compatible with one another and can therefore be connected to the same indoor unit simultaneously.

GLG40S: Air supply and flow grid with dimensions (620x620 mm) for cassette internal unit.

GLG40: Air supply and flow grid with dimensions (950x950 mm) for cassette internal unit.

ACCESSORIES COMPATIBILITY

SPG_W							
Accessory		SPG500W				SPG700W	
CC2 (1)		•				•	
WRCA (1)		•				•	
(1) Auto-restart function.							
Accessory		SPG500W				SPG700W	
IC-2P		•				•	
Accessory	SPG200W	SPG250W		SPG350W	SPG50	00W	SPG700W
DCK							•
WIFIKIT	•	•		•	•		•
WIFIKIT01	•	•		•			•
CVC FC							
CKG_FS							
Accessory CC2 (1)	CKG260FS			CKG360FS		CK	G500FS
WRCA (1)	•			•			•
	·			<u> </u>			<u>·</u>
(1) Auto-restart function.	CICOCOEC			CICOCOFC		CI	CEROFE
Accessory	CKG260FS			CKG360FS		CK	G500FS
<u>IC-2P</u>	•			•			•
MLG_F							
Accessory	MLG250F		MLG350F		MLG500F		MLG700F
CC2 (1)	• •		•		•		•
WRCA (1)	•		•		•		•
WRCB (1)	•				•		•
(1) Auto-restart function.							
Accessory	MLG250F		MLG350F		MLG500F		MLG700F
IC-2P	•		•		•		•
Accessory	MLG250F		MLG350F		MLG500F		MLG700F
DCK	• •		•		•		•
Detr.							
MPG_CS							
Accessory		MPG350CS				MPG500CS	
CC2 (1)		•				•	
WRCA (1)		•				•	
WRCB (1)		•				•	
(1) Auto-restart function.							
Accessory		MPG350CS				MPG500CS	
IC-2P		•				•	
Accessory		MPG350CS		MPG500CS			
GLG40S (1)		•				•	
(1) Mandatory accessory.							
Accessory		MPG350CS				MPG500CS	
DCK		•				•	
MPG_C							
Accessory				MPG700C			
CC2 (1)				•			
WRCA (1)				•			
WRCB (1)				•			
(1) Auto-restart function.							
Accessory				MPG700C			
IC-2P				•			
Accessory				MPG700C			<u> </u>
GLG40 (1)				•			
(1) Mandatory accessory.							
Accessory				MPG700C			
DCK				•			
MPG_D							
Accessory	MPG250D		MPG350D		MPG500D		MPG700D
CC2 (1)	•		•		•		•
WRCA (1) WRCB (1)	•		•		•		•
WKLB (1)	•		•		•		•

(1) Auto-restart function. WRCB wired panel standard supply.

Accessory	MPG250D	MPG350D	MPG500D	MPG700D
IC-2P	•	•	•	•
Accessory	MPG250D	MPG350D	MPG500D	MPG700D
DCK	•	•	•	•
MPG_DH				
Accessory	MPG250DH	MPG350DH	MPG500DH	MPG700DH
CC2 (1)	•	•	•	
WRCA (1)	•	•	•	•
WRCB (1)	•	•	•	•
(1) Auto-restart function. WRCB wired panel standard supply.				
Accessory	MPG250DH	MPG350DH	MPG500DH	MPG700DH
IC-2P	•	•	•	•
Accessory	MPG250DH	MPG350DH	MPG500DH	MPG700DH
DCK	•	•	•	•

INDOOR UNIT VERSIONS AVAILABLE

Nominal cooling capacity in k	BTU/h			Indoor units			
7	SPG200W						
9	SPG250W	CKG260FS	MLG250F			MPG250D	MPG250DH
12	SPG350W	CKG360FS	MLG350F	MPG350CS		MPG350D	MPG350DH
18	SPG500W	CKG500FS	MLG500F	MPG500CS		MPG500D	MPG500DH
24	SPG700W		MLG700F		MPG700C	MPG700D	MPG700DH

ALLOWED COMBINATIONS OF INDOOR UNITS

For trialsplit, quadrisplit, pentasplit it is mandatory to install at least 2 indoor units for correct functioning of the system.

For further information, please refer to the technical documentation on the website www.aermec.com

	MPG420 (14kBTU/h)		G520 BTU/h)	MPG630 (21kBTU/h)					
N° unità interne									
1	2	1	2	2	3				
7	7+7	9	7+7	7+7	7+7+7				
9	7+9	12	7+9	7+9	7+7+9				
12	7+12		7+12	7+12	7+7+12				
	9+9		9+9	7+18	7+9+9				
	9+12		9+12	9+9	7+9+12				
			12+12	9+12	7+12+12				
				9+18	9+9+9				
				12+12	9+9+12				
				12+18					

	MPG730 (24kBTU/h)		MPG840 (28kBTU/h)				
2	3	2	3	4			
7+7	7+7+7	7+7	7+7+7	7+7+7+7			
7+9	7+7+9	7+9	7+7+9	7+7+7+9			
7+12	7+7+12	7+12	7+7+12	7+7+7+12			
7+18	7+7+18	7+18	7+7+18	7+7+7+18			
9+9	7+9+9	9+9	7+9+9	7+7+9+9			
9+12	7+9+12	9+12	7+9+12	7+7+9+12			
9+18	7+9+18	9+18	7+9+18	7+7+9+18			
12+12	7+12+12	12+12	7+12+12	7+7+12+12			
12+18	9+9+9	12+18	7+12+18	7+9+9+9			
18+18	9+9+12	18+18	9+9+9	7+9+9+12			
	9+9+18		9+9+12	7+9+12+12			
	9+12+12		9+9+18	9+9+9+9			
	12+12+12		9+12+12	9+9+9+12			
			9+12+18	9+9+12+12			
			12+12+12				
			12+12+18				

Any configuration outside of those listed in the above tables will cause errors on the external drives, resulting in system failure and/or damage.

	MPG1040 (36kBTU/h)					1250 BTU/h)		
2	3	4	2	3		4		5
7+12	7+7+7	7+7+7+7	7+18	7+7+7	7+7+7+7	7+12+12+12	7+7+7+7	7+9+9+9+9
7+18	7+7+9	7+7+7+9	7+21	7+7+9	7+7+7+9	7+12+12+21	7+7+7+7+9	7+9+9+9+12
7+21	7+7+12	7+7+7+12	7+24	7+7+12	7+7+7+12	7+12+12+24	7+7+7+712	7+9+9+9+18
7+24	7+7+18	7+7+7+18	9+12	7+7+18	7+7+7+18	7+12+18+18	7+7+7+7+18	7+9+9+9+21
9+9	7+7+21	7+7+7+21	9+18	7+7+21	7+7+7+21	7+12+18+21	7+7+7+7+21	7+9+9+9+24
9+12	7+7+24	7+7+7+24	9+21	7+7+24	7+7+7+24	7+12+18+24	7+7+7+7+24	7+9+9+12+12
9+18	7+9+9	7+7+9+9	9+24	7+9+9	7+7+9+9	7+12+21+21	7+7+7+9+9	7+9+9+12+18
9+21	7+9+12	7+7+9+12	12+12	7+9+12	7+7+9+12	7+18+18+18	7+7+7+9+12	7+9+9+12+21
9+24	7+9+18	7+7+9+18	12+18	7+9+18	7+7+9+18	9+9+9+9	7+7+7+9+18	7+9+9+12+24
12+12	7+9+21	7+7+9+21	12+21	7+9+21	7+7+9+21	9+9+9+12	7+7+7+9+21	7+9+9+18+18
12+18	7+9+24	7+7+9+24	12+24	7+9+24	7+7+9+24	9+9+9+18	7+7+7+9+24	7+9+12+12+12
12+21	7+12+12	7+7+12+12	18+18	7+12+12	7+7+12+12	9+9+9+21	7+7+7+12+12	7+9+12+12+18
12+24	7+12+18	7+7+12+18	18+21	7+12+18	7+7+12+18	9+9+9+24	7+7+7+12+18	7+9+12+12+21
18+18	7+12+21	7+7+12+21	18+24	7+12+21	7+7+12+21	9+9+12+12	7+7+7+12+21	7+12+12+12+12
18+21	7+12+24	7+7+12+24	21+21	7+12+24	7+7+12+24	9+9+12+18		7+12+12+12+18
18+24	7+18+18	7+7+18+18	21+24	7+18+18	7+7+18+18	9+9+12+21	7+7+7+18+18	9+9+9+9+9
21+21	7+18+21	7+7+18 +21	24+24	7+18+21	7+7+18 +21	9+9+12+24	7+7+7+18+21	9+9+ 9+9+12
21+21	7+18+24	7+9+9+9		7+18+24	7+7+18 +24	9+9+18+18	7+7+7+18+24	9+9+9+9+18
24+24	7+21+21	7+9+9+12		7+21+21	7+7+21 +21	9+9+18+21	7+7+7+21+21	9+9+9+9+21
-	7+21+24	7+9+9+18		7+21+24	7+7+21 +24	9+9+18+24	7+7+9+9+9	9+9+9+9+24
	9+9+9	7+9+9+21		7+24+24	7+7+24+24	9+9+21+21	7+7+9+9+12	9+9+9+12+12
	9+9+12	7+9+9+24		9+9+9	7+9+9+9	9+9+21+24	7+7+9+9+18	9+9+9+12+18
	9+9+18	7+9+12+12		9+9+12	7+9+9+12	9+12+12+12	7+7+9+9+21	9+9+9+12+21
	9+9+21	7+9+12+18		9+9+18	7+9+9+18	9+12+12+18 9+12+12+21	7+7+9+9+24	9+9+9+12+24 9+9+9+18+18
	9+9+24 9+12+12	7+9+12+21 7+9+12+24		9+9+21 9+9+24	7+9+9+21 7+9+9+24	9+12+12+21	7+7+9+12+12 7+7+9+12+18	9+9+12+12+12
	9+12+12	7+9+12+24		9+9+24	7+9+9+24 7+9+12+12	9+12+12+24	7+7+9+12+16	9+9+12+12+18
	9+12+10	7+12+12+12		9+12+18	7+9+12+12	9+12+18+21	7+7+9+12+24	9+9+12+12+21
	9+12+24	7+12+12+18		9+12+21	7+9+12+21	9+12+18+24	7+7+9+18+18	9+12+12+12+12
	9+18+18	7+12+12+21		9+12+24	7+9+12+24	9+12+21+21	7+7+9+18+21	9+12+12+12+18
	9+18+21	9+9+9+9		9+18+18	7+9+18+18	9+18+18+18		12+12+12+12+12
	9+18+24	9+9+9+12		9+18+21	7+9+18+21	12+12+12+12	7+7+12+12+18	
	9+21+21	9+9+9+18		9+18+24	7+9+18+24	12+12+12+18	7+7+12+12+21	
	9+21+24	9+9+9+21		9+21+21	7+9+21+21	12+12+12+21	7+7+12+12+24	
	12+12+12	9+9+9+24		9+21+24	7+9+21+24		7+7+12+18+18	
	12+12+18	9+9+12+12		9+24+24		12+12+18+18		
	12+12+21	9+9+12+18		12+12+12		12+12+18+21		
	12+12+24	9+9+12+21		12+12+18				
	12+18+18	9+9+12+24		12+12+21				
	12+18+21	9+9+18+18		12+12+24				
	12+18+24	9+12+12+12		12+18+18				
	12+21+21	9+12+12+18		12+18+21				
	18+18+18	9+12+12+21		12+18+24				
		12+12+12+12		12+21+21				
		12+12+12+18		12+21+24				
				12+24+24				
				18+18+18				
				18+18+21				
				18+18+24				
				18+21+21				
				18+21+24 21+21+21				
				ZITZITZI				

Any configuration outside of those listed in the above tables will cause errors on the external drives, resulting in system failure and/or damage.

OUTDOOR UNIT PERFORMANCE DATA

		MPG420	MPG520	MPG630	MPG730	MPG840	MPG1040	MPG1250
Nominal cooling performances								
Cooling capacity (1)	kW	4,10	5,30	6,10	7,10	8,00	10,60	12,10
Cooling input power (1)	kW	1,10	1,48	1,48	1,88	2,12	3,00	3,40
EER (2)	W/W	3,73	3,58	4,12	3,78	3,77	3,53	3,56
Minimum cooling performances								
Cooling capacity	kW	2,05	2,14	2,20	2,30	2,30	2,60	2,60
Cooling input power	kW	0,20	0,30	0,40	0,60	0,80	0,60	0,60
Maximum cooling performances								
Cooling capacity	kW	5,00	5,80	8,30	9,20	11,00	12,00	15,20
Cooling input power	kW	2,20	2,50	2,90	3,40	3,60	4,60	4,60
Seasonal efficiency								
SEER	W/W	6,70	6,50	6,90	6,50	6,10	6,50	6,48
Annual power consumption	kWh/annum	214	285	309	382	459	571	-
Efficiency energy class (3)		A++	A++	A++	A++	A++	A++	-
Nominal heating performances								
Heating capacity (4)	kW	4,40	5,65	6,50	8,60	9,50	12,00	13,00
Heating input power (4)	kW	0,97	1,25	1,43	2,23	2,20	3,04	3,19
COP (2)	W/W	4,54	4,52	4,55	3,86	4,32	3,95	4,08
Minimum heating performances		,	,	,==	.,	,,=	-,	,
Heating capacity	kW	2,49	2,58	3,60	3,65	3,65	3,00	3,00
Heating input power	kW	0,30	0,40	0,40	0,60	0,70	0,80	0,80
Maximum heating performances		.,	.,	.,	.,,		.,	.,,
Heating capacity	kW	5,40	6,50	8,50	9,20	10,25	14,00	15,50
Heating input power	kW	2,25	2,50	2,90	3,00	3,60	5,00	5,00
Seasonal efficiency (temperate climate)		_,	_,	_,,,,	-,	-,	2,55	-,
SCOP	W/W	4,00	4,00	3,80	3,80	4,00	3,80	3,80
Annual power consumption	kWh/annum	1295	1435	2247	2247	2345	3795	-
Efficiency energy class (3)	Kirri, airiairi	A+	A+	Α	Α	A+	A	-
Outdoor unit								
Type of fan	Туре	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial
Air flow rate	.,,,,,	intercer and	inverter and	inverter and	mrerer and	mrereer amai	mrerter and	mrerer and
Maximum	m³/h	2300	2300	3800	3800	3800	5800	5800
Sound power (5)	,	2500	2500	3000	3000	5000	5000	3000
Maximum	dB(A)	62,0	64,0	68,0	68,0	68,0	70,0	74,0
Sound pressure (1 m) (6)	(-)	,-	,-			,-		,-
Maximum	dB(A)	52,0	54,0	58,0	58,0	58,0	60,0	60,0
Compressor	45(1)	32/0	3 1/0	30,0	30,0	30,0	00/0	55/5
Туре	type	Inverter rotary	Inverter rotary	Inverter rotary	Inverter rotary	Inverter rotary	Inverter rotary	Inverter rotary
Refrigerant	type	R32	R32	R32	R32	R32	R32	R32
Refrigerant charge	kg	0,75	0,90	1,60	1,70	1,80	2,40	2,40
Potential global heating	GWP	675kgCO ₂ eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,51	0,61	1,08	1,15	1,22	1,62	1,62
Electric data	•	ا در ۰	0,01	.,00	.,15	.,	.,02	.,02
Rated power input (7)	kW	2,3	2,5	2,9	3,4	3,6	5,0	5,0
Rated current input (7)	A	10,0	11,0	12,9	15,0	16,0	21,7	21,7
Refrigeration pipework	- A	10,0	11,0	12,7	13,0	10,0	21,7	21,1
Maximum refrigerant tube length	m	40	40	60	60	70	80	100
Maximum single cooling line length	m	20	20	20	20	20	25	25
Maximum unit (indoor/external) cooling line level	111							
difference in height	m	15,0	15,0	15,0	15,0	15,0	25,0	25,0
Maximum (indoor/outdoor) cooling line level difference	m	15,0	15,0	15,0	15,0	15,0	25,0	25,0
Refrigerant to be added	q/m	20	20	20	20	20	20,0	20,0
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Power supply	IIIII (IIICII)	7,32 (310)	7,32 (310)	7,32 (3/0)	7,32 (3/0)	1,12 (310)	7,32 (310)	126 (210)
Outdoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz
(1) Cooling (EN 14511 and EN 14935) ambient air temper						220-2401 ~ JUIL	∠∠U-∠ 1 UV ~ JUI1Z	22U-24UV ~ JUNZ

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

(3) Data in accordance with Delegated Regulation (EU) No. 626/2011.

(4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(5) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

(6) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

(7) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

All technical data refer to the respective reference combinations of the indoor units.

INDOOR UNIT PERFORMANCE DATA

SPG_W

		SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
Nominal cooling performances						
Cooling capacity (1)	kW	2,20	2,50	3,20	4,60	6,20
Moisture removed	l/h	0,6	0,6	1,4	1,8	1,8
Nominal heating performances						
Heating capacity (2)	kW	2,40	2,80	3,40	5,20	6,50
Indoor unit						
Type of fan	Туре			Inverter centrifugal		
Input power	W	13	13	23	38	38
Air flow rate						
Minimum	m³/h	250	270	320	600	650
Average	m³/h	420	390	400	700	750
Maximum	m³/h	470	470	520	800	950
Turbo	m³/h	500	500	590	850	1100
Sound power (3)						
Minimum	dB(A)	34,0	34,0	38,0	44,0	49,0
Average	dB(A)	45,0	44,0	45,0	48,0	52,0
Maximum	dB(A)	49,0	48,0	49,0	52,0	58,0
Turbo	dB(A)	55,0	55,0	56,0	54,0	61,0
Sound pressure (1 m) (4)						
Minimum	dB(A)	22,0	22,0	26,0	34,0	35,0
Average	dB(A)	33,0	32,0	33,0	38,0	38,0
Maximum	dB(A)	36,0	36,0	37,0	42,0	44,0
Turbo	dB(A)	39,0	38,0	41,0	44,0	47,0
Indoor unit	<u> </u>					
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0	16,0
Power supply						
Indoor unit power supply				220-240V ~ 50Hz	<u> </u>	

CKG_FS

		CKG260FS	CKG360FS	CKG500FS
Nominal cooling performances				
Cooling capacity (1)	kW	2,70	3,50	5,20
Moisture removed	l/h	0,8	1,2	1,8
Nominal heating performances				
Heating capacity (2)	kW	2,90	3,80	5,33
Indoor unit				
Type of fan	Туре		Inverter centrifugal	
Input power	W	35	40	50
Air flow rate				
Minimum	m³/h	280	360	410
Average	m³/h	370	440	520
Maximum	m³/h	430	520	650
Turbo	m³/h	500	600	700
Sound power (3)				
Minimum	dB(A)	38,0	39,0	47,0
Average	dB(A)	44,0	46,0	51,0
Maximum	dB(A)	48,0	50,0	55,0
Turbo	dB(A)	50,0	54,0	57,0
Sound pressure (4)				
Minimum	dB(A)	26,0	29,0	37,0
Average	dB(A)	31,0	36,0	41,0
Maximum	dB(A)	36,0	40,0	45,0
Turbo	dB(A)	39,0	44,0	47,0
Indoor unit				
Condensate discharge diameter	mm	17,0	17,0	17,0
Power supply				
Indoor unit power supply			220-240V ~ 50Hz	

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
Sound power calculated in free field, in accordance with UNI EN ISO 3744.

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.
Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Nominal cooling performances					
Cooling capacity (1)	kW	2,60	3,50	4,50	7,10
Moisture removed	l/h	0,8	1,4	1,8	2,5
Nominal heating performances					
Heating capacity (2)	kW	2,70	4,00	5,00	8,00
Electric data					
Rated power input (3)	W	38	38	38	60
Indoor unit					
Type of fan	Type		Inverter of	centrifugal	
Input power	W	38	38	38	60
Air flow rate					
Minimum	m³/h	420	420	410	720
Average	m³/h	540	540	520	800
Maximum	m³/h	610	610	590	870
Turbo	m³/h	700	700	680	950
Sound power (4)					
Minimum	dB(A)	40,0	40,0	40,0	41,0
Average	dB(A)	44,0	44,0	44,0	45,0
Maximum	dB(A)	49,0	49,0	49,0	52,0
Turbo	dB(A)	52,0	52,0	52,0	52,0
Sound pressure (5)					
Minimum	dB(A)	26,0	26,0	26,0	27,0
Average	dB(A)	30,0	30,0	30,0	31,0
Maximum	dB(A)	35,0	35,0	35,0	35,0
Turbo	dB(A)	38,0	38,0	38,0	38,0
Indoor unit					
Condensate discharge diameter	mm	17,0	17,0	17,0	17,0
Power supply	·				
Indoor unit power supply			220-240	V ~ 50Hz	

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG CS

		MPG350CS	MPG500CS
Nominal cooling performances			
Cooling capacity (1)	kW	3,50	5,00
Moisture removed	l/h	1,4	1,8
Nominal heating performances			
Heating capacity (2)	kW	4,00	5,50
Indoor unit			
Type of fan	Туре		Inverter centrifugal
Input power	W	30	35
Air flow rate			
Minimum	m³/h	380	380
Average	m³/h	450	450
Maximum	m³/h	540	540
Turbo	m³/h	560	650
Sound power (3)			
Minimum	dB(A)	46,0	46,0
Average	dB(A)	50,0	50,0
Maximum	dB(A)	55,0	55,0
Turbo	dB(A)	57,0	59,0
Sound pressure (1 m) (4)			
Turbo	dB(A)	41,0	43,0
Minimum	dB(A)	30,0	30,0
Average	dB(A)	34,0	34,0
Maximum	dB(A)	39,0	39,0
Indoor unit			
Condensate discharge diameter	mm	25,0	25,0
Power supply			
Indoor unit power supply			220-240V ~ 50Hz

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG C

		MPG700C			
Nominal cooling performances					
Cooling capacity (1)	kW	7,00			
Moisture removed	l/h	2,5			
Nominal heating performances					
Heating capacity (2)	kW	8,00			
Indoor unit					
Type of fan	Туре	Inverter centrifugal			
Input power	W	50			
Air flow rate					
Minimum	m³/h	830			
Average	m³/h	910			
Maximum	m³/h	1050			
Turbo	m³/h	1100			
Sound pressure (1 m) (3)					
Turbo	dB(A)	44,0			
Minimum	dB(A)	38,0			
Average	dB(A)	40,0			
Maximum	dB(A)	43,0			
Sound power (4)					
Minimum	dB(A)	57,0			
Average	dB(A)	59,0			
Maximum	dB(A)	61,0			
Turbo	dB(A)	62,0			
Indoor unit					
Condensate discharge diameter	mm	25,0			
Power supply					
Indoor unit power supply		220-240V ~ 50Hz			

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG D

MPG_D		MPG250D	MPG350D	MPG500D	MPG700D
Nominal cooling performances					
Cooling capacity (1)	kW	2,65	3,50	5,00	7,00
Moisture removed	l/h	0,8	1,4	1,8	2,5
Nominal heating performances		,	· · · · · · · · · · · · · · · · · · ·	,	,
Heating capacity (2)	kW	2,80	4,00	5,50	8,00
Indoor unit					
Type of fan	Туре		Inverter o	entrifugal	
Input power	W	70	80	80	200
Air flow rate					
Minimum	m³/h	220	300	420	900
Average	m³/h	340	420	610	1000
Maximum	m³/h	450	540	720	1200
urbo	m³/h	560	600	800	1300
Sound pressure (1 m) (3)					
urbo	dB(A)	32,0	36,0	36,0	46,0
Minimum	dB(A)	22,0	27,0	25,0	36,0
Average	dB(A)	22,0	27,0	25,0	36,0
Maximum	dB(A)	28,0	34,0	31,0	42,0
Sound power (4)					
Minimum	dB(A)	37,0	42,0	40,0	51,0
Average	dB(A)	40,0	46,0	43,0	55,0
Maximum	dB(A)	43,0	49,0	46,0	57,0
Turbo	dB(A)	47,0	51,0	51,0	61,0
Indoor unit					
Condensate discharge diameter	mm	26,0	26,0	26,0	26,0
Power supply					
Indoor unit power supply	<u> </u>		220-240	V ~ 50Hz	<u> </u>

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 Sound power calculated in free field, in accordance with UNI EN ISO 3744.

MPG_DH

		MPG250DH	MPG350DH	MPG500DH	MPG700DH
Nominal cooling performances					
Cooling capacity (1)	kW	2,65	3,50	5,00	7,00
Moisture removed	l/h	0,8	1,4	1,8	2,5
Nominal heating performances					
Heating capacity (2)	kW	2,80	4,00	5,50	8,00
Indoor unit					
Type of fan	Туре		Inverter o	centrifugal	
nput power	W	50	50	75	80
High static pressure					
Maximum	Pa	60	60	60	125
Air flow rate					
Minimum	m³/h	550	410	750	900
Average	m³/h	610	480	790	1000
Maximum	m³/h	670	560	840	1200
Turbo	m³/h	700	650	880	1500
Sound pressure (1 m) (3)					
Turbo	dB(A)	41,0	39,0	41,0	45,0
Minimum	dB(A)	35,0	33,0	37,0	36,0
Average	dB(A)	37,0	35,0	38,0	38,0
Maximum	dB(A)	39,0	37,0	39,0	40,0
Sound power (4)					
Minimum	dB(A)	51,0	49,0	53,0	53,0
Average	dB(A)	53,0	51,0	54,0	55,0
Maximum	dB(A)	55,0	53,0	55,0	57,0
Turbo	dB(A)	57,0	55,0	57,0	62,0
Indoor unit					
Condensate discharge diameter	mm	26,0	26,0	26,0	26,0
Power supply					
Indoor unit power supply			220-240	V ~ 50Hz	

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.
(4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
Sound power calculated in free field, in accordance with UNI EN ISO 3744.

INDOOR UNIT COOLING FITTINGS

SPG_W

		SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")

CKG_FS

		CKG260FS	CKG360FS	CKG500FS			
Refrigeration pipework							
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")			
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")			

MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4)	6,35 (1/4)	6,35 (1/4)	9,52 (3/8)
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8)	9,52 (3/8)	12,7 (1/2)	15,9 (5/8)

MPG_CS

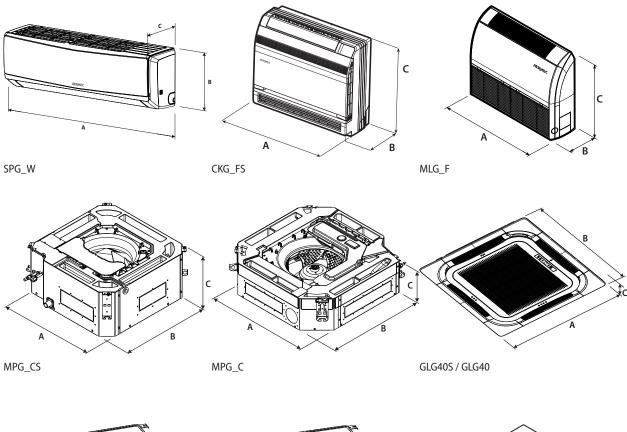
		MPG350CS	MPG500CS
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")

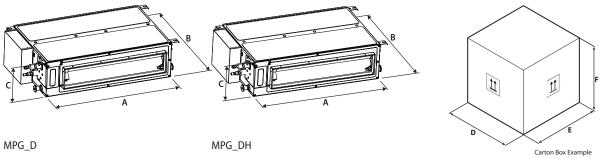
MPG_C

		MPG700C
Refrigeration pipework		
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	15,9 (5/8")

MPG_D

		MPG250D	MPG350D	MPG500D	MPG700D
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")


$\mathbf{MPG_DH}$


		MPG250DH	MPG350DH	MPG500DH	MPG700DH
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	15,9 (5/8")

OUTDOOR UNIT COOLING FITTINGS

Models			MPG420	MPG520	MPG630	MPG730	MPG840	MPG1040	MPG1250
Models			14kBtu/h	18kBtu/h	21kBtu/h	24kBtu/h	28kBtu/h	36kBtu/h	42kBtu/h
	A	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	В	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Liquid connections	(mm (inch)			9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	D	mm (inch)					9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
	E	mm (inch)							9,52 (3/8")
	A	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
Gas connections	В	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	(mm (inch)			6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	D	mm (inch)					6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
	E	mm (inch)							6,35 (1/4")

INDOOR UNIT WEIGHTS AND DIMENSIONS

SPG_W

J. U						
		SPG200W	SPG250W	SPG350W	SPG500W	SPG700W
Indoor unit						
A	mm	696	696	770	972	1081
В	mm	251	251	251	300	325
(mm	190	190	190	225	248
D	mm	747	747	822	1022	1137
E	mm	324	324	324	374	407
F	mm	262	262	262	299	334
Net weight	kg	7,50	7,50	8,50	13,50	16,50
Weight for transport	ka	9.00	9.00	10.00	16.00	19.50

CKG_FS

		CKG260FS	CKG360FS	CKG500FS
Indoor unit				
A	mm	700	700	700
В	mm	215	215	215
(mm	600	600	600
D	mm	788	788	788
E	mm	283	283	283
F	mm	697	697	697
Net weight	kg	15,50	15,50	15,50
Weight for transport	kg	18,50	18,50	18,50

MLG_F

		MLG250F	MLG350F	MLG500F	MLG700F
Indoor unit					
A	mm	870	870	870	1200
В	mm	235	235	235	235
C	mm	665	665	665	665
D	mm	1033	1033	1033	1363
E	mm	300	300	300	300
F	mm	770	770	770	770
Net weight	kg	25,00	25,00	26,00	33,00
Weight for transport	kg	30,00	30,00	31,00	40,00

MPG_CS

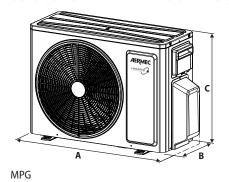
		MPG350CS	MPG500CS
Indoor unit			
A	mm	570	570
В	mm	570	570
C	mm	265	265
D	mm	698	698
E	mm	653	653
F	mm	295	295
Net weight	kg	17,00	17,00
Weight for transport	kg	22,00	22,00

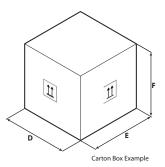
MPG_C

		MPG700C
Indoor unit		
A	mm	840
В	mm	840
C	mm	240
D	mm	963
E	mm	963
F	mm	325
Net weight	kg	29,00
Weight for transport	kg	36,00

GLG40S / GLG40

		GLG40S	GLG40
Indoor unit			
A	mm	620	950
В	mm	620	950
C	mm	48	52
D	mm	701	1033
E	mm	701	1038
F	mm	125	112
Net weight	kg	3,00	6,00
Weight for transport	kg	5,00	10,00


MPG_D


		MPG250D	MPG350D	MPG500D	MPG700D
Indoor unit					
A	mm	710	710	1010	900
В	mm	450	450	450	655
C	mm	200	200	200	260
D	mm	1008	1008	1308	1115
E	mm	568	568	568	772
F	mm	275	275	275	320
Net weight	kg	18,50	19,00	25,00	31,00
Weight for transport	kg	22,50	23,00	30,00	36,00

MPG_DH

		MPG250DH	MPG350DH	MPG500DH	MPG700DH
Indoor unit					
A	mm	710	710	1010	900
В	mm	450	450	450	655
C	mm	200	200	200	260
D	mm	1008	1008	1308	1115
E	mm	568	568	568	772
F	mm	275	275	275	320
Net weight	kg	18,50	19,00	25,00	31,00
Weight for transport	kg	22,50	23,00	30,00	36,00

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

MPG

		MPG420	MPG520	MPG630	MPG730	MPG840	MPG1040	MPG1250
Outdoor unit								
A	mm	822	822	964	964	964	1020	1020
В	mm	352	352	402	402	402	427	427
C	mm	555	555	660	660	660	826	826
D	mm	872	872	1032	1032	1032	1095	1095
E	mm	398	398	456	456	456	500	500
F	mm	620	620	737	737	737	955	955
Net weight	kg	30,00	32,00	47,50	47,50	51,00	72,00	73,00
Weight for transport	kg	32,50	34,50	52,00	52,00	55,50	85,00 (1)	86,00 (1)

⁽¹⁾ Packaging + pallet

MGE

Multisplit

Cooling capacity 4,1 ÷ 7,9 kW Heating capacity 4,4 ÷ 8,2 kW

- New R32 ecological refrigerant gas.
- Wi-fi control using the relative accessory.
- Special golden fin coil.

DESCRIPTION

The multisplit air conditioners of the MGE range are combined with:

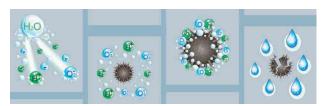
— SGE_W unit wall, for wall installation.

TYPE OF INDOOR UNIT

Indoor unit SGE_W

Wall indoor unit designed to be installed on indoor walls.

SGE_W has an elegant and essential design. Its curved lines emphasize a kind of structure with innovative and functional style. The display with working parameters is elegantly integrated in the satin-finish cover and visible only when the unit is on.


Features

- Remote control standard supply with each indoor unit.
- Fan with DC inverter technology.
- Regenerable air filter easy to remove and clean.
- Timer for programming switch-off and switch-on.
- Auxiliary emergency command integrated into the unit.
- Indoor unit front panel with LED display and indicator lights.
- 3-speed fan, to meet every possible need.
- **Auto** function for a continuous speed variation.
- Turbo function to attain the desired temperature as quickly as possible.
- **Sleep** night time function well-being program.
- Anti-freeze function that allows you to keep an inside minimum temperature of 8 °C in winter.
- followMe function for activating the ambient temperature probe inside the remote control, for improved comfort.

Air Purifiers (Cold Plasma)

Capable of reducing pollutants breaking down their molecules using electric discharges, causing the splitting of the water molecules in the air into positive and negative ions. These ions neutralise the molecules of the gaseous pollutants obtaining products that are normally present in clean air. The device can eliminate 90% of bacteria. The result is clean, ionised air that has no bad odours.

Not available for SGE200W

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

Nethome Plus app

Using the specific **accessory**, the system offers wi-fi control thanks to the app for iOS and Android devices (available free on Apple Store and Google Play). The system can be controlled from a distance directly on

your smartphone or tablet, or via Cloud with the aid of a wireless router connected to the Internet.

- New R32 ecological refrigerant gas with low GWP.
- Operating mode: cooling, heating, dehumidification, automatic and fan only.

TYPE OF OUTDOOR UNIT

Outdoor unit

Multisplit air conditioner.

Reversible air/air heat pump with DC inverter technology.

Types

- Dualsplit: outdoor units MGE420 and MGE520 can be combined with 2 indoor units.
- Trialsplit: outdoor units MGE630 and MGE830 can be combined with 2 or 3 indoor units.

- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Air filter easily removed and cleaned.
- Systems with multi-line refrigerant connections, where every indoor unit is connected directly to the outdoor unit via dedicated refrigerant lines.
- Easy installation and maintenance.

Low cooling function

cooling operation with outdoor temperatures down to -15 $^{\circ}\text{C}$

Low heating function

heating with external temperatures up to -15 °C.

General features

- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

ACCESSORIES

WIFIKEY: Plug & Play module to be installed in the indoor unit for Wi-Fi control.

ACCESSORIES COMPATIBILITY

Accessory	SGE200W	SGE250W	SGE350W	SGE500W
WIFIKEY	•	•	•	•

ALLOWED COMBINATIONS OF INDOOR UNITS

For trialsplit MGE units, it is mandatory to install at least 2 indoor units for correct functioning of the system.

For further information, please refer to the technical documentation on the website www.aermec.com

MGE420 (14kBtu/h)	MGE520 (18kBtu/h)	MGE630 (21kBtu/h)			E830 Btu/h)						
No. indoor unit											
2	2	2	3	2	3						
7+7	7+7	7+7	7+7+7	7+7	7+7+7						
7+9	7+9	7+9	7+7+9	7+9	7+7+9						
7+12	7+12	7+12	7+7+12	7+12	7+7+12						
9+9	9+9	7+18	7+9+9	7+18	7+9+9						
9+12	9+12	9+9	9+9+9	9+9	7+9+12						
	12+12	9+12	7+9+12	9+12	7+12+12						
		9+18		9+18	9+9+9						
		12+12		12+12	9+9+12						
				12+18	9+12+12						
					12+12+12						
					7+7+18						
					7+9+18						

Reference combinations

OUTDOOR UNIT PERFORMANCE DATA

		MGE420	MGE520	MGE630	MGE830
Nominal cooling performances					
Cooling capacity (1)	kW	4,10	5,30	6,15	7,90
Cooling input power (1)	kW	1,27	1,64	1,91	2,45
EER (2)	W/W	3,23	3,23	3,23	3,23
Minimum cooling performances					
Cooling capacity	kW	1,47	2,29	1,99	3,18
Cooling input power	kW	0,12	0,69	0,18	0,29
Maximum cooling performances					
Cooling capacity	kW	4,98	5,71	6,59	8,21
Cooling input power	kW	1,67	2,00	2,20	3,10
Seasonal efficiency					
SEER	W/W	5,60	6,10	6,10	6,10
Efficiency energy class (3)		A+	A++	A++	A++
Annual power consumption	kWh/annum	258	309	350	453
Nominal heating performances					
Heating capacity (4)	kW	4,40	5,57	6,45	8,20
Heating input power (4)	kW	1,27	1,50	1,74	2,21
COP (2)	W/W	3,71	3,71	3,71	3,71
Minimum heating performances					
Heating capacity	kW	1,52	2,40	1,99	2,29
Heating input power	kW	0,12	0,60	0,35	0,37
Maximum heating performances					
Heating capacity	kW	4,98	5,74	6,68	8,50
Heating input power	kW	1,67	1,78	1,80	2,90
Seasonal efficiency (temperate climate)					
SCOP	W/W	3,80	3,80	4,00	4,00
Efficiency energy class (3)		A	A	A+	A+
Annual power consumption	kWh/annum	1400	1768	1910	1960
Power supply					
Outdoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m. (2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication. (3) Data in accordance with Delegated Regulation (EU) No. 626/2011. (4) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

Outdoor unit technical data

		MGE420	MGE520	MGE630	MGE830
Outdoor unit					
Type of fan	Туре	Axial	Axial	Axial	Axial
Air flow rate					
Maximum	m³/h	2100	2100	3000	3000
Sound power (1)					
Maximum	dB(A)	64,0	65,0	65,0	67,0
Sound pressure (1 m) (2)					
Maximum	dB(A)	56,0	54,0	58,0	58,0
Compressor					
Туре	type	Inverter rotary	Inverter rotary	Inverter rotary	Inverter rotary
Refrigerant	type	R32	R32	R32	R32
Refrigerant charge	kg	1,10	1,25	1,50	1,85
Potential global heating	GWP	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq	675kgCO₂eq
Equivalent CO ₂	t	0,74	0,84	1,01	1,24
Outdoor unit					
Condensate discharge diameter	mm	16,0	16,0	16,0	16,0

- (1) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (2) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

Outdoor unit general technical data

		MGE420	MGE520	MGE630	MGE830
Electric data					
Rated power input (1)	kW	2,8	3,1	3,9	4,1
Rated current input (1)	A	12,0	13,0	17,0	18,0
Refrigeration pipework					
Maximum refrigerant tube length	m	40	40	60	60
Maximum single cooling line length	m	25	25	30	30
Refrigerant to be added	g/m	12	12	12	12
Maximum unit (indoor/external) cooling line level difference in height	m	10,0	10,0	10,0	10,0
Maximum (indoor/outdoor) cooling line level difference	m	15,0	15,0	15,0	15,0
Diameter of liquid refrigerant connections	mm (inch)		6,35	(1/4")	
Diameter of refrigerant gas connections	mm (inch)		9,52	(3/8")	

⁽¹⁾ The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

INDOOR UNIT PERFORMANCE DATA

SGE W

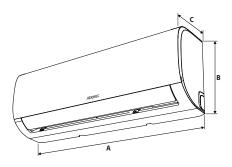
		SGE200W	SGE250W	SGE350W	SGE500W
Nominal cooling performances					
Cooling capacity (1)	kW	2,05	2,77	3,46	5,27
Nominal heating performances					
Heating capacity (2)	kW	2,34	2,93	3,57	4,97
Indoor unit					
Type of fan	Туре	Tangential	Tangential	Tangential	Tangential
Air flow rate					
Maximum	m³/h	460	466	540	840
lverage	m³/h	360	360	430	680
Minimum	m³/h	325	325	314	540
Sound power (3)					
Maximum	dB(A)	54,0	54,0	55,0	56,0
Average	dB(A)	-	-	-	-
Minimum	dB(A)	-	-	-	-
Sound pressure (1 m) (4)					
Minimum	dB(A)	21,0	25,0	25,0	26,0
Maximum	dB(A)	40,0	38,5	40,5	42,5
Average	dB(A)	26,0	32,0	34,5	36,0
Refrigeration pipework					
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")
liameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	12.7 (1/2")
ower supply		<u> </u>			
ndoor unit power supply		220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz	220-240V ~ 50Hz

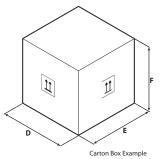
ADAPTERS SUPPLIED WITH THE OUTDOOR UNIT

II	MCE430	MGE520	MGE630	MGE830	Connections mm (inch)				
Unit	MGE420			MGESZU MGEGSU	30 MGE830 -	Outdoor unit	Indoor unit		
Quantity	0	0	1	1	9,52mm (3/8")	12,7mm (1/2")			

For further information, please refer to the technical documentation on the website www.aermec.com

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

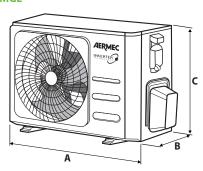

(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

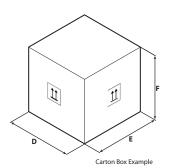

(3) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

(4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

INDOOR UNIT WEIGHTS AND DIMENSIONS

SGE_W





		SGE200W	SGE250W	SGE350W	SGE500W
Indoor unit					
A	mm	805	805	805	957
В	mm	285	285	285	302
(mm	194	194	194	213
D	mm	870	870	870	1035
E	mm	270	270	270	295
F	mm	360	365	365	385
Net weight	kg	7,90	7,60	7,60	10,00
Weight for transport	kg	9,70	9,70	9,80	13,00

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

MGE

		MGE420	MGE520	MGE630	MGE830
Outdoor unit					
A	mm	877	877	1003	1003
В	mm	349	349	380	380
C	mm	554	554	673	673
D	mm	915	915	1030	1030
E	mm	370	370	438	438
F	mm	615	615	750	750
Net weight	kg	31,60	35,00	43,30	48,00
Weight for transport	kg	34,70	38,00	47,10	51,80

www.aermec.com

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italy Tel. 0442633111 - Telefax 044293577 www.aermec.com

VRF SYSTEM

The VRFs are the direct expansion systems, with variable refrigerant flow.

Unlike the Multisplits, which are characterised by a set flow of refrigerant, these systems allow users to adjust the amount of refrigerant in circulation, according to the actual load required by the indoor units in use.

They range of 12kW to 276 kW thanks to their modular configuration, and are available in a heat pump version with heat recovery and domestic hot water production.

These systems guarantee excellent energy efficiency, avoiding wasting energy pointlessly, and are amazingly quiet during operation.

VRF SYSTEM MVBM - MVAS

Air flow rate Cool. Cap. Heat. Cap. (kW) (kW)

MVBM - MVAS

Direct expansion variable refrigerant flow system VRF

Cooling capacity 12,1 ÷ 246,0 kW Heating capacity 14,0 ÷ 276,0 kW

- Units prepared for installations with two pipes.
- The correct balance between cost, efficiency and space.
- Wide choice of indoor units available.
- Up to 80 connectible indoor units.

DESCRIPTION

The MV air conditioners from the MVBM and MVA S range are combined with indoor units:

- MVA_WL Wall.
- MVA_D Horizontal duct.
- MVA_DH Horizontal duct, high head.
- MVA_DV Vertical duct.
- MVA_CS, MVA_C 8-way cassette .
- MVA_CB 4-way cassette .
- MVA_C1 1-way cassette.
- MVA_F Floor ceiling.
- MVA_FS Console.
- MVA_V Column.
- MVA_ERV Heat recovery unit.

TYPE OF INDOOR UNIT

MVA_WL

Wall indoor unit designed to be installed on indoor walls.

- Modern design to blend with all furnishing styles.
- Distributed air jet: air outlet louvers with horizontal and vertical adjustment facility.
- Anti-freeze function that allows a minimum temperature of 8 °C to be maintained in the environment during the winter period.

MVA_D

Duct indoor unit designed for indoor duct type installation.

MVA_D - Horizontal duct.

- Wired panel standard supply.
- Low noise levels.
- Easy installation in small assembly spaces, thanks to the limited dimensions.
- Useful static pressure up to 80 Pa.

MVA DH

Duct indoor unit designed for indoor duct type installation.

MVA_DH - Horizontal duct, high head.

- Wired panel standard supply.
- Unit without cover, designed for duct type horizontal installation.
- Useful static pressure up to 200 Pa.

MVA DV

 $\textbf{Duct} \ indoor \ unit \ designed \ for \ indoor \ vertical \ installation.$

MVA_DV - Vertical duct.

- Wired panel standard supply.
- Unit without cover, designed for installation in wall recesses.
- Useful static pressure up to 60 Pa.

MVA CS/MVA C

8-way cassette indoor unit designed to be installed on false ceilings indoors.

MVA_CS - Cassette 570x570.

Mandatory accessory GLG40S.

MVA_C - Cassette 840x840.

- Mandatory accessory GLG40.
- Wired panel standard supply.
- Condensate discharge pump as standard.
- Guarantees even air distribution, for optimum comfort.

MVA CB

4-way cassette indoor unit designed to be installed on false ceilings indoors.

MVA_CB - Cassette 910x910.

Mandatory accessory GL40B.

- Wired panel standard supply.
- Condensate discharge pump as standard.
- Guarantees even air distribution, for optimum comfort.

MVA C1

1-way cassette indoor unit designed to be installed on false ceilings indoors.

MVA C1 - Cassette 987x385.

- Mandatory accessory GLC1.
- Wired panel standard supply.
- Condensate discharge pump as standard.
- Compact size and minimum dimensions.

MVA F

Floor ceiling indoor unit to be installed on walls or ceiling.

- Low noise levels.
- Anti-freeze function.
- Flexible installation for any environment.

MVA FS

Console indoor unit designed to be installed on the floor.

- Anti-freeze function.
- 5-speed fan, to meet every possible need.
- Two delivery vents for optimal control of the air flow.

MVA \

Column indoor unit designed to be installed in large sized rooms.

- Easy installation and maintenance.
- Speed in reaching the defined set point in the shortest time possible
- Ideal for installations in the service sector: hotels, restaurants, offices.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Total capacity connected to the outdoor units between 50% and 135% of the rated capacity of the selected configuration.
- Indoor unit fitted standard with an electronic expansion valve.
- WRC wired panel standard supply with each indoor unit.
- Every indoor unit comes with a remote control and a remote control holder.
- Automatic unit adjustment function.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.
- Self-diagnosis function.
- Easy installation and maintenance.

TYPE OF INDOOR UNIT - HEAT RECOVERY

MVA ERV

Heat recovery units designed for duct-type horizontal installation indoors. Fitted with a cross-flow enthalpic heat recovery unit with recovery efficiency higher than 70%. The heat exchanger allows energy to be transferred from the exhaust air to the fresh air, avoiding any direct mixing of the air flows.

This range of heat recovery units ensures constantly clean and filtered fresh air, a constant air flow rate, and rooms with comfortable temperature and humidity levels, ensuring reduced energy consumption in every application.

The device is also equipped with a direct expansion coil to allow the air flow delivered into the room to give off or absorb heat. This means that the unit not only guarantees correct air renewal, but also helps cool or heat the rooms and avoid air currents with a marked temperature difference in relation to the room temperature, to ensure optimum comfort for the occupants.

Operating mode

Every indoor unit comes with a wired panel. The wired panel can be used to set the standard cooling, heating, dehumidification and ventilation-only modes, plus the following operating modes.

- Bypass with free cooling and night-time free cooling operation: night-time free cooling operation reduces the thermal load in the rooms, taking advantage merely of the outside temperature difference and therefore boosting energy savings for the following day thanks to free night-time cooling.
- Control of different inlet and outlet air flow rates: known as "positive pressure operating mode" when the inlet air flow rate is higher than the recovery one, or "negative pressure operating mode" in the opposite situation.

Mixed connection indoor units + MVA_ERV

In case of mixed systems, i.e. consisting of indoor units of the VRF and units, MVA_ERV to guarantee the proper operation of the system, the nominal cooling powers of the indoor units is between 50% and 100% of the nominal cooling power of the system of external units and that the sum of the installed nominal power of the MVA_ERV units does not exceed 30% of the power of the external units system.

Connections with MVA_ERV units only

In case of systems made up only by units, MVA_ERV to guarantee the proper operation of the system, check that the sum of the nominal cooling powers of the indoor units is between 50% and 100% of the nominal cooling power of the external units system.

General features

- Wired panel standard supply with each indoor unit.
- Particularly guiet operation.
- Centrifugal fans with 5-speed brushless DC motor.
- Units fitted with an electronic expansion valve as standard.
- Filters with G4 efficiency level on inlet and outlet air.
- Alarm signal for filter cleaning.
- Timer for programming unit switch-on and switch-off.
- Incorporated electrical panel with electronic card to control the ventilation and free cooling functions.
- Easy installation and maintenance.

TYPE OF OUTDOOR UNIT

MVA S

Standard multisplit VRF air conditioners.

Reversible air/air heat pump with DC inverter technology.

- From 1 to 16 connectible indoor units.
- Total maximum length of the refrigerant lines up to 300 m.
- The sizes MVAS 1201S MVAS 1401S MVAS 1601S e MVAS 1201T MVAS 1401T MVAS 1601T, are fitted with a base electric resistor to avoid possible formation of ice and encourage the disposal of the condensate during the heating operation.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.

MVB M

Module multisplit VRF ambient air conditioner for 2-pipe systems. Reversible air/air heat pump with DC inverter technology.

- From 1 to 80 connectible indoor units.
- Total maximum length of the refrigerant lines up to 1000 m.
- Modular system with base modules that can be combined together, up to a maximum of 4, for a total of 33 recommended combinations.
- Compressor and fan with DC inverter technology.
- Fitted with an electronic expansion valve.
- Optimised management of the compressor operating time with partial loads.
- Emergency operation, in the event of problems with the compressors or fans, allows operation of the system with a reduced number of compressors and/or fans for a limited time.
- Channelled air delivery from 0 Pa (default) to 82 Pa of effective static head set via dip switches.
- For cooling line connections, refer to refnet joints in the accessories section.

Special golden fin coil

Unlike normal batteries, this special golden epoxy coating silicon free is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

General features

- Operating mode: cooling, heating, dehumidification, automatic and fan only.
- Refrigerant connections with braze welded Y and F joints (mandatory accessories).
- Compressor and fan with DC inverter technology.
- Particularly quiet operation.
- Microproccessor control.
- Auto-restart function.— Self-diagnosis function.
- Self-diagnosis function.
- Easy installation and maintenance.
- Serial communication in CanBus protocol.

ACCESSORIES

CC2: Centralised control with 7" touchscreen display for managing several indoor units within a number of multisplit systems. The centralised control has an integrated external contact. For more information, refer to the specific documentation. *

MVASZC: Simplified centralised control (4,3" touch screen display), which can be used to manage up to 32 Indoor Units distributed across a maximum of 16 Systems.

WLRC: Remote control with liquid crystal display and soft-touch buttons.

WRC: Wired panel with liquid crystal display and soft-touch buttons.

WRC1: Simplified wired panel with liquid crystal display and soft-touch buttons with built-in external contact. This panel is particularly suitable for hotel applications.

* The CC2 centralised control can manage up to 255 indoor units distributed over a maximum of 16 VRF systems.

For more information about the accessories and their functions (such as the auto-restart function), refer to the specific documentation of the single accessory.

AHUKIT: Kit comprised of a box that contains the thermal expansion valve(s) complete with wiring and their control module, with pre-wired

probes, a wall-mounted control panel with external contact. The kit is intended to be combined with the direct expansion cooling and/or heating coil (using R410A) of an air treatment unit. The latter is not supplied as an MV_ component, but is functionally connected to an MV_ system and is suitably sized. AHUKIT, and the and the air treatment unit connected to it, treat the recirculated and/or fresh air that falls within the operating limits, regulating the recirculation/expulsion air temperature.

MINIMODBUS10: Thanks to its smaller size, this accessory can be easily installed in the outdoor unit. It allows you to manage up to 16 MV systems (with a maximum of 255 indoor units), with a ModBus RTU serial on RSA485 for supervision with an external BMS.

MVAGW: This accessory allows you to manage up to 16 MV systems (with a maximum of 255 total indoor units), making available a serial in ModBus RTU protocol on RS485, ModBus TCP or BACnet / IP for supervision with an external BMS.

USBDC: The kit includes a converter (from CanBus to ModBus) and the VRF debugger software. IT is designed to meet the requirements of after sales services and qualified technicians who need to carry out control and debugging procedures on the MV ranges.

Accessories mandatory

Air delivery and recovery grille for indoor **Cassette** type units.

Grille model		Indoor unit model					1 WAV	Dimensions	Weight
Grille model	lel MVA_CS MVA_C MVA_CB MVA_C1 8 WAY	8 WAY	4 WAY	1 WAY	LxHxW (mm)	Kg			
GLG40S	•	-	-	-	•	-	-	620x620x47,5	3,0
GLG40	-	•	-	-	•	-	-	950x950x52	6,0
GL40B	-	-			-	•	-	1040x1040x65	8,0
GLC1	-	-	-	•	-	-	•	1200x460x55	4,2

Joints refnet

Connection between modular outdoor units.

The modules are easy to install and link together from the cooling point of view, thanks to the connections with dedicated refnet joints. Modularity is the fundamental characteristic of these systems as it also allows high-capacity systems to be created in a quick, simple way.

Y-joints for cooling connection between 2 Outdoor Units in Modular Systems. A modular system made up of n. base modules requires n-1 Y-joints.

Mandatory accessory for modular systems.

MVBM 2-pipe system.						
Outdoor unit	Indoor units					
RNYM01	RNY11					
AHUKIT	RNY12					
RNYAHU	RNY21					
	RNY31					
	RNY41					
	RNF14					
	RNF18					
	RNF18B					

MVB_M 2-pipe system

RNYM01

Accessory comprising 2 Y-joints, one for the liquid line and one for the discharge line.

Connection between indoor units

RNY

Accessory comprising 2 Y-joints, one for the liquid line and one for the discharge line.

RNF

Accessory made up of two F-joints, one for the liquid line and one for the discharge line.

Code	System type	Type of joint	Total power downline (kW)		Maximum 1-way connectible power	Connectible indoor units
	2-pipe		>	≤	(kW)	No.
RNY11	•	Υ	-	20,00	-	-
RNY12	•	Υ	20,00	30,00	-	-
RNY21	•	Υ	30,00	70,00	-	-
RNY31	•	Υ	70,00	135,00	-	-
RNY41	•	Υ	135,00	-	-	-
RNF14	•	F	-	40,00	16,00	from 2 to 4
RNF18	•	F	-	68,00	16,00	from 4 to 8
RNF18B	•	F	68,00	-	16,00	from 4 to 8

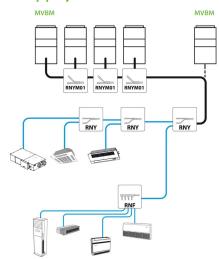
ADVANTAGES FOR VRF SYSTEMS: MVAS/MVBM

Compact design

Thanks to the reduced dimensions and compact design of these units, they are easy to move at the job site. All the models can in fact be transported easily right up to the roof, even using a lift.

VRF systems - 2-pipe heat pump

Customise your VRF system


To guarantee greater seasonal efficiency and maximum comfort with the variable refrigerant function.

Continuous comfort

Continuous heating or cooling of the rooms is what makes the VRF system a valid alternative to hydronic systems.

Example of a 2-pipe system

When dimensioning the cooling lines, exclusively refer to the technical manual.

A modular system made up of n base modules requires n-1 Y-joints.

MVAS - MVBM

- 2-pipe system.
- Cooling or heating mode. (The image shows an example of a system in cooling mode)
- Total maximum length of the refrigerant lines: MVAS: 300 m, MVBM:

CONFIGURATIONS

MVA_S combinations

MVA S connectable units

MVA S	Nominal cooling capacity (kW)	Min. no. of indoor units	Max. no. of indoor units
12015	12,10	2	7
14015	14,00	2	8
16015	16,00	2	9
1201T	12,10	2	7
1401T	14,00	2	8
1601T	16,00	2	9
2242T	22,40	1	13
2802T	28,00	1	17
3351T	33,50	2	20

MVA S outdoor unit with single duct type indoor unit

MVA S	Nominal cooling capacity (kW)	No. indoor units	Compatible indoor unit
2242T	22,40	1	MVA2240DH
2802T	28,00	1	MVA2800DH

MVB_M recommended configurations

	Nominal cooling capacity—			mbination		Connectible	
				dule		Num	
	(kW)	(A)	(B)	(C)	(D)	MINIMUM (1)	MAXIMUM (2)
	22,40	2240T	-	-	-	1	13
	28,00	2800T	-	-	-	1	16
	33,50	3350T	-	-	-	1	19
Base Module	40,00	4000T	-	-	-	1	23
buse module	45,00	4500T	-	-	-	1	26
	50,40	5040T	-	-	-	1	29
	56,00	5600T	-	-	-	1	33
	61,50	6150T	-	-	-	2	36
	68,00	2800T	4000T	=	-	2	39
	73,00	2800T	4500T	-	-	2	43
	78,40	2800T	5040T	-	-	2	46
	84,00	2800T	5600T	-	-	2	50
	89,50	2800T	6150T	-	-	2	53
	95,00	3350T	6150T	-	-	2	56
	101,50	4000T	6150T	-	-	2	59
	106,50	4500T	6150T	-	-	2	63
	111,90	5040T	6150T	-	-	3	64
	117,50	5600T	6150T	=	-	3	64
	123,00	6150T	6150T	-	-	3	64
	129,00	2800T	4500T	5600T	-	3	64
	134,50	2800T	4500T	6150T	-	3	64
	140,00	3350T	4500T	6150T	-	3	66
	145,50	2800T	5600T	6150T	-	3	69
	151,00	2800T	6150T	6150T	-	3	71
Combinations	156,50	3350T	6150T	6150T	-	3	74
	163,00	4000T	6150T	6150T	-	3	77
	168,00	4500T	6150T	6150T	-	4	80
	173,40	5040T	6150T	6150T	-	4	80
	179,00	5600T	6150T	6150T	-	4	80
	184,50	6150T	6150T	6150T	-	4	80
	190,50	2800T	4500T	5600T	6150T	4	80
	195,90	2800T	5040T	5600T	6150T	4	80
	201,50	2800T	5600T	5600T	6150T	4	80
	207,00	2800T	5600T	6150T	6150T	4	80
	212,50	2800T	6150T	6150T	6150T	4	80
	218,00	3350T	6150T	6150T	6150T	4	80
	224,50	4000T	6150T	6150T	6150T	5	80
	229,50	4500T	6150T	6150T	6150T	5	80
	234,90	5040T	6150T	6150T	6150T	5	80
	240,50	5600T	6150T	6150T	6150T	5	80
	246,00	6150T	6150T	6150T	6150T	5	80

INDOOR UNIT PERFORMANCE DATA

MVA_WL

		MVA220WL	MVA280WL	MVA360WL	MVA450WL	MVA500WL	MVA560WL	MVA630WL	MVA710WL
Nominal cooling performances									
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00	5,60	6,30	7,10
Nominal heating performances									
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,60	6,30	7,10	7,50
Electric data									
Rated power input (3)	W	20	20	25	35	35	50	50	65
Fan									
Туре	type				Inverter t	angential			
Air flow rate									
Minimum	m³/h	300	300	320	500	501	650	650	650
Average	m³/h	440	440	460	580	580	850	850	850
Maximum	m³/h	500	500	630	850	850	1100	1100	1200
Sound power (4)									
Minimum	dB(A)	40,0	41,0	41,0	47,0	47,0	47,0	48,0	47,0
Average	dB(A)	43,0	43,0	45,0	50,0	50,0	51,0	51,0	51,0
Maximum	dB(A)	45,0	45,0	48,0	53,0	53,0	53,0	53,0	54,0
Sound pressure (5)									
Minimum	dB(A)	30,0	30,0	31,0	37,0	37,0	37,0	37,0	37,0
Average	dB(A)	33,0	33,0	35,0	40,0	40,0	41,0	41,0	41,0
Maximum	dB(A)	35,0	35,0	38,0	43,0	43,0	43,0	43,0	44,0
Refrigeration pipework									
Diameter of liquid refrigerant connections	mm (inch)			6,35 (1/4")				9,52 (3/8")	
Diameter of refrigerant gas connections	mm (inch)	9,52	(3/8")		12,7 (1/2")			15,9 (5/8")	
Power supply									
Indoor unit power supply					220-240	V ~ 50Hz			
Indoor unit									
Condensate discharge diameter	mm	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA D

		MVA221D	MVA251D	MVA281D	MVA321D	MVA361D	MVA401D	MVA451D	MVA501D	MVA561D
Nominal cooling performances										
Cooling capacity (1)	kW	2,20	2,50	2,80	3,20	3,60	4,00	4,50	5,00	5,60
Nominal heating performances										
Heating capacity (2)	kW	2,50	2,80	3,20	3,60	4,00	4,50	5,00	5,60	6,30
Electric data										
Rated power input (3)	W	78	78	78	78	78	78	78	117	117
Fan										
Туре	type					Inverter centrifuga	al			
Air flow rate										
Minimum	m³/h	200	200	200	300	300	400	400	550	550
Average	m³/h	350	350	350	400	400	550	550	700	700
Maximum	m³/h	450	450	450	550	550	750	750	850	850
High static pressure										
Nominal	Pa	15	15	15	15	15	15	15	15	15
Minimum	Pa	0	0	0	0	0	0	0	0	0
Maximum	Pa	30	30	30	30	30	30	30	30	30
Sound power (4)										
Minimum	dB(A)	32,0	32,0	32,0	35,0	35,0	37,0	37,0	39,0	39,0
Average	dB(A)	35,0	35,0	35,0	37,0	37,0	39,0	39,0	41,0	41,0
Maximum	dB(A)	40,0	40,0	40,0	41,0	41,0	43,0	43,0	45,0	45,0
Sound pressure (5)										
Minimum	dB(A)	22,0	22,0	22,0	25,0	25,0	27,0	27,0	29,0	29,0
Average	dB(A)	25,0	25,0	25,0	27,0	27,0	29,0	29,0	31,0	31,0
Maximum	dB(A)	30,0	30,0	30,0	31,0	31,0	33,0	33,0	35,0	35,0
Refrigeration pipework										
Diameter of liquid refrigerant connections	mm (inch)				6,35	(1/4")				9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)		9,52 (3/8")				12,7 (1/2")			15,9 (5/8")
Power supply										
Indoor unit power supply						220-240V ~ 50Hz	2			
Indoor unit										
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0

		MVA631D	MVA711D	MVA801D	MVA901D	MVA1001D	MVA1121D	MVA1251D	MVA1401D
Nominal cooling performances		MITAUSID	MIVA/11D	MINNOVID	MVAZOID	MVATOUTD	MVATILID	MVAIZJID	MVAITUID
Cooling capacity (1)	kW	6,30	7,10	8,00	9,00	10,00	11,20	12,50	14,00
Nominal heating performances		,	•	•	,	,		•	,
Heating capacity (2)	kW	7,10	8,00	9,00	10,00	11,20	12,50	14,00	16,00
Electric data									
Rated power input (3)	W	117	154	110	130	130	130	170	170
Fan					,				
Туре	type				Inverter o	entrifugal			
Air flow rate									
Minimum	m³/h	550	650	900	900	1000	1100	1400	1400
Average	m³/h	700	850	1100	1250	1350	1500	1700	1700
Maximum	m³/h	850	1100	1250	1500	1500	1700	2000	2000
High static pressure									
Nominal	Pa	15	15	50	50	50	50	50	50
Minimum	Pa	0	0	0	0	0	0	0	0
Maximum	Pa	30	50	80	80	80	80	80	80
Sound power (4)									
Minimum	dB(A)	39,0	40,0	46,0	47,0	47,0	47,0	52,0	52,0
Average	dB(A)	41,0	42,0	49,0	51,0	51,0	51,0	55,0	55,0
Maximum	dB(A)	45,0	47,0	52,0	55,0	55,0	55,0	57,0	57,0
Sound pressure (5)									
Minimum	dB(A)	29,0	30,0	31,0	32,0	32,0	32,0	37,0	37,0
Average	dB(A)	31,0	32,0	34,0	36,0	36,0	36,0	40,0	40,0
Maximum	dB(A)	35,0	37,0	37,0	40,0	40,0	40,0	42,0	42,0
Refrigeration pipework									
Diameter of liquid refrigerant connections	mm (inch)				9,52	(3/8")			
Diameter of refrigerant gas connections	mm (inch)				15,9	(5/8")			
Power supply									
Indoor unit power supply		220-240V ~ 50Hz							
Indoor unit									
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0

(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

(4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

(5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_DH							
		MVA221DH	MVA251DH	MVA281DH	MVA321DH	MVA361DH	MVA401DH
Nominal cooling performances							
Cooling capacity (1)	kW	2,20	2,50	2,80	3,20	3,60	4,00
Nominal heating performances							
Heating capacity (2)	kW	2,50	2,80	3,20	3,60	4,00	4,50
Electric data							
Rated power input (3)	W	55	55	55	65	65	85
Fan							
Туре	type			Inverter o	entrifugal		
Air flow rate							
Minimum	m³/h	400	400	400	420	420	600
Average	m³/h	480	480	480	500	500	700
Maximum	m³/h	550	550	550	600	600	850
High static pressure							
Nominal	Pa	60	60	60	60	60	60
Minimum	Pa	0	0	0	0	0	0
Maximum	Pa	150	150	150	150	150	150
Sound power (4)							
Minimum	dB(A)	41,0	41,0	41,0	42,0	42,0	44,0
Average	dB(A)	43,0	43,0	43,0	44,0	44,0	47,0
Maximum	dB(A)	45,0	45,0	45,0	46,0	46,0	50,0
Sound pressure (5)							
Minimum	dB(A)	31,0	31,0	31,0	32,0	32,0	34,0
Average	dB(A)	33,0	33,0	33,0	34,0	34,0	37,0
Maximum	dB(A)	35,0	35,0	35,0	36,0	36,0	40,0
Refrigeration pipework							
Diameter of liquid refrigerant connections	mm (inch)			6,35	(1/4")		
Diameter of refrigerant gas connections	mm (inch)		9,52 (3/8")			12,7 (1/2")	
Power supply							
ndoor unit power supply				220-240	V ~ 50Hz		
Indoor unit							
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0

		MVA451DH	MVA501DH	MVA561DH	MVA631DH	MVA711DH	MVA801DH
Nominal cooling performances							
Cooling capacity (1)	kW	4,50	5,00	5,60	6,30	7,10	8,00
Nominal heating performances							
Heating capacity (2)	kW	5,00	5,60	6,30	7,10	8,00	9,00
Electric data							
Rated power input (3)	W	85	85	90	90	100	100
Fan							
Туре	type			Inverter ce	entrifugal		
Air flow rate					-		
Minimum	m³/h	600	600	700	700	950	950
Average	m³/h	700	700	800	800	1050	1050
Maximum	m³/h	850	850	1000	1000	1250	1250
High static pressure	,						
Nominal	Pa	60	60	90	90	90	90
Minimum	Pa	0	0	0	0	0	0
Maximum	Pa	150	150	200	200	200	200
	га	130	130	200	200	200	200
Sound power (4)	AD/A/	44.0	44.0	AE O	AE O	AE O	AF O
Minimum	dB(A)	44,0	44,0	45,0	45,0	45,0	45,0
Average	dB(A)	47,0	47,0	48,0	48,0	49,0	49,0
Maximum	dB(A)	50,0	50,0	52,0	52,0	53,0	53,0
Sound pressure (5)							
Minimum	dB(A)	34,0	34,0	35,0	35,0	35,0	35,0
Average	dB(A)	37,0	37,0	38,0	38,0	39,0	39,0
Maximum	dB(A)	40,0	40,0	42,0	42,0	43,0	43,0
Refrigeration pipework							
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")		9,52 (3/8")	
Diameter of refrigerant gas connections	mm (inch)	12,7 (1/2")		15,9 (5/8")	
Power supply	. ,	,	,		, ,	,	
Indoor unit power supply				220-240\	/ ~ 50Hz		
Indoor unit				220 2101	30112		
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0
Condensate discharge diameter	111111						
		MVA901DH	MVA1001DH	MVA1121DH	MVA1251DH	MVA1401DH	MVA1601DH
Nominal cooling performances							
	1111		40.00	44.00	40.50		44.00
Cooling capacity (1)	kW	9,00	10,00	11,20	12,50	14,00	16,00
Cooling capacity (1) Nominal heating performances							
Cooling capacity (1) Nominal heating performances Heating capacity (2)	kW kW	9,00	10,00	11,20	12,50	14,00	16,00 18,00
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data	kW	10,00	11,20	12,50	14,00	16,00	18,00
Cooling capacity (1) Nominal heating performances Heating capacity (2)							
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data	kW	10,00	11,20	12,50	14,00	16,00	18,00
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3)	kW	10,00	11,20	12,50	14,00	16,00	18,00
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan	kW W	10,00	11,20	12,50 160	14,00	16,00	18,00
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type	kW W	10,00	11,20	12,50 160	14,00	16,00	18,00
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum	kW W type	10,00	11,20 140	12,50 160 Inverter ce	14,00 160 entrifugal	16,00 220	18,00
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average	kW W type m³/h m³/h	10,00 140 1250 1450	11,20 140 1250 1450	12,50 160 Inverter ce 1400 1600	14,00 160 entrifugal 1400 1600	16,00 220 1650 1900	18,00 230 1750 2000
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum	kW W type m³/h	10,00 140 1250	11,20 140	12,50 160 Inverter ce	14,00 160 entrifugal	16,00 220 1650	18,00 230
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure	kW type m³/h m³/h m³/h	10,00 140 1250 1450 1800	11,20 140 1250 1450 1800	12,50 160 Inverter ce 1400 1600 2000	14,00 160 entrifugal 1400 1600 2000	16,00 220 1650 1900 2350	18,00 230 1750 2000 2500
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal	kW type m³/h m³/h m³/h Pa	10,00 140 1250 1450 1800	11,20 140 1250 1450 1800	12,50 160 Inverter ce 1400 1600 2000	14,00 160 entrifugal 1400 1600 2000	16,00 220 1650 1900 2350	18,00 230 1750 2000 2500
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum	kW type m³/h m³/h m³/h Pa Pa	10,00 140 1250 1450 1800	11,20 140 1250 1450 1800 90 0	12,50 160 Inverter ce 1400 1600 2000 90 0	14,00 160 entrifugal 1400 1600 2000 90 0	16,00 220 1650 1900 2350 90 0	18,00 230 1750 2000 2500 90 0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Maximum	kW type m³/h m³/h m³/h Pa	10,00 140 1250 1450 1800	11,20 140 1250 1450 1800	12,50 160 Inverter ce 1400 1600 2000	14,00 160 entrifugal 1400 1600 2000	16,00 220 1650 1900 2350	18,00 230 1750 2000 2500
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Maximum Sound power (4)	kW type m³/h m³/h m³/h Pa Pa Pa	10,00 140 1250 1450 1800 90 0	11,20 140 1250 1450 1800 90 0	12,50 160 Inverter ce 1400 1600 2000 90 0 2000	14,00 160 2000 90 0 2000	16,00 220 1650 1900 2350 90 0	18,00 230 1750 2000 2500 90 0 200
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Maximum Maximum Sound power (4) Minimum	type m³/h m³/h m³/h Pa Pa Pa dB(A)	10,00 140 1250 1450 1800 90 0 200	11,20 140 1250 1450 1800 90 0 200	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0	14,00 160 2000 90 0 2000 50,0	16,00 220 1650 1900 2350 90 0 200	18,00 230 1750 2000 2500 90 0 200
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Maximum Sound power (4) Minimum Average	kW type m³/h m³/h m³/h Pa Pa Pa Pa dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0	14,00 160 2000 1400 1600 2000 90 0 200 50,0 52,0	16,00 220 1650 1900 2350 90 0 200	18,00 230 1750 2000 2500 90 0 200 52,0 54,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Average	type m³/h m³/h m³/h Pa Pa Pa dB(A)	10,00 140 1250 1450 1800 90 0 200	11,20 140 1250 1450 1800 90 0 200	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0	14,00 160 2000 90 0 2000 50,0	16,00 220 1650 1900 2350 90 0 200	18,00 230 1750 2000 2500 90 0 200
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5)	type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0	14,00 160 2000 1400 1600 2000 90 0 200 50,0 52,0 55,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum	kW type m³/h m³/h m³/h m³/h Pa Pa Pa AB(A) AB(A) AB(A) AB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0	14,00 160 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0	18,00 230 2750 2000 2500 2500 2500 2500 2500 250
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum Average	kW type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0	14,00 160 1400 1600 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum	kW type m³/h m³/h m³/h m³/h Pa Pa Pa AB(A) AB(A) AB(A) AB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0	14,00 160 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0	18,00 230 2750 2000 2500 2500 2500 2500 2500 250
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum Average	kW type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0 45,0	14,00 160 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0 45,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum Average Maximum Refrigeration pipework Diameter of liquid refrigerant connections	kW type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0	14,00 160 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0 45,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum Average Maximum Refrigeration pipework Diameter of liquid refrigerant connections	kW type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0 45,0	14,00 160 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0 45,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0 47,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum Refrigeration pipework Diameter of liquid refrigerant connections Diameter of refrigerant gas connections	kW type m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0 45,0	14,00 160 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0 45,0	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Sound power (5) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum Refrigeration pipework Diameter of liquid refrigerant connections Diameter of refrigerant gas connections Power supply	kW type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0 45,0 9,52 (15,9 (5/8")	14,00 160 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0 45,0 3/8")	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0 47,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum Refrigeration pipework Diameter of liquid refrigerant connections Diameter of refrigerant gas connections Power supply Indoor unit power supply	kW type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0 45,0	14,00 160 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0 45,0 3/8")	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0 47,0
Cooling capacity (1) Nominal heating performances Heating capacity (2) Electric data Rated power input (3) Fan Type Air flow rate Minimum Average Maximum High static pressure Nominal Minimum Maximum Sound power (4) Minimum Average Maximum Sound power (5) Minimum Average Maximum Sound pressure (5) Minimum Average Maximum Refrigeration pipework Diameter of liquid refrigerant connections Diameter of refrigerant gas connections Power supply	kW type m³/h m³/h m³/h m³/h Pa Pa Pa dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A) dB(A)	10,00 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	11,20 140 1250 1450 1800 90 0 200 48,0 51,0 54,0 38,0 41,0	12,50 160 Inverter ce 1400 1600 2000 90 0 200 50,0 52,0 55,0 40,0 42,0 45,0 9,52 (15,9 (5/8")	14,00 160 2000 90 0 2000 50,0 52,0 55,0 40,0 42,0 45,0 3/8")	16,00 220 1650 1900 2350 90 0 200 51,0 53,0 56,0 41,0 43,0	18,00 230 1750 2000 2500 90 0 200 52,0 54,0 57,0 42,0 44,0 47,0

		MVA 2240 DH	MVA 2800 DH
Nominal cooling performances			
Cooling capacity (1)	kW	22,40	28,00
Nominal heating performances			
Heating capacity (2)	kW	24,00	30,00
Electric data			
Rated power input (3)	W	960	1250
Fan			
Туре	type		
Air flow rate			
Minimum	m³/h	-	-
Average	m³/h	-	-
Maximum	m³/h	4000	4400
High static pressure			
Nominal	Pa	150	150
Minimum	Pa	-	-
Maximum	Pa	-	-
Sound power (4)			
Minimum	dB(A)	59,0	60,0
Average	dB(A)	62,0	62,0
Maximum	dB(A)	64,0	65,0
Sound pressure (5)			
Minimum	dB(A)	49,0	50,0
Average	dB(A)	52,0	52,0
Maximum	dB(A)	54,0	55,0
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)	19,05 (3/4")	22,2 (7/8")
Diameter of refrigerant gas connections	mm (inch)		9,52 (3/8")
Power supply			
Indoor unit power supply			220-240V ~ 50Hz
Indoor unit			
Condensate discharge diameter	mm	30,0	30,0

⁽¹⁾ Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_DV

		MVA220DV	MVA280DV	MVA360DV	MVA450DV	MVA560DV	MVA630DV	MVA710DV
Nominal cooling performances								
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,60	6,30	7,10
Nominal heating performances								
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	6,30	7,10	8,00
Electric data								
Rated power input (3)	W	35	35	43	45	80	80	90
Fan								
Туре	type				Inverter centrifugal			
Air flow rate								
Minimum	m³/h	250	250	350	400	600	600	700
Average	m³/h	350	350	450	500	750	750	900
Maximum	m³/h	450	450	550	650	900	900	1100
High static pressure								
Nominal	Pa	10	10	10	15	15	15	15
Minimum	Pa	0	0	0	0	0	0	0
Maximum	Pa	40	40	40	60	60	60	60
Sound power (4)								
Minimum	dB(A)	35,0	35,0	38,0	38,0	40,0	40,0	43,0
Average	dB(A)	38,0	38,0	41,0	41,0	43,0	43,0	45,0
Maximum	dB(A)	40,0	40,0	43,0	43,0	45,0	45,0	47,0
Sound pressure (5)								
Minimum	dB(A)	25,0	25,0	28,0	28,0	30,0	30,0	33,0
Average	dB(A)	28,0	28,0	31,0	31,0	33,0	33,0	35,0
Maximum	dB(A)	30,0	30,0	33,0	33,0	35,0	35,0	37,0
Refrigeration pipework								
Diameter of liquid refrigerant connections	mm (inch)		6,35	(1/4")			9,52 (3/8")	
Diameter of refrigerant gas connections	mm (inch)	9,52	(3/8")	12,7	(1/2")		15,9 (5/8")	
Power supply								
Indoor unit power supply					220-240V ~ 50Hz			
Indoor unit								
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_CS

MVA_C3									
		MVA151CS	MVA181CS	MVA221CS	MVA281CS	MVA361CS	MVA451CS	MVA501CS	MVA561CS
Nominal cooling performances									
Cooling capacity (1)	kW	1,50	1,80	2,20	2,80	3,60	4,50	5,00	5,60
Nominal heating performances									
Heating capacity (2)	kW	1,80	2,20	2,50	3,20	4,00	5,00	5,60	6,30
Electric data									
Rated power input (3)	W	30	30	30	30	30	45	45	45
Fan									
Туре	type				Inverter c	entrifugal			
Air flow rate									
Minimum	m³/h	370	370	370	420	480	560	560	560
Average	m³/h	420	420	460	480	550	650	650	650
Maximum	m³/h	460	460	500	570	620	730	730	730
Sound power (4)									
Minimum	dB(A)	39,0	39,0	39,0	42,0	45,0	53,0	43,0	53,0
Average	dB(A)	44,0	44,0	45,0	47,0	49,0	55,0	55,0	55,0
Maximum	dB(A)	47,0	47,0	50,0	50,0	52,0	57,0	57,0	57,0
Sound pressure (5)									
Minimum	dB(A)	25,0	25,0	25,0	28,0	31,0	39,0	39,0	39,0
Average	dB(A)	30,0	30,0	31,0	33,0	35,0	41,0	41,0	41,0
Maximum	dB(A)	33,0	33,0	36,0	36,0	38,0	43,0	43,0	43,0
Refrigeration pipework									
Diameter of liquid refrigerant connections	mm (inch)	6,35	(1/4")			6,35 (1/4")			9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52	(3/8")	9,52	(3/8")		12,7 (1/2")		15,9 (5/8")
Power supply									
Indoor unit power supply		220-240V ~ 50Hz							
Indoor unit									
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_C

			MVA281C	MVA361C	MVA451C	MVA501C	MVA561C	MVA631C
Nominal cooling performances								
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00	5,60	6,30
Nominal heating performances								
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,60	6,30	7,10
Electric data								
Rated power input (3)	W	26	26	26	26	28	35	60
Fan								
Туре	type				Inverter centrifugal			
Air flow rate								
Minimum	m³/h	600	600	600	600	700	750	850
Average	m³/h	700	700	700	700	800	850	950
Maximum	m³/h	800	800	800	800	900	950	1150
Sound power (4)								
Minimum	dB(A)	42,0	42,0	42,0	42,0	43,0	44,0	45,0
Average	dB(A)	44,0	44,0	44,0	44,0	46,0	47,0	48,0
Maximum	dB(A)	47,0	47,0	47,0	48,0	49,0	51,0	51,0
Sound pressure (5)								
Minimum	dB(A)	28,0	28,0	28,0	28,0	29,0	30,0	31,0
Average	dB(A)	30,0	30,0	30,0	30,0	32,0	33,0	34,0
Maximum	dB(A)	33,0	33,0	33,0	34,0	35,0	37,0	37,0
Refrigeration pipework								
Diameter of liquid refrigerant connections	mm (inch)			6,35 (1/4")			9,52	(3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52	(3/8")		12,7 (1/2")		15,9	(5/8")
Power supply								
Indoor unit power supply					220-240V ~ 50Hz			
Indoor unit								
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0

		MVA711C	MVA801C	MVA901C	MVA1001C	MVA1121C	MVA1251C	MVA1401C
Nominal cooling performances								
Cooling capacity (1)	kW	7,10	8,00	9,00	10,00	11,20	12,50	14,00
Nominal heating performances								
Heating capacity (2)	kW	8,00	9,00	10,00	11,20	12,50	14,00	16,00
Electric data								
Rated power input (3)	W	60	85	85	85	115	115	115
Fan								
Туре	type				Inverter centrifugal			
Air flow rate								
Minimum	m³/h	850	900	900	900	1100	1100	1100
Average	m³/h	950	1000	1000	1000	1300	1300	1300
Maximum	m³/h	1150	1250	1250	1250	1650	1650	1650
Sound power (4)								
Minimum	dB(A)	45,0	48,0	48,0	48,0	53,0	53,0	53,0
Average	dB(A)	48,0	51,0	51,0	51,0	55,0	55,0	55,0
Maximum	dB(A)	51,0	53,0	53,0	53,0	57,0	57,0	57,0
Sound pressure (5)								
Minimum	dB(A)	31,0	34,0	34,0	34,0	39,0	39,0	39,0
Average	dB(A)	34,0	37,0	37,0	37,0	41,0	41,0	41,0
Maximum	dB(A)	37,0	39,0	39,0	39,0	43,0	43,0	43,0
Refrigeration pipework								
Diameter of liquid refrigerant connections	mm (inch)				9,52 (3/8")			
Diameter of refrigerant gas connections	mm (inch)				15,9 (5/8")			
Power supply								
Indoor unit power supply					220-240V ~ 50Hz			
Indoor unit								
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
- (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_CB

		MVA1600CB
Nominal cooling performances		
Cooling capacity (1)	kW	16,00
Nominal heating performances		
Heating capacity (2)	kW	17,50
Electric data		
Rated power input (3)	W	130
Fan		
Туре	type	Inverter centrifugal
Air flow rate		
Minimum	m³/h	1400
Average	m³/h	1700
Maximum	m³/h	2100
Sound power (4)		
Minimum	dB(A)	52,0
Average	dB(A)	54,0
Maximum	dB(A)	57,0
Sound pressure (5)		
Minimum	dB(A)	42,0
Average	dB(A)	44,0
Maximum	dB(A)	47,0
Refrigeration pipework		
Diameter of liquid refrigerant connections	mm (inch)	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	19,05 (3/4")
Power supply		
Indoor unit power supply		220-240V ~ 50Hz
Indoor unit		
Condensate discharge diameter	mm	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_C1

		MVA220C1	MVA280C1	MVA360C1	MVA450C1	MVA500C1
Nominal cooling performances						
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00
Nominal heating performances						
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,60
Electric data						
Rated power input (3)	W	30	30	30	30	30
Fan						
Туре	type			Inverter tangential		
Air flow rate						
Minimum	m³/h	450	450	450	500	500
Average	m³/h	500	500	500	600	600
Maximum	m³/h	600	600	600	830	830
Sound power (4)						
Minimum	dB(A)	38,0	38,0	38,0	40,0	40,0
Average	dB(A)	42,0	42,0	42,0	45,0	45,0
Maximum	dB(A)	46,0	46,0	46,0	50,0	50,0
Sound pressure (5)						
Minimum	dB(A)	28,0	28,0	28,0	30,0	30,0
Average	dB(A)	32,0	32,0	32,0	35,0	35,0
Maximum	dB(A)	36,0	36,0	36,0	40,0	40,0
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)			6,35 (1/4")		
Diameter of refrigerant gas connections	mm (inch)	9,	52 (3/8")		12,7 (1/2")	
Power supply						
Indoor unit power supply				220-240V ~ 50Hz		
Indoor unit						
Condensate discharge diameter	mm	25,0	25,0	25,0	25,0	25,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.

 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.

 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_F											
		MVA281F	MVA361F	MVA501F	MVA561F	MVA631F	MVA711F	MVA901F	MVA1121F	MVA1251F	MVA1401F
Nominal cooling performances	;										
Cooling capacity (1)	kW	2,80	3,60	5,00	5,60	6,30	7,10	9,00	11,20	12,50	14,00
Nominal heating performances	s										
Heating capacity (2)	kW	3,20	4,00	5,60	6,30	7,10	8,00	10,00	12,50	14,00	16,00
Electric data											
Rated power input (3)	W	35	35	55	55	80	80	120	120	120	150
Fan											
Туре	type	Inverter centrifugal									
Air flow rate											
Minimum	m³/h	450	450	600	600	1050	1050	1250	1400	1400	1600
Average	m³/h	500	500	650	650	1200	1200	1400	1600	1600	1750
Maximum	m³/h	600	600	750	750	1350	1350	1550	1800	1800	2000
Sound power (4)											
Minimum	dB(A)	45,0	45,0	48,0	48,0	54,0	54,0	54,0	54,0	54,0	55,0
Average	dB(A)	48,0	48,0	51,0	51,0	57,0	57,0	56,0	56,0	56,0	57,0
Maximum	dB(A)	52,0	52,0	54,0	54,0	60,0	60,0	59,0	59,0	59,0	61,0
Sound pressure (5)											
Minimum	dB(A)	29,0	29,0	36,0	36,0	38,0	38,0	41,0	42,0	42,0	43,0
Average	dB(A)	32,0	32,0	39,0	39,0	41,0	41,0	44,0	44,0	44,0	45,0
Maximum	dB(A)	36,0	36,0	42,0	42,0	44,0	44,0	47,0	47,0	47,0	49,0
Refrigeration pipework											
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
Power supply											
Indoor unit power supply		220-240V ~ 50Hz									
Power supply 60Hz											
Indoor unit power supply		208-230V ~ 60Hz									
Indoor unit											
Condensate discharge diameter	mm	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0	17,0

		MVA1601F
Nominal cooling performances	5	
Cooling capacity (1)	kW	16,00
Nominal heating performance	S	
Heating capacity (2)	kW	18,00
Electric data		
Rated power input (3)	W	175
Fan		
Туре	type	Inverter centrifugal
Air flow rate		
Minimum	m³/h	1650
Average	m³/h	1850
Maximum	m³/h	2150
Sound power (4)		
Minimum	dB(A)	57,0
Average	dB(A)	60,0
Maximum	dB(A)	64,0
Sound pressure (5)		
Minimum	dB(A)	45,0
Average	dB(A)	48,0
Maximum	dB(A)	52,0
Refrigeration pipework		
Diameter of liquid refrigerant	mm (inch)	9,52 (3/8")
connections	min (inch)	7/32 (310)
Diameter of refrigerant gas	mm (inch)	19,05 (3/4")
connections	min (inci)	(+70) 60(11
Power supply		
Indoor unit power supply		220-240V ~ 50Hz
Power supply 60Hz		
Indoor unit power supply		208-230V ~ 60Hz
Indoor unit		
Condensate discharge diameter	mm	17,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA FS

		MVA220FS	MVA280FS	MVA360FS	MVA450FS	MVA500FS
Nominal cooling performances						
Cooling capacity (1)	kW	2,20	2,80	3,60	4,50	5,00
Nominal heating performances						
Heating capacity (2)	kW	2,50	3,20	4,00	5,00	5,50
Electric data						
Rated power input (3)	W	15	15	20	40	40
Fan						
Туре	type			Inverter centrifugal		
Air flow rate						
Minimum	m³/h	270	270	310	500	500
Average	m³/h	320	320	400	600	600
Maximum	m³/h	400	400	480	680	680
Sound power (4)						
Minimum	dB(A)	37,0	37,0	42,0	49,0	49,0
Average	dB(A)	43,0	43,0	47,0	53,0	53,0
Maximum	dB(A)	48,0	48,0	50,0	56,0	56,0
Sound pressure (5)						
Minimum	dB(A)	27,0	27,0	32,0	39,0	39,0
Average	dB(A)	33,0	33,0	37,0	43,0	43,0
Maximum	dB(A)	38,0	38,0	40,0	46,0	46,0
Refrigeration pipework						
Diameter of liquid refrigerant connections	mm (inch)			6,35 (1/4")		
Diameter of refrigerant gas connections	mm (inch)	9,	52 (3/8")		12,7 (1/2")	
Power supply						
Indoor unit power supply				220-240V ~ 50Hz	·	
Indoor unit						
Condensate discharge diameter	mm	17,2	17,2	17,2	17,2	17,2

(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
(5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA_V

		MVA1000V	MVA1400V
Nominal cooling performances			
Cooling capacity (1)	kW	10,00	14,00
Nominal heating performances			
Heating capacity (2)	kW	11,00	15,00
Electric data			
Rated power input (3)	W	200	200
<u>Fan</u>			
Туре	type		Inverter centrifugal
Air flow rate			
Minimum	m³/h	1400	1400
Average	m³/h	1600	1600
Maximum	m³/h	1850	1850
Sound power (4)			
Minimum	dB(A)	56,0	56,0
Average	dB(A)	58,0	58,0
Maximum	dB(A)	60,0	60,0
Sound pressure (5)			
Minimum	dB(A)	46,0	46,0
Average	dB(A)	48,0	48,0
Maximum	dB(A)	50,0	50,0
Refrigeration pipework			
Diameter of liquid refrigerant connections	mm (inch)		9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)		15,9 (5/8")
Power supply			
Indoor unit power supply			220-240V ~ 50Hz
Indoor unit			
Condensate discharge diameter	mm	31,0	31,0

- (1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
 (2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
 (3) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
 (4) Sound power calculated in free field, in accordance with UNI EN ISO 3744.
 (5) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

MVA ERV

		MVA500ERV	MVA800ERV	MVA1000ERV
Nominal cooling performances				
Cooling capacity (1)	kW	8,50	12,00	14,50
Cooling capacity of finned pack heat exchanger (2)	kW	3,60	6,30	8,00
Nominal heating performances				
Heating capacity (3)	kW	4,00	10,60	12,00
Heating capacity of finned pack heat exchanger	kW	2,00	8,04	8,40
Heat recovery unit				
Unit type		UVNR	UVNR	UVNR
Thermal efficiency (4)	%	73	74	73
Fans				
Commissioning	type	Speed variator	Speed variator	Speed variator
SFP int	W/(m ³ /s)	1099,57	1118,00	1059,20
Nominal external pressure Δp (5)	Pa	150	150	150
Type of fan	Туре	Centrifugal	Centrifugal	Centrifugal
Nominal air flow rate	m³/h	500	800	1000
Sound data				
Sound power level	dB(A)	55,0	59,0	62,0
General data				
Rated power input	W	270	440	640
Diameter of liquid refrigerant connections	mm (inch)	6,35 (1/4")	9,52 (3/8")	9,52 (3/8")
Diameter of refrigerant gas connections	mm (inch)	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")
Condensate discharge diameter	mm	26,0	26,0	26,0
Heat recovery unit				
Power supply		220-240V ~ 50/60Hz	220-240V ~ 50/60Hz	220-240V ~ 50/60Hz

- (1) Cooling: room air temperature 27 °C d.b. / 19.5 °C w.b.; outside air temperature 35 °C; turbo speed; cooling line length 5 m; indoor and outdoor units at the same height.

 (2) Use the finned pack heat exchanger power (cooling) to make the calculation and select the unit.

 (3) Heating: room air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; cooling line length 5 m; indoor and outdoor units at the same height.

 (4) Thermal efficiency complying with European regulation EU 1253/2014.

 (5) Performances referring to clean filters.

 The air flow rate is calculated on the basis of the nominal high static pressure at high fan speed. It may vary according to the real installation conditions.

 The nominal static pressure is the effective pressure value declared for a standard unit when it leaves the factory. The use of other filters may alter the unit performance values.

2-PIPE SYSTEM OUTDOOR UNIT PERFORMANCE DATA

		MVAS 1201S	MVAS 1201T	MVAS 1401S	MVAS 1401T	MVAS 1601S	MVAS 1601T	MVAS 2242T	MVAS 2802T	MVAS 3351T
Nominal cooling perf	ormances									
Cooling capacity (1)	kW	12,10	12,10	14,00	14,00	16,00	16,00	22,40	28,00	33,50
Cooling input	kW	3,03	3,03	3,59	3,59	4,75	4,75	6,12	7,78	9,57

		MVAS 1201S	MVAS 1201T	MVAS 1401S	MVAS 1401T	MVAS 1601S	MVAS 1601T	MVAS 2242T	MVAS 2802T	MVAS 3351T
Cooling input current	A	-	-	-	-	-	-	10,9	13,9	17,1
EER (2)	W/W	3,99	3,99	3,90	3,90	3,37	3,37	3,66	3,60	3,50
Nominal heating perfo	ormances									
Heating capacity (3)	kW	14,00	14,00	16,50	16,50	18,00	18,00	24,00	30,00	35,00
Heating input power (3)	kW	3,27	3,27	3,95	3,95	4,65	4,65	4,90	6,12	7,14
Heating input current	A	-	-	-	-	-	-	8,8	10,9	12,8
COP (2)	W/W	4,28	4,28	4,18	4,18	3,87	3,87	4,90	4,90	4,90
Fan										
Туре	type	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial	Inverter axial
Number	no.	2	2	2	2	2	2	2	2	2
Air flow rate										
Nominal	m³/h	6000	6000	6300	6300	6600	6600	8000	11000	11000
Sound pressure (4)										
Nominal	dB(A)	57,0	57,0	58,0	58,0	58,0	58,0	63,0	65,0	65,0
Compressor										
Туре	type	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter	Scroll inverter
Number	no.	1	1	1	1	1	1	1	1	1
Refrigerant	type	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A
Refrigerant charge	kg	3,3	3,3	3,3	3,3	3,3	3,3	5,5	7,1	80,0
Electric data										
Rated power input (5)	kW	-	-	-	-	-	-	9,6	12,5	13,7
Rated current input (5)	А	30,4	11,1	33,7	12,0	36,3	12,5	17,2	22,4	24,5
Refrigeration pipewor	k									
Maximum refrigerant tube length	m	300	300	300	300	300	300	300	300	300
Power supply										
Outdoor unit power supply		230V~50Hz (6)	400V~3N~50Hz (7)	230V~50Hz (6)	400V~3N~50Hz (7)	230V~50Hz (6)	400V~3N~50Hz (7)	400V~3N~50Hz (7)	400V~3N~50Hz (7)	400V~3N~50Hz (7)

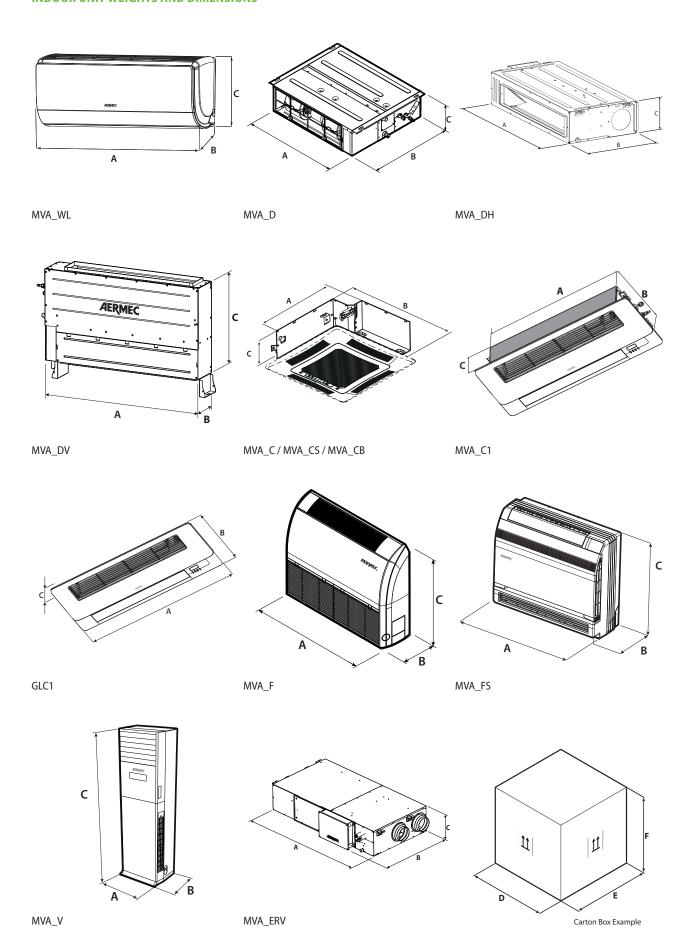
(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.

(2) EER/COP in accordance with the Standard (EN 14511), only declared for the purposes of the tax deductions in force at the time of this publication.

(3) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.

(4) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.

(5) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.


(6) 220-240V ~ 50Hz

(7) 380-415V ~ 3N ~ 50Hz

		MVBM 2240T	MVBM 2800T	MVBM 3350T	MVBM 4000T	MVBM 4500T	MVBM 5040T	MVBM 5600T	MVBM 6150T
Nominal cooling performances									
Cooling capacity (1)	kW	22,40	28,00	33,50	40,00	45,00	50,40	52,00	52,00
Nominal heating performances									
Heating capacity (2)	kW	22,40	28,00	33,50	40,00	45,00	50,40	56,00	56,00
Fan									
Туре	type	Inverter axial							
Number	no.	1	1	1	2	2	2	2	2
Air flow rate									
Nominal	m³/h	9750	10500	11100	13500	15400	16000	16500	16500
Sound pressure (3)									
Nominal	dB(A)	56,0	57,0	59,0	59,0	60,0	61,0	62,0	63,0
Compressor									
Туре	type	Scroll inverter							
Number	no.	1	1	1	1	1	2	2	2
Refrigerant	type	R410A							
Refrigerant charge	kg	5,5	5,5	7,5	7,5	7,5	8,3	8,3	8,3
Electric data									
Rated power input (4)	kW	-	-	-	-	-	-	-	-
Rated current input (4)	Α	23,0	23,5	24,1	37,5	39,3	47,0	48,0	49,0
Refrigeration pipework									
Type refrigerant connections	Туре	To be soldered							
Diameter of liquid refrigerant	mm (inch)	9,52 (3/8")	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8")	15,9 (5/8")	15,9 (5/8")
connections	IIIII (IIICII)	7,32 (3/0)	3,32 (3/0)	12,7 (1/2)	12,7 (1/2)	12,7 (1/2)	(0/0) 4,01	(0/0) 5,01	(6/८) کردا
Diameter of refrigerant gas connections	mm (inch)	19,05 (3/4")	22,2 (7/8")	25,4 (1")	25,4 (1")	28,6 (1"1/8)	28,6 (1" 1/8)	28,6 (1" 1/8)	28,6 (1" 1/8)
Maximum refrigerant tube length	m	1000	1000	1000	1000	1000	1000	1000	1000
Power supply									
Outdoor unit power supply		400V~3N~50Hz (5)							

(1) Cooling (EN 14511 and EN 14825) ambient air temperature 27 °C d.b. / 19 °C w.b.; outside air temperature 35 °C; turbo speed; length of refrigerant lines 5 m.
(2) Heating (EN 14511 and EN 14825) ambient air temperature 20 °C d.b.; outside air temperature 7 °C d.b. / 6 °C w.b.; turbo speed; length of refrigerant lines 5 m.
(3) Sound pressure measured in semi anechoic chamber at a distance of 1,5 m from the source.
(4) The rated power input (rated current input) is the maximum input electrical power (maximum current input) from the system, in accordance with the Standards EN 60335-1 and EN 60335-2-40.
(5) 380-415V~3N~50Hz

INDOOR UNIT WEIGHTS AND DIMENSIONS

MVA_WL

		MVA220WL	MVA280WL	MVA360WL	MVA450WL	MVA500WL	MVA560WL	MVA630WL	MVA710WL
Indoor unit									
A	mm	845	845	845	970	970	1078	1078	1078
В	mm	209	209	209	224	224	246	246	246
C	mm	289	289	289	300	300	325	325	325
D	mm	976	976	976	1096	1096	1203	1203	1203
E	mm	281	281	281	320	320	350	350	350
F	mm	379	379	379	383	383	413	413	413
Net weight	kg	11,00	11,00	11,00	13,00	13,00	16,00	16,00	16,00
Weight for transport	kg	13,00	13,00	13,00	16,00	16,00	19,00	19,00	19,00

MVA_D

		MVA221D	MVA251D	MVA281D	MVA321D	MVA361D	MVA401D	MVA451D	MVA501D	MVA561D
Indoor unit										
A	mm	710	710	710	710	710	1010	1010	1010	1010
В	mm	462	462	462	462	462	462	462	462	462
С	mm	200	200	200	200	200	200	200	200	200
D	mm	1008	1008	1008	1008	1008	1308	1308	1308	1308
E	mm	568	568	568	568	568	568	568	568	568
F	mm	275	275	275	275	275	275	275	275	275
Net weight	kg	19,00	19,00	19,00	19,00	19,00	25,00	25,00	25,00	25,00
Weight for transport	kg	24,00	24,00	24,00	24,00	24,00	31,00	31,00	31,00	31,00

		MVA631D	MVA711D	MVA801D	MVA901D	MVA1001D	MVA1121D	MVA1251D	MVA1401D
Indoor unit									
A	mm	1010	1310	1200	1340	1340	1340	1340	1340
В	mm	462	462	655	655	655	655	655	655
C	mm	200	200	260	260	260	260	260	260
D	mm	1308	1608	1448	1588	1588	1588	1588	1588
E	mm	568	568	858	858	858	858	858	858
F	mm	275	275	315	315	315	315	315	315
Net weight	kg	25,00	31,00	39,00	46,00	46,00	46,00	47,00	47,00
Weight for transport	kg	31,00	38,00	48,00	55,00	55,00	55,00	56,00	56,00

MVA_DH

		MVA221DH	MVA251DH	MVA281DH	MVA321DH	MVA361DH	MVA401DH
Indoor unit							
A	mm	700	700	700	700	700	700
В	mm	700	700	700	700	700	700
C	mm	300	300	300	300	300	300
D	mm	897	897	897	897	897	897
E	mm	808	808	808	808	808	808
F	mm	362	362	362	362	362	362
Net weight	kg	32,00	32,00	32,00	32,00	32,00	34,00
Weight for transport	kg	38,00	38,00	38,00	38,00	38,00	40,00
	1	MVA4E1DU	MVACA1DU	MVAC41DU	MVACOIDU	MVA711DU	MVA0A1DU

		MVA451DH	MVA501DH	MVA561DH	MVA631DH	MVA711DH	MVA801DH
Indoor unit							
A	mm	700	700	1000	1000	1000	1000
В	mm	700	700	700	700	700	700
C	mm	300	300	300	300	300	300
D	mm	897	897	1205	1205	1205	1205
E	mm	808	808	813	813	813	813
F	mm	362	362	360	360	360	360
Net weight	kg	34,00	34,00	43,00	43,00	43,00	43,00
Weight for transport	kg	40,00	40,00	49,00	49,00	49,00	49,00

		MVA901DH	MVA1001DH	MVA1121DH	MVA1251DH	MVA1401DH	MVA1601DH
Indoor unit							
A	mm	1400	1400	1400	1400	1400	1400
В	mm	700	700	700	700	700	700
C	mm	300	300	300	300	300	300
D	mm	1601	1601	1601	1601	1678	1678
E	mm	813	813	813	813	808	808
F	mm	365	365	365	365	365	365
Net weight	kg	57,00	57,00	57,00	57,00	57,00	57,00
Weight for transport	kg	64,00	64,00	64,00	64,00	67,00	67,00

		MVA2240DH	MVA2800DH
Indoor unit			
A	mm	1483	1686
В	mm	791	870
С	mm	385	450
D	mm	1758	1788
E	mm	883	988
F	mm	470	580
Net weight	kg	82,00	105,00
Weight for transport	kg	104,00	140,00

MVA_DV

		MVA220DV	MVA280DV	MVA360DV	MVA450DV	MVA560DV	MVA630DV	MVA710DV
Indoor unit								
A	mm	700	700	700	900	1100	1100	1100
В	mm	200	200	200	200	200	200	200
C	mm	615	615	615	615	615	615	615
D	mm	893	893	893	1123	1323	1323	1323
E	mm	305	305	305	305	305	305	305
F	mm	743	743	743	743	743	743	743
Net weight	kg	23,00	23,00	23,00	27,00	32,00	32,00	32,00
Weight for transport	kg	30,00	30,00	30,00	36,00	41,00	41,00	41,00

MVA_CS

		MVA151CS	MVA181CS	MVA221CS	MVA281CS	MVA361CS	MVA451CS	MVA501CS	MVA561CS
Indoor unit	·								
A	mm	570	570	570	570	570	570	570	570
В	mm	570	570	570	570	570	570	570	570
С	mm	265	265	265	265	265	265	265	265
D	mm	698	698	698	698	698	698	698	698
E	mm	653	653	653	653	653	653	653	653
F	mm	295	295	295	295	295	295	295	295
Net weight	kg	18,00	18,00	18,00	18,00	18,00	18,00	18,00	18,00
Weight for transport	kg	23,00	23,00	23,00	23,00	23,00	23,00	23,00	23,00

MVA_C

		MVA221C	MVA281C	MVA361C	MVA451C	MVA501C	MVA561C	MVA631C
Indoor unit								
A	mm	840	840	840	840	840	840	840
В	mm	840	840	840	840	840	840	840
C	mm	240	240	240	240	240	240	240
D	mm	963	963	963	963	963	963	963
E	mm	963	963	963	963	963	963	963
F	mm	325	325	325	325	325	325	325
Net weight	kg	27,00	27,00	27,00	27,00	28,00	28,00	28,00
Weight for transport	kg	35,00	35,00	35,00	35,00	36,00	36,00	36,00

		MVA711C	MVA801C	MVA901C	MVA1001C	MVA1121C	MVA1251C	MVA1401C
Indoor unit								
A	mm	840	840	840	840	840	840	840
В	mm	840	840	840	840	840	840	840
C	mm	240	240	240	240	290	290	290
D	mm	963	963	963	963	963	963	963
E	mm	963	963	963	963	963	963	963
F	mm	325	325	325	325	375	375	375
Net weight	kg	28,00	29,00	29,00	29,00	33,00	33,00	33,00
Weight for transport	kg	36,00	37,00	37,00	37,00	42,00	42,00	42,00

MVA_CB

		MVA1600CB	
Indoor unit	,		
A	mm	910	
В	mm	910	
(mm	290	
D	mm	1023	
E	mm	993	
F	mm	375	
Net weight	kg	47,00	
Weight for transport	kg	57,00	

MVA_C1

		MVA220C1	MVA280C1	MVA360C1	MVA450C1	MVA500C1
Indoor unit						
A	mm	987	987	987	987	987
В	mm	385	385	385	385	385
C	mm	178	178	178	178	178
D	mm	1307	1307	1307	1307	1307
E	mm	501	501	501	501	501
F	mm	310	310	310	310	310
Net weight	kg	20,00	20,00	20,00	21,00	21,00
Weight for transport	kg	27,00	27,00	27,00	29,00	29,00

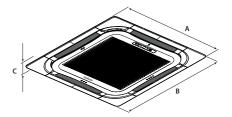
MVA_F

		MVA280F	MVA281F	MVA360F	MVA361F	MVA500F	MVA501F	MVA561F	MVA630F	MVA631F	MVA710F
Indoor unit											
A	mm	1220	870	1220	870	1220	870	870	1420	1200	1420
В	mm	225	235	225	235	225	235	235	245	235	245
C	mm	700	665	700	665	700	665	665	700	665	700
D	mm	1343	973	1343	973	1343	973	973	1548	1303	1548
E	mm	315	300	315	300	315	300	300	345	300	345
F	mm	823	770	823	770	823	770	770	828	770	828
Net weight	kg	40,00	24,00	40,00	24,00	40,00	25,00	25,00	50,00	32,00	50,00
Weight for transport	kg	49,00	29,00	49,00	29,00	49,00	30,00	30,00	58,00	38,00	58,00

	MVA711F	MVA900F	MVA901F	MVA1120F	MVA1121F	MVA1250F	MVA1251F	MVA1400F	MVA1401F	MVA1601F
Indoor unit										
A mm	1200	1420	1200	1700	1570	1700	1570	1700	1570	1570
B mm	235	245	235	245	235	245	235	245	235	235
C mm	665	700	665	700	665	700	665	700	665	665
D mm	1303	1548	1303	1828	1669	1828	1669	1828	1669	1669
E mm	300	345	300	345	300	345	300	345	300	300
F mm	770	828	770	828	770	828	770	828	770	770
Net weight kg	32,00	50,00	33,00	60,00	41,00	60,00	41,00	60,00	43,00	43,00
Weight for transport kg	38,00	58,00	39,00	68,00	48,00	68,00	48,00	68,00	50,00	50,00

MVA_FS

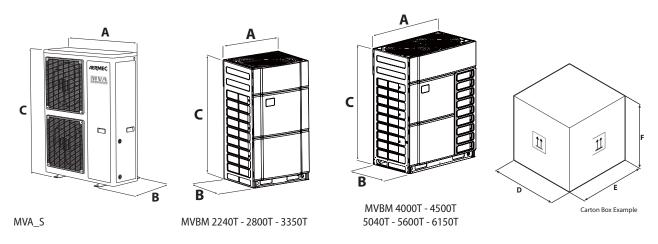
		MVA220FS	MVA280FS	MVA360FS	MVA450FS	MVA500FS
Indoor unit						
A	mm	700	700	700	700	700
В	mm	215	215	215	215	215
C	mm	600	600	600	600	600
D	mm	780	780	780	780	780
E	mm	285	285	285	285	285
F	mm	682	682	682	682	682
Net weight	kg	16,00	16,00	16,00	16,00	16,00
Weight for transport	kg	19,00	19,00	19,00	19,00	19,00


$\mathbf{MVA}_{-}\mathbf{V}$

		MVA1000V	MVA1400V
Indoor unit			
A	mm	580	580
В	mm	400	400
C	mm	1870	1870
D	mm	738	738
E	mm	545	545
F	mm	2083	2083
Net weight	kg	54,00	57,00
Weight for transport	kg	74,00	77,00

MVA_ERV

		MVA500ERV	MVA800ERV	MVA1000ERV
Dimensions and weights				
A	mm	1700	1800	1800
В	mm	880	1185	1185
C	mm	340	390	390
D	mm	1988	2110	2110
E	mm	1138	1440	1440
F	mm	535	567	567
Net weight	kg	120,00	158,00	158,00
Weight for transport	kg	175,00	225,00	225,00


GLC1 / GL40B / GLG40S / GLG40

GLG40S / GLG40 / GL40B

		GLC1	GLG40S	GLG40	GL40B
Indoor unit					
A	mm	1200	620	950	1040
В	mm	460	620	950	1040
C	mm	55	48	52	65
D	mm	1265	701	1033	1137
E	mm	536	701	1038	1137
F	mm	118	125	112	140
Net weight	kg	4,00	3,00	6,00	8,00
Weight for transport	kg	6,00	5,00	10,00	12,00

OUTDOOR UNIT WEIGHTS AND DIMENSIONS

MVA S

		MVAS 1201S	MVAS 1201T	MVAS 1401S	MVAS 1401T	MVAS 1601S	MVAS 1601T	MVAS 2242T	MVAS 2802T	MVAS 3351T
Outdoor unit										
A	mm	900	900	900	900	900	900	940	940	940
В	mm	340	340	340	340	340	340	320	460	460
C	mm	1345	1345	1345	1345	1345	1345	1430	1615	1615
D	mm	1408	1048	1408	1048	1408	1048	1038	1038	1038
E	mm	458	458	458	458	458	458	438	578	578
F	mm	1507	1507	1507	1507	1507	1507	1580	1765	1765
Net weight	kg	110,00	120,00	110,00	120,00	110,00	120,00	133,00	166,00	177,00
Weight for transport	kg	123,00	133,00	123,00	133,00	123,00	133,00	144,00	183,00	194,00

MVB_M

		MVBM 2240T	MVBM 2800T	MVBM 3350T	MVBM 4000T	MVBM 4500T	MVBM 5040T	MVBM 5600T	MVBM 6150T
Outdoor unit									
A	mm	930	930	930	1340	1340	1340	1340	1340
В	mm	775	775	775	775	775	775	775	775
C	mm	1690	1690	1690	1690	1690	1690	1690	1690
D	mm	1000	1000	1000	1400	1400	1400	1400	1400
E	mm	830	830	830	830	830	830	830	830
F	mm	1855	1855	1855	1855	1855	1855	1855	1855
Net weight	kg	220,00	220,00	240,00	300,00	300,00	350,00	350,00	355,00
Weight for transport	kg	230,00	230,00	250,00	315,00	315,00	365,00	365,00	370,00

Aermec si riserva la facoltà di apportare in qualsiasi momento tutte le modifiche ritenute necessarie per il miglioramento del prodotto con eventuale modifica dei relativi dati tecnici.

www.aermec.com

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

ermec also offers	LEMEN [®] s a range of specific nstallation under pa	solutions that mee	t a whole host of a	uirements, as well as

A th

	COMPLEMENTA	ARY PRODUCTS	Air flow rate (m³/h)	Cool. Cap. (kW)	Heat. Cap. (kW)	Page
	Sistemi e kit solari A.C.S.					
new	GSA - KSA - CXS	DHW Systems and solar kits				930
	Thermal Buffers tank					
	SAF	Thermal Buffer tank kit with instantaneous Domestic Hot Water production				934
	SAP	Buffer tank with capacity from 75 to 3500 litres				936
	Plug&Play hydronic kit					
	WST evo	Hydronic kit plug & play		80-1500		939
	Cooling towers					
	TRA	Cooling towers				942
	Remote condensers - Dry	coolers				
	CSE	Remote condensers		3-650		944
	CVR	Remote condensers		44-500		946
	CDR	Remote condensers		150-590		948
	CGA	Remote condensers		240-1500		950
	CMV	Remote condensers		140-1200		952
	WTE	Dry cooler		3-500		954
	WTR	Dry cooler		56-350		956
	WDR	Dry cooler		90-430		958
	WGA	Dry cooler		180-1100		960
	WMV	Dry cooler		100-950		962
	Water cooled condensing	unit				
	MEC-W	Water-cooled packaged air conditioners		11-55		964
	FW-R	Water-cooled air conditioner		2,9-4,0	4,3-5,2	966
	CWX-CWXM	Water motocondensing unit		2,7-7,1		968
	Dehumidifier					
	DML	Dehumidifier portable				972
	DMH -DMV	Dehumidifier				975

DHW SYSTEMS AND SOLAR KITS

- Solar systems complete with storage tank for combination with a heat pump
- Solar kits without storage tank for combination with third-party storage tanks
- Ultra-high efficiency vacuum solar manifolds
- Optional anti-stagnation shading device

Thermal Buffer tank kit with instantaneous Domestic Hot Water production

DESCRIPTION

The Aermec GSA °-E series solar systems for domestic hot water are designed for easy interaction with heat pump systems and contain vacuum solar manifolds, a solar station equipped with a high efficiency electronic circulator, solar control unit and double coil storage tank.

The additional coil for the supplementary source is dimensioned with a larger exchange surface and is suitable for combination with heat pumps.

The Aermec GSA °-E series solar systems include ultra-high efficiency vacuum manifolds, which can be equipped with an optional anti-stagnation shading system. The solar manifolds are dimensioned based on the capacities of the storage tanks (300 litres or 500 litres) in order to guarantee a high share of renewable energy for the production of DHW and to optimise the system from an economic point of view.

Solar kits with the same dimensions of the complete systems but in a version without a storage tank are also available in order to combine them with third-party storage tanks (the suitability of the storage tanks must be checked by the designer in this case).

The complete systems and the kits without a storage tank must be completed with the necessary roof manifold clampings, which are available as accessories for the various types of roofs (pitched roof with shingles, with tiles, universal with screw connection and flat roof).

VERSIONS

The vacuum solar manifolds are also available individually, in two sizes with 15 pipes and 21 pipes. Each size is available in the standard $^\circ$ version and in the E version with the anti-stagnation shading device.

GSA complete solar system

The GSA °-E complete solar systems are available in two sizes - 300 litres combined with a 21-pipe solar manifold and 500 litres combined with two solar manifolds, each with 15 pipes. Each size is available in the ° version (standard) and in the E version (with the anti-stagnation shading system).

The system is shipped in two separate packages:

 Neck 1: manifold(s) + fittings + glycol tank + collector support rail(s), expansion vessel.

Field	Description
1,2,3	GSA
4,5,6	Size 300, 500
7	Version
0	Vacuum solar manifolds
Е	Complete solar system with vacuum collector with anti-stagnation

Neck 2: storage with control unit and integrated solar station

Field	Description
1,2,3	GSA
4,5,6	Size 300,500
7	Version
A	Storage tank (DHW)

Solar kits without storage tank

The KSA solar kits are available in two sizes (size with a single 21-pipe manifold and size with two manifolds, each with 15 pipes). Each size is available in the standard ° version and in the E version with the anti-stagnation shading device.

"the system supply includes the necessary glycol mixture, which is supplied in canisters, to be filled by the installer"

Juppii	supplied in cullisters, to be fined by the historici					
Field	Description					
1,2,3	KSA					
4,5	Size 21, 30					
6	Version					
0	Solar kit with vacuum collector					
E	Complete solar kit with vacuum collector with anti-stagnation darkening device					

Vacuum solar manifolds

The vacuum solar manifolds are also available individually, in two sizes with 15 pipes and 21 pipes. Each size is available in the standard $^\circ$ version and in the E version with the anti-stagnation shading device.

Field	Description
1,2,3	CXS
4,5	Size 15, 21
6	Version
0	Vacuum solar manifolds
E	Complete vacuum solar collector with anti-stagnation shading device

ACCESSORIES

STT: Clamping for vacuum manifold (with or without Eclypse) on a pitched roof with shingles.

STC: Clamping for vacuum manifold (with or without Eclypse) on a pitched roof with tiles.

STV: Clamping for vacuum manifold (with or without Eclypse) on a pitched roof with screw connection.

STP: Clamping for vacuum manifold (with or without Eclypse) on a flat roof.

KSB-KSP-CSB-CSP: Basic set + cover.

MIX10 - MIX20: 20 liter tank of pre-mixed antifreeze solution for topping up and/or filling solar systems with vacuum collectors

ACCESSORIES COMPATIBILITY

Clampina for a pitched roof with shinales

Accessory	GSA300°	GSA300E	GSA500°	GSA500E
STT (x1)	•	•		
STT (x2)			•	•
Accessory	KSA21°	KSA21E	KSA30°	KSA30E
STT (x1)	•	•		
STT (x2)			•	•
Accessory	CXS15°	CXS15E	CXS21°	CXS21E
STT (x1)	•	•		
STT (x2)			•	•

X _ indicates the quantity to buy

Clamping for a manifold on a pitched roof with tiles

Ciamping for a mannor	a on a pitchea root with thes			
Accessory	GSA300°	GSA300E	GSA500°	GSA500E
STC (x1)	•	•		
STC (x2)			•	•
Accessory	KSA21°	KSA21E	KSA30°	KSA30E
STC (x1)	•	•		
STC (x2)			•	•
Accessory	CXS15°	CXS15E	CXS21°	CXS21E
STC (x1)	•	•		
STC (x2)			•	•

X _ indicates the quantity to buy

Clamping for a manifold on a pitched roof with screw connection

Accessory	GSA300°	GSA300E	GSA500°	GSA500E
STV (x1)	•	•		
STV (x2)			•	•
Accessory	KSA21°	KSA21E	KSA30°	KSA30E
STV (x1)	•	•		
STV (x2)			•	•
Accessory	CXS15°	CXS15E	CXS21°	CXS21E
STV (x1)	•	•		
STV (x2)				•

${\tt X_indicates}$ the quantity to buy

Clamping for a manifold on a flat roof

Accessory	GSA300°	GSA300E	GSA500°	GSA500E
STP (x1)	•	•		
STP (x2)			•	•
Accessory	KSA21°	KSA21E	KSA30°	KSA30E
STP (x1)	•	•		
STP (x2)			•	•
Accessory	CXS15°	CXS15E	CXS21°	CXS21E
STP (x1)	•	•		
STP (x2)			•	•

X _ indicates the quantity to buy

Basic set (for panel string termination) and plus set (for the connection of two solar panels)

busic see (101 puner serin	busic set (10) panel string termination, and plus set (10) the connection of the solar panels,					
Accessory	CXS15°	CXS15E	CXS21°	CXS21E		
CSB	•	•	•	•		
CSP	•	•	•	•		
KSB	•	•	•	•		
KSP	•	•	•	•		

The accessories are compatible with the solar manifolds, but are not compatible with the GSA solar systems or with the KSA solar kits because they are already included.

Pre-mixed antifreeze solution canister

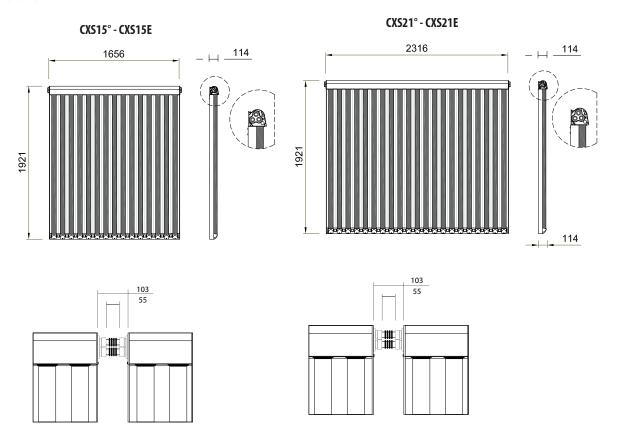
Accessory	CXS15°	CXS15E	CXS21°	CXS21E
MIX10	•	•	•	•
MIX20				•

PERFORMANCE SPECIFICATIONS

GSA complete solar system

		GSA300°	GSA300E	GSA500°	GSA500E
Technical features					
Solar manifolds	no./type	1 x CXS21°	1 x CXS21E	2 x CXS15°	2 x CXS15E
Gross surface	m ²	4,45	4,45	6,36	6,36
Opening surface	m ²	4,02	4,02	5,74	5,74
Input current surface	m ²	5,39	5,39	7,70	7,70
Hydraulic components					
Storage tank (DHW)	I	300	300	500	500
Expansion vessel number	no.	1	1	1	1
Expansion vessel capacity	I	24	24	40	40
Recommended dimension based on the number of people	no.	3-5	3-5	5-7	5-7

		GSA300A	GSA500A
Hydraulic components			
Storage tank (DHW)		300	500
Recommended dimension based on the number of people	no.	3-5	5-7


KSA solar system

		KSA21°	KSA21E	KSA30°	KSA30E
Technical features					
Solar manifolds	no./type	1 x CXS21°	1 x CXS21E	2 x CXS15°	2 x CXS15E
Gross surface	m ²	4,45	4,45	6,36	6,36
Opening surface	m ²	4,02	4,02	5,74	5,74
Input current surface	m ²	5,39	5,39	7,70	7,70
Hydraulic components					
Expansion vessel number	no.	1	1	1	1
Expansion vessel capacity	I	24	24	40	40

Only the solar panel

Only the solar panel		CXS15°	CXS15E	CXS21°	CXS21E
T. d. d. ald a to a to a		CV212	CASISE	CASZI	CASZIE
Technical features		45	45	24	24
Vacuum pipes	no.	15	15	21	21
Maximum number of coil manifolds	no.	6	6	6	6
Connections	no.	6	6	6	6
Connection dimensions	Ø inch	3/4″M	3/4″M	3/4″M	3/4″M
Opening surface	m ²	2,87	2,87	4,02	4,02
Input current surface	m ²	3,85	3,85	5,39	5,39
Gross surface	m ²	3,18	3,18	4,45	4,45
Head insulation thickness, aluminised glass wool covering	mm	47	47	30	30
Diameter - Vacuum pipe length	mm	58/47 - 1800	58/47 - 1800	58/47 - 1800	58/47 - 1800
Recommended tilt	0	15 - 75°	15 - 75°	15 - 75°	15 - 75°
Conductor radiator fluid content	I	3,28	3,28	3,75	3,75
Performances					
η0 rendimento ottico (riferimento area lorda)		0,615	0,615	0,609	0,609
K1 transmission coefficient (gross area reference)	W/m ² K	0,850	0,850	0,690	0,690
K2 transmission coefficient (gross area reference)	W/m ² K	0,009	0,009	0,005	0,005
Nominal Power	W	1956	1956	2710	2710
Angle of incidence correction factor	K50°	1.14T/0.9L	1.14T/0.9L	1.14T/0.9L	1.14T/0.9L
Heating capacity (opening ref.)	kJ/m²K	50,9	50,9	34,0	34,0
Energy produced annually ISO 9806:2013 — Wurzburg — Temperature 50°C	kWh	2371	2371	2884	2884
Energy produced annually ISO 9806:2013 — Wurzburg — Temperature 75°C	kWh	1929	1929	2499	2499
Test Report ISO 9806:2013		Kiwa	Kiwa	Kiwa	Kiwa
DIN CERTCO Registration number		16083 Rev.0	16083 Rev.0	16082 Rev.0	16082 Rev.0
Flow Rate	l/h	127	127	200	200
Stagnation temperature	°C	279	279	176	176
Maximum pressure	bar	10	10	10	10

DIMENSIONS

		CXS15E	CXS15°	CXS21E	CXS21°
Dimensions and weights					
A	mm	1656	1656	2316	2316
В	mm	1921	1921	1921	1921
C	mm	114	114	114	114
Empty weight	kg	72	72	80	80

COMPLEMENTS

SAF

- Various versions that make optimum use of the different energy sources
- · Ease of installation, even in confined
- · Installing the indoor unit

DESCRIPTION

SAF are the new thermo-buffer for the instantaneous production of domestic hot water (DHW). They integrate both the energy storage element and the heat exchanger, along with the control functions, into a single unit.

The hot water is taken from the water main and heated instantaneously by means of a plate heat exchanger in stainless steel: the separation between the drinking water circuit and the water contained in the accumulator ensures maximum hygiene.

In this way, the benefits of instant production are combined with those associated with buffer production.

These devices are specifically designed and manufactured to be combined with heat pumps but also with traditional or biomass boilers, solar thermal systems and other renewable sources.

VERSIONS

- ° Standard
- **S** With supplementary energy source management
- **T** Set up for use with supplementary energy source

In addition to these versions, an supplementary heater (accessory) is also provided to respond to increased heating requirements.

FEATURES

- The SAF system is available with a range of thermo-accumulators with different capacities, (200-300-500l), in order to meet a whole host of different DHW requirements;
- The high-efficiency insulation prevents energy losses, to the advantage of the heat exchanger, allowing for significant reductions in
- The compactness and the new elegant and attractive design mean that it can be installed in restricted spaces, in indoor environments.

RX: 500 W armoured resistance, with thermostat and inserted in a dedicated fitting, it can be installed only at the factory.

RXV: 3kW armoured resistance, with thermostat and inserted in a dedicated fitting, it can be installed only at the factory.

VT: Antivibration supports

Accessories compatibility

Heat pump	Sizes	Version	Accessories mandatory					Recomn	Recommended	
				SAF	MOD485K	MODU485-BL*	VMF-E5	VTV160	KRX-SAF	
ANL	021-203	H°-HP		•	•	•	•		•	
ANLI	101	H°-HP-HX	(1)	•	-	-	-	•	•	
ANK	020-150	H°-HP		•	•	•	•	•	•	
NRK	090-0150	00-P1-P3		•	•	•	•	•	•	
CL	025-200	H°-HP		•	•	•	•	•	•	
ANKI	020-080	H°-HX	(1)	•	-	-	-		•	
WRL	026-161	Н°	(1)		-	-	-	•		

^{*} To be installed on board of the heat pump.

⁽¹⁾ Units designed for the management domestic hot water: MOD485K and VMF-E5 accessories not required. It is recommended not to combine the SAF with units with storage tank.

CONFIGURATOR

Field	Description
1,2,3	SAF
4,5,6	Size 200, 300, 500
7	Version
0	Standard
S	With supplementary energy source management (1)
T	Set up for use with supplementary energy source (1)
8	Field for future development
0	

⁽¹⁾ Version "S-T" not available for size 200

PERFORMANCE SPECIFICATIONS

		SAF200	SAF300	SAF300T	SAF300S	SAF500	SAF500T	SAF500S
Power supply								
Power supply					230V~50Hz			
Accumulation inertial								
Storage tank capacity	I	199	290	27	79	480	4	55
Drinking water content	I	0,85	0,85	0,85	0,85	0,85	0,85	0,85
Coil water content	I	-	-	10	10	-	13	13
Maximum operating pressure	bar	6	6	6	6	6	6	6
Losses through dispersion	W	59		68			80	
Energy efficiency class (1)	type				В			
DHW minimum flow rate	l/min	2	2	2	2	2	2	2
DHW maximum flow rate	l/min	35	35	35	35	35	35	35
Maximum operating temperature	°C	95	95	95	95	95	95	95
Electric data								
Minimum input power	W	25	25	25	27	25	25	27
Maximum input power	W	75	75	75	127	75	75	127
Minimum input current	A	0,14	0,14	0,14	0,18	0,14	0,14	0,18
Maximum input current	A	0,53	0,53	0,53	1,05	0,53	0,53	1,05

 $^{(1)\ \} In\ accordance\ with\ Standard\ UNI\ EN\ 16147:2011\ and\ in\ accordance\ with\ Delegated\ Regulation\ 812/2013\ and\ 814/2013$

DIMENSIONS

		SAF200	SAF300	SAF300T	SAF300S	SAF500	SAF500T	SAF500S
Dimensions and v	weights							
A	mm	1315	1690	1690	1690	1740	1740	1740
В	mm	710	710	710	710	850	850	850
Empty weight	kg	75	89	96	101	116	131	136
Weight functioning	kg	275	389	396	401	616	631	636

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

SAP Storage tank

Accumulation unit from 75 to 3500 litres

DESCRIPTION

Accumulation unit - completely assembled pump to be used with a refrigerating unit with hydraulic connections to be made on site by the installer.

FEATURES

- The base the structure and the panels are made of galvanized steel treated with polyester paint RAL 9003.
- Pumps
- Pressure relief valve
- Completely insulated hydraulic circuit
- Pump magnet circuit-breaker protection

Pumps

SAP 0075 - 0150:

 $5\,$ pump models with water capacity up to 18000 l/h and with prevalence up to 140 kPa are available (max. 2 internally installed pumps).

SAP 0300 - 0500 - 0501 - 0750 - 1000:

8 pump models with water capacity up to 60000 l/h and with prevalence up to 200 kPa are available.

Pumping units with a reserve pump can also be included in these units. **SAP 1500 - 2000 - 3000**:

 $10\ pump$ models with water capacity up to 200000 l/h and with prevalence up to 300 kPa are available.

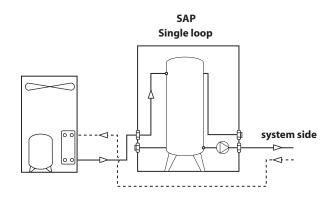
Pumping units with a reserve pump can also be included in these units.

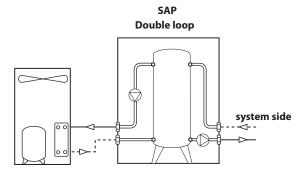
ACCESSORIES

VT: Antivibration supports

RX - RXV: 500 W armoured resistance, with thermostat and inserted in a dedicated fitting, it can be installed only at the factory.

Accessories compatibility


Antivibration


Accessory	SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000
VT2			•	•	•	•	•
VT8	•	•					

Resistance

Accessory	SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000	SAP1500	SAP2500	SAP3500
RX	•	•	•	•	•	•	•			
RXV								•	•	•

EXAMPLE OF A HYDRAULIC CONNECTION

TECHNICAL DATA

		SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000	SAP1500	SAP2500	SAP3500
Accumulation inertial											
Storage tank capacity	I	75	150	300	500	500	750	1000	1500	2500	3500
Pressure relief valve	n°/bar	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6	1/6
Expansion vessel											
Expansion vessel capacity	I	8	12	18	24	24	18	18	24	24	24
Expansion vessel number	no.	1	1	1	1	1	2	2	2	3	3
Hydraulic connections											
Connections (in/out)	Туре	F	F	F	F	F	F	F	-	-	-
Sizes (in/out)	Ø	1" 1/4	1"1/2	2"	2"1/2	2"1/2	3"	3"	-	-	-

SAP pumps flanges diameter 1500 - 2500 - 3500

				Pump										
SAP	Flange		R	T	U	V	X	γ	W	K	J	I		
1500	PN16UNI2278	Ø	125	125	150	150	150	150	200	200	200	200		
2500	PN16UNI2279	Ø	125	125	150	150	150	150	200	200	200	200		
3500	PN16UNI2280	Ø	125	125	150	150	150	150	200	200	200	200		

PUMP ELECTRIC DATA

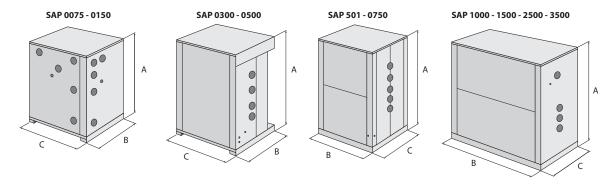
		Pump											
		Α	В	(E	F	G	Н	I	J	K	L	
Max absorbed power	W	275	330	614	895	1070	1550	2050	22000	17500	14500	3100	
Max absorbed current	A	0,5	0,7	1,1	1,6	1,9	2,8	3,6	43,0	36,4	30,0	5,6	
		М	N	Р	Q	R	Ţ	U	٧	W	Х	Υ	
Max absorbed power	W	4100	1470	2600	5200	4000	5200	5800	8000	11500	9000	11000	
Max absorbed current	А	7,2	2,6	4,4	8,8	8,5	11,5	15,5	15,5	22,5	22,5	22,5	

PUMP COMBINATIONS

						Pump con	nbinations					
SAP0075	AZ	AE	AF	AZ	BC	BE	BF	BZ	ZC	ZE	ZF	ZZ
SAP0150	AC	AE	AF	AZ	BC	BE	BF	BZ	CC	EC	CF	CZ
SAPUISU	AE	EE	EF	EZ	BF	FE	FF	FZ	ZC	ZE	ZF	ZZ
SAP0300						CS	CZ	ES	EZ	FS	FZ	ZZ
SAP0500				FS	FZ	GS	GZ	HS	HZ	PS	PZ	ZZ
SAP0501				FS	FZ	GS	GZ	HS	HZ	PS	PZ	ZZ
CADOZEO				FS	FZ	GS	GZ	HS	HZ	LS	LZ	MS
SAP0750					MZ	NS	NZ	PS	PZ	QS	QZ	ZZ
SAP1000				LS	LZ	MS	MZ	NS	NZ	QS	QZ	ZZ
CADAFOO		IS	ΙZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP1500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ
CARREAG		IS	ΙZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP2500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ
CARREDO		IS	ΙZ	JS	JZ	KS	KZ	RS	RZ	TS	TZ	US
SAP3500			UZ	VS	VZ	WS	WZ	XS	XZ	YS	YZ	ZZ

The indicated combinations are the only ones foreseen, many capacity/prevalence combinations are available, we invite you to refer to the technical documentation.

A - B: Multi-speed circulators.


L - M - Q: Twin pumping unit.

S: Pumping unit with reserve pump.

Z: Pump not present.

The first letter of the combination indicates the pump on the primary circuit.

The second letter of the combination indicates the pump on the secondary circuit.

		SAP0075	SAP0150	SAP0300	SAP0500	SAP0501	SAP0750	SAP1000	SAP1500	SAP2500	SAP3500
Dimensions and	weights										
A	mm	1000	1000	1650	1650	1968	1968	2049	2049	2049	2049
В	mm	1000	1000	1100	1100	1550	1550	2200	2200	2200	2200
C	mm	700	700	1100	1100	1000	1000	1000	1750	2000	2300
Empty weight	kg	120	120	190	230	310	400	445	560	710	790

The weight of the unit without ZZ pumps.

WST evo

Plug & play hydronic kit

Cooling capacity 80 ÷ 1500 kW Water flow rate 17000 ÷ 260000 l/h

- Hydronic kit containing the main hydraulic components
- · Facilità di installazione
- ideal for industrial systems or data centres, where chilled water is required even during the winter
- · Partial and total free cooling operation

DESCRIPTION

Plug & play hydronic kit that includes the main hydronic and regulation components of a hydraulic system.

The WST are designed to facilitate installation in systems where chilled water production is required throughout the year, in combination with a water/water chiller and a dry cooler.

Thanks to Aermec's 20-year experience in critical processes and the special software purposely developed, these units can manage all the components that make up the system:

- The water-cooled chiller;
- The pumps (including the reserve ones, if installed) for both the system side and the source side;
- The speed of the dry cooler fans (in both mechanical operation and free cooling mode);
- The modulating valve for controlling the chiller condensation.

OPERATION

Air-water chiller

When the outside air temperature is higher than the temperature of the system return water, the cooling capacity is provided by the chiller. The WST manages the dry cooler by modulating its fans on the basis of the chiller condensation pressure.

Free-cooling

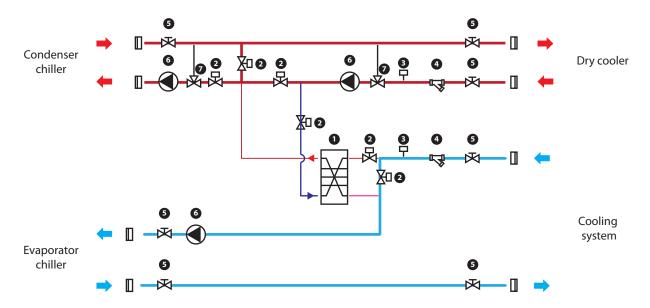
When the outside air temperature is lower on the other hand, the WST commands free cooling mode which can be mixed (chiller + free cooling) or free cooling only (switching off the chiller) to exploit the water from the dry cooler to cool the system water in the dedicated heat exchanger.

HYDRAULIC COMPONENTS OF THE DRY COOLER SIDE

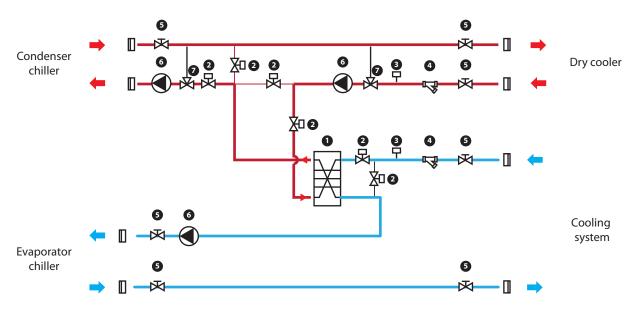
- Water filter;
- Flow switches:
- Shut-off valve;
- Mixer valves;
- Bypass valve;Pumps;

- Butterfly valves (free cooling enabling);
- High-efficiency plate heat exchanger (free cooling);
- Water temperature probes.

HYDRAULIC COMPONENTS OF THE CHILLER SIDE


- Water filter:
- Flow switches;
- Shut-off valve;
- Pumps;
- Water temperature probes.

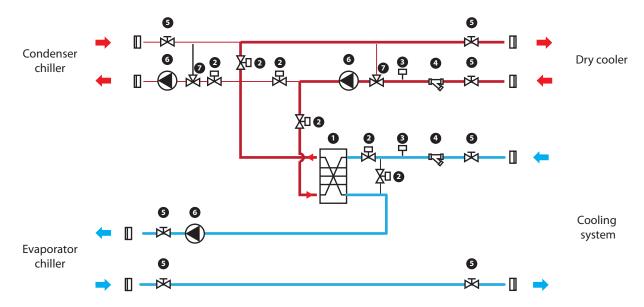
REGULATION


- Electronic microprocessor regulation with MODBUS protocol communication;
- The AER485P1 accessory is supplied as standard with the WST.
 This accessory must necessarily be fitted in the chiller, so the units can communicate with each other;
- Advanced electronics characterised by the continuous monitoring of various working and environmental parameters, so the operating mode (chiller/free cooling) can be switched as and when necessary.
 This limits the operating costs and ensures greater energy efficiency;
- Dry cooler fan management, to control the condensation pressure (chiller mode) or the recovered output (free cooling mode);
- Management of cold start-up via dry cooler fan modulation and the mixer valve;
- Structure and base in hot-dip galvanised sheet metal coated in epoxy powders RAL 9003.

OPERATING MODE

Mechanical operation (chiller)

Mixed operation (chiller + free cooling)



Key:

- 1 Plate heat exchanger
- 2 2-way butterfly valve
- 3 Flow switch

- 4 Water filter
- 5 Shut-off valve
- 6 Pump
- 7 Mixing valve

Operation in free-cooling only

Key:

- 1 Plate heat exchanger
- 2 2-way butterfly valve
- 3 Flow switch

- 4 Water filter
- 5 Shut-off valve
- 6 Pump
- 7 Mixing valve

COMPLEMENTS

TRA

Cooling towers

Capacities from 49.53 up to 1084.88 kW

FEATURES

- Available in 17 different sizes
- Entirely built of fibre-glass reinforced resin to avoid corrosion problems with surface treatment to withstand ultraviolet rays, heat changes and scuffing caused by bad weather
- Limited to the three largest sizes (TRA 850, 950 and 1100) the bearing structure is made of hot galvanised steel with 22mm thick fibreglass reinforced resin sandwich panels, with support foam material inside. In this way, as well achieving good mechanical strength the sound of the water flowing is muffled. Surface treatment to withstand ultraviolet rays, heat changes and scuffing caused by bad weather.
- Self-bearing structure
- Exchange pack and drip separator made of self-extinguishing PVC
- PVC water distribution pipes with polypropylene nozzles
- Hydrometer (when there is not water flow rate measuring device, this

instrument makes possible to have an approximate indication of the flow rate of the water in circulation based on the nozzle load drop)

- Plastic bleed cock
- Axial high efficiency fan with several blades
- Water drip pan, waterproof and water resistant made of fibreglass reinforced polyester resin with multi layer glass material
- Personal protection grill made of AISI 304 on the fan outlet

- TRA from 50 up to 750 silenced and Inspection window standard
- TRA from 850 up to 1100 standard, TRA from 850 up to 1100 silenced (L) All with inspection door to a crawl Series

ACCESSORIES

RT: Heater element with regulating thermostat.

	Compatibility of accessories																
TRA	50	70	90	110	130	170	200	240	300	400	500	550	600	750	850	950	1100
RT 11 (1 kW)	•	•		•	•												
RT 12 (2 kW)								•	•								
RT 13 (3 kW)										•	•	•					
RT 15 (5 kW)		-											•		•		
RT 17 (7.5 kW)																	•

N.B. = In the case of RT accessories, the number between brackets indicates the capacity of the heater element. * = All the accessories and/or variants must in all cases be specified when the order is placed.

TECHNICAL DATA

Mod. TRA		50	70	90	110	130	170	200	240	300
Capacity	kW	49,53	69,06	88,60	107,44	125,58	168,14	197,67	242,09	302,33
Air flow rate	m ³ /h	4500	4500	8100	8100	8100	12600	12600	18100	18100
Water flow rate	l/h	7100	9900	12700	15400	18000	24100	28330	34700	43300
Pressure drops	kPa	42	32	52	32	42	28	35	23	40
Motor power	kW	0,55	0,75	0,75	0,75	1,1	1,1	1,5	1,5	2,2
Motor poles	n.	4	4	4	4	6	6	6	6	6
Motor poles (double polarity)	n.	4/8	4/8	4/8	4/8	6/12	6/12	6/8	6/8	6/8
Fans	n.	1	1	1	1	1	1	1	1	1
Nozzles	n.	1	1	1	1	1	1	1	4	4
Sound pressure	dB (A)	52	52	54	54	54	54	54	55	55

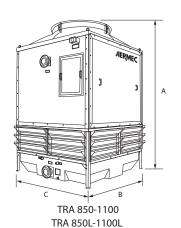
Mod. TRA		400	500	550	600	750	850	950	1100
Capacity	kW	405,35	488,37	574,19	604,88	767,44	856,74	941,86	1084,88
Air flow rate	m ³ /h	28350	28350	36000	45350	45350	58000	58000	67000
Water flow rate	l/h	58100	70000	82300	86700	110000	122800	135000	155500
Pressure drops	kPa	28	40	55	30	48	49	25	32
Motor power	kW	2,2	4	5,5	4	5,5	5,5	5,5	7,5
Motor poles	n.	6	6	6	6	6	8	8	8
Motor poles (double polarity)	n.	6/8	6/12	6/12	6/12	8/16	8/16	8/16	8/16
Fans	n.	1	1	1	1	1	1	1	1
Nozzles	n.	4	4	4	9	9	16	16	16
Sound pressure	dB (A)	57	57	58	61	61	62	62	64
Sound pressure (silenced version)	dB (A)						56	56	57

^{*=} Sizes from 50 to 750 are only muted. Power supply = $3 \sim 230V$ 50Hz; $3N \sim 400V$ 50Hz.

Performance values refer to the following conditions:

Sound pressure measured in free field conditions at distance of 10 m with direction factor = 2.

air inlet temperature 23.5 °C W.B.;


water inlet temperature 35 °C;

water outlet temperature 29 °C

DIMENSIONS (MM)

TRA 50-750

Mod. TRA		50	70	90	110	130	170	200	240	300	400
Height	Α	2110	2110	2595	2595	2595	2800	2800	2860	2860	3140
Width	В	800	800	1000	1000	1000	1200	1200	1400	1400	1740
Depth	С	800	800	1000	1000	1000	1200	1200	1400	1400	1740
Weight	kg	75	75	85	95	95	170	170	210	210	410
Mod. TRA		500	550	600	750	850	850L	950	950L	1100	1100L
Height	Α	3140	3380	3450	3450	3650	3900	3650	3900	3650	3900
Width	В	1740	1900	2100	2100	2030	2030	2030	2030	2360	2360
Depth	С	1740	2100	2300	2300	2360	2360	2360	2360	2360	2360
Weight	kg	410	500	555	580	850	850	815	815	915	915

www.aermec.com

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577

COMPLEMENTS

CSE

Remote condenser

Cooling capacity 3 ÷ 650 kW

- · Simple to use and install
- Wide range of powers
- · Easy to handle and transport
- Can be installed both horizontally and vertically

GENERAL FEATURES

- Simple to use and install;
- Excellent value for money;
- Easy to handle and transport;
- Up to 3 units can be stacked depending on the model (to be requested at time of order);

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments:
- All coils are tested with Helium (He₂) which ensures the absence of
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with welded connections closed to prevent impurities and moisture from getting into the circuits.

Fans

Latest generation axial fans all compliant with ErP regulation and IP54. All the machines are supplied with wired and tested fans, the following diameters of fans are available:

- Ø350 Single phase (EC);
- Ø500 single-phase or three-phase (AC with "Y" STAR or "D" TRIAN-GLE EC electrical connection);
- Ø800 three-phase (AC with "Y" STAR or "D" TRIANGLE EC electrical connection);
- Ø1000 three-phase (AC with "Y" STAR or "D" TRIANGLE EC electrical connection).

There are different noise levels, depending on the fan diameter:

- Standard (B);
- Silenced (S);

— Super silent (E).

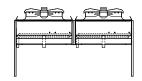
CONTROL

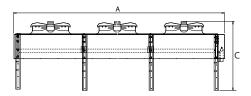
The electrical panel with terminal board or with adjustment is always present.

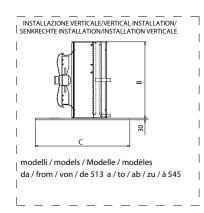
For space reasons, the models with 350 mm diameter fans feature a junction box.

The regulators used are of high efficiency and low consumption, the types of adjustments available are:

- Phase cut for AC fans
- With electronic processor for EC versions


ACCESSORIES


Several accessories are available:


- Anti-vibration supports;
- 2. Coil connection kit;
- 3. Additional disconnectors for each motor;
- 4. Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature ≤ 20°C);
- 6. MODBUS kit (only on units with three-phase connection);
- 7. Axitop (only for 800 mm diameter fans).

PERFORMANCE SPECIFICATIONS

■ For combinations with the evaporating units contact the headquarters.

CSE fans diameter Ø 350

		CSE 3023	CSE 3024	CSE 3033	CSE 3034
Dimensions and	weights				
A	mm	1310	1310	1860	1860
В	mm	620	620	620	620
C	mm	840	840	840	840
Weights					
Empty weight	kg	35	39	48	54

CSE fans diameter Ø 500

		CSE 5013	CSE 5014	CSE 5022	CSE 5023	CSE 5033	CSE 5034	CSE 5043	CSE 5044	CSE 5063	CSE 5064	CSE 5083	CSE 5084
Dimensions and	weights												
A	mm	1400	1400	2345	2345	3290	3290	4230	4230	3290	3290	4230	4230
В	mm	833	833	833	833	833	833	833	833	1666	1666	1666	1666
С	mm	1080	1080	1080	1080	1080	1080	1080	1080	1080	1080	1080	1080
Weights													
Empty weight	kg	70	74	107	116	162	175	206	224	324	350	412	448

CSE fans diameter Ø 800

		CSE 8013	CSE 8014	CSE 8023	CSE 8024	CSE 8033	CSE 8034	CSE 8043	CSE 8044	CSE 8063	CSE 8064
Dimensions and	weights										
A	mm	1920	1920	3600	3600	5260	5260	3600	3600	5260	5260
В	mm	1240	1240	1240	1240	1240	1240	2390	2390	2390	2390
C	mm	1385	1385	1385	1385	1385	1385	1385	1385	1385	1385
Weights											
Empty weight	kg	169	179	331	356	487	525	642	692	954	1030

CSE fans diameter Ø 1000

		CSE 1013	CSE 1014	CSE 1023	CSE 1024	CSE 1033	CSE 1034	CSE 1043	CSE 1044	CSE 1063	CSE 1064	CSE 1083	CSE 1084
Dimensions and	weights												
A	mm	2560	2560	4860	4860	7170	7170	9460	9460	7170	7170	9460	9460
В	mm	1260	1260	1260	1260	1260	1260	1260	1260	2430	2430	2430	2430
C	mm	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Weights													
Empty weight	kg	229	247	429	467	725	772	925	990	1508	1602	1930	2060

 $\label{lem:continuous} Aermec \ reserves \ the \ right \ to \ make \ any \ modifications \ deemed \ necessary.$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

945

CVR

Remote condenser

Cooling capacity 44 ÷ 500 kW

- V-Shape model with single row of fans
- Wide range of powers
- Maximum height clearance 1.6 mt

GENERAL FEATURES

- V-Shape model with single row of fans;
- Very compact and lowered structure;
- Maximum height clearance 1.6 mt;
- can be transported via container;
- Easy to handle and transport;

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- Coils with compact staggered geometry, copper pipes and corrugated or mechanically expanded aluminium louvers;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested with Helium (He₂) which ensures the absence of leaks;
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with welded connections closed to prevent impurities and moisture from getting into the circuits.
- The electrical panel with terminal board or adjustment is always supplied;
- The regulators used are of high efficiency and low consumption;
- The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans;
- Adiabatic "Spray System" systems with running water nozzles (cheaper but less efficient);
- Aluminium "Adiabatic Panels" system with closed water management and control system (very efficient system with a 10% maximum amount of evaporated water).

Fans

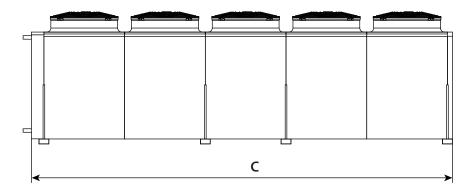
- Latest generation axial fans all compliant with ErP regulation and IP54;
- All machines are supplied with wired and tested fans;
- Fans diameter ø: 800 mm;
- Fans with a diameter of ø 800 mm are all three-phase (T) and there can be from 2 to 7 per machine;
- Different sound levels: standard (B), silenced (S) or extra-silenced
 (F)
- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).

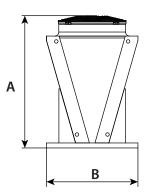
CONTROL

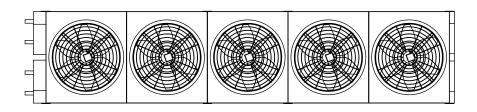
The electrical panel with terminal board or adjustment is always present and can be installed on the collector side (standard) or on the opposite side.

The regulators used are of high efficiency and low consumption.

The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans.


ACCESSORIES


Several accessories are available:


- 1. Anti-vibration supports;
- 2. Coil connection kit;
- 3. Additional disconnectors for each motor;
- **4.** Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature ≤ 20°C);
- **6.** UV lamp kit (only for adiabatic "Spray System" system);
- 7. Modbus kit.
- 8. Axitop

PERFORMANCE SPECIFICATIONS

For combinations with the evaporating units contact the headquarters.

		CVRX8023	CVRX8024	CVRX8033	CVRX8034	CVRX8043	CVRX8044	CVRX8053	CVRX8054	CVRX8063	CVRX8064	CVRX8073	CVRX8074
Dimensions and	weights												
A	mm	1590	1590	1590	1590	1590	1590	1590	1590	1590	1590	1590	1590
В	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
C	mm	2150	2150	3120	3120	4090	4090	5060	5060	6030	6030	7000	7000
Empty weight	kg	356	396	523	583	690	770	856	956	1112	1261	1219	1369

COMPLEMENTS

CDR

Remote condenser

Cooling capacity 150 ÷ 590 kW

- · V-Shape model with double row of fans
- Ideal machine to manage two-circuit systems completely independently and precisely
- · Very solid and reliable structure
- · Maximum height clearance 2.2 mt

GENERAL FEATURES

- V-Shape model with double row of fans;
- Very solid and reliable structure;
- Maximum height clearance 2.2 mt;
- can be transported via container;

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- Coils with compact staggered geometry, copper pipes and corrugated or mechanically expanded aluminium louvers;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested with Helium (He₂) which ensures the absence of
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with welded connections closed to prevent impurities and moisture from getting into the circuits.
- Adiabatic "Spray System" systems with running water nozzles (cheaper but less efficient);
- Aluminium "Adiabatic Panels" system with closed water management and control system (very efficient system with a 10% maximum amount of evaporated water).

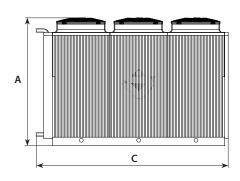
Fans

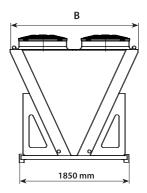
- Latest generation axial fans all compliant with ErP regulation and IP54:
- All machines are supplied with wired and tested fans;
- Fans diameter ø: 800 mm;
- Fans with a diameter of ø 800 mm are all three-phase (T) and there can be from 2 to 7 per machine;

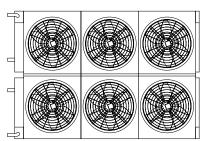
- Different sound levels: standard (B), silenced (S) or extra-silenced (F).
- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).

CONTROL

- The electrical panel with terminal board or adjustment is always present and can be installed on the collector side (standard) or on the opposite side;
- The regulators used are of high efficiency and low consumption;
- The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans;
- The two banks can be managed separately with independent electric control board and adjustment (ideal solution for two-circuit systems)


ACCESSORIES


Several accessories are available:


- 1. Anti-vibration supports;
- 2. Coil connection kit;
- 3. Additional disconnectors for each motor;
- 4. Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature $\leq -20^{\circ}$ C);
- 6. Modbus kit.
- 7. Axitop

PERFORMANCE SPECIFICATIONS

For combinations with the evaporating units contact the headquarters.

		CDRX8043	CDRX8044	CDRX8063	CDRX8064	CDRX8083	CDRX8084	CDRX8103	CDRX8104
Dimensions and	weights								
A	mm	2150	2150	2150	2150	2150	2150	2150	2150
В	mm	2160	2160	2160	2160	2160	2160	2160	2160
C	mm	2150	2150	3120	3120	4090	4090	5060	5060
Empty weight	kg	708	750	1064	1130	1394	1476	1736	1839

CGA

Remote condenser

Cooling capacity 240 ÷ 1500 kW

- · V-Shape model with double row of fans
- Ideal machine to manage two-circuit systems completely independently and precisely
- Very solid and reliable structure

GENERAL FEATURES

- V-Shape model with double row of fans;
- Very solid and reliable structure;
- Can be transported in specific containers;

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- Coils with compact staggered geometry, copper pipes and corrugated or mechanically expanded aluminium louvers;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested with Helium (He₂) which ensures the absence of
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with welded connections closed to prevent impurities and moisture from getting into the circuits.
- Adiabatic "Spray System" systems with running water nozzles (cheaper but less efficient);
- Aluminium "Adiabatic Panels" system with closed water management and control system (very efficient system with a 10% maximum amount of evaporated water).

Fans

950

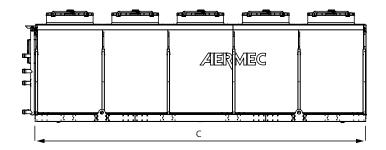
- Latest generation axial fans all compliant with ErP regulation and IP54;
- All machines are supplied with wired and tested fans;
- Fans diameter ø: 800 e 1000 (990) mm;
- All fans with three-phase motors (T) there can be from 6 to 16 per machine:
- Different sound levels: standard (B), silenced (S) or extra-silenced (E):

- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).

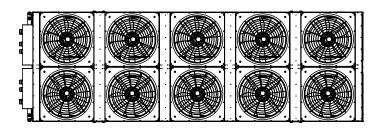
CONTROL

- The electrical panel with terminal board or adjustment is always present and can be installed on the collector side (standard) or on the opposite side;
- The regulators used are of high efficiency and low consumption;
- The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans;
- The two banks can be managed separately with independent electric control board and adjustment (ideal solution for two-circuit systems)

ACCESSORIES


Several accessories are available:

- 1. Anti-vibration supports;
- 2. Coil connection kit;
- 3. Additional disconnectors for each motor;
- 4. Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature \leq 20°C);
- 6. Modbus kit.
- 7. Axitop


www.aermec.com

PERFORMANCE SPECIFICATIONS

For combinations with the evaporating units contact the headquarters.

		CGAX8063	CGAX8064	CGAX8083	CGAX8084	CGAX8103	CGAX8104	CGAX8123	CGAX8124	CGAX8143	CGAX8144	CGAX8163	CGAX8164
Dimensions and	weights												
A	mm	2410	2410	2410	2410	2410	2410	2410	2410	2410	2410	2410	2410
В	mm	2448	2448	2448	2448	2448	2448	2448	2448	2448	2448	2448	2448
C	mm	4320	4320	5730	5730	7140	7140	8550	8550	9960	9960	11370	11370
Empty weight	kg	1600	1700	2000	2150	2500	2700	2850	3100	3650	4000	4200	4550

COMPLEMENTS

CMV

Remote condenser

Cooling capacity 140 ÷ 1200 kW

- Modular machine with base unit composed by 2 "V" modules in series
- The power range can be extended by installing more than 5 base units in parallel
- Very solid and reliable structure

GENERAL FEATURES

- Modular machine with base unit composed by 2 "V" modules in series:
- Very solid, compact and reliable structure;
- Maximum height clearance 2.0 mt;
- Can be transported via container (optimisation of transport costs);
- The power range can be extended by installing more than 5 base units in parallel.

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- High efficiency microchannel coil with low refrigerant content;
- All coils are tested with Helium (He₂) which ensures the absence of leaks:
- Copper collectors with welded connections closed to prevent impurities and moisture from getting into the circuits;
- Different collector configurations are available in order to manage mono and two-circuit systems (include the "Double circuit kit" for machines with up to 8 motors)
- Each "V" module is composed by two coils and two identical fans which repeat from 2 to a maximum of 10 times.
- Each "V" module can be electrically and hydraulically disconnected from the rest of the machine for maintenance without having to stop the whole system;
- Adiabatic "Spray System" systems with running water nozzles (cheaper but less efficient);
- Aluminium "Adiabatic Panels" system with closed water management and control system (very efficient system with a 10% maximum amount of evaporated water).

Fans

952

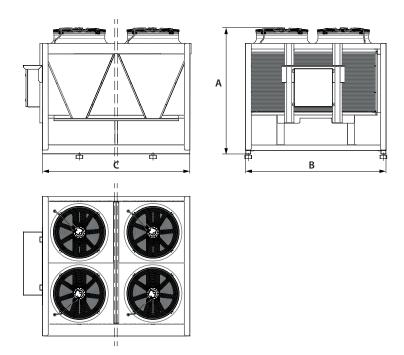
- Latest generation axial fans all compliant with ErP regulation and IP54.
- All machines are supplied with wired and tested fans;

- Available fan diameters ø: 800 mm;
- All fans with three-phase motors (T) there can be from 4 to 20 per individual machine;
- Different sound levels: standard (B), silenced (S) or extra-silenced (E);
- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).

CONTROL

- The electric control board or with complete adjustment is always supplied and can be installed on both short sides of the machine;
- The regulators used are of high efficiency and low consumption;
- The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans;
- Possibility to manage two-circuit systems with independent electrical board and adjustment (select the "Double circuit kit" for models up to 8 motors).

ACCESSORIES


Several accessories are available:

- 1. Anti-vibration supports;
- 2. Double circuit kit;
- 3. Additional disconnectors for each motor;
- **4.** Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature \leq 20°C);
- 6. Modbus kit.
- 7. Axitop

www.aermec.com

PERFORMANCE SPECIFICATIONS

For combinations with the evaporating units contact the headquarters.

		CMV 8041	CMV 8081	CMV 8121	CMV 8161	CMV 8201
Dimensions and	weights					
A	mm	2010	2010	2010	2010	2010
В	mm	2220	2220	2220	2220	2220
C	mm	2385	4765	7145	9525	11905
Empty weight	kg	900	1800	2700	3600	4500

WTE

Dry Cooler

Cooling capacity 3 ÷ 500 kW

- · Simple to use and install
- Wide range of powers
- · Easy to handle and transport
- Can be installed both horizontally and vertically

GENERAL FEATURES

- Simple to use and install;
- Excellent value for money;
- Easy to handle and transport;
- Up to 3 units can be stacked depending on the model (to be requested at time of order);
- Can be installed both horizontally and vertically (models with ø 500 mm and ø 630 mm fans available on request).

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- Coils with compact staggered geometry, copper pipes and corrugated or mechanically expanded aluminium louvers;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested at a maximum pressure of 16 bar;
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with welded connections closed to prevent impurities and moisture from getting into the circuits.

Fans

Latest generation axial fans all compliant with ErP regulation and IP54. All the machines are supplied with wired and tested fans, the following diameters of fans are available ø: 350, 500, 630 (three-phase AC motors only), 800, 1000 (990) mm.

Different sound levels can be had for each fan diameter:

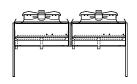
- Standard (B);
- Silenced (S);
- Super silent (E).

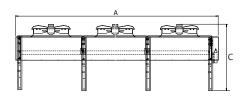
The motors can have AC or EC technology, for three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D)

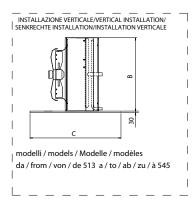
CONTROL

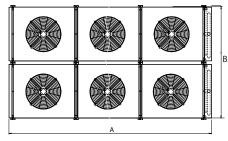
The electrical panel with terminal board or with adjustment is always present.

For space reasons, the models with 350 mm diameter fans feature a junction box.


The regulators used are of high efficiency and low consumption, the types of adjustments available are:


- Phase cut for AC fans
- With electronic processor for EC versions


ACCESSORIES


Several accessories are available:

- 1. Anti-vibration supports;
- 2. Coil connection kit;
- 3. Double circuit kit (only for single row machines)
- 4. Additional disconnectors for each motor;
- 5. Remote switch-on/switch-off management kit;
- **6.** Resistance kit (if temperature ≤ 20°C);
- 7. Modbus kit;
- 8. Axitop (only for 800 mm diameter fans).

WTE fans diameter Ø 500

		WTE°5013	WTE°5023	WTE°5033	WTE°5043	WTE°5063	WTE°5083
Horizontal instal	lation						
A	mm	1400	2345	3290	4230	3290	4230
В	mm	833	833	833	833	1666	1666
С	mm	1080	1080	1080	1080	1080	1080
Empty weight	kg	72	128	185	289	354	467
Vertical installat	ion						
A	mm	1400	2345	3290	4230	-	-
В	mm	839	839	839	839	-	-
С	mm	870	870	870	870	-	-
Empty weight	ka	72	128	185	289	-	_

WTE fans diameter Ø 800

		WTE°8013	WTE°8023	WTE°8033	WTE°8043	WTE°8063
Horizontal instal	lation					
A	mm	1920	3600	5260	3600	5260
В	mm	1240	1240	1240	2390	2390
C	mm	1385	1385	1385	1385	1385
Empty weight	kg	169	331	487	642	954
Vertical installat	ion					
A	mm	1320	3590	5250	3600	5260
В	mm	1232	1232	1232	2390	2390
C	mm	1061	1061	1061	1560	1560
Empty weight	kg	169	331	487	642	954

WTE fans diameter Ø 1000

		WTE°1014	WTE°1024	WTE°1034	WTE°1044	WTE°1064	WTE°1084
Horizontal instal	lation						
A	mm	2560	4860	7170	9460	7170	9460
В	mm	1260	1260	1260	1260	2430	2430
С	mm	1750	1750	1750	1750	1750	1750
Empty weight	kg	247	467	772	990	1602	2060
Vertical installat	ion						
A	mm	2560	4860	7170	9460	7170	9460
В	mm	1260	1260	1260	1260	2505	2505
C	mm	1075	1750	1750	1750	1560	1560
Empty weight	kg	247	467	772	990	1602	2060

 $\label{lem:continuous} Aermec \ reserves \ the \ right \ to \ make \ any \ modifications \ deemed \ necessary.$ All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

WTR

Dry Cooler

Cooling capacity 56 ÷ 350 kW

- V-Shape model with single row of fans
- Wide range of powers
- Maximum height clearance 1.6 mt

GENERAL FEATURES

- V-Shape model with single row of fans;
- Very compact and lowered structure;
- Maximum height clearance 1.6 mt;
- can be transported via container;
- Easy to handle and transport;

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- Coils with compact staggered geometry, copper pipes and corrugated or mechanically expanded aluminium louvers;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested at a maximum pressure of 16 bar;
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with threaded brass connections or flanged on request, adequately protected for transport.
- Adiabatic "Spray System" systems with running water nozzles (cheaper but less efficient);
- Aluminium "Adiabatic Panels" system with closed water management and control system (very efficient system with a 10% maximum amount of evaporated water).

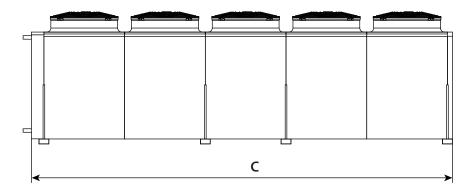
Fans

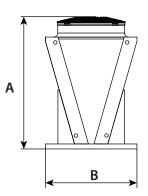
- Latest generation axial fans all compliant with ErP regulation and IP54;
- All machines are supplied with wired and tested fans;
- Fans diameter ø: 800 mm;
- Fans with a diameter of ø 800 mm are all three-phase (T) and there can be from 2 to 7 per machine;

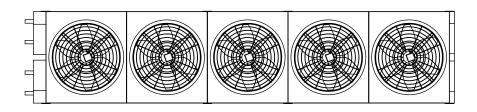
- Different sound levels: standard (B), silenced (S) or extra-silenced (F).
- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).

CONTROL

The electrical panel with terminal board or adjustment is always present and can be installed on the collector side (standard) or on the opposite side.


The regulators used are of high efficiency and low consumption.


The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans.


ACCESSORIES

Several accessories are available:

- 1. Anti-vibration supports;
- 2. Coil connection kit;
- 3. Additional disconnectors for each motor;
- 4. Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature $\leq -20^{\circ}$ C);
- 6. UV lamp kit (only for adiabatic "Spray System" system);
- 7. Modbus kit.
- 8. Axitop

		WTR°8023	WTR°8024	WTR°8033	WTR°8034	WTR°8043	WTR°8044	WTR°8053	WTR°8054	WTR°8063	WTR°8064	WTR°8073	WTR°8074
Dimensions and	weights												
A	mm	1590	1590	1590	1590	1590	1590	1590	1590	1590	1590	1590	1590
В	mm	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100
C	mm	2150	2150	3120	3120	4090	4090	5060	5060	6030	6030	7000	7000
Empty weight	kg	383	432	563	637	743	841	923	1046	1171	1341	1278	1448

COMPLEMENTS

WDR

Dry Cooler

Cooling capacity 90 ÷ 430 kW

- · V-Shape model with double row of fans
- Ideal machine to manage two-circuit systems completely independently and precisely
- · Very solid and reliable structure
- Maximum height clearance 2.2 mt

GENERAL FEATURES

- V-Shape model with double row of fans;
- Very solid and reliable structure;
- Maximum height clearance 2.2 mt;
- can be transported via container;

FEATURES

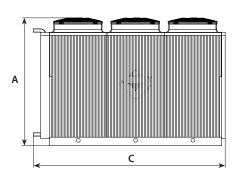
Structure

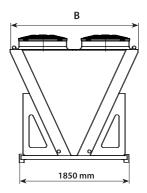
- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- Coils with compact staggered geometry, copper pipes and corrugated or mechanically expanded aluminium louvers;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested at a maximum pressure of 16 bar;
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with threaded brass connections or flanged on request, adequately protected for transport;
- Adiabatic "Spray System" systems with running water nozzles (cheaper but less efficient);
- Aluminium "Adiabatic Panels" system with closed water management and control system (very efficient system with a 10% maximum amount of evaporated water).

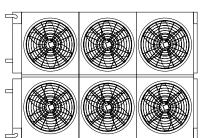
Fans

- Latest generation axial fans all compliant with ErP regulation and IP54;
- All machines are supplied with wired and tested fans;
- Fans diameter ø: 800 mm;
- All fans with three-phase motors (T) there can be from 4 to 10 per machine:
- Different sound levels: standard (B), silenced (S) or extra-silenced (E):

- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).


CONTROL


- The electrical panel with terminal board or adjustment is always present and can be installed on the collector side (standard) or on the opposite side;
- The regulators used are of high efficiency and low consumption;
- The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans;
- The two banks can be managed separately with independent electric control board and adjustment (ideal solution for two-circuit systems)


ACCESSORIES

Several accessories are available:

- 1. Anti-vibration supports;
- 2. Coil connection kit;
- 3. Additional disconnectors for each motor;
- 4. Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature ≤ 20°C);
- 6. UV lamp kit (only for adiabatic "Spray System" system).

		WDR°8043	WDR°8044	WDR°8063	WDR°8064	WDR°8083	WDR°8084	WDR°8103	WDR°8104
Dimensions and	weights								
A	mm	2150	2150	2150	2150	2150	2150	2150	2150
В	mm	2160	2160	2160	2160	2160	2160	2160	2160
C	mm	2150	2150	3120	3120	4090	4090	5060	5060
Empty weight	kg	725	798	1098	1216	1425	1571	1776	1958

WGA

Dry Cooler

Cooling capacity 180 ÷ 1100 kW

- · V-Shape model with double row of fans
- Ideal machine to manage two-circuit systems completely independently and precisely
- · Very solid and reliable structure

GENERAL FEATURES

- V-Shape model with double row of fans;
- Very solid and reliable structure;
- Maximum height clearance 2.5 mt;
- Can be transported in specific containers.

FEATURES

Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- Coils with compact staggered geometry, copper pipes and corrugated or mechanically expanded aluminium louvers;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested at a maximum pressure of 16 bar;
- The shoulders of the coils are integrated into the structure and designed to avoid any pipe breakage due to vibrations related to transport or functioning;
- Copper collectors with threaded brass connections or flanged on request, adequately protected for transport;
- Adiabatic "Spray System" systems with running water nozzles (cheaper but less efficient);
- Aluminium "Adiabatic Panels" system with closed water management and control system (very efficient system with a 10% maximum amount of evaporated water).

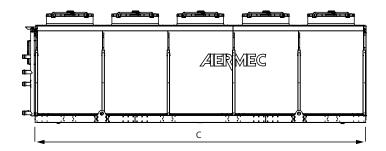
Fans

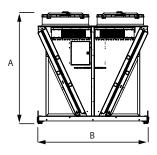
960

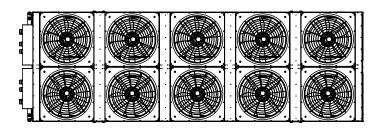
- Latest generation axial fans all compliant with ErP regulation and IP54;
- All machines are supplied with wired and tested fans;
- Fans diameter ø: 800 e 1000 (990) mm;
- All fans with three-phase motors (T) there can be from 4 to 10 per machine:
- Different sound levels: standard (B), silenced (S) or extra-silenced (E):

- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).

CONTROL


- The electrical panel with terminal board or adjustment is always present and can be installed on the collector side (standard) or on the opposite side;
- The regulators used are of high efficiency and low consumption;
- The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans;
- The two banks can be managed separately with independent electric control board and adjustment (ideal solution for two-circuit systems)


ACCESSORIES


www.aermec.com

Several accessories are available:

- 1. Anti-vibration supports;
- 2. Coil connection kit;
- 3. Additional disconnectors for each motor;
- 4. Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature ≤ 20°C);

		WGA°8063	WGA°8064	WGA°8083	WGA°8084	WGA°8103	WGA°8104	WGA°8123	WGA°8124	WGA°8143	WGA°8144	WGA°8163	WGA°8164
Dimensions and	weights												
A	mm	2410	2410	2410	2410	2410	2410	2410	2410	2410	2410	2410	2410
В	mm	2448	2448	2448	2448	2448	2448	2448	2448	2448	2448	2448	2448
C	mm	4320	4320	5730	5730	7140	7140	8550	8550	9960	9960	11370	11370
Empty weight	kg	1600	1700	2000	2150	2500	2700	2850	3100	3650	4000	4200	4550

COMPLEMENTS

WMV

Dry Cooler

Cooling capacity 100 ÷ 950 kW

- Modular machine with base unit composed by 2 "V" modules in series
- The power range can be extended by installing more than 5 base units in parallel
- · Very solid and reliable structure

GENERAL FEATURES

- Modular machine with base unit composed by 2 "V" modules in series:
- Very solid, compact and reliable structure;
- Maximum height clearance 2.0 mt;
- Can be transported via container (optimisation of transport costs);
- The power range can be extended by installing more than 5 base units in parallel.

FEATURES

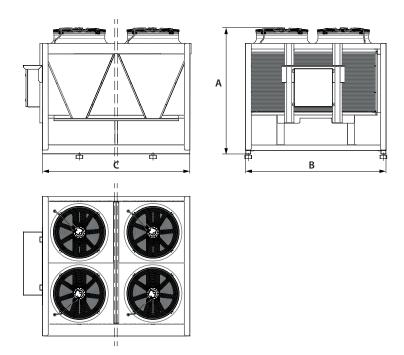
Structure

- They are designed for outdoor installation and therefore manufactured with technologies and materials that guarantee resistance to atmospheric agents;
- The version with polyurethane resin pre-painted louvers is also available for greater resistance to corrosion in aggressive environments;
- All coils are tested at a maximum pressure of 16 bar;
- Copper collectors with grooved joint connections (Victaulic);
- Different collector configurations are available in order to manage mono and two-circuit systems (include the "Double circuit kit" for machines with up to 8 motors);
- Each "V" module is composed by two coils and two identical fans which repeat from 2 to a maximum of 10 times.
- Each "V" module can be electrically and hydraulically disconnected from the rest of the machine for maintenance without having to stop the whole system;

Fans

- Latest generation axial fans all compliant with ErP regulation and IP54;
- All machines are supplied with wired and tested fans;
- Available fan diameters ø: 800 mm;
- All fans with three-phase motors (T) there can be from 4 to 20 per individual machine;
- Different sound levels: standard (B), silenced (S) or extra-silenced (E):

- The motors can have AC or EC technology;
- For three-phase AC motors it is possible to choose the electrical type of connection: star (Y) or delta (D).


CONTROL

- The electric control board or with complete adjustment is always supplied and can be installed on both short sides of the machine;
- The regulators used are of high efficiency and low consumption;
- The types of available adjustments are: phase cut for AC fans and with electronic processor for EC fans;
- Possibility to manage two-circuit systems with independent electrical board and adjustment (select the "Double circuit kit" for models up to 8 motors).

ACCESSORIES

Several accessories are available:

- 1. Anti-vibration supports;
- 2. Double circuit kit;
- 3. Additional disconnectors for each motor;
- 4. Remote switch-on/switch-off management kit;
- **5.** Resistance kit (if temperature ≤ 20°C);
- 6. Modbus kit.
- 7. Axitop

		WMV°8043	WMV°8044	WMV°8083	WMV°8084	WMV°8123	WMV°8124	WMV°8163	WMV°8164	WMV°8203	WMV°8204
Dimensions and	weights										
A	mm	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010
В	mm	2220	2220	2220	2220	2220	2220	2220	2220	2220	2220
C	mm	2385	2385	4765	4765	7145	7145	9525	9525	11905	11905
Empty weight	kg	1080	1190	2160	2380	3240	3570	4320	4760	5400	5950

MEC-W

Water-cooled packaged air conditioners With radial fans

Capacities from 11 up to 55 kW

FEATURES

- Available in 5 different sizes
- All versions are supplied for use with R407C
- Metallic protective cabinet with rustproof polyester paint
- Double suction radial fans
- Electric motors with belt transmission
- Four row evaporator coil with copper tubes and aluminium fins
- Washable air filter
- Room thermostat with one or two contacts depending on the model
- Hermetic compressors
- Plate-type condenser
- Water flow control valve driven directly in relation to condensing pressure

ACCESSORIES

- BAS: Hot water coil with three rows of aluminium finned copper tubes
- PL: Air distribution plenum comprising delivery grille with two rows of adjustable slats and internal lining of sound insulating material.

COMPATIBILITY OF ACCESSORIES

Mod.	307 W	507 W	757 W	1007 W	1507 W
BAS 30	•				
BAS 50		•			
BAS 75			•		
BAS 100				•	
BAS 150					•
BAS 200					
BAS 300					
PL 22	•				
PL 23		•			
PL 26			•		
PL 37				•	
PL 38					•
PL 39					
PL 300					•

TECHNICAL DATA

Mod. MEC		307 W	507 W	757 W	1007 W	1507 W
Cooling capacity	kW	11	18	29	35	55
Input power	kW	3,05	4,45	7,3	8,5	13,7
Water flow rate at 30 °C	l/h	2350	3740	5900	7270	11270
Pressure drops	kPa	38	65	56	65	53
Water consumption at 16 °C*	l/h	620	990	1550	1910	2970
Pressure drops*	kPa	3,5	6,7	5	5,3	5
Heating capacity (accessory BAS)	kW	25,28	46,61	58,01	78,59	113,68
Pressure drops (accessory BAS)	kPa	3,47	4,01	3,97	4,59	5,77
Coil rows	n.	4	4	4	4	4
Nominal air flow rate	m ³ /h	2040	3400	5100	6800	10200
e Sound pressure	dB (A)	63	65,5	72,5	69,5	73,5
Motor power	kW	0,375	0,75	1,125	1,5	1,125
Cnood	g/m (min.)	840	840	840	620	840
Speed	g/m (max.)	1120	1120	1120	810	1120
Motor pulley diameter	mm (min.)	79	79	79	79	79
Motor pulley diameter	mm (max.)	104	104	104	104	104
Fan pulley diameter	mm	130	130	130	180	130
A:	m ³ /h (min.)	1600	2750	4100	5500	8200
Air flow rate	m ³ /h (max.)	2400	4100	6000	8200	12000
Innut current	A (230 V)	12,2	15,4	24,2	30,8	46,6
Input current	A (400 V)	6	8,9	13,9	17,8	26,9
Peak current	A (230 V)	98	142	168	157	190
reak Current	A (400 V)	48	68	101	77	115
· ·						

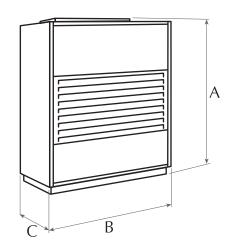
Power supply: 3~ 230V 50Hz; 3N~ 400V 50Hz.

Cooling

room air temperature 27 °C D.B., 19 °C W.B.;

condensing temperature 40 °C;

condensing temperature 35 $^{\circ}\text{C}.$


Heating

water inlet temperature 85 °C;

air intake temperature 15 °C;

Sound pressure measured in an 85 m3 semi-reverberant test chamber with reverberation time $\mbox{Tr}=0.5\mbox{s.}.$

DIMENSIONS (MM)

Mod.		307 W	507 W	757 W	1007 W	1507 W
Height	А	1290	1410	1680	1700	1745
Width	В	900	1040	1220	1450	1880
Depth	С	494	558	648	723	753
Weight	kg	147	184	273	335	484

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

FW-R

Water-cooled air conditioners

Capacities from 2.9 up to 4.0 kW

TL3 Receiver board

TL3 wall-mounted receiver

DESCRIPTION

FW-R series integrated system air conditioners are independent appliances designed and built to create and maintain optimum room comfort conditions.

Discreetly and elegantly styled, these remarkably quiet units are ideal for installation in the home or commercial premises.

Equipped with a water-cooled condenser, FW-R appliances perform all typical cooling, dehumidification, ventilation and air filtration functions while offering particular benefits in terms of ease of application and installation.

Suitable also for winter operation when equipped with an electric heater or hot water coil; console air conditioners are able to provide different microclimates within the same room because each appliance can be adjusted independently; low running costs are assured by fast arrival at the required room temperature because of the low thermal inertia of the system; quiet operation and thermal efficiency are also promoted by the heat and sound insulation of the compressor bay.

All appliances are factory assembled and individually tested.

FEATURES

- High efficiency rotary compressor
- Compact size
- Quiet operation
- Automatic temperature adjustment
- Reduced water consumption
- Low electrical power consumption

ACCESSORIES

- TL3 : Mandatory accessory, remote controller, required for the operation of the unit
- BR: Armoured heating element with safety thermostat.
- BVR: Single row hot water coil.

Compatibility of accessories									
	FW130R	FW160R							
TL 3	•	•							
BR 26	•	•							
BVR 1	•	•							

TECHNICAL DATA

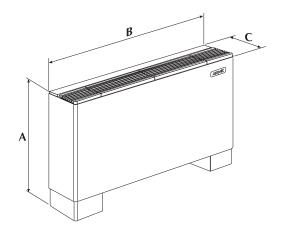
Mod.	FW	130R	160R
Cooling capacity	W (max.)	2900	4000
Energy Efficiency Class		A	A
EER		4.08	4.65
Humidity removed	l/h	1.78	1.78
Input power	W	710	860
Input current	A	3.55	4.02
Heating capacity with water coil (BVR1)	W	4350	5200
Water flow rate (BVR1)	l/h	600	600
Pressure drops (BVR1)	kPa	12,6	12,6
Heating capacity electric coil (BR26)	W	1200	1200
Fans	n.	2	2
	m ³ /h (max.)	470	690
Air flow rate	m ³ /h (med.)	390	525
	m ³ /h (min.)	270	375
	g/m (max.)	800	1140
Fans speed	g/m (med.)	660	885
	g/m (min.)	500	665
Sound pressure	dB (A)	44	47,5
Water consumption at 30-35°C	l/h	586	804
Condenser pressure drops	kPa	22	40
Refrigerant	Tipo / GWP	R410A / 20	088kgCO₂eq
Refrigerant charge	g	750	830
Input nominal power consumption *	W	1120	1500
Nominal imput current *	Α	4.97	6.65
Input current	Α	18	32
Water connections	Ø	1/2″F	1/2″F

Power supply $=230\text{V}\sim50\text{Hz}.$ Sound pressure measured in an 85 m3 semi-reverberant test chamber with reverberation time Tr =0.5s * In accordance with UNI EN-60335 Data declared in accordance with EN-14511

Cooling

Room air temperature 27°C B.S.; 19°C B.U.

Entering water temperature 30°C


Leaving water temperature 35°C

Max speed

Heating (BVR1):
- Room air temperature 20°C
- Entering water temperature 70°C

Max speed

DIMENSIONS (MM)

		FW 130 R	FW 160 R
Height	Α	723	723
Width	В	1121	1121
Depth	С	242	242
Weight	kg	63	67

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

CWX-CWXM

Water motocondensing unit functioning only in cooling mode Internal installation

Power from 2.7 to 7.1kW

CWX_W

EXC

CWXM

IR remote control CWX_W

TL 3 accessory

PF accessory

VERSIONS

CWX condensing unit for cooling only MONOSPLIT CWXM condensing unit cold only DUALSPLIT

FEATURES

CWX power module

- · Available in 4 versions with different potentiality
- The versions are realised using R410A refrigerant gas
- Only cold operation with water condensation
- Outdoor unit with rotary compressor
- Refrigerant lines with flared connections
- Refrigerant lines up to 15m

CWXM power module

- Available in 2 versions with different potentiality
- The versions are realised using R410A refrigerant gas
- Only cold operation with water condensation
- · Outdoor unit with rotary compressor
- Refrigerant lines with flared connections
- Refrigerant lines up to 10m

CWX_W indoor unit:

- Wall indoor unit for wall installation with infrared ray remote control supplied:
- Air flow louvers adjustable horizontally and motorised deflecting louvers, which can be activated by remote control to direct the outlet air flow vertically, with fixed (LV) or floating (SW) positions

- Extremely silent functioning
- Microprocessor control
- Programmable switch-on/off timer
- Air filter that can be easily removed and regenerated
- Night time well-being (SLEEP) function
- Functioning mode: cooling, dehumidification, ventilation only)
- Autorestart function after interruption of electricity
- Tangential fan with 3 directly selectable speeds
- Energy saving (ECONO) and fast cooling (TURBO) mode

EXC indoor unit:

- Indoor unit with 3-speed centrifugal fan with the possibility of varying the electric connection to increase the useful static pressure. PF (wired control panel) or TL3 (remote control) mandatory accessories, essential unit functioning
- Functioning mode: cooling, heating (with BV or RX accessories), dehumidification or automatic
- Programmable switch-on/off timer
- Cooling or fast heating (TURBO) mode
- · Autorestart function after interruption of electricity
- Wide range of accessories for EXC indoor unit
- Microprocessor control
- · Extremely silent functioning
- Air filter that can be easily removed and regenerated

TECHNICAL DATA

Indoor units				CWX250W	CWX350W	CWX500W	CWX700W	CWX350W+ CWX350W	CWX500W+ CWX500W
Power module				CWX250	CWX350	CWX500	CWX700	CWXM520	CWXM720
Cooling capacity			W	2750	3400	5200	6700	4826	7100
Total input power			W	637	778	1330	1860	1279	1780
Total input current			A	2,86	3,56	6,02	9,28	5,8	9,0
EER			W/W	4,32	4,37	3,91	3,60	3,77	3,99
Water flow rate at (in/out) 3	30°C/35°C		I/h	572	705	1091	1446	1066	1510
Water side pressure drops	70 C/ 33 C		kPa	21	32	74	125	68	127
Water flow rate at (in) 15°C			I/h	102	122	225	308	190	255
Refrigerant gas			Tipo/GWP	102	122		A / 2087,5 kgC02e		233
Refrigerant gas load			kg	0,65	0,75	0,85	0,97	0,9	1,1
Nominal input power		(1)	W W	1500	1500	2300	2650	2300	2650
		(1)	I/h						
Humidity removed				1,08	1,18	1,96	2,38	1,0	1,3
A: 0		max	m3/h	445	537	882	1010	537	882
Air flow rate		average	m3/h	428	501	828	935	501	828
		min	m3/h	404	467	776	842	467	776
		max	dB(A)	51	51	56	58	51,0	56,0
Sound power (indoor unit)		average	dB(A)	50	50	55	56	50,0	55,0
		min	dB(A)	49	48	53	54	48,0	53,0
				FVCaca	FVC400	FVC400	56/0.40	FV6400 FV6400	FVC400 FVC400
Indoor units				EXC093	EXC123	EXC183	ECX243	EXC123+ EXC123	EXC183 + EXC183
Power module				CWX250	CWX350	CWX500	CWX700	CWXM520	CWXM720
Cooling capacity			W	2700	3500	5250	6700	5380	7100
Total input power			W	656	790	1422	1856	1314	1820
Total input current			A	2,95	3,65	6,44	9,29	6,0	9,1
EER	12.506		W/W	4,12	4,43	3,69	3,61	4,09	3,90
Water flow rate at (in/out) 30°C	/35°C		l/h	573	715	1140	1455	1172	1510
Water side pressure drops			kPa	21	33	81	126	82	68
Water flow rate at (in) 15°C			I/h Tipo/GWP	102	125	235	311 0A / 2087,5 kgCO2eq	200	255
Refrigerant gas Refrigerant gas load			lipo/GWP kg	0,65	0,75	0,85	0,97 0,97	0,9	1,1
Nominal input power		(1)	W Kg	1500	1500	2300	2650	2300	2650
Humidity removed		(1)	l/h	1,02	1,31	2,16	2,45	1,0	1,3
numunty removed		max	m3/h	480	520	950	960	520	950
Air flow rate		average	m3/h	370	400	840	830	400	840
All How rate		min	m3/h	280	310	650	610	310	650
		max	dB(A)	46	47,5	60	56,5	47,5	60,0
Sound power (indoor unit)		average	dB(A)	41	43	58,5	53,5	43,0	58,5
Sound porter (masor unit)		min	dB(A)	37	37,5	55	49,5	37,5	55,0
Heating capacity (water coil)		(2)	W	2640	3040	4670	5690	3040	4670
Water flow rate (water coil)		(2)	l/h	231	266	409	497	266	409
Pressure drops (water coil)		(2)	kPa	14,0	17,0	36,0	12,0	17,0	36,0
Heating capacity (electric resista	ance)	(2)	W	1300	1650	1950	2200	1650	1950
Input current (electric resistance	2)	(2)	А	5,7	7,2	8,5	9,6	7,2	8,5
Power module			16.44	CWX250	CWX350	CWX500	CWX700	CWXM520	CWXM720
Sound power			dB(A)	52 Determ	56	59 Detection	59 Data	59,0	59,0
Compressor	Φ1::J		type	Rotary 1/4"	Rotary	Rotary	Rotary	Rotary 1/4"	Rotary 1/4"
Refrigerant connections	Φ liquid Φ gas		inch		1/4" 1/2"	1/4"	1/4" 5/8"	1/4"	1/4"
-	Φ gas		inch	3/8" 6,35 (1/4")	6,35 (1/4")	6,35 (1/4")	6,35 (1/4")		6,35 (1/4")
	Φ liquid Φ gas		mm (inch)	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")		6,35 (1/4") 12,7 (1/2")	12,7 (1/2")
Refrigerant lines	Φ gas Max pipe Length		mm (inch) m	9,52 (3/8")	12,7 (1/2")	12,7 (1/2")	15,9 (5/8") 15	10 + 10	12,7 (1/2")
nemyerdik ililes	Max pipe Length Max level difference		m m	7	7	7	7	5	5
Hydraulic connections	iviax ievei uilleleiice		m F	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"
Electric power supply			r V ~ Hz	4 اد	4/ر		220-240V ~ 50Hz	J/ 11	J/4
Liectric power suppry			v ~ ⊓Z				22U-24UV ~ JUNZ		

- (1) The nominal input power, is the maximum electric input power of the system, in accordance with the Standard EN-60335-1 and EN-60335-2-40
- (2) Ambient air 20°C d.b.; Water (in/out) 65°C/55°C; maximum speed

Nominal conditions (Cooling EN-14511):

- Room air temperature 27 °C D.B.; 19 °C W.B.
- Water temperature (in/out) $30^{\circ}C$ / 35 $^{\circ}C$
- maximum speed
- pipe length 5m

ACCESSORIES

PF or TL3 mandatory accessories are essential for func- delivered without. tioning of the EXC units:

PF: Control panel with electronic room thermostat for wall installation. It is a mandatory accessory as the EXC units are delivered without.

TL3: Infrared remote control with liquid crystal display es must be exceeded. to control all functions. Kit complete with recessed re- GA: Intake grid with fixed louvers. ceiver. It is a mandatory accessory as the EXC units are GAF: Intake grid with fixed louvers with filter.

AMP: Kit for wall/ceiling mounted installation.

BC: Auxiliary condensate drip tray.

BV: Hot water coil with 1 row.

DSC4: Condensate draining device when level differenc-

GM: Flow grid with adjustable louvers.

MA: Tall protective cabinet.

MU: Universal protective Cabinet.

PA: Galvanised sheet steel intake plenum equipped with plastic flow fittings for circular section ducts. PC: Steel sheet panel for closing the rear unit side.

PM: Galvanised sheet steel flow plenum, externally insulated, equipped with plastic flow fittings for ducts

COMPLEMENTS

and circular sections.

RD: Straight flow fitting for ducting.

RDA: Straight intake fitting for ducting.

RP: 90° flow fitting for ducting. RPA: 90° intake fitting for ducting.

RX: Armoured electrical coil with safety thermostat.

SE: External air damper with manual control.

SW3: Probe which enables operation of the unit only with temperature greater than 35 °C.

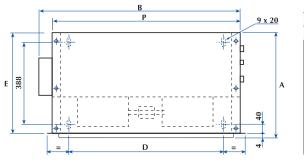
VCF: Kit composed of 3-way motorised valve and copper pipes and connections.

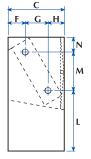
ZX: Feet for floor assembly for models with MA accessory, or recessed.

			Accessory compatibility		
	Notes	EXCO93	EXC123	EXC183	EXC243
.3 : MP	(1)	•	•	•	•
	(1)	•	•	•	•
ИP		•	•	•	•
	4 (2) 5 (3)	• (4)	• (4)	• (4)	• (4)
BC .	5 (3)	•	•	•	
	6 (3)				•
	8 9	•	•	•	
	9				•
	132	•			
BV	142		•	•	
	162				•
SC4		•	•	•	•
	32	•			
A	32 42 62		•	•	
•	62				•
	32	•			
١F	12		•	•	
**	62		<u> </u>	<u> </u>	•
	32 42 62 32 42 62	•			
И	17	•	•	•	
VI	62		•	•	_
	22				•
٨	32 42 62 32 42 62 32 42 62 42 62	•			
Α	42		•	•	
	02				•
	32	•			
MU	42		•	•	
	62				•
PA	32	•			
	42		•	•	
	62				•
	32	•			
	32 33 42 43 62	•			
PC	42		•	•	
	43		•	•	
	62				•
	32	•			
M	42	•	•	•	
	62				•
	27	•			
n	12	•	•	•	
RD	42				•
	22				•
DΛ	32 42 62 32 42 62 32 42 62 42 62	•			
DA	42		•	•	
	02				•
	32 42 62	•			
P	42		•	•	
	62				•
	32 42 62	•			
RPA	42		•	•	
	62				•
	090	•			
(120		•		
١.	180			•	
	120 180 240				•
	30X	•			
	30X 40X		•	•	
	80X		-		•
V3	OVA	• (5)	• (5)	• (5)	• (5)
	11	• (5)	• (5)	• (5)	• (5)
F	44 45	•	•	•	_
	4) r				•
	5 6 7	•	•	•	
	6				•
		•	•	•	
	8				•

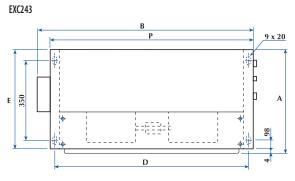
⁽¹⁾ it is a mandatory accessory as the LC C units are delivered without.

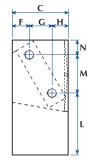
⁽²⁾ in combination with MA accessory;

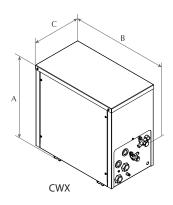

⁽³⁾ in combination with MU accessory;

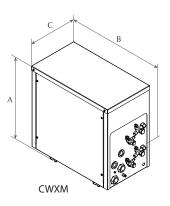

⁽⁴⁾ the VCF valve and the BC4 tray cannot be installed simultaneously on the same unit;

⁽⁵⁾ to be coupled with the BV hot water coil.


DIMENSIONAL DATA (MM)


EXC093 - 123 - 183


EXC	093	123	183	243
Α	457	457	457	562
В	823	1043	1043	1182
C	216	216	216	216
D	671	891	891	1102
E	453	453	453	558
F	41	41	41	41
G	101	101	101	107
Н	74	74	74	68
L	260	260	260	273
М	144	144	144	253
N	49	49	49	32
Р	753	973	973	1122
Weight (Kg)	23	26	27	37



AERMEC	A
B →	
CWX_W	

CWX_W		250	350	500	700
Height	Α	298	305	360	360
Width	В	880	990	1172	1172
Depth	C	205	210	220	220
Weight	kg	11	12	18,5	20

www.aermec.com

CWX		250	350	500	700
Height	Α	450	450	450	570
Width	В	470	470	470	470
Depth	C	260	260	260	260
Weight	kg	32	35	38	49

CWXM		520	720
Height	Α	585	585
Width	В	470	470
Depth	C	260	260
Weight	kg	41	52

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A. Via Roma, 996 - 37040 Bevilacqua (VR) - Italia Tel. 0442633111 - Telefax 044293577 www.aermec.com

DML

Dehumidifier portable

Dehumidifying capacity 5,8 l/24h ÷ 19,9 l/24h

- New R290 natural refrigerant gas.
- Compact, manoeuvrable and silent.
- Modern design to blend with all furnishing styles.
- Removes up to 19,9 litres of humidity in 24 hours.
- Function for drying clothes quickly.

DESCRIPTION

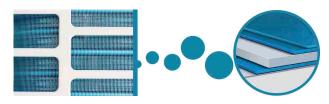
The portable dehumidifiers of the DML range are ideal for dehumidifying domestic rooms, cellars, bathrooms and places where clothes are hung out to dry, reducing the humidity to optimum levels to avoid any risk of physical discomfort and damage to the building due to the formation of mould.

They fit in with any type of furnishings thanks to their compact, elegant design, and even have wheels so they can easily be moved from one room to another and installed where needed (plug & play).

Equipped with a specific tray for collecting the humidity removed from the room during operation.

The on-board control panel with led display and indicator lights, allows you to set the required temperature set-point easily and accurately.

FEATURES


Operation

The dehumidifier takes in the excess humidity via the recovery grille and releases humidity-free air, thereby ensuring a healthier, more comfortable environment.

In addition, its functions enable easy control of the humidity level, keeping it constant over time.

Special blue fin coil

Unlike normal batteries, this special blue epoxy coating is able to protect the heat exchanger against rust and corrosion, in areas where the air has a high salt content.

- On-board control panel with led display and indicator lights.
- Visual display of the humidity setting and that read in the room.
- Relative humidity setting between 80% and 35%.
- Particularly quiet operation.
- Regenerable air filter easy to remove and clean.
- Alarm signal for filter cleaning.
- Alarm signal for condensate discharge tray full or badly positioned.
- Possibility to continuously drain off the condensate without using the tray supplied.
- Self-diagnosis function.
- Auto switch-off function: the unit stops operating when the condensate discharge tray is full or badly positioned, or when it has reached the defined work set-point.
- Auto-restart function.

DMI 200

- New R290 natural refrigerant gas.
- On-board control panel with led display and indicator lights.
- Visual display of the humidity setting and that read in the room.
- Relative humidity setting between 80% and 35%.
- Particularly quiet operation.
- $-\!\!\!-$ Regenerable air filter easy to remove and clean.
- Alarm signal for filter cleaning.
- Alarm signal for condensate discharge tray full or badly positioned.
- Possibility to continuously drain off the condensate without using the tray supplied.
- Self-diagnosis function.
- Auto switch-off function: the unit stops operating when the condensate discharge tray is full or badly positioned, or when it has reached the defined work set-point.
- Auto-restart function.
- Anti-freeze function.
- 3-speed fan, to meet every possible need.
- Timer for programming switch-off and switch-on.

DML 100 - 120

New R290 natural refrigerant gas.

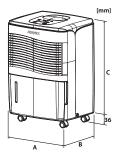
ACCESSORIES AS STANDARD

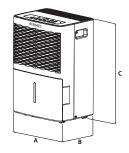
DML100-120

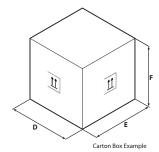
— Wheels

— Cable fastener clamp

DML200


— Condensate discharge coupling


PERFORMANCE SPECIFICATIONS


		DML100	DML120	DML200
Nominal performance (1)				'
Dehumidifying capacity	I/24h	10,1	12,0	19,9
Input power	W	210	210	340
Input current	A	1,3	1,3	1,6
Nominal performance (Standard EN 810) (2)			
Dehumidifying capacity	l/24h	5,8	6,7	12,0
Electric data				
Rated power input (3)	W	250	250	390
Rated current input (3)	A	1,5	1,5	2,6
Hourly energy consumption	kWh/60min	0,2	0,2	0,3
Compressor				
Туре	type	Recip	procating	Rotary
Refrigerant	type		R290	·
Refrigerant charge	g	50	60	80
Potential global heating	GWP		3	
Equivalent CO ₂	t	0,15	0,18	0,24
Fan				
Туре	type		Axial	
Air flow rate				
Nominal	m³/h	90	90	=
Maximum	m³/h	-	-	140
Average	m³/h	-	-	130
Minimum	m³/h	-	-	120
Sound power				
Nominal	dB(A)	53,0	53,0	-
Maximum	dB(A)	-	-	52,0
Average	dB(A)	-	-	51,0
Minimum	dB(A)	-	-	49,0
Sound pressure (4)				
Nominal	dB(A)	41,0	41,0	-
Maximum	dB(A)	-	-	42,0
Average	dB(A)	-	-	41,0
Minimum	dB(A)	-	-	39,0
Condensate drainage basin		<u> </u>		
Capacity	l l	1,5	1,5	3,2
Power supply cable				
Type of power supply cable	Туре		Schuko	
Power supply				
Power supply			220-240V ~ 50Hz	

⁽¹⁾ Indoor air temperature 30°C D.B. / 27°C W.B.
(2) Indoor air temperature 27°C b.s./21°C b.u. (Tested according to EN 810)
(3) Tested according to EN 60335.
(4) Sound pressure measured in semi anechoic chamber at a distance of 1 m from the source.

DIMENSIONS AND WEIGHTS

DML100-120

DML200

DML100 DML120 DML200 Dimensions and weights 310 340 310 mm mm 243 243 250 400 400 495 mm 345 345 421 mm 286 286 303 $\mathsf{m}\mathsf{m}$ 437 437 525 mm12,00 12,00 13,00 kg 13,00 13,00 Weight for transport 15,00 kg

DMH DMV

Dehumidifiers

Cooling Capacity 2,5kW ÷ 6,2kW Heating Capacity 2,8kW ÷ 6,2kW

DMH220 / DMH220C DMH360 / DMH360C

- Better performance compared to traditional dehumidifiers
- Reduced consumption
- Prevents condensation on the floor surface

Dehumidifiers are refrigerant cycle machines combined with radiant air-conditioning systems, from which they draw a certain water flow rate to increase the dehumidification efficiency and reduce electricity consumption.

The cooling systems employ chilled water at temperatures between 15°C and 20°C, which is enough to take the rooms to the desired temperature, but not suitable for dehumidification. To lower the latter, you would need water at 7°C, resulting in a reduction in the performance of the water chiller compared to when the water is produced at 15-20°C.

Water-cooled refrigerant cycle dehumidifiers are used to keep the air humidity at optimal values (55-65%) in rooms, with the following benefits compared to other systems:

- They employ the chilled water available in the radiant panel system;
- They are used to process the air without modifying its temperature and, therefore, without affecting the operation of the radiant panels and their adjustment system.

STRUCTURE: The galvanised sheet metal panels, lined on the inside with a soundproofing polyethylene covering.

FILTERING SECTION: Synthetic filtering baffle th. 12 mm made with a galvanised sheet metal frame, efficiency class G3, can be removed from the front.

COOLING CIRCUIT: consisting of a R134a alternative refrigerant compressor, freon filter, expansion capillary, evaporator and condenser with copper pipes and continuous louvered fin louvers, with hydrophilic treatment and aluminium frame (for "-C" cooling versions, water-freon condenser).

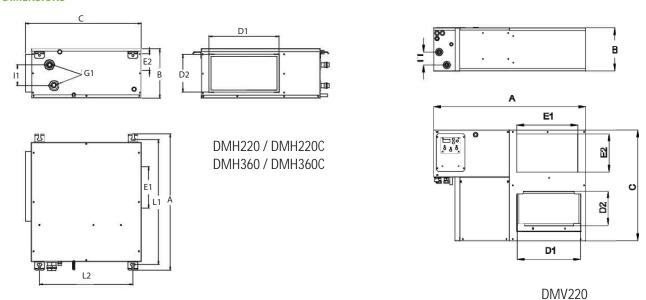
HYDRAULIC CIRCUIT: with pre-treatment and post-cooling coils featuring with copper pipes and continuous louvered fin louvers, with hydrophilic treatment and aluminium frame; for "-C" cooling versions, plate water condenser (no post-cooling); stainless steel condensate drip tray extended to the whole treatment.

FAN: double intake centrifugal fan with blades facing forwards, with multi-speed motor directly coupled; 3 different electrical connections available (H/M/L) for the functioning speed; the manufacturer's default setting is medium (M) speed.

ELECTRIC CONTROL BOARD: it includes the recessed electronic board to adjust and control the built-in control panel with a keyboard and LCD display.

ACCESSORIES

DMUM: ambient humidistat. Wall installation **DMWB**: outer casing for vertical model. Vertical installation


DMFP: front panel for outer casing. Vertical installation

TECHNICAL DATA

MODEL		DMH 220	DMH 220C	DMH 360	DMH 360C	DMV 220
Condensed humidity	l/24h	22	22	36	36	22
Power at the evaporator	W	1020	1020	1480	1480	1020
Power dissipated with water	W	870	1820	1540	2680	870
Nominal water flow rate	m3/h	0,34	0,39	0,46	0,55	0,34
Water pressure drop	kPa	3	3	10	10	3
Available sensitive power	W		840		1340	
Electric power supply	V/ph/Hz			230/1/50		
Total input power	W	350	350	580	580	350
Input current	Α	2,0	2,0	3,2	3,2	2,0
FAN						
Туре			do	ouble intake centrifuç	gal	
Available fan speeds				H/M/L		
Nominal fan setting		М	М	М	М	М
Air flow rate	m ³ /h	220	220	360	360	220
Useful static pressure	Pa	20	20	20	20	0
COMPRESSOR					,	
Туре			Re	ciprocating compres	sor	
Refrigerant	Tipo / GWP		R′	134a / 1430kgCO ₂ 6	eq	
Load amount	g	340	340	400	400	340
OPERATING LIMITS						
Intake air temperature	°C			15 ÷ 32		
Water inlet temperature (dehumidifying mode)	°C			10 ÷ 21		
SOUND LEVEL						
Sound pressure level at 1 m	dB(A)	42	42	47	47	39

The performance refers to the nominal air flow rate under the following conditions: Ambient air: 26°C BS, UR 65%; Water inlet temperature 15°C .

DIMENSIONS

MODEL	DIMENSIONS [mm]											
MODEL	Α	В	С	D1	D2	E1	E2	l1	L1	L2	G1	[kg]
DMH220 / DMH220C	693	250	623	337	172	210	77	115	635	370	1/2" F	35
DMH360 / DMH360C	793	270	623	437	192	250	95	115	735	370	1/2" F	40
DMV220	850	240	615	337	172	350	215	75 (*)			1/2" F	40

 $^{(*)\} pre-shearing\ for\ hydraulic\ and\ electrical\ connections\ on\ the\ side,\ rear\ and\ bottom\ panel$

Aermec reserves the right to make any modifications deemed necessary. All data is subject to change without notice. Aermec does not assume responsibility or liability for errors or omissions.

Aermec S.p.A.Via Roma, 996 - 37040 Bevilacqua (VR) - Italia
Tel. 0442633111 - Telefax 044293577 www.aermec.com

DISTRIBUTORS / DISTRIBUTEURS

ALBANIA

AERMEK ALBANIA SH.P.K. - BUL. Gjergj Fishta KULLA 4 - 1001 TIRANA Ph. +355 4 2224339 - Fax. +355 4 2224339 - info@aermekalbania.com

ALGERIA

AIRMEC ALGERIE - 312 Avenue Hamid Kebladj - Hammamet Ph. + 213 23 15 76 46 - Fax + 213 21 95 61 48 - airmec_algerie@yahoo.fr ANGOLA

CEST – COMÉRCIO E INDÚSTRIA, LDA – Rua do Ex. Matadouro, s/n -Morro BentoLuanda - Ph. +244 222 469 105 – Fax +244 222 469 024 geral.angola@cest.pt

ARGENTINA

TROX ARGENTINA SA. - Timbo 2610 - Parque Industrial Burzaco - Buenos Aires - Ph. +54 1142335676 - Fax +54 91155234803 - fernando.cani@trox-latinamerica.com

ARMENIA

LLC LID MECH - Avan, Babajanyan 15/1 Yerevan - Ph. +374 99 19 31 99 info@santech am

Renome LTD - M. Xorenatci str. 116/16 - Yerevan - Ph +374 60445310 Fax +374 60445310 - renomeclima@mail.ru

AUSTRALIA

COSAIR PRODUCTS PTY LTD - Unit 10, 35 Birch Street - Condell Park NSW 2200 - Ph. +61 297964668 - Fax +61 297964669

mcosgrove@cosair.com.au

AUSTRIA

AERSYS GMBH - Brown Boveri Strasse 8/Stg. 1/5 - 2351 Wiener Neudorf - Ph. +43 (0)2236 387 770- office@aersys.at

A7FRRAIJAN

NEP ENGINEERING - Nizami 86/7 - Baku - Ph./Fax. +99 412 4934560 nep@nep.az - perviz@ozulinsaat.com - k.secher@nep.com.tr

BANGLADESH

AERMEC SOUTH ASIA - 49, 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph. +91-9620031789 - debasis@aermec.com AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur - 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 /+8801965583865 archan@aermec.com

BELGIUM

ENERWIN S.P.R.L. - Avenue Vésale 20 B - 1300 WAVRE - Ph. +32 10 232650 - Fax +32 10 812608 - bernard.mendel@enerwin-aermec.be

BELARUS

RiaBaltEngineering OÜ - Tuukri TN 19-3145 Kesklinna Linnaosa - 10152 Tallinn -Tel. +375 44 570 08 47 - pnv@rialbalt.com

BRASI

TROX DO BRASIL - Rua Cyro Correia Pereira 300 - CIC - Curitiba - Ph. +55 413316-8418 - Fax +55 413316-8490 fernando.cani@trox-latinamerica.com

BOLIVIA

CONSULCAD INGENIERIA SRL - Av. Demetrio Canelas, Edif. Amistad PB Cochabamba - Ph. +591 4 4280012 - Mob. 591 70718670 h_astulla@consulcadsrl.com

BOSNIA AND HERZEGOVINA

Taurus KGV d.o.o. – Ciglanska 12 - 71000 Sarajevo Ph. +387 33 942 142 – Fax: +387 33 942 142 – info@taurus.ba

BULGARIA

ATARO CLIMA EOOD - 272 Vasil Levski str. - Plovdiv Ph. +359 32 906 906 - Fax +359 32 906 900 - ataro@ataro.bg

BUTHAN

AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 / +880 1965583865 - archan@aermec.com

AERMEC SOUTH ASIA - 149 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph +91 -9620031789 - debasi@aermec.com

CANADA

MITS AIR CONDITIONING Inc. - 1608 Bonhill Road - L5T 1B451 Mississauga ONTARIO - Ph. +905 564 2221- Fax + 905 564 2205 jchaters@mitsair.com

CHILE

AERMEC SOUTH AMERICA SPA - Calle Canal La Punta 8770 – TOP SPACE BODEGA 42 - RENCA – 8640000 SANTIAGO - Ph. 56 2 2943.3355 - contacto@aermec.cl

COLOMBIA

Aermec Colombia - Cra 11 No 140-41 Torre 2 Apto 402 - Bogotà - Mob. +573108749386 - paul.arredondo@aermec.com

CROATIA

MARITERM d.o.o. - Drazice 123D - 51 000 Rijeka Ph. +385 51 815010 - Fax +385 51 815011 - mariterm@mariterm.hr MARITERM d.o.o. - Gjure Szaba 4 – 10000 Zagreb - Ph. +385 1 377 4942 -Fax +385 1 370 74 79 – mariterm-zagreb@mariterm

MARITERM d.o.o. – Divkovićeva 2b – 52100 Pula - Ph. +385 52 556 864 Fax +385 52 556 866 – mariterm-pula@mariterm.hr

CYPRUS

ROYAL ENGINEERING CO. LTD - 6 Trachona Str. - Dhali Industrial Area 1662 Nicosia - P.O. Box 20689 - Ph. +357 22612199 - Fax +357 22610272 royaleng@cytanet.com.cy

CZECH REPUBLIC

COMPLETE CZ spol. s.r.o. - V Rovinách 520/46 - 140 00 Praha 4 Ph. +420 273 132 520 - Fax +420 246 030032 - info@completecz.cz

DENMARK

H. JESSEN JURGENSEN A/S - Tempovej 18-22 - 2750 Ballerup Ph. +45 70 270607 - Fax +45 70 263405 - deh@hjj.dk

DOMINICAN REPUBLIC

AIRLAN (Sede Caribe) - P. Barcelona 30,10 - 505 Santo Domingo Ph. +34971706500

EGYPT

ROMA TRADING SERVICE – Borg El Arab, 4th Industrial Zone, Block (73) Alexandria - Ph. +20 1221118431 - yakob@romatradingservice.com ROMA TRADING SERVICE - Via G. D'Annunzio, 32 – 00042 ANZIO (RM) Ph. +39 3404749207 - yakob@romatradingservice.com

ESTONIA

RiaBaltEngineering OÜ - Tuukri TN 19-3145 Kesklinna Linnaosa - 10152 Tallinn - Tel. +375 44 570 08 47 - pnv@rialbalt.com

FINLAND

AERMEC SUOMI OY - Hautakorventie 9, 90620 Oulu - Ph. +358 40 149 3449 veli-matti.rasanen@aermec.fi

AERMEC SUOMI OY - Microkatu 1, 70210 Kuopio - Ph +358 40 674 2509 ilpolaitinen@aermec.fi

FRANCE

AERMEC SAS - PARC VISIONIS II - Rue du Developpement - 01090 GUEREINS -Ph. +33 04 74090038 - Fax +33 4 74090988 info@aermec.fr

AERMEC SAS - Ile de France - 80 Avenue du Général De Gaulle - 91170 - Viry Chatillon - Ph. +33 1 60478348 - Fax +33 1 69436368 qianni.delfabbro@aermec.fr

DIMENA SARL - 88 Rue Du Moulineau - 33320 Eysines
Ph. +33-5-57876429 - Fax +33-5-56798900 - contact@dimena.fr
S.TE FRANCE CLIM - 41 rue Pierre Sémard - 57300 Hagondange
Ph. +33 3 87517505 - Fax +33 3 87517514 - france.clim@laposte.net
T.C.A. - Avenue des Maurettes - 06270 Villeneuve Loubet
Ph. +33 4 92133666 - Fax +33 4 93208304 - tca06@tca.fr
T.C.A. - 19 Rue M. Bastié Z.I. de la Lauze - 34430 St Jean De Vedas
Ph. +33 4 67473690 - Fax +33 4 67479851 - tca34@tca.fr
T.C.A. - 213 route de la Valentine aux 3 lucs -13011 Marseille

Ph. +33 4 91191919 - Fax +33 467479851 - tca13@tca.fr

THERMORUM Ltd. - Vazha-Pshavela Ave.20 - 0160 Tbilisi Ph. +995 591757550 - Sh.k@thermorum.com

GERMANY

AERMEC Deutschland GmbH - Am Gierath 4 - 40885 Ratingen Ph. +49 2102 91000 - Fax +49 2102 910010 - info@aermec-deutschland.de NOVATHERM KLIMAGERÄTE GmbH - Dieselstrasse 40 - 30827 Garbsen Berenbostel - Ph. +49 5131 49670 - Fax +49 5131 496767 hannover@novatherm.de

GHANA

Seepacs Engineering Limited - Private Mail Bag, 25 - Cantonment Post Office Accra - Ph. +233 (0302) 817180 - Fax +233 (0302) 813454 s.bruno@seepacseng.com

GREECE

CALDA ENERGY S.A.I.C. -100 Tatoiou Str, Metamorfossi -14452 Athens - Ph./Fax +30 210 28 43 - Fax + 30 210 28 43 - calda@otenet.gr

HOLLAND
AERKOEL BV - Binnendelta 4 H - 1261 WZ Blaricum
Ph. +31 850 731 001 - y.mols@aerkoel.nl

HUNGARY

OKTOKLIMA - Királyok útja 27 -1039 Budapest Ph. +36 1 4332360 - Fax +36 1 2403617 - oktoklima@oktoklima.hu

HONG KONG

LUCKY E & M LIMITED - 11/F Thomson Commercial Building 8 Thomson Road - Wanchai - Ph. +2865 2088 - Fax +2529 7255 general@luckyem.hk

ICELAND

VÖRUKAUP - Lambhagavegi 5 - 113 Reykjavík - Ph. +354 516-2600 Mob. +354 823-4335 - www.vorukaup.is

NDIA

AERMEC SOUTH ASIA - 149, 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph. +91-9620031789 - debasis@aermec.com AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur 712201 Serampore Hooghly (West Bengal)

Ph. +91 9836030720 / +880 1965583865 - archan@aermec.com

VERTRIEBSPARTNER / DISTRIBUIDORES

IVORY COAST

CYBAT TECHNOLOGY - 27 BP 786 Abidjan 27

Ph. + 225 22 42 26 03 - cybat.direction@gmail.com

JORDAN

PIONEER ENGINEERING SYSTEMS - Otba Bin Ghazwan St. - Building No. 25 Amman-Khalda - Ph. +962-6-5518030 - Mob. +962-795550859 Fax +962-6-5518031 - m.shurafa@pes-jo.com

KAZAKHSTAN

AEPMEK KAZAKHSTAN - Samal-2, 59, Blok B, office 19 - 050040 Almaty - Ph. +77272668648 - info@aermek.kz

KENYA

AERSA (PTY) Ltd. - 2 Square road, Stikland Industrial, Bellville, 7530 Ph. +27 21 9057979 - Fax +27 21 9057976 - sales@aersa.co.za

KOREA (Republic of)

M.T.E.S co. Ltd - Ori Gyung-gil, Pyeongtaek-si Gyeonggi-do - Pyeongtaek - Ph. 82 (0)31-655-1833/1843 - Fax 82-(0)2-6280-5946 jey.kim@ccmillsvc.com

KOSOVO

GREEN ENGINEERING SH.P.K. - Orizel nr. 6 - 50000 Gjakove Ph. +38349777148 - bardhzeka@gmail.com

ISRAEL

Tadiran Consumers and Technology Product Ltd. - 9 Ravnitski St. Petah Tikva, 697100 - Ph. +972-3-9283422 - Fax +972-3-5566188 Aermec@Tadiran-Group.co.il

I ATVIA

ACQUA COOLING - Smaidu Street 1 - LV2130 Riga - Ph. +371 29554778 - info@acq.lv

LEBANON

GEM Sarl - Dora Highway, Makateb Hadissa Store, P.O. Box: 80106 Beirut Ph. +961-1-259577 - Fax +961-1-259577 - Mob. +961-3-655975 info@gemsarl.com

LIBYA

Almusanter Alawal CO. for Electro Mechanic Fitt. & Ventilation -Alsabaa Nearby Alqezany Mosque Tripoli - Ph. +218 918460524 malamontaser@gmail.com

LITHUANIA

NIT Ltd - Savanoriu av. 151- 03150 Vilnius - Ph. +370 5 2728552 Fax +370 5 2728559 - andrius@nit.lt

LUXEMBOURG

ENERWIN S.P.R.L. - Avenue Vésale 20 B - 1300 WAVRE Ph. +32 10 232650 - Fax +32 10 812608 bernard.mendel@enerwin-aermec.be

S.TE FRANCE CLIM - 41 rue Pierre Sémard - 57300 Hagondange Ph. +33 3 87517505 - Fax +33 3 87517514 - france.clim@laposte.net

MACEDONIA

D.O.O. EUROTERM - UL. Lece Koteski 50 - 7500 PRILEP Ph. +389 48 419 415 - info@euroterm.com.mk

MALTA

ENGENUITY LTD - Triq Is-Santwarju Tal-Hlas - Qormi QRM5011 Malta Ph. +356 21490957/8 - info@engenuity.com.mt

MOLDOVA

VSC"Lerai Grup"SRL - or.Chisinau, str.Varnita, nr.2/15 - MD-2001 Republica Moldova - Ph. +373 22 224238 - +373 22 928090 info@lerai.md

MONTENEGRO

Aering d.o.o. – PC Čelebić 1/2 - 81000 Podgorica Ph. +387 61 738 240 – marko.moldovan@taurus.ba

MOROCCO

ECOTHERM SARL - 67, Rue du Lieutenant MAHROUD ex Rue Chevalier BAYARD Casablanca 20300 - Ph. +212 522 243300 Fax +212 522 243302 - contact@ecotherm.ma

NEPAL

AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur - 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 / +880 1965583865 - archan@aermec.com

AERMEC SOUTH ASIA - 149 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph +91 -9620031789 - debasi@aermec.com

NIGERIA

BHR Solutions - Building Hospitality Retail Solution - 1- 3 B Osbourne Road Ikoyi, Lagos - Ph. +2348148525053 - paulnig@bhrsolutions.co.za; sales@aersa.co.za

NORTHERN IRELAND

PowerTech Refrigeration Ltd - 94a Gosford Road - Markethill CO Armagh BT60 1RH - Belfast - Ph. +28 3755 2792 projects@powertechref.com

INSTALL ENGINEERING S.H.P.K. - Kroi I Bardhe, 12 - Prishtine Ph. +381 38 540 977 - info@install-ks.com

NORWAY

THERMO CONTROL AS (Oslo - Main office) - Snipetjernveien 7, 1405 Langhus - Ph. +47 23 16 95 00 - post@tco.as

THERMO CONTROL AS (Skedsmo office) - Marenlundveien 5, 2020 Skedsmokorset - Ph. +47 63 87 07 50 - post.skedsmo@tco.as

THERMO CONTROL AS (Fredrikstad office) - Pancoveien 22A, 1624 Gressvik - Ph. +47 69 14 56 00 - post@tco.as

THERMO CONTROL AS (Bergen office) - Sandbrekketoppen 30, 5224 Nesttun - Ph. +47 55 92 94 00 - post@tco.as

THERMO CONTROL AS (Stavanger office) - Torneroseveien 8, 4315 Sandnes - Ph. +47 51 62 82 56 - firmapost-sorvest@tco.as

THERMO CONTROL AS (Trondheim office) - avdeling Midt-Norge Østre Rosten 68B, 7075 Tiller - Ph. +47 73 02 10 60 - firmapost-midt@tco.as **THERMO CONTROL AS** (Tromsø office) - Skatterøvegen 78, 9018

Tromsø - Ph. +47 975 99 992 - firmapost-nord@tco.as THERMO CONTROL AS (Harstad office) - Stangnesterminalen 6, 9409

Harstad - Ph. +47 77 00 24 90 - firmapost-nord@tco.as

THERMO CONTROL AS (Rognan-Bodø - office) - Håndverkeren 16,

8250 Rognan - Ph. +47 918 04 155 - firmapost-nord@tco.as **THERMO CONTROL AS** (Lager office) - Marenlundveien 5, 2020 Skedsmokorset - lager.skedsmo@tco.as

PAKISTAN

ASTRO POWER SYSTEMS - Suite 124, 1st Floor, Block B, Abu Dhabi Tower, F-11 Markaz - Islamabad

Ph. +92-51-2102688-89 - Fax +92-51 2102690

ASTRO POWER SYSTEMS - Suite 3 E, 3rd Floor, Kiran Plaza, 28/M Model Town Ext - Lahore

Ph. +92-42-35219051-52 - Fax +92-42-35219053

ASTRO POWER SYSTEMS - Descon Plaza, Suite D-14, 4TH Floor, 16-A, Block 6 P.E.C.H.S - Sharah-E-Faisal- Karachi Ph. +92-21-34982027 - Fax +92-21-34982028

PERU

AIRLAN - Calle 2 de Mayo 534 oficina 603 Miraflores, 18 - Lima - Ph. +51 14472681 - Fax +51 14 45 0833 - jchavarri@airlan.es

POLAND

Aermec Polska Sp. z o.o. - Krzysztofa Kolumba 31 - 02-288 Warszawa Ph. +48 22 463 43 43 - aermec@aemec.pl

PORTUGAL

CEST – COMÉRCIO E INDÚSTRIA, LDA – Av. Almirante Gago Coutinho Ouressa Parque Arm. 13, 2725-322 Mem Martins h. +351 219253330 - Fax +351 219253338 – geral@cest.pt

QATAR

ELEC QATAR W.L.L. - Office 1, Capital Complex, Bldg 446, Street 340, Salwa Road, Zone 55 - P.O. Box 31584 - DOHA Ph. +974 4431.9282 - Fax +974 4431.9282

ROMANIA

AVANT'SYS GREEN ENERGY - Strada Duzilor 24 - Bucharest 021472 Ph. +40 21 350 1359 - office@avantsys-promoterm.ro Clima Tech S.R.L. - Strada Vasile Voiculescu 14, Bucharest

Ph. +40 21 323 2266 - office@clima-tech.ro

REPUBLIC OF IRELAND

European Industrial Chillers Limited - Unit 74 Dunboyne Business Park - Dunboyne Co. Meath - Dublin

Ph. +353 01 8255155 - Fax +353 01 8255188

RUSSIA

AERMEC Spa - Rep. Office Business Center Capital Plaza, 4 Lesnoy Pereulok office 455 - 125047 Moscow - Ph. +7 495 6638044 m.l@aermec.com

SERBIA

AKTING DOO - Jurija Gagarina, 153/32 -11070 Novi Beograd Ph. +381 113187383 - akting@eunet.rs

SLOVAKIA

KLIMA TEAM s.r.o. - Trnavska 63 - 82101 Bratislava Ph. +421 2 43293969 - Fax +421 2 43420079 - mail@klimateam.sk

BOSSPLAST D.O.O. - Pod Jelsami 5 - 1290 GROSUPLJE Ph. +386 1 7810 550 - jernej.rode@bossplast.com

SOUTH AFRICA

AERSA (PTY) Ltd. - 2 Square Road - Stikland Industrial - Bellville 7530 Ph. +27 21 9057979 - Fax +27 21 9057976 - sales@aersa.co.za AERSA Gauteng - Unit 9 Barbeque Corner, 27 - Dytchley Road, Barbeque

downs Midrand - Ph. 021 905 7979 - sales@aersa.co.za

SOUTH AMERICA

AERMEC SOUTH AMERICA SPA - Calle Canal La Punta 8770 – TOP SPACE BODEGA 42 - RENCA – 8640000 SANTIAGO Ph. 56 2 2943.3355 - ramon.morales@aermec.cl

DISTRIBUTORS / DISTRIBUTEURS

SPAIN

AIRLAN S.A. (Delegación Norte) - Ribera de Deusto 87 - 48014 Bilbao (Vizcaya) Ph. +34944760139 - Fax +3494752402 - rcoteron@airlan.es AIRLAN (Delegación Galicia) - Pol. Ind. Alvedro, Nave E-26 - 15180 Alvedro Culleredo (La Coruña) - Ph. +34 981 288209 - Fax +34 981286503 AIRLAN (Delegación Centro) - Calle Antonio López 249 (Edificio Vértice) 3B 28041 Madrid - Ph. +34914732765 - Fax +34914732581 AIRLAN (Delegación Cataluña) - Avda Meridiana 350-4 A - 8027 Barcelona - Ph. +34664548540 - Fax +34932780224 AIRLAN (Delegación Levante) - Avda Meridiana 350-4 A - 8027 Barcelona Ph. +34664548540 - Fax +34932780224 AIRLAN (Delegación Andalucía) - C/ Acueducto 24 Edif. Dos Hermanas

Isla Edificio 2, Pl 1ª, Mod. 9 41703 Pol. Ind. Ctra. De la Isla, Sevilla (Sevilla) Ph. +34 955 5406 12 - Fax +34901706015

AIRLAN (Delegación Baleares) - c/Teixidors 6 - 7009 Pol Ind. Son Castelló - Palma (Mallorca) - Ph. +34971706500 - Fax +34971706372 AIRLAN (Delegación Canarias) - C/Los Bimbaches 13 Local 2 A -38107 Santa Cruz de Tenerife (Tenerife) Ph. +34922214563 - Fax +34922217985

SRI LANKA

AERMEC SOUTH ASIA - 13/A Choudhury Para Lane Ballavpur - 712201 Serampore Hooghly (West Bengal) - Ph. +91 9836030720 / +880 1965583865 archan@aermec.com

AERMEC SOUTH ASIA - 149 3rd Cross GMR layout, Sanjaynagar 566094 Bangalore - Ph +91 -9620031789 - debasi@aermec.com

STATE OF PALESTINE

ENGINEERING CENTER FOR HEATING AND AIR CONDITIONING -Industrial Zone Ramallah - Ramallah - Ph. +970 2 2959975 Fax +970 2 2963439 - info@engineering-center.com

SINJAB TRADING EST - Murshe Khater st. PO BOX 5358 - 5073 Damascus - Ph. +963 11 4424541 - Fax 963-11-4412862 sinjabest@gmail.com

SWEDEN

KYLMA AB - Box 8213 -163 08 SPÅNGA - Ph. +46 8 59890805 Fax +46 8 59890891 - Mikael.Magnusson@kylma.se AIRCOIL AB - Angsvagen 22 - 67232 ARJÄNG Ph. +46 573 711045 - Fax. +46 573 711811 - info@aircoil.se

SWITZERLAND

TCA THERMOCLIMA AG - Piccardstr. 13 - 9015 St. Gallen Ph. +41 71 313 99 22 - Fax +41 71 313 99 29 - info@tca.ch TCA THERMOCLIMA AG - Gewerbestr. 10 - 4528 Zuchwil Ph. +41 71 313 99 22 - Fax +41 71 313 99 29 - info@tca.ch TCA THERMOCLIMA SA - Av. Boveresses 52 - 1010 Lausanne Ph. +41 71 313 99 22 - Fax +41 71 313 99 29 - info@tca.ch KATALTHERM SERVICE S.A. - Via alla Gerra, Cp 54 - 6930 Bedano Ph. +41 91 935 22 22 - Fax +41 91 935 22 24 - info@kataltherm.ch

THAILAND

TEAM TECHNOLOGY CONSULTANTS & SERVICE CO.,LTD

14 Soi Suanfarang. Prachacheng Rd. Bang Sue. - 10800 Bangkok Ph. +66 29133924 - Fax +66 814450862 - bamroongj@gmail.com

CODIFET S.A.R.L. - 7 Rue de la Chimie Z.I. SIDI REZIG - 2033 Megrine Ph. +216 71 433035 - Fax +216 71 433239 - contact@codifet.com

TURKEY

AIR TRADE CENTER - Ibrahim Karaoglanoglu Caddesi No: 101 - 34418 Seyrantepe / Istanbul - Ph. 90(0)2122834510 - Fax 90(0)2122783964 atc.turkey@airtradecentre.com

CLIMHOUSE LLC - 18th Sadovaya Street, building 1 - 04128 Kiev -Ph.+38 (044) 384-18-91 - sales@climhouse.com

CLIMATIZACION INTEGRAL LTDA - Pedro Cosio 2064 - 11400 Montevideo Ph. +598 26136565 - Fax +598 26136565 - pgiosa@climatizacion.com.uy

UNITED ARAB EMIRATES

QTM - 1202 Grosvenor Business Tower - Dubai - Ph. +971 4 453 1707 aermec@qtmesco.com

UNITED KINGDOM

AERMEC UK LIMITED - Unit 11, The Quad - Airport Business Park Southend Cherry Orchard Way - Rochford-Essex Ph. +44 0203 008 5940 - Fax +44 0203 008 5941 uksales@aermec.co.uk

UNITED STATES

MITS AIR CONDITIONING Inc. - 1608 Bonhill Road. - CA L5T 1C7 Mississauga Ph. 1-888-567-2227 - Fax 905-564-2221 - help@aermec.us

BACH KHOA EQUIPMENT INTERNATIONAL JSC. - 790 Su Van Hanh St., Ward Dist.10 - Ho Chi Minh City - Ph. +84 903 999 357 - info@bkic.vn BACH KHOA EQUIPMENT INTERNATIONAL JSC. - No. 35, Lane 45, Tran Thai Tong St. Cau Giay Dist. - Hanoi - Ph. +84 915 141 176 - info@bkic.vn

